1
|
Borghi R, Petrini S, Apollonio V, Trivisano M, Specchio N, Moreno S, Bertini E, Tartaglia M, Compagnucci C. Altered cytoskeleton dynamics in patient-derived iPSC-based model of PCDH19 clustering epilepsy. Front Cell Dev Biol 2025; 12:1518533. [PMID: 39834389 PMCID: PMC11743388 DOI: 10.3389/fcell.2024.1518533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Protocadherin 19 (PCDH19) is an adhesion molecule involved in cell-cell interaction whose mutations cause a drug-resistant form of epilepsy, named PCDH19-Clustering Epilepsy (PCDH19-CE, MIM 300088). The mechanism by which altered PCDH19 function drive pathogenesis is not yet fully understood. Our previous work showed that PCDH19 dysfunction is associated with altered orientation of the mitotic spindle and accelerated neurogenesis, suggesting a contribution of altered cytoskeleton organization in PCDH19-CE pathogenesis in the control of cell division and differentiation. Here, we evaluate the consequences of altered PCDH19 function on microfilaments and microtubules organization, using a disease model obtained from patient-derived induced pluripotent stem cells. We show that iPSC-derived cortical neurons are characterized by altered cytoskeletal dynamics, suggesting that this protocadherin has a role in modulating stability of MFs and MTs. Consistently, the levels of acetylated-tubulin, which is related with stable MTs, are significantly increased in cortical neurons derived from the patient's iPSCs compared to control cells, supporting the idea that the altered dynamics of the MTs depends on their increased stability. Finally, performing live-imaging experiments using fluorescence recovery after photobleaching and by monitoring GFP-tagged end binding protein 3 (EB3) "comets," we observe an impairment of the plus-end polymerization speed in PCDH19-mutated cortical neurons, therefore confirming the impaired MT dynamics. In addition to altering the mitotic spindle formation, the present data unveil that PCDH19 dysfunction leads to altered cytoskeletal rearrangement, providing therapeutic targets and pharmacological options to treat this disorder.
Collapse
Affiliation(s)
- Rossella Borghi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Laboratories, Bambino Gesù, Children’s Research Hospital, IRCCS, Rome, Italy
| | - Valentina Apollonio
- Confocal Microscopy Core Facility, Laboratories, Bambino Gesù, Children’s Research Hospital, IRCCS, Rome, Italy
| | - Marina Trivisano
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Nicola Specchio
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Sandra Moreno
- Department of Science, LIME, University Roma Tre, Rome, Italy
| | - Enrico Bertini
- Research Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
2
|
Lin W, Liu Y, Liang CS, Yeh PK, Tsai CK, Hung KS, An YC, Yang FC. Syncope in Migraine: A Genome-Wide Association Study Revealing Distinct Genetic Susceptibility Variants Across Subtypes. J Clin Neurol 2024; 20:599-609. [PMID: 39505312 PMCID: PMC11543389 DOI: 10.3988/jcn.2024.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/13/2024] [Accepted: 09/04/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND AND PURPOSE Syncope is characterized by the temporary loss of consciousness and is commonly associated with migraine. However, the genetic factors that contribute to this association are not well understood. This study investigated the specific genetic loci that make patients with migraine more susceptible to syncope as well as the genetic factors contributing to syncope and migraine comorbidity in a Han Chinese population in Taiwan. METHODS A genome-wide association study was applied to 1,724 patients with migraine who visited a tertiary hospital in Taiwan. The patients were genotyped using the Affymetrix Axiom Genome-Wide TWB 2.0 array and categorized into the following subgroups based on migraine type: episodic migraine, chronic migraine, migraine with aura, and migraine without aura. Multivariate regression analyses were used to assess the relationships between specific single-nucleotide polymorphisms (SNPs) and the clinical characteristics in patients with syncope and migraine comorbidity. RESULTS In patients with migraine, SNPs were observed to be associated with syncope. In particular, the rs797384 SNP located in the intron region of LOC102724945 was associated with syncope in all patients with migraine. Additionally, four SNPs associated with syncope susceptibility were detected in the nonmigraine control group, and these SNPs differed from those in the migraine group, suggesting distinct underlying mechanisms. Furthermore, the rs797384 variant in the intron region of LOC102724945 was associated with the score on the Beck Depression Inventory. CONCLUSIONS The novel genetic loci identified in this study will improve our understanding of the genetic basis of syncope and migraine comorbidity.
Collapse
Affiliation(s)
- Wei Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi Liu
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Kuan Yeh
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Sheng Hung
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chin An
- Department of Emergency, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
3
|
Luo W, Egger M, Cruz-Ochoa N, Tse A, Maloveczky G, Tamás B, Lukacsovich D, Seng C, Amrein I, Lukacsovich T, Wolfer D, Földy C. Activation of feedforward wiring in adult hippocampal neurons by the basic-helix-loop-helix transcription factor Ascl4. PNAS NEXUS 2024; 3:pgae174. [PMID: 38711810 PMCID: PMC11071515 DOI: 10.1093/pnasnexus/pgae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
Although evidence indicates that the adult brain retains a considerable capacity for circuit formation, adult wiring has not been broadly considered and remains poorly understood. In this study, we investigate wiring activation in adult neurons. We show that the basic-helix-loop-helix transcription factor Ascl4 can induce wiring in different types of hippocampal neurons of adult mice. The new axons are mainly feedforward and reconfigure synaptic weights in the circuit. Mice with the Ascl4-induced circuits do not display signs of pathology and solve spatial problems equally well as controls. Our results demonstrate reprogrammed connectivity by a single transcriptional factor and provide insights into the regulation of brain wiring in adults.
Collapse
Affiliation(s)
- Wenshu Luo
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Matteo Egger
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich 8057, Switzerland
| | - Natalia Cruz-Ochoa
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich 8057, Switzerland
| | - Alice Tse
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Gyula Maloveczky
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Bálint Tamás
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Charlotte Seng
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Irmgard Amrein
- Institute of Anatomy, Faculty of Medicine, University of Zürich, Zürich 8057, Switzerland
| | - Tamás Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - David Wolfer
- Institute of Anatomy, Faculty of Medicine, University of Zürich, Zürich 8057, Switzerland
- Institute of Human Movement Sciences and Sport, D-HEST, ETH Zürich, Zürich 8057, Switzerland
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich 8057, Switzerland
| |
Collapse
|
4
|
Martinez AP, Chung AC, Huang S, Bisogni AJ, Lin Y, Cao Y, Williams EO, Kim JY, Yang JY, Lin DM. Pcdh19 mediates olfactory sensory neuron coalescence during postnatal stages and regeneration. iScience 2023; 26:108220. [PMID: 37965156 PMCID: PMC10641745 DOI: 10.1016/j.isci.2023.108220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/12/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
The mouse olfactory system regenerates constantly throughout life. While genes critical for the initial projection of olfactory sensory neurons (OSNs) to the olfactory bulb have been identified, what genes are important for maintaining the olfactory map during regeneration are still unknown. Here we show a mutation in Protocadherin 19 (Pcdh19), a cell adhesion molecule and member of the cadherin superfamily, leads to defects in OSN coalescence during regeneration. Surprisingly, lateral glomeruli were more affected and males in particular showed a more severe phenotype. Single cell analysis unexpectedly showed OSNs expressing the MOR28 odorant receptor could be subdivided into two major clusters. We showed that at least one protocadherin is differentially expressed between OSNs coalescing on the medial and lateral glomeruli. Moreover, females expressed a slightly different complement of genes from males. These features may explain the differential effects of mutating Pcdh19 on medial and lateral glomeruli in males and females.
Collapse
Affiliation(s)
- Andrew P. Martinez
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Alexander C. Chung
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Suihong Huang
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Adam J. Bisogni
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Yingxin Lin
- School of Mathematics and Statistics, F07 University of Sydney, NSW 2006, Australia
| | - Yue Cao
- School of Mathematics and Statistics, F07 University of Sydney, NSW 2006, Australia
| | - Eric O. Williams
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Jin Y. Kim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Jean Y.H. Yang
- School of Mathematics and Statistics, F07 University of Sydney, NSW 2006, Australia
| | - David M. Lin
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
5
|
Liu S, Chen L, Li J, Sun Y, Xu Y, Li Z, Zhu Z, Li X. Asiaticoside Mitigates Alzheimer's Disease Pathology by Attenuating Inflammation and Enhancing Synaptic Function. Int J Mol Sci 2023; 24:11976. [PMID: 37569347 PMCID: PMC10418370 DOI: 10.3390/ijms241511976] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder, hallmarked by the accumulation of amyloid-β (Aβ) plaques and neurofibrillary tangles. Due to the uncertainty of the pathogenesis of AD, strategies aimed at suppressing neuroinflammation and fostering synaptic repair are eagerly sought. Asiaticoside (AS), a natural triterpenoid derivative derived from Centella asiatica, is known for its anti-inflammatory, antioxidant, and wound-healing properties; however, its neuroprotective function in AD remains unclear. Our current study reveals that AS, when administered (40 mg/kg) in vivo, can mitigate cognitive dysfunction and attenuate neuroinflammation by inhibiting the activation of microglia and proinflammatory factors in Aβ1-42-induced AD mice. Further mechanistic investigation suggests that AS may ameliorate cognitive impairment by inhibiting the activation of the p38 MAPK pathway and promoting synaptic repair. Our findings propose that AS could be a promising candidate for AD treatment, offering neuroinflammation inhibition and enhancement of synaptic function.
Collapse
Affiliation(s)
- Sai Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Long Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Jinran Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Xu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Zhaoxing Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Zheying Zhu
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Xinuo Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
6
|
Breau MA, Trembleau A. Chemical and mechanical control of axon fasciculation and defasciculation. Semin Cell Dev Biol 2023; 140:72-81. [PMID: 35810068 DOI: 10.1016/j.semcdb.2022.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 01/28/2023]
Abstract
Neural networks are constructed through the development of robust axonal projections from individual neurons, which ultimately establish connections with their targets. In most animals, developing axons assemble in bundles to navigate collectively across various areas within the central nervous system or the periphery, before they separate from these bundles in order to find their specific targets. These processes, called fasciculation and defasciculation respectively, were thought for many years to be controlled chemically: while guidance cues may attract or repulse axonal growth cones, adhesion molecules expressed at the surface of axons mediate their fasciculation. Recently, an additional non-chemical parameter, the mechanical longitudinal tension of axons, turned out to play a role in axon fasciculation and defasciculation, through zippering and unzippering of axon shafts. In this review, we present an integrated view of the currently known chemical and mechanical control of axon:axon dynamic interactions. We highlight the facts that the decision to cross or not to cross another axon depends on a combination of chemical, mechanical and geometrical parameters, and that the decision to fasciculate/defasciculate through zippering/unzippering relies on the balance between axon:axon adhesion and their mechanical tension. Finally, we speculate about possible functional implications of zippering-dependent axon shaft fasciculation, in the collective migration of axons, and in the sorting of subpopulations of axons.
Collapse
Affiliation(s)
- Marie Anne Breau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR 7622), Institut de Biologie Paris Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Alain Trembleau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8246), Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France.
| |
Collapse
|
7
|
Schneider F, Metz I, Rust MB. Regulation of actin filament assembly and disassembly in growth cone motility and axon guidance. Brain Res Bull 2023; 192:21-35. [PMID: 36336143 DOI: 10.1016/j.brainresbull.2022.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Directed outgrowth of axons is fundamental for the establishment of neuronal networks. Axon outgrowth is guided by growth cones, highly motile structures enriched in filamentous actin (F-actin) located at the axons' distal tips. Growth cones exploit F-actin-based protrusions to scan the environment for guidance cues, and they contain the sensory apparatus to translate guidance cue information into intracellular signaling cascades. These cascades act upstream of actin-binding proteins (ABP) and thereby control assembly and disassembly of F-actin. Spatiotemporally controlled F-actin dis-/assembly in growth cones steers the axon towards attractants and away from repellents, and it thereby navigates the axon through the developing nervous system. Hence, ABP that control F-actin dynamics emerged as critical regulators of neuronal network formation. In the present review article, we will summarize and discuss current knowledge of the mechanisms that control remodeling of the actin cytoskeleton in growth cones, focusing on recent progress in the field. Further, we will introduce tools and techniques that allow to study actin regulatory mechanism in growth cones.
Collapse
Affiliation(s)
- Felix Schneider
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany; Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Isabell Metz
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032 Marburg, Germany.
| |
Collapse
|
8
|
Takeichi M. Cell sorting in vitro and in vivo: How are cadherins involved? Semin Cell Dev Biol 2022; 147:2-11. [PMID: 36376196 DOI: 10.1016/j.semcdb.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Animal tissues are composed of heterogenous cells, and their sorting into different compartments of the tissue is a pivotal process for organogenesis. Cells accomplish sorting by themselves-it is well known that singly dispersed cells can self-organize into tissue-like structures in vitro. Cell sorting is regulated by both biochemical and physical mechanisms. Adhesive proteins connect cells together, selecting particular partners through their specific binding properties, while physical forces, such as cell-cortical tension, control the cohesiveness between cells and in turn cell assembly patterns in mechanical ways. These processes cooperate in determining the overall cell sorting behavior. This article focuses on the 'cadherin' family of adhesion molecules as a biochemical component of cell-cell interactions, addressing how they regulate cell sorting by themselves or by cooperating with other factors. New ideas beyond the classical models of cell sorting are also discussed.
Collapse
|
9
|
Pancho A, Mitsogiannis MD, Aerts T, Dalla Vecchia M, Ebert LK, Geenen L, Noterdaeme L, Vanlaer R, Stulens A, Hulpiau P, Staes K, Van Roy F, Dedecker P, Schermer B, Seuntjens E. Modifying PCDH19 levels affects cortical interneuron migration. Front Neurosci 2022; 16:887478. [PMID: 36389226 PMCID: PMC9642031 DOI: 10.3389/fnins.2022.887478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2023] Open
Abstract
PCDH19 is a transmembrane protein and member of the protocadherin family. It is encoded by the X-chromosome and more than 200 mutations have been linked to the neurodevelopmental PCDH-clustering epilepsy (PCDH19-CE) syndrome. A disturbed cell-cell contact that arises when random X-inactivation creates mosaic absence of PCDH19 has been proposed to cause the syndrome. Several studies have shown roles for PCDH19 in neuronal proliferation, migration, and synapse function, yet most of them have focused on cortical and hippocampal neurons. As epilepsy can also be caused by impaired interneuron migration, we studied the role of PCDH19 in cortical interneurons during embryogenesis. We show that cortical interneuron migration is affected by altering PCDH19 dosage by means of overexpression in brain slices and medial ganglionic eminence (MGE) explants. We also detect subtle defects when PCDH19 expression was reduced in MGE explants, suggesting that the dosage of PCDH19 is important for proper interneuron migration. We confirm this finding in vivo by showing a mild reduction in interneuron migration in heterozygote, but not in homozygote PCDH19 knockout animals. In addition, we provide evidence that subdomains of PCDH19 have a different impact on cell survival and interneuron migration. Intriguingly, we also observed domain-dependent differences in migration of the non-targeted cell population in explants, demonstrating a non-cell-autonomous effect of PCDH19 dosage changes. Overall, our findings suggest new roles for the extracellular and cytoplasmic domains of PCDH19 and support that cortical interneuron migration is dependent on balanced PCDH19 dosage.
Collapse
Affiliation(s)
- Anna Pancho
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuela D. Mitsogiannis
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tania Aerts
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Marco Dalla Vecchia
- Laboratory for NanoBiology, Department of Chemistry, KU Leuven, Leuven, Belgium
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Lena K. Ebert
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Lieve Geenen
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
- Laboratory of Neuroplasticity and Neuroproteomics, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lut Noterdaeme
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ria Vanlaer
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Anne Stulens
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Paco Hulpiau
- Department of Biomedical Molecular Biology, Ghent University, Inflammation Research Center, VIB, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- BioInformatics Knowledge Center (BiKC), Howest University of Applied Sciences, Bruges, Belgium
| | - Katrien Staes
- Department of Biomedical Molecular Biology, Ghent University, Inflammation Research Center, VIB, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frans Van Roy
- Department of Biomedical Molecular Biology, Ghent University, Inflammation Research Center, VIB, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Peter Dedecker
- Laboratory for NanoBiology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Eve Seuntjens
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Abstract
Since the proposal of the differential adhesion hypothesis, scientists have been fascinated by how cell adhesion mediates cellular self-organization to form spatial patterns during development. The search for molecular tool kits with homophilic binding specificity resulted in a diverse repertoire of adhesion molecules. Recent understanding of the dominant role of cortical tension over adhesion binding redirects the focus of differential adhesion studies to the signaling function of adhesion proteins to regulate actomyosin contractility. The broader framework of differential interfacial tension encompasses both adhesion and nonadhesion molecules, sharing the common function of modulating interfacial tension during cell sorting to generate diverse tissue patterns. Robust adhesion-based patterning requires close coordination between morphogen signaling, cell fate decisions, and changes in adhesion. Current advances in bridging theoretical and experimental approaches present exciting opportunities to understand molecular, cellular, and tissue dynamics during adhesion-based tissue patterning across multiple time and length scales.
Collapse
Affiliation(s)
- Tony Y-C Tsai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Rikki M Garner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA;
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
11
|
Williams AM, Donoughe S, Munro E, Horne-Badovinac S. Fat2 polarizes the WAVE complex in trans to align cell protrusions for collective migration. eLife 2022; 11:e78343. [PMID: 36154691 PMCID: PMC9576270 DOI: 10.7554/elife.78343] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/11/2022] [Indexed: 11/13/2022] Open
Abstract
For a group of cells to migrate together, each cell must couple the polarity of its migratory machinery with that of the other cells in the cohort. Although collective cell migrations are common in animal development, little is known about how protrusions are coherently polarized among groups of migrating epithelial cells. We address this problem in the collective migration of the follicular epithelial cells in Drosophila melanogaster. In this epithelium, the cadherin Fat2 localizes to the trailing edge of each cell and promotes the formation of F-actin-rich protrusions at the leading edge of the cell behind. We show that Fat2 performs this function by acting in trans to concentrate the activity of the WASP family verprolin homolog regulatory complex (WAVE complex) at one long-lived region along each cell's leading edge. Without Fat2, the WAVE complex distribution expands around the cell perimeter and fluctuates over time, and protrusive activity is reduced and unpolarized. We further show that Fat2's influence is very local, with sub-micron-scale puncta of Fat2 enriching the WAVE complex in corresponding puncta just across the leading-trailing cell-cell interface. These findings demonstrate that a trans interaction between Fat2 and the WAVE complex creates stable regions of protrusive activity in each cell and aligns the cells' protrusions across the epithelium for directionally persistent collective migration.
Collapse
Affiliation(s)
- Audrey Miller Williams
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
| | - Seth Donoughe
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
- Committee on Development, Regeneration, and Stem Cell Biology, University of ChicagoChicagoUnited States
- Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
- Committee on Development, Regeneration, and Stem Cell Biology, University of ChicagoChicagoUnited States
| |
Collapse
|
12
|
Uemura M, Furuse T, Yamada I, Kushida T, Abe T, Imai K, Nagao S, Kudoh M, Yoshizawa K, Tamura M, Kiyonari H, Wakana S, Hirano S. Deficiency of protocadherin 9 leads to reduction in positive emotional behaviour. Sci Rep 2022; 12:11933. [PMID: 35831353 PMCID: PMC9279467 DOI: 10.1038/s41598-022-16106-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/05/2022] [Indexed: 11/08/2022] Open
Abstract
Protocadherin 9 (Pcdh9) is a member of the cadherin superfamily and is uniquely expressed in the vestibular and limbic systems; however, its physiological role remains unclear. Here, we studied the expression of Pcdh9 in the limbic system and phenotypes of Pcdh9-knock-out mice (Pcdh9 KO mice). Pcdh9 mRNA was expressed in the fear extinction neurons that express protein phosphatase 1 regulatory subunit 1 B (Ppp1r1b) in the posterior part of the basolateral amygdala (pBLA), as well as in the Cornu Ammonis (CA) and Dentate Gyrus (DG) neurons of the hippocampus. We show that the Pcdh9 protein was often localised at synapses. Phenotypic analysis of Pcdh9 KO mice revealed no apparent morphological abnormalities in the pBLA but a decrease in the spine number of CA neurons. Further, the Pcdh9 KO mice were related to features such as the abnormal optokinetic response, less approach to novel objects, and reduced fear extinction during recovery from the fear. These results suggest that Pcdh9 is involved in eliciting positive emotional behaviours, possibly via fear extinction neurons in the pBLA and/or synaptic activity in the hippocampal neurons, and normal optokinetic eye movement in brainstem optokinetic system-related neurons.
Collapse
Affiliation(s)
- Masato Uemura
- Laboratory of Cell Biology, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata City, Osaka, 573-1010, Japan
| | - Tamio Furuse
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 3050074, Japan
| | - Ikuko Yamada
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 3050074, Japan
| | - Tomoko Kushida
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 3050074, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Keiko Imai
- Laboratory of Cell Biology, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata City, Osaka, 573-1010, Japan
| | - Soichi Nagao
- Laboratory for Motor Learning Control, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Laboratory for Integrative Brain Function, Nozomi Hospital, Komuro 3170, Ina, Saitama, 362-0806, Japan
| | - Moeko Kudoh
- Laboratory for Motor Learning Control, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Katsuhiko Yoshizawa
- Laboratory of Environmental Science, Department of Innovative Food Sciences, School of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, 663-8558, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 3050074, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 3050074, Japan
- Department of Animal Experimentation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, 650-0047, Japan
| | - Shinji Hirano
- Laboratory of Cell Biology, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata City, Osaka, 573-1010, Japan.
| |
Collapse
|
13
|
Moreland T, Poulain FE. To Stick or Not to Stick: The Multiple Roles of Cell Adhesion Molecules in Neural Circuit Assembly. Front Neurosci 2022; 16:889155. [PMID: 35573298 PMCID: PMC9096351 DOI: 10.3389/fnins.2022.889155] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 01/02/2023] Open
Abstract
Precise wiring of neural circuits is essential for brain connectivity and function. During development, axons respond to diverse cues present in the extracellular matrix or at the surface of other cells to navigate to specific targets, where they establish precise connections with post-synaptic partners. Cell adhesion molecules (CAMs) represent a large group of structurally diverse proteins well known to mediate adhesion for neural circuit assembly. Through their adhesive properties, CAMs act as major regulators of axon navigation, fasciculation, and synapse formation. While the adhesive functions of CAMs have been known for decades, more recent studies have unraveled essential, non-adhesive functions as well. CAMs notably act as guidance cues and modulate guidance signaling pathways for axon pathfinding, initiate contact-mediated repulsion for spatial organization of axonal arbors, and refine neuronal projections during circuit maturation. In this review, we summarize the classical adhesive functions of CAMs in axonal development and further discuss the increasing number of other non-adhesive functions CAMs play in neural circuit assembly.
Collapse
|
14
|
Borghi R, Magliocca V, Trivisano M, Specchio N, Tartaglia M, Bertini E, Compagnucci C. Modeling PCDH19-CE: From 2D Stem Cell Model to 3D Brain Organoids. Int J Mol Sci 2022; 23:ijms23073506. [PMID: 35408865 PMCID: PMC8998847 DOI: 10.3390/ijms23073506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
PCDH19 clustering epilepsy (PCDH19-CE) is a genetic disease characterized by a heterogeneous phenotypic spectrum ranging from focal epilepsy with rare seizures and normal cognitive development to severe drug-resistant epilepsy associated with intellectual disability and autism. Unfortunately, little is known about the pathogenic mechanism underlying this disease and an effective treatment is lacking. Studies with zebrafish and murine models have provided insights on the function of PCDH19 during brain development and how its altered function causes the disease, but these models fail to reproduce the human phenotype. Induced pluripotent stem cell (iPSC) technology has provided a complementary experimental approach for investigating the pathogenic mechanisms implicated in PCDH19-CE during neurogenesis and studying the pathology in a more physiological three-dimensional (3D) environment through the development of brain organoids. We report on recent progress in the development of human brain organoids with a particular focus on how this 3D model may shed light on the pathomechanisms implicated in PCDH19-CE.
Collapse
Affiliation(s)
- Rossella Borghi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Valentina Magliocca
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Marina Trivisano
- Department of Neurosciences, Rare and Complex Epilepsy Unit, Division of Neurology, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy; (M.T.); (N.S.)
| | - Nicola Specchio
- Department of Neurosciences, Rare and Complex Epilepsy Unit, Division of Neurology, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy; (M.T.); (N.S.)
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
- Correspondence:
| |
Collapse
|
15
|
Aerts T, Seuntjens E. Novel Perspectives on the Development of the Amygdala in Rodents. Front Neuroanat 2021; 15:786679. [PMID: 34955766 PMCID: PMC8696165 DOI: 10.3389/fnana.2021.786679] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
The amygdala is a hyperspecialized brain region composed of strongly inter- and intraconnected nuclei involved in emotional learning and behavior. The cellular heterogeneity of the amygdalar nuclei has complicated straightforward conclusions on their developmental origin, and even resulted in contradictory data. Recently, the concentric ring theory of the pallium and the radial histogenetic model of the pallial amygdala have cleared up several uncertainties that plagued previous models of amygdalar development. Here, we provide an extensive overview on the developmental origin of the nuclei of the amygdaloid complex. Starting from older gene expression data, transplantation and lineage tracing studies, we systematically summarize and reinterpret previous findings in light of the novel perspectives on amygdalar development. In addition, migratory routes that these cells take on their way to the amygdala are explored, and known transcription factors and guidance cues that seemingly drive these cells toward the amygdala are emphasized. We propose some future directions for research on amygdalar development and highlight that a better understanding of its development could prove critical for the treatment of several neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tania Aerts
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Cellular and Behavioral Characterization of Pcdh19 Mutant Mice: subtle Molecular Changes, Increased Exploratory Behavior and an Impact of Social Environment. eNeuro 2021; 8:ENEURO.0510-20.2021. [PMID: 34272258 PMCID: PMC8362684 DOI: 10.1523/eneuro.0510-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/15/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
Mutations in the X-linked cell adhesion protein PCDH19 lead to seizures, cognitive impairment, and other behavioral comorbidities when present in a mosaic pattern. Neither the molecular mechanisms underpinning this disorder nor the function of PCDH19 itself are well understood. By combining RNA in situ hybridization with immunohistochemistry and analyzing single-cell RNA sequencing datasets, we reveal Pcdh19 expression in cortical interneurons and provide a first account of the subtypes of neurons expressing Pcdh19/PCDH19, both in the mouse and the human cortex. Our quantitative analysis of the Pcdh19 mutant mouse exposes subtle changes in cortical layer composition, with no major alterations of the main axonal tracts. In addition, Pcdh19 mutant animals, particularly females, display preweaning behavioral changes, including reduced anxiety and increased exploratory behavior. Importantly, our experiments also reveal an effect of the social environment on the behavior of wild-type littermates of Pcdh19 mutant mice, which show alterations when compared with wild-type animals not housed with mutants.
Collapse
|
17
|
δ-Protocadherins regulate neural progenitor cell division by antagonizing Ryk and Wnt/β-catenin signaling. iScience 2021; 24:102932. [PMID: 34430817 PMCID: PMC8374482 DOI: 10.1016/j.isci.2021.102932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/10/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
The division of neural progenitor cells provides the cellular substrate from which the nervous system is sculpted during development. The δ-protocadherin family of homophilic cell adhesion molecules is essential for the development of the vertebrate nervous system and is implicated in an array of neurodevelopmental disorders. We show that lesions in any of six, individual δ-protocadherins increases cell divisions of neural progenitors in the hindbrain. This increase is due to mis-regulation of Wnt/β-catenin signaling, as this pathway is upregulated in δ-protocadherin mutants and inhibition of this pathway blocks the increase in cell division. Furthermore, the δ-protocadherins can be present in complex with the Wnt receptor Ryk, and Ryk is required for the increased proliferation in protocadherin mutants. Thus, δ-protocadherins are novel regulators of Wnt/β-catenin signaling that may control the development of neural circuits by defining a molecular code for the identity of neural progenitor cells and differentially regulating their proliferation.
Collapse
|
18
|
Shi R, Kramer DA, Chen B, Shen K. A two-step actin polymerization mechanism drives dendrite branching. Neural Dev 2021; 16:3. [PMID: 34281597 PMCID: PMC8290545 DOI: 10.1186/s13064-021-00154-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background Dendrite morphogenesis plays an essential role in establishing the connectivity and receptive fields of neurons during the development of the nervous system. To generate the diverse morphologies of branched dendrites, neurons use external cues and cell surface receptors to coordinate intracellular cytoskeletal organization; however, the molecular mechanisms of how this signaling forms branched dendrites are not fully understood. Methods We performed in vivo time-lapse imaging of the PVD neuron in C. elegans in several mutants of actin regulatory proteins, such as the WAVE Regulatory Complex (WRC) and UNC-34 (homolog of Enabled/Vasodilator-stimulated phosphoprotein (Ena/VASP)). We examined the direct interaction between the WRC and UNC-34 and analyzed the localization of UNC-34 in vivo using transgenic worms expressing UNC-34 fused to GFP. Results We identify a stereotyped sequence of morphological events during dendrite outgrowth in the PVD neuron in C. elegans. Specifically, local increases in width (“swellings”) give rise to filopodia to facilitate a “rapid growth and pause” mode of growth. In unc-34 mutants, filopodia fail to form but swellings are intact. In WRC mutants, dendrite growth is largely absent, resulting from a lack of both swelling and filopodia formation. We also found that UNC-34 can directly bind to the WRC. Disrupting this binding by deleting the UNC-34 EVH1 domain prevented UNC-34 from localizing to swellings and dendrite tips, resulting in a stunted dendritic arbor and reduced filopodia outgrowth. Conclusions We propose that regulators of branched and linear F-actin cooperate to establish dendritic branches. By combining our work with existing literature, we propose that the dendrite guidance receptor DMA-1 recruits the WRC, which polymerizes branched F-actin to generate “swellings” on a mother dendrite. Then, WRC recruits the actin elongation factor UNC-34/Ena/VASP to initiate growth of a new dendritic branch from the swelling, with the help of the actin-binding protein UNC-115/abLIM. Extension of existing dendrites also proceeds via swelling formation at the dendrite tip followed by UNC-34-mediated outgrowth. Following dendrite initiation and extension, the stabilization of branches by guidance receptors further recruits WRC, resulting in an iterative process to build a complex dendritic arbor. Supplementary Information The online version contains supplementary material available at 10.1186/s13064-021-00154-0.
Collapse
Affiliation(s)
- Rebecca Shi
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.,Neurosciences IDP, Stanford University, Stanford, CA, 94305, USA
| | - Daniel A Kramer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, CA, 94305, USA. .,Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
19
|
Ozawa M, Hiver S, Yamamoto T, Shibata T, Upadhyayula S, Mimori-Kiyosue Y, Takeichi M. Adherens junction regulates cryptic lamellipodia formation for epithelial cell migration. J Cell Biol 2021; 219:152072. [PMID: 32886101 PMCID: PMC7659716 DOI: 10.1083/jcb.202006196] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Collective migration of epithelial cells plays crucial roles in various biological processes such as cancer invasion. In migrating epithelial sheets, leader cells form lamellipodia to advance, and follower cells also form similar motile apparatus at cell-cell boundaries, which are called cryptic lamellipodia (c-lamellipodia). Using adenocarcinoma-derived epithelial cells, we investigated how c-lamellipodia form and found that they sporadically grew from around E-cadherin-based adherens junctions (AJs). WAVE and Arp2/3 complexes were localized along the AJs, and silencing them not only interfered with c-lamellipodia formation but also prevented follower cells from trailing the leaders. Disruption of AJs by removing αE-catenin resulted in uncontrolled c-lamellipodia growth, and this was brought about by myosin II activation and the resultant contraction of AJ-associated actomyosin cables. Additional observations indicated that c-lamellipodia tended to grow at mechanically weak sites of the junction. We conclude that AJs not only tie cells together but also support c-lamellipodia formation by recruiting actin regulators, enabling epithelial cells to undergo ordered collective migration.
Collapse
Affiliation(s)
- Masayuki Ozawa
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Sylvain Hiver
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takaki Yamamoto
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Srigokul Upadhyayula
- Advanced Bioimaging Center, Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Yuko Mimori-Kiyosue
- Laboratory for Molecular and Cellular Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
20
|
Liu S, Trupiano MX, Simon J, Guo J, Anton ES. The essential role of primary cilia in cerebral cortical development and disorders. Curr Top Dev Biol 2021; 142:99-146. [PMID: 33706927 DOI: 10.1016/bs.ctdb.2020.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Primary cilium, first described in the 19th century in different cell types and organisms by Alexander Ecker, Albert Kolliker, Aleksandr Kowalevsky, Paul Langerhans, and Karl Zimmermann (Ecker, 1844; Kolliker, 1854; Kowalevsky, 1867; Langerhans, 1876; Zimmermann, 1898), play an essential modulatory role in diverse aspects of nervous system development and function. The primary cilium, sometimes referred to as the cell's 'antennae', can receive wide ranging inputs from cellular milieu, including morphogens, growth factors, neuromodulators, and neurotransmitters. Its unique structural and functional organization bequeaths it the capacity to hyper-concentrate signaling machinery in a restricted cellular domain approximately one-thousandth the volume of cell soma. Thus enabling it to act as a signaling hub that integrates diverse developmental and homestatic information from cellular milieu to regulate the development and function of neural cells. Dysfunction of primary cilia contributes to the pathophysiology of several brain malformations, intellectual disabilities, epilepsy, and psychiatric disorders. This review focuses on the most essential contributions of primary cilia to cerebral cortical development and function, in the context of neurodevelopmental disorders and malformations. It highlights the recent progress made in identifying the mechanisms underlying primary cilia's role in cortical progenitors, neurons and glia, in health and disease. A future challenge will be to translate these insights and advances into effective clinical treatments for ciliopathies.
Collapse
Affiliation(s)
- Siling Liu
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Mia X Trupiano
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Jeremy Simon
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Jiami Guo
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, and the Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - E S Anton
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States.
| |
Collapse
|
21
|
Right Place at the Right Time: How Changes in Protocadherins Affect Synaptic Connections Contributing to the Etiology of Neurodevelopmental Disorders. Cells 2020; 9:cells9122711. [PMID: 33352832 PMCID: PMC7766791 DOI: 10.3390/cells9122711] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022] Open
Abstract
During brain development, neurons need to form the correct connections with one another in order to give rise to a functional neuronal circuitry. Mistakes during this process, leading to the formation of improper neuronal connectivity, can result in a number of brain abnormalities and impairments collectively referred to as neurodevelopmental disorders. Cell adhesion molecules (CAMs), present on the cell surface, take part in the neurodevelopmental process regulating migration and recognition of specific cells to form functional neuronal assemblies. Among CAMs, the members of the protocadherin (PCDH) group stand out because they are involved in cell adhesion, neurite initiation and outgrowth, axon pathfinding and fasciculation, and synapse formation and stabilization. Given the critical role of these macromolecules in the major neurodevelopmental processes, it is not surprising that clinical and basic research in the past two decades has identified several PCDH genes as responsible for a large fraction of neurodevelopmental disorders. In the present article, we review these findings with a focus on the non-clustered PCDH sub-group, discussing the proteins implicated in the main neurodevelopmental disorders.
Collapse
|
22
|
Tsai TYC, Sikora M, Xia P, Colak-Champollion T, Knaut H, Heisenberg CP, Megason SG. An adhesion code ensures robust pattern formation during tissue morphogenesis. Science 2020; 370:113-116. [PMID: 33004519 PMCID: PMC7879479 DOI: 10.1126/science.aba6637] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Animal development entails the organization of specific cell types in space and time, and spatial patterns must form in a robust manner. In the zebrafish spinal cord, neural progenitors form stereotypic patterns despite noisy morphogen signaling and large-scale cellular rearrangements during morphogenesis and growth. By directly measuring adhesion forces and preferences for three types of endogenous neural progenitors, we provide evidence for the differential adhesion model in which differences in intercellular adhesion mediate cell sorting. Cell type-specific combinatorial expression of different classes of cadherins (N-cadherin, cadherin 11, and protocadherin 19) results in homotypic preference ex vivo and patterning robustness in vivo. Furthermore, the differential adhesion code is regulated by the sonic hedgehog morphogen gradient. We propose that robust patterning during tissue morphogenesis results from interplay between adhesion-based self-organization and morphogen-directed patterning.
Collapse
Affiliation(s)
- Tony Y-C Tsai
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston MA 02115, USA
| | - Mateusz Sikora
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuberg, Austria
| | - Peng Xia
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuberg, Austria
| | - Tugba Colak-Champollion
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston MA 02115, USA.
| |
Collapse
|
23
|
Smith TA, Ghergherehchi CL, Tucker HO, Bittner GD. Coding transcriptome analyses reveal altered functions underlying immunotolerance of PEG-fused rat sciatic nerve allografts. J Neuroinflammation 2020; 17:287. [PMID: 33008419 PMCID: PMC7532577 DOI: 10.1186/s12974-020-01953-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Current methods to repair ablation-type peripheral nerve injuries (PNIs) using peripheral nerve allografts (PNAs) often result in poor functional recovery due to immunological rejection as well as to slow and inaccurate outgrowth of regenerating axonal sprouts. In contrast, ablation-type PNIs repaired by PNAs, using a multistep protocol in which one step employs the membrane fusogen polyethylene glycol (PEG), permanently restore sciatic-mediated behaviors within weeks. Axons and cells within PEG-fused PNAs remain viable, even though outbred host and donor tissues are neither immunosuppressed nor tissue matched. PEG-fused PNAs exhibit significantly reduced T cell and macrophage infiltration, expression of major histocompatibility complex I/II and consistently low apoptosis. In this study, we analyzed the coding transcriptome of PEG-fused PNAs to examine possible mechanisms underlying immunosuppression. METHODS Ablation-type sciatic PNIs in adult Sprague-Dawley rats were repaired using PNAs and a PEG-fusion protocol combined with neurorrhaphy. Electrophysiological and behavioral tests confirmed successful PEG-fusion of PNAs. RNA sequencing analyzed differential expression profiles of protein-coding genes between PEG-fused PNAs and negative control PNAs (not treated with PEG) at 14 days PO, along with unoperated control nerves. Sequencing results were validated by quantitative reverse transcription PCR (RT-qPCR), and in some cases, immunohistochemistry. RESULTS PEG-fused PNAs display significant downregulation of many gene transcripts associated with innate and adaptive allorejection responses. Schwann cell-associated transcripts are often upregulated, and cellular processes such as extracellular matrix remodeling and cell/tissue development are particularly enriched. Transcripts encoding several potentially immunosuppressive proteins (e.g., thrombospondins 1 and 2) also are upregulated in PEG-fused PNAs. CONCLUSIONS This study is the first to characterize the coding transcriptome of PEG-fused PNAs and to identify possible links between alterations of the extracellular matrix and suppression of the allorejection response. The results establish an initial molecular basis to understand mechanisms underlying PEG-mediated immunosuppression.
Collapse
Affiliation(s)
- Tyler A Smith
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Haley O Tucker
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
24
|
Emond MR, Biswas S, Morrow ML, Jontes JD. Proximity-dependent Proteomics Reveals Extensive Interactions of Protocadherin-19 with Regulators of Rho GTPases and the Microtubule Cytoskeleton. Neuroscience 2020; 452:26-36. [PMID: 33010346 DOI: 10.1016/j.neuroscience.2020.09.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Protocadherin-19 belongs to the cadherin family of cell surface receptors and has been shown to play essential roles in the development of the vertebrate nervous system. Mutations in human Protocadherin-19 (PCDH19) lead to PCDH19 Female-limited epilepsy (PCDH19 FLE) in humans, characterized by the early onset of epileptic seizures in children and a range of cognitive and behavioral problems in adults. Despite being considered the second most prevalent gene in epilepsy, very little is known about the intercellular pathways in which it participates. In order to characterize the protein complexes within which Pcdh19 functions, we generated Pcdh19-BioID fusion proteins and utilized proximity-dependent biotinylation to identify neighboring proteins. Proteomic identification and analysis revealed that the Pcdh19 interactome is enriched in proteins that regulate Rho family GTPases, microtubule binding proteins and proteins that regulate cell divisions. We cloned the centrosomal protein Nedd1 and the RacGEF Dock7 and verified their interactions with Pcdh19 in vitro. Our findings provide the first comprehensive insights into the interactome of Pcdh19, and provide a platform for future investigations into the cellular and molecular biology of this protein critical to the proper development of the nervous system.
Collapse
Affiliation(s)
- Michelle R Emond
- Department of Neuroscience, Ohio State University, United States
| | | | - Matthew L Morrow
- Department of Neuroscience, Ohio State University, United States
| | - James D Jontes
- Department of Neuroscience, Ohio State University, United States.
| |
Collapse
|
25
|
Trans-Axonal Signaling in Neural Circuit Wiring. Int J Mol Sci 2020; 21:ijms21145170. [PMID: 32708320 PMCID: PMC7404203 DOI: 10.3390/ijms21145170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
The development of neural circuits is a complex process that relies on the proper navigation of axons through their environment to their appropriate targets. While axon–environment and axon–target interactions have long been known as essential for circuit formation, communication between axons themselves has only more recently emerged as another crucial mechanism. Trans-axonal signaling governs many axonal behaviors, including fasciculation for proper guidance to targets, defasciculation for pathfinding at important choice points, repulsion along and within tracts for pre-target sorting and target selection, repulsion at the target for precise synaptic connectivity, and potentially selective degeneration for circuit refinement. This review outlines the recent advances in identifying the molecular mechanisms of trans-axonal signaling and discusses the role of axon–axon interactions during the different steps of neural circuit formation.
Collapse
|
26
|
Pancho A, Aerts T, Mitsogiannis MD, Seuntjens E. Protocadherins at the Crossroad of Signaling Pathways. Front Mol Neurosci 2020; 13:117. [PMID: 32694982 PMCID: PMC7339444 DOI: 10.3389/fnmol.2020.00117] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
Protocadherins (Pcdhs) are cell adhesion molecules that belong to the cadherin superfamily, and are subdivided into clustered (cPcdhs) and non-clustered Pcdhs (ncPcdhs) in vertebrates. In this review, we summarize their discovery, expression mechanisms, and roles in neuronal development and cancer, thereby highlighting the context-dependent nature of their actions. We furthermore provide an extensive overview of current structural knowledge, and its implications concerning extracellular interactions between cPcdhs, ncPcdhs, and classical cadherins. Next, we survey the known molecular action mechanisms of Pcdhs, emphasizing the regulatory functions of proteolytic processing and domain shedding. In addition, we outline the importance of Pcdh intracellular domains in the regulation of downstream signaling cascades, and we describe putative Pcdh interactions with intracellular molecules including components of the WAVE complex, the Wnt pathway, and apoptotic cascades. Our overview combines molecular interaction data from different contexts, such as neural development and cancer. This comprehensive approach reveals potential common Pcdh signaling hubs, and points out future directions for research. Functional studies of such key factors within the context of neural development might yield innovative insights into the molecular etiology of Pcdh-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anna Pancho
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tania Aerts
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuela D Mitsogiannis
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Vacuum microcasting of 2-methacryloyloxyethyl phosphorylcholine polymer for stable cell patterning. Biotechniques 2020; 69:171-177. [PMID: 32580563 DOI: 10.2144/btn-2020-0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study demonstrates the rapid fabrication and utility of 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer film for cell patterning. The film was obtained on a cell culture surface by microcasting MPC polymer ethanol solution into a degassed polydimethylsiloxane mold with a desired pattern. After removal of the mold, 293AD cells were cultured on the surface of the polymer film with the patterned microstructures. Patterned cell adhesion restricted by the film was successfully maintained during at least a 168-h cultivation. The microcast MPC polymer film can be prepared rapidly and used for efficient long-term cell confinement.
Collapse
|
28
|
Bosze B, Ono Y, Mattes B, Sinner C, Gourain V, Thumberger T, Tlili S, Wittbrodt J, Saunders TE, Strähle U, Schug A, Scholpp S. Pcdh18a regulates endocytosis of E-cadherin during axial mesoderm development in zebrafish. Histochem Cell Biol 2020; 154:463-480. [PMID: 32488346 PMCID: PMC7609436 DOI: 10.1007/s00418-020-01887-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2020] [Indexed: 01/07/2023]
Abstract
The notochord defines the axial structure of all vertebrates during development. Notogenesis is a result of major cell reorganization in the mesoderm, the convergence and the extension of the axial cells. However, it is currently not fully understood how these processes act together in a coordinated way during notochord formation. The prechordal plate is an actively migrating cell population in the central mesoderm anterior to the trailing notochordal plate cells. We show that prechordal plate cells express Protocadherin 18a (Pcdh18a), a member of the cadherin superfamily. We find that Pcdh18a-mediated recycling of E-cadherin adhesion complexes transforms prechordal plate cells into a cohesive and fast migrating cell group. In turn, the prechordal plate cells subsequently instruct the trailing mesoderm. We simulated cell migration during early mesoderm formation using a lattice-based mathematical framework and predicted that the requirement for an anterior, local motile cell cluster could guide the intercalation and extension of the posterior, axial cells. Indeed, a grafting experiment validated the prediction and local Pcdh18a expression induced an ectopic prechordal plate-like cell group migrating towards the animal pole. Our findings indicate that the Pcdh18a is important for prechordal plate formation, which influences the trailing mesodermal cell sheet by orchestrating the morphogenesis of the notochord.
Collapse
Affiliation(s)
- Bernadett Bosze
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Yosuke Ono
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Benjamin Mattes
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Claude Sinner
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76021, Germany.,Department of Physics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Victor Gourain
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Thomas Thumberger
- Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Sham Tlili
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Timothy E Saunders
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.,Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Alexander Schug
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76021, Germany
| | - Steffen Scholpp
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany. .,Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
29
|
Family-wide Structural and Biophysical Analysis of Binding Interactions among Non-clustered δ-Protocadherins. Cell Rep 2020; 30:2655-2671.e7. [PMID: 32101743 PMCID: PMC7082078 DOI: 10.1016/j.celrep.2020.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/02/2019] [Accepted: 01/31/2020] [Indexed: 01/21/2023] Open
Abstract
Non-clustered δ1- and δ2-protocadherins, close relatives of clustered protocadherins, function in cell adhesion and motility and play essential roles in neural patterning. To understand the molecular interactions underlying these functions, we used solution biophysics to characterize binding of δ1- and δ2-protocadherins, determined crystal structures of ectodomain complexes from each family, and assessed ectodomain assembly in reconstituted intermembrane junctions by cryoelectron tomography (cryo-ET). Homophilic trans (cell-cell) interactions were preferred for all δ-protocadherins, with additional weaker heterophilic interactions observed exclusively within each subfamily. As expected, δ1- and δ2-protocadherin trans dimers formed through antiparallel EC1-EC4 interfaces, like clustered protocadherins. However, no ectodomain-mediated cis (same-cell) interactions were detectable in solution; consistent with this, cryo-ET of reconstituted junctions revealed dense assemblies lacking the characteristic order observed for clustered protocadherins. Our results define non-clustered protocadherin binding properties and their structural basis, providing a foundation for interpreting their functional roles in neural patterning.
Collapse
|
30
|
Protocadherin-Mediated Cell Repulsion Controls the Central Topography and Efferent Projections of the Abducens Nucleus. Cell Rep 2020; 24:1562-1572. [PMID: 30089266 DOI: 10.1016/j.celrep.2018.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/31/2018] [Accepted: 07/06/2018] [Indexed: 11/21/2022] Open
Abstract
Cranial motor nuclei in the brainstem innervate diverse types of head and neck muscles. Failure in establishing these neuromuscular connections causes congenital cranial dysinnervation disorders (CCDDs) characterized by abnormal craniofacial movements. However, mechanisms that link cranial motor nuclei to target muscles are poorly understood at the molecular level. Here, we report that protocadherin-mediated repulsion mediates neuromuscular connection in the ocular motor system in zebrafish. We identify pools of abducens motor neurons that are topographically arranged according to soma size and convergently innervate a single muscle. Disruptions of Duane retraction syndrome-associated transcription factors reveal that these neurons require Mafba/MAFB, but not Sall4/SALL4, for differentiation. Furthermore, genetic perturbations of Pcdh17/protocadherin-17 result in defective axon growth and soma clumping, thereby abolishing neuromuscular connectivity. Our results suggest that protocadherin-mediated repulsion forms the central topography and efferent projection pattern of the abducens nucleus following Mafba-dependent specification and imply potential involvement of protocadherins in CCDD etiology.
Collapse
|
31
|
Guo J, Otis JM, Suciu SK, Catalano C, Xing L, Constable S, Wachten D, Gupton S, Lee J, Lee A, Blackley KH, Ptacek T, Simon JM, Schurmans S, Stuber GD, Caspary T, Anton ES. Primary Cilia Signaling Promotes Axonal Tract Development and Is Disrupted in Joubert Syndrome-Related Disorders Models. Dev Cell 2019; 51:759-774.e5. [PMID: 31846650 PMCID: PMC6953258 DOI: 10.1016/j.devcel.2019.11.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/08/2019] [Accepted: 11/10/2019] [Indexed: 12/18/2022]
Abstract
Appropriate axonal growth and connectivity are essential for functional wiring of the brain. Joubert syndrome-related disorders (JSRD), a group of ciliopathies in which mutations disrupt primary cilia function, are characterized by axonal tract malformations. However, little is known about how cilia-driven signaling regulates axonal growth and connectivity. We demonstrate that the deletion of related JSRD genes, Arl13b and Inpp5e, in projection neurons leads to de-fasciculated and misoriented axonal tracts. Arl13b deletion disrupts the function of its downstream effector, Inpp5e, and deregulates ciliary-PI3K/AKT signaling. Chemogenetic activation of ciliary GPCR signaling and cilia-specific optogenetic modulation of downstream second messenger cascades (PI3K, AKT, and AC3) commonly regulated by ciliary signaling receptors induce rapid changes in axonal dynamics. Further, Arl13b deletion leads to changes in transcriptional landscape associated with dysregulated PI3K/AKT signaling. These data suggest that ciliary signaling acts to modulate axonal connectivity and that impaired primary cilia signaling underlies axonal tract defects in JSRD.
Collapse
Affiliation(s)
- Jiami Guo
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Hotchkiss Brain Institute and the Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N 4N1, USA.
| | - James M Otis
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Sarah K Suciu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christy Catalano
- Hotchkiss Brain Institute and the Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N 4N1, USA
| | - Lei Xing
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Sandii Constable
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dagmar Wachten
- Biophysical Imaging, Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Stephanie Gupton
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Janice Lee
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Amelia Lee
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Katherine H Blackley
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Travis Ptacek
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jeremy M Simon
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Stephane Schurmans
- Laboratory of Functional Genetics, GIGA Research Center, University of Liège, Liège, Belgium
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain and Emotion, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - E S Anton
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
32
|
Lo Giudice Q, Leleu M, La Manno G, Fabre PJ. Single-cell transcriptional logic of cell-fate specification and axon guidance in early-born retinal neurons. Development 2019; 146:dev.178103. [PMID: 31399471 DOI: 10.1242/dev.178103] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
Abstract
Retinal ganglion cells (RGCs), cone photoreceptors (cones), horizontal cells and amacrine cells are the first classes of neurons produced in the retina. However, an important question is how this diversity of cell states is transcriptionally produced. Here, we profiled 6067 single retinal cells to provide a comprehensive transcriptomic atlas showing the diversity of the early developing mouse retina. RNA velocities unveiled the dynamics of cell cycle coordination of early retinogenesis and define the transcriptional sequences at work during the hierarchical production of early cell-fate specification. We show that RGC maturation follows six waves of gene expression, with older-generated RGCs transcribing increasing amounts of guidance cues for young peripheral RGC axons that express the matching receptors. Spatial transcriptionally deduced features in subpopulations of RGCs allowed us to define novel molecular markers that are spatially restricted. Finally, the isolation of such a spatially restricted population, ipsilateral RGCs, allowed us to identify their molecular identity at the time they execute axon guidance decisions. Together, these data represent a valuable resource shedding light on transcription factor sequences and guidance cue dynamics during mouse retinal development.
Collapse
Affiliation(s)
- Quentin Lo Giudice
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| | - Marion Leleu
- Faculty of Life Sciences, Ecole Polytechnique Fédérale, Lausanne, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Gioele La Manno
- Faculty of Life Sciences, Ecole Polytechnique Fédérale, Lausanne, 1015 Lausanne, Switzerland.,Laboratory of Neurodevelopmental Systems Biology, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pierre J Fabre
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
33
|
Multiplane Calcium Imaging Reveals Disrupted Development of Network Topology in Zebrafish pcdh19 Mutants. eNeuro 2019; 6:ENEURO.0420-18.2019. [PMID: 31061071 PMCID: PMC6525332 DOI: 10.1523/eneuro.0420-18.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Functional brain networks self-assemble during development, although the molecular basis of network assembly is poorly understood. Protocadherin-19 (pcdh19) is a homophilic cell adhesion molecule that is linked to neurodevelopmental disorders, and influences multiple cellular and developmental events in zebrafish. Although loss of PCDH19 in humans and model organisms leads to functional deficits, the underlying network defects remain unknown. Here, we employ multiplane, resonant-scanning in vivo two-photon calcium imaging of developing zebrafish, and use graph theory to characterize the development of resting state functional networks in both wild-type and pcdh19 mutant larvae. We find that the brain networks of pcdh19 mutants display enhanced clustering and an altered developmental trajectory of network assembly. Our results show that functional imaging and network analysis in zebrafish larvae is an effective approach for characterizing the developmental impact of lesions in genes of clinical interest.
Collapse
|
34
|
Fan L, Kovacevic I, Heiman MG, Bao Z. A multicellular rosette-mediated collective dendrite extension. eLife 2019; 8:38065. [PMID: 30767892 PMCID: PMC6400498 DOI: 10.7554/elife.38065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
Coordination of neurite morphogenesis with surrounding tissues is crucial to the establishment of neural circuits, but the underlying cellular and molecular mechanisms remain poorly understood. We show that neurons in a C. elegans sensory organ, called the amphid, undergo a collective dendrite extension to form the sensory nerve. The amphid neurons first assemble into a multicellular rosette. The vertex of the rosette, which becomes the dendrite tips, is attached to the anteriorly migrating epidermis and carried to the sensory depression, extruding the dendrites away from the neuronal cell bodies. Multiple adhesion molecules including DYF-7, SAX-7, HMR-1 and DLG-1 function redundantly in rosette-to-epidermis attachment. PAR-6 is localized to the rosette vertex and dendrite tips, and promotes DYF-7 localization and dendrite extension. Our results suggest a collective mechanism of neurite extension that is distinct from the classical pioneer-follower model and highlight the role of mechanical cues from surrounding tissues in shaping neurites.
Collapse
Affiliation(s)
- Li Fan
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Ismar Kovacevic
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Maxwell G Heiman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| |
Collapse
|
35
|
Sachse SM, Lievens S, Ribeiro LF, Dascenco D, Masschaele D, Horré K, Misbaer A, Vanderroost N, De Smet AS, Salta E, Erfurth ML, Kise Y, Nebel S, Van Delm W, Plaisance S, Tavernier J, De Strooper B, De Wit J, Schmucker D. Nuclear import of the DSCAM-cytoplasmic domain drives signaling capable of inhibiting synapse formation. EMBO J 2019; 38:embj.201899669. [PMID: 30745319 DOI: 10.15252/embj.201899669] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 11/09/2022] Open
Abstract
DSCAM and DSCAML1 are immunoglobulin and cell adhesion-type receptors serving important neurodevelopmental functions including control of axon growth, branching, neurite self-avoidance, and neuronal cell death. The signal transduction mechanisms or effectors of DSCAM receptors, however, remain poorly characterized. We used a human ORFeome library to perform a high-throughput screen in mammalian cells and identified novel cytoplasmic signaling effector candidates including the Down syndrome kinase Dyrk1a, STAT3, USP21, and SH2D2A. Unexpectedly, we also found that the intracellular domains (ICDs) of DSCAM and DSCAML1 specifically and directly interact with IPO5, a nuclear import protein of the importin beta family, via a conserved nuclear localization signal. The DSCAM ICD is released by γ-secretase-dependent cleavage, and both the DSCAM and DSCAML1 ICDs efficiently translocate to the nucleus. Furthermore, RNA sequencing confirms that expression of the DSCAM as well as the DSCAML1 ICDs alone can profoundly alter the expression of genes associated with neuronal differentiation and apoptosis, as well as synapse formation and function. Gain-of-function experiments using primary cortical neurons show that increasing the levels of either the DSCAM or the DSCAML1 ICD leads to an impairment of neurite growth. Strikingly, increased expression of either full-length DSCAM or the DSCAM ICD, but not the DSCAML1 ICD, significantly decreases synapse numbers in primary hippocampal neurons. Taken together, we identified a novel membrane-to-nucleus signaling mechanism by which DSCAM receptors can alter the expression of regulators of neuronal differentiation and synapse formation and function. Considering that chromosomal duplications lead to increased DSCAM expression in trisomy 21, our findings may help uncover novel mechanisms contributing to intellectual disability in Down syndrome.
Collapse
Affiliation(s)
- Sonja M Sachse
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Sam Lievens
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Luís F Ribeiro
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Dan Dascenco
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Delphine Masschaele
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Katrien Horré
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Anke Misbaer
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Nele Vanderroost
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anne Sophie De Smet
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Evgenia Salta
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Yoshiaki Kise
- VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Siegfried Nebel
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | | | - Jan Tavernier
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,Dementia Research Institute, University College London, London, UK
| | - Joris De Wit
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Dietmar Schmucker
- VIB Center for Brain & Disease Research, Leuven, Belgium .,Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Chen CH, Hsu HW, Chang YH, Pan CL. Adhesive L1CAM-Robo Signaling Aligns Growth Cone F-Actin Dynamics to Promote Axon-Dendrite Fasciculation in C. elegans. Dev Cell 2019; 48:215-228.e5. [PMID: 30555000 DOI: 10.1016/j.devcel.2018.10.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/18/2018] [Accepted: 10/26/2018] [Indexed: 11/28/2022]
Abstract
Neurite fasciculation through contact-dependent signaling is important for the wiring and function of the neuronal circuits. Here, we describe a type of axon-dendrite fasciculation in C. elegans, where proximal dendrites of the nociceptor PVD adhere to the axon of the ALA interneuron. This axon-dendrite fasciculation is mediated by a previously uncharacterized adhesive signaling by the ALA membrane signal SAX-7/L1CAM and the PVD receptor SAX-3/Robo but independent of Slit. L1CAM physically interacts with Robo and instructs dendrite adhesion in a Robo-dependent manner. Fasciculation mediated by L1CAM-Robo signaling aligns F-actin dynamics in the dendrite growth cone and facilitates dynamic growth cone behaviors for efficient dendrite guidance. Disruption of PVD dendrite fasciculation impairs nociceptive mechanosensation and rhythmicity in body curvature, suggesting that dendrite fasciculation governs the functions of mechanosensory circuits. Our work elucidates the molecular mechanisms by which adhesive axon-dendrite signaling shapes the construction and function of sensory neuronal circuits.
Collapse
Affiliation(s)
- Chun-Hao Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Hao-Wei Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Yun-Hsuan Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Chun-Liang Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan.
| |
Collapse
|
37
|
Axon-Dependent Patterning and Maintenance of Somatosensory Dendritic Arbors. Dev Cell 2019; 48:229-244.e4. [PMID: 30661986 DOI: 10.1016/j.devcel.2018.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/12/2018] [Accepted: 12/16/2018] [Indexed: 12/20/2022]
Abstract
The mechanisms that pattern and maintain dendritic arbors are key to understanding the principles that govern nervous system assembly. The activity of presynaptic axons has long been known to shape dendrites, but activity-independent functions of axons in this process have remained elusive. Here, we show that in Caenorhabditis elegans, the axons of the ALA neuron control guidance and extension of the 1° dendrites of PVD somatosensory neurons independently of ALA activity. PVD 1° dendrites mimic ALA axon guidance defects in loss-of-function mutants for the extracellular matrix molecule MIG-6/Papilin or the UNC-6/Netrin pathway, suggesting that axon-dendrite adhesion is important for dendrite formation. We found that the SAX-7/L1CAM cell adhesion molecule engages in distinct molecular mechanisms to mediate extensions of PVD 1° dendrites and maintain the ALA-PVD axon-dendritic fascicle, respectively. Thus, axons can serve as critical scaffolds to pattern and maintain dendrites through contact-dependent but activity-independent mechanisms.
Collapse
|
38
|
Bisogni AJ, Ghazanfar S, Williams EO, Marsh HM, Yang JYH, Lin DM. Tuning of delta-protocadherin adhesion through combinatorial diversity. eLife 2018; 7:e41050. [PMID: 30547884 PMCID: PMC6326727 DOI: 10.7554/elife.41050] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
The delta-protocadherins (δ-Pcdhs) play key roles in neural development, and expression studies suggest they are expressed in combination within neurons. The extent of this combinatorial diversity, and how these combinations influence cell adhesion, is poorly understood. We show that individual mouse olfactory sensory neurons express 0-7 δ-Pcdhs. Despite this apparent combinatorial complexity, K562 cell aggregation assays revealed simple principles that mediate tuning of δ-Pcdh adhesion. Cells can vary the number of δ-Pcdhs expressed, the level of surface expression, and which δ-Pcdhs are expressed, as different members possess distinct apparent adhesive affinities. These principles contrast with those identified previously for the clustered protocadherins (cPcdhs), where the particular combination of cPcdhs expressed does not appear to be a critical factor. Despite these differences, we show δ-Pcdhs can modify cPcdh adhesion. Our studies show how intra- and interfamily interactions can greatly amplify the impact of this small subfamily on neuronal function.
Collapse
Affiliation(s)
- Adam J Bisogni
- Department of Biomedical SciencesCornell UniversityIthacaUnited States
| | - Shila Ghazanfar
- School of Mathematics and StatisticsThe University of SydneySydneyAustralia
| | - Eric O Williams
- Department of Biomedical SciencesCornell UniversityIthacaUnited States
- Department of Biology and ChemistryFitchburg State UniversityFitchburgUnited States
| | - Heather M Marsh
- Department of Biomedical SciencesCornell UniversityIthacaUnited States
| | - Jean YH Yang
- School of Mathematics and StatisticsThe University of SydneySydneyAustralia
| | - David M Lin
- Department of Biomedical SciencesCornell UniversityIthacaUnited States
| |
Collapse
|
39
|
Branching mechanisms shaping dendrite architecture. Dev Biol 2018; 451:16-24. [PMID: 30550882 DOI: 10.1016/j.ydbio.2018.12.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/19/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022]
Abstract
A neuron's contribution to the information flow within a neural circuit is governed by the structure of its dendritic arbor. The geometry of the dendritic arbor directly determines synaptic density and the size of the receptive field, both of which influence the firing pattern of the neuron. Importantly, the position of individual dendritic branches determines the identity of the neuron's presynaptic partner and thus the nature of the incoming sensory information. To generate the unique stereotypic architecture of a given neuronal subtype, nascent branches must emerge from the dendritic shaft at preprogramed branch points. Subsequently, a complex array of extrinsic factors regulates the degree and orientation of branch expansion to ensure maximum coverage of the receptive field whilst constraining growth within predetermined territories. In this review we focus on studies that best illustrate how environmental cues such as the Wnts and Netrins and their receptors sculpt the dendritic arbor. We emphasize the pivotal role played by the actin cytoskeleton and its upstream regulators in branch initiation, outgrowth and navigation. Finally, we discuss how protocadherin and DSCAM contact-mediated repulsion prevents inappropriate synapse formation between sister dendrites or dendrites and the axon from the same neuron. Together these studies highlight the clever ways evolution has solved the problem of constructing complex branch geometries.
Collapse
|
40
|
Guemez-Gamboa A, Çağlayan AO, Stanley V, Gregor A, Zaki MS, Saleem SN, Musaev D, McEvoy-Venneri J, Belandres D, Akizu N, Silhavy JL, Schroth J, Rosti RO, Copeland B, Lewis SM, Fang R, Issa MY, Per H, Gumus H, Bayram AK, Kumandas S, Akgumus GT, Erson-Omay EZ, Yasuno K, Bilguvar K, Heimer G, Pillar N, Shomron N, Weissglas-Volkov D, Porat Y, Einhorn Y, Gabriel S, Ben-Zeev B, Gunel M, Gleeson JG. Loss of Protocadherin-12 Leads to Diencephalic-Mesencephalic Junction Dysplasia Syndrome. Ann Neurol 2018; 84:638-647. [PMID: 30178464 PMCID: PMC6510237 DOI: 10.1002/ana.25327] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To identify causes of the autosomal-recessive malformation, diencephalic-mesencephalic junction dysplasia (DMJD) syndrome. METHODS Eight families with DMJD were studied by whole-exome or targeted sequencing, with detailed clinical and radiological characterization. Patient-derived induced pluripotent stem cells were derived into neural precursor and endothelial cells to study gene expression. RESULTS All patients showed biallelic mutations in the nonclustered protocadherin-12 (PCDH12) gene. The characteristic clinical presentation included progressive microcephaly, craniofacial dysmorphism, psychomotor disability, epilepsy, and axial hypotonia with variable appendicular spasticity. Brain imaging showed brainstem malformations and with frequent thinned corpus callosum with punctate brain calcifications, reflecting expression of PCDH12 in neural and endothelial cells. These cells showed lack of PCDH12 expression and impaired neurite outgrowth. INTERPRETATION DMJD patients have biallelic mutations in PCDH12 and lack of protein expression. These patients present with characteristic microcephaly and abnormalities of white matter tracts. Such pathogenic variants predict a poor outcome as a result of brainstem malformation and evidence of white matter tract defects, and should be added to the phenotypic spectrum associated with PCDH12-related conditions. Ann Neurol 2018;84:646-655.
Collapse
Affiliation(s)
- Alicia Guemez-Gamboa
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | | | - Valentina Stanley
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Anne Gregor
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | - Maha S Zaki
- Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Sahar N Saleem
- Radiology Department-Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Damir Musaev
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | | | - Denice Belandres
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Naiara Akizu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Jennifer L Silhavy
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Jana Schroth
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Rasim Ozgur Rosti
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | - Brett Copeland
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | - Steven M Lewis
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | - Rebecca Fang
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | - Mahmoud Y Issa
- Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Huseyin Per
- Department of Paediatrics, Division of Paediatric Neurology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Hakan Gumus
- Department of Paediatrics, Division of Paediatric Neurology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Ayse Kacar Bayram
- Department of Paediatrics, Division of Paediatric Neurology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Sefer Kumandas
- Department of Paediatrics, Division of Paediatric Neurology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Gozde Tugce Akgumus
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, CT
| | - Emine Z Erson-Omay
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, CT
| | - Katsuhito Yasuno
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, CT
| | - Kaya Bilguvar
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, CT
| | - Gali Heimer
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Pillar
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | - Stacey Gabriel
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - Bruria Ben-Zeev
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT
| | - Joseph G Gleeson
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| |
Collapse
|
41
|
Bovio PP, Franz H, Heidrich S, Rauleac T, Kilpert F, Manke T, Vogel T. Differential Methylation of H3K79 Reveals DOT1L Target Genes and Function in the Cerebellum In Vivo. Mol Neurobiol 2018; 56:4273-4287. [PMID: 30302725 PMCID: PMC6505521 DOI: 10.1007/s12035-018-1377-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
Abstract
The disruptor of telomeric silencing 1-like (DOT1L) mediates methylation of histone H3 at position lysine 79 (H3K79). Conditional knockout of Dot1l in mouse cerebellar granule cells (Dot1l-cKOAtoh1) led to a smaller external granular layer with fewer precursors of granule neurons. Dot1l-cKOAtoh1 mice had impaired proliferation and differentiation of granular progenitors, which resulted in a smaller cerebellum. Mutant mice showed mild ataxia in motor behavior tests. In contrast, Purkinje cell-specific conditional knockout mice showed no obvious phenotype. Genome-wide transcription analysis of Dot1l-cKOAtoh1 cerebella using microarrays revealed changes in genes that function in cell cycle, cell migration, axon guidance, and metabolism. To identify direct DOT1L target genes, we used genome-wide profiling of H3K79me2 and transcriptional analysis. Analysis of differentially methylated regions (DR) and differentially expressed genes (DE) revealed in total 12 putative DOT1L target genes in Dot1l-cKOAtoh1 affecting signaling (Tnfaip8l3, B3galt5), transcription (Otx1), cell migration and axon guidance (Sema4a, Sema5a, Robo1), cholesterol and lipid metabolism (Lss, Cyp51), cell cycle (Cdkn1a), calcium-dependent cell-adhesion or exocytosis (Pcdh17, Cadps2), and unknown function (Fam174b). Dysregulated expression of these target genes might be implicated in the ataxia phenotype observed in Dot1l-cKOAtoh1.
Collapse
Affiliation(s)
- Patrick Piero Bovio
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Henriette Franz
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Stefanie Heidrich
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Tudor Rauleac
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Fabian Kilpert
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Thomas Manke
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Tanja Vogel
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
42
|
Barker ED, Walton E, Cecil CA, Rowe R, Jaffee SR, Maughan B, O'Connor TG, Stringaris A, Meehan AJ, McArdle W, Relton CL, Gaunt TR. A Methylome-Wide Association Study of Trajectories of Oppositional Defiant Behaviors and Biological Overlap With Attention Deficit Hyperactivity Disorder. Child Dev 2018; 89:1839-1855. [PMID: 28929496 PMCID: PMC6207925 DOI: 10.1111/cdev.12957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In 671 mother-child (49% male) pairs from an epidemiological birth cohort, we investigated (a) prospective associations between DNA methylation (at birth) and trajectories (ages 7-13) of oppositional defiant disorder (ODD), and the ODD subdimensions of irritable and headstrong; (b) common biological pathways, indexed by DNA methylation, between ODD trajectories and attention deficit hyperactivity disorder (ADHD); (c) genetic influence on DNA methylation; and (d) prenatal risk exposure associations. Methylome-wide significant associations were identified for the ODD and headstrong, but not for irritable. Overlap analysis indicated biological correlates between ODD, headstrong, and ADHD. DNA methylation in ODD and headstrong was (to a degree) genetically influenced. DNA methylation associated with prenatal risk exposures of maternal anxiety (headstrong) and cigarette smoking (ODD and headstrong).
Collapse
|
43
|
Suzuki T, Oochi K, Hakeda-Suzuki S, Suzuki T. Transplantation of photoreceptor precursor cells into the retina of an adult Drosophila. Dev Growth Differ 2018; 60:442-453. [PMID: 29989152 DOI: 10.1111/dgd.12545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 11/30/2022]
Abstract
Blindness caused by the disconnection between photoreceptor cells and the brain can be cured by restoring this connection through the transplantation of retinal precursor neurons. However, even after transplanting these cells, it is still unclear how to guide the axons over the long distance from the retina to the brain. To establish a method of guiding the axons of transplanted neurons, we used the Drosophila visual system. By testing different conditions, including the dissociation and preincubation length, we have successfully established a method to transplant photoreceptor precursor cells isolated from the developing eye discs of third-instar larvae into the adult retina. Moreover, we overexpressed N-cadherin (CadN) in the transplant, since it is known to be broadly expressed in the optic lobe well after developmental stages, continuing through adult stages. We found that promoting the cell adhesive properties using CadN enhances the axonal length of the grafted photoreceptor neurons and therefore is useful for future transplantation. We tested the overexpression of a CadN::Frazzled chimeric receptor and found that there was no difference in axonal length from our wild-type transplants, suggesting that the intracellular domain of CadN is necessary for axonal elongation. Altogether, using the Drosophila visual system, we have established an excellent platform for exploring the molecules required for proper axon extension of transplanted neuronal cells. Future studies building from this platform will be useful for regenerative therapy of the human nervous system based on transplantation.
Collapse
Affiliation(s)
- Takahisa Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Keita Oochi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Satoko Hakeda-Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takashi Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
44
|
Abstract
The cadherin superfamily comprises a large, diverse collection of cell surface receptors that are expressed in the nervous system throughout development and have been shown to be essential for the proper assembly of the vertebrate nervous system. As our knowledge of each family member has grown, it has become increasingly clear that the functions of various cadherin subfamilies are intertwined: they can be present in the same protein complexes, impinge on the same developmental processes, and influence the same signaling pathways. This interconnectedness may illustrate a central way in which core developmental events are controlled to bring about the robust and precise assembly of neural circuitry.
Collapse
Affiliation(s)
- James D Jontes
- Department of Neuroscience, Ohio State University, Ohio 43210
| |
Collapse
|
45
|
Shen Q, Zhang H, Su Y, Wen Z, Zhu Z, Chen G, Peng L, Du C, Xie H, Li H, Lv X, Lu C, Xia Y, Tang W. Identification of two novel PCDHA9 mutations associated with Hirschsprung's disease. Gene 2018; 658:96-104. [PMID: 29477871 DOI: 10.1016/j.gene.2018.02.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 01/02/2023]
Abstract
Hirschsprung's disease (HSCR) is a complex disorder with multiple pathogenic gene mutations. Protocadherin alpha 9 (PCDHA9) was identified as a potential candidate gene for HSCR by whole-exome sequencing in a Chinese family. Sanger sequencing in 298 HSCR cases revealed two sporadic Chinese patients with a novel missence PCDHΑ9 mutation (NM_031857; c.1280C > T[p.Ala427Val]) and one sporadic Chinese patient with another novel missence PCDHΑ9 mutation (c.1425C > G[p.Phe475Leu]).The silico predictions and 3D modeling suggest the deleterious effect of identified mutations on protein function. Immunohistochemistry analysis showed PCDHΑ9 was predominantly expressed in the myenteric plexus of human colon tissues. For mouse embryos, PCDHΑ9 was expressed in the stomach but rarely seen in the intestine during E10.5-12.5, then obviously expressed in the intestinal mucosa at E13.5 and extensively expressed in intestinal muscularis and mucosa at E14.5. Moreover, the down-regulation of PCDHΑ9 in the SH-SY5Y cell line promoted the proliferation and migration rate but inhibited the apoptotic rate. In summary, PCDHΑ9 is potentially related to HSCR and the clustered protocadherins (Pcdhs) may involve in the enteric nervous system (ENS) ontogeny.
Collapse
Affiliation(s)
- Qiyang Shen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Hua Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yang Su
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Zechao Wen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Zhongxian Zhu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Guanglin Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Lei Peng
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Chunxia Du
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Hua Xie
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Hongxing Li
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Xiaofeng Lv
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Changgui Lu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of Education, China.
| | - Weibing Tang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| |
Collapse
|
46
|
Abstract
Cell migration directed by substrate-bound chemical cues is called haptotaxis. This study shows that grip and slip between the cell adhesion molecule (CAM) L1-CAM and the adhesive substrates, which occur asymmetrically under the growth cone, direct growth cone migration mediated by laminin. This mechanism is disrupted in a human patient of L1-CAM syndrome, suffering corpus callosum agenesis and corticospinal tract hypoplasia. These findings provide a conceptual framework for understanding the regulation and dysregulation of cell migration on the bases of force generation. Chemical cues presented on the adhesive substrate direct cell migration, a process termed haptotaxis. To migrate, cells must generate traction forces upon the substrate. However, how cells probe substrate-bound cues and generate directional forces for migration remains unclear. Here, we show that the cell adhesion molecule (CAM) L1-CAM is involved in laminin-induced haptotaxis of axonal growth cones. L1-CAM underwent grip and slip on the substrate. The ratio of the grip state was higher on laminin than on the control substrate polylysine; this was accompanied by an increase in the traction force upon laminin. Our data suggest that the directional force for laminin-induced growth cone haptotaxis is generated by the grip and slip of L1-CAM on the substrates, which occur asymmetrically under the growth cone. This mechanism is distinct from the conventional cell signaling models for directional cell migration. We further show that this mechanism is disrupted in a human patient with L1-CAM syndrome, suffering corpus callosum agenesis and corticospinal tract hypoplasia.
Collapse
|
47
|
The protocadherin 17 gene affects cognition, personality, amygdala structure and function, synapse development and risk of major mood disorders. Mol Psychiatry 2018; 23:400-412. [PMID: 28070120 PMCID: PMC5794872 DOI: 10.1038/mp.2016.231] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/27/2016] [Accepted: 11/01/2016] [Indexed: 01/13/2023]
Abstract
Major mood disorders, which primarily include bipolar disorder and major depressive disorder, are the leading cause of disability worldwide and pose a major challenge in identifying robust risk genes. Here, we present data from independent large-scale clinical data sets (including 29 557 cases and 32 056 controls) revealing brain expressed protocadherin 17 (PCDH17) as a susceptibility gene for major mood disorders. Single-nucleotide polymorphisms (SNPs) spanning the PCDH17 region are significantly associated with major mood disorders; subjects carrying the risk allele showed impaired cognitive abilities, increased vulnerable personality features, decreased amygdala volume and altered amygdala function as compared with non-carriers. The risk allele predicted higher transcriptional levels of PCDH17 mRNA in postmortem brain samples, which is consistent with increased gene expression in patients with bipolar disorder compared with healthy subjects. Further, overexpression of PCDH17 in primary cortical neurons revealed significantly decreased spine density and abnormal dendritic morphology compared with control groups, which again is consistent with the clinical observations of reduced numbers of dendritic spines in the brains of patients with major mood disorders. Given that synaptic spines are dynamic structures which regulate neuronal plasticity and have crucial roles in myriad brain functions, this study reveals a potential underlying biological mechanism of a novel risk gene for major mood disorders involved in synaptic function and related intermediate phenotypes.
Collapse
|
48
|
Lu WC, Zhou YX, Qiao P, Zheng J, Wu Q, Shen Q. The protocadherin alpha cluster is required for axon extension and myelination in the developing central nervous system. Neural Regen Res 2018; 13:427-433. [PMID: 29623926 PMCID: PMC5900504 DOI: 10.4103/1673-5374.228724] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In adult mammals, axon regeneration after central nervous system injury is very poor, resulting in persistent functional loss. Enhancing the ability of axonal outgrowth may be a potential treatment strategy because mature neurons of the adult central nervous system may retain the intrinsic ability to regrow axons after injury. The protocadherin (Pcdh) clusters are thought to function in neuronal morphogenesis and in the assembly of neural circuitry in the brain. We cultured primary hippocampal neurons from E17.5 Pcdhα deletion (del-α) mouse embryos. After culture for 1 day, axon length was obviously shorter in del-α neurons compared with wild-type neurons. RNA sequencing of hippocampal E17.5 RNA showed that expression levels of BDNF, Fmod, Nrp2, OGN, and Sema3d, which are associated with axon extension, were significantly down-regulated in the absence of the Pcdhα gene cluster. Using transmission electron microscopy, the ratio of myelinated nerve fibers in the axons of del-α hippocampal neurons was significantly decreased; myelin sheaths of P21 Pcdhα-del mice showed lamellar disorder, discrete appearance, and vacuoles. These results indicate that the Pcdhα cluster can promote the growth and myelination of axons in the neurodevelopmental stage.
Collapse
Affiliation(s)
- Wen-Cheng Lu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Xiao Zhou
- Center for Comparative Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Institute of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Qiao
- Department of Orthopedics, People's Hospital of Zhangqiu, Zhangqiu, Shandong Province, China
| | - Jin Zheng
- Center for Comparative Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Institute of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Wu
- Center for Comparative Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Institute of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Shen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Peek SL, Mah KM, Weiner JA. Regulation of neural circuit formation by protocadherins. Cell Mol Life Sci 2017; 74:4133-4157. [PMID: 28631008 PMCID: PMC5643215 DOI: 10.1007/s00018-017-2572-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 12/20/2022]
Abstract
The protocadherins (Pcdhs), which make up the most diverse group within the cadherin superfamily, were first discovered in the early 1990s. Data implicating the Pcdhs, including ~60 proteins encoded by the tandem Pcdha, Pcdhb, and Pcdhg gene clusters and another ~10 non-clustered Pcdhs, in the regulation of neural development have continually accumulated, with a significant expansion of the field over the past decade. Here, we review the many roles played by clustered and non-clustered Pcdhs in multiple steps important for the formation and function of neural circuits, including dendrite arborization, axon outgrowth and targeting, synaptogenesis, and synapse elimination. We further discuss studies implicating mutation or epigenetic dysregulation of Pcdh genes in a variety of human neurodevelopmental and neurological disorders. With recent structural modeling of Pcdh proteins, the prospects for uncovering molecular mechanisms of Pcdh extracellular and intracellular interactions, and their role in normal and disrupted neural circuit formation, are bright.
Collapse
Affiliation(s)
- Stacey L Peek
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA
- Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Kar Men Mah
- Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Joshua A Weiner
- Department of Biology, The University of Iowa, Iowa City, IA, USA.
- Department of Psychiatry, The University of Iowa, 143 Biology Building, Iowa City, IA, 52242, USA.
| |
Collapse
|
50
|
Schartner C, Scholz CJ, Weber H, Post A, Freudenberg F, Grünewald L, Reif A. The regulation of tetraspanin 8 gene expression-A potential new mechanism in the pathogenesis of bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2017; 174:740-750. [PMID: 28777493 DOI: 10.1002/ajmg.b.32571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/26/2017] [Indexed: 01/13/2023]
Abstract
In a previous study, we identified the single nucleotide polymorphism (SNP) rs4500567, located in the upstream region of tetraspanin 8 (TSPAN8), to be associated with bipolar disorder (BD). Due to its proximal position, the SNP might have an impact on promoter activity, thus on TSPAN8 gene expression. We investigated the impact of rs4500567 on TSPAN8 expression in vitro with luciferase-based promoter assays in human embryonic kidney (HEK293) and neuroblastoma cells (SH-SY5Y), and its effect on expression of downstream associated genes by microarray-based transcriptome analyses. Immunohistochemical localization studies on murine brain slices served to identify possible target regions of altered TSPAN8 expression in the brain. Promoter assays revealed decreased TSPAN8 expression in presence of the minor allele. Transcriptome analyses of TSPAN8-knockdown cells, mirroring the effects of putatively reduced TSPAN8 expression in minor allele carriers, resulted in 231 differentially expressed genes with enrichments of relevant signaling pathways for psychiatric disorders and neuronal development. Finally, we demonstrate Tspan8 abundance in mouse cerebellum and hippocampus. These findings point to a role of TSPAN8 in neuronal function or development. Considering a rather protective effect of the minor allele of rs4500567, our findings reveal a possible novel mechanism that contributes to the development of BD.
Collapse
Affiliation(s)
- Christoph Schartner
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Bavaria, Germany
| | | | - Heike Weber
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Bavaria, Germany.,Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Antonia Post
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Lena Grünewald
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|