1
|
Chen Y, Liu H, Li Y, Shen X, Li S, Yang L, An X, Lei P, Wang X, Zhang H, Sheen J, Yu F, Liu X. The kinesin motor POS3 and the microtubule polymerase MOR1 coordinate chromosome congression during mitosis in Arabidopsis. THE PLANT CELL 2025; 37:koaf053. [PMID: 40096489 PMCID: PMC11975291 DOI: 10.1093/plcell/koaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Faithful chromosome segregation during mitosis is crucial for eukaryotic organisms. Centromere-associated protein-E (CENP-E), a kinetochore-localized kinesin motor, facilitates chromosome congression during mitosis in animals. However, it remains unclear whether plants rely on kinesins similar to CENP-E for chromosome alignment. In our genetic screens for Arabidopsis (Arabidopsis thaliana) mutants that are hypersensitive to the microtubule-destabilizing drug propyzamide, we identified propyzamide oversensitive3-1 (pos3-1), which harbors a mutation in a kinesin-like protein that shares sequence similarity with the N-terminal region of CENP-E. We demonstrated that POS3 dynamically associates with kinetochores during chromosome congression and segregation in mitosis. Moreover, loss of POS3 results in prolonged mitosis, increased aneuploidy, and misaligned chromosomes near the spindle poles. Unexpectedly, we discovered a direct physical interaction and functional link between POS3 and the microtubule polymerase MICROTUBULE ORGANIZATION1 (MOR1) in regulating chromosome alignment and segregation during mitosis. Finally, we showed that MOR1 is required for the kinetochore localization of POS3 in mitosis. Together, our findings establish the vital role of POS3 in chromosome congression and uncover a functional link between POS3 and MOR1 that is essential for proper chromosome alignment and segregation in plant mitosis.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haofeng Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanfeng Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuting Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lan Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xue An
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pei Lei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaomin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongchang Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jen Sheen
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Fei Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiayan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Sáiz-Bonilla M, Li Y, Montes-Serey C, Walley JW, Dinesh-Kumar SP, Pallás V, Navarro JA. The proxiome of a plant viral protein with dual targeting to mitochondria and chloroplasts revealed MAPK cascade and splicing components as proviral factors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70161. [PMID: 40227839 DOI: 10.1111/tpj.70161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025]
Abstract
The coat protein (CP) of the melon necrotic spot virus (MNSV) is a multifunctional factor localized in the chloroplast, mitochondria, and cytoplasm, playing a critical role in overcoming plant defenses such as RNA silencing (RNAi) and the necrotic hypersensitive response. However, the molecular mechanisms through which CP interferes with plant defenses remain unclear. Identifying viral-host interactors can reveal how viruses exploit fundamental cellular processes and help elucidate viral survival strategies. Here, we employed a TurboID-based proximity labeling approach to identify interactors of both the wild-type MNSV CP and a cytoplasmic CP mutant lacking the dual transit peptide (ΔNtCP). Of the interactors, eight were selected for silencing. Notably, silencing MAP4K SIK1 and NbMAP3Kε1 kinases, and a splicing factor homolog NbSMU2 significantly reduced MNSV accumulation, suggesting a proviral role for these proteins in plants. Yeast two-hybrid and bimolecular fluorescence complementation assays confirmed the CP and ΔNtCP interaction with NbSMU2 and NbMAP3Kε1 but not with NbSIK1, which interacted with NbMAP3Kε1. These findings open up new possibilities for exploring how MNSV CP might modulate gene expression and MAPK, thereby facilitating MNSV infection.
Collapse
Affiliation(s)
- María Sáiz-Bonilla
- Laboratory of Plant Molecular Virology, Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, California, 95616, USA
| | - Yuanyuan Li
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, California, 95616, USA
| | - Christian Montes-Serey
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, 50011, USA
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, 50011, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, California, 95616, USA
- The Genome Center, University of California, Davis, Davis, California, 95616, USA
| | - Vicente Pallás
- Laboratory of Plant Molecular Virology, Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Jose A Navarro
- Laboratory of Plant Molecular Virology, Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
3
|
Liu C, Hatzianestis IH, Pfirrmann T, Reza SH, Minina EA, Moazzami A, Stael S, Gutierrez-Beltran E, Pitsili E, Dörmann P, D'Andrea S, Gevaert K, Romero-Campero F, Ding P, Nowack MK, Van Breusegem F, Jones JDG, Bozhkov PV, Moschou PN. Seed longevity is controlled by metacaspases. Nat Commun 2024; 15:6748. [PMID: 39117606 PMCID: PMC11310522 DOI: 10.1038/s41467-024-50848-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
To survive extreme desiccation, seeds enter a period of quiescence that can last millennia. Seed quiescence involves the accumulation of protective storage proteins and lipids through unknown adjustments in protein homeostasis (proteostasis). Here, we show that mutation of all six type-II metacaspase (MCA-II) proteases in Arabidopsis thaliana disturbs proteostasis in seeds. MCA-II mutant seeds fail to restrict the AAA ATPase CELL DIVISION CYCLE 48 (CDC48) at the endoplasmic reticulum to discard misfolded proteins, compromising seed storability. Endoplasmic reticulum (ER) localization of CDC48 relies on the MCA-IIs-dependent cleavage of PUX10 (ubiquitination regulatory X domain-containing 10), the adaptor protein responsible for titrating CDC48 to lipid droplets. PUX10 cleavage enables the shuttling of CDC48 between lipid droplets and the ER, providing an important regulatory mechanism sustaining spatiotemporal proteolysis, lipid droplet dynamics, and protein homeostasis. In turn, the removal of the PUX10 adaptor in MCA-II mutant seeds partially restores proteostasis, CDC48 localization, and lipid droplet dynamics prolonging seed lifespan. Taken together, we uncover a proteolytic module conferring seed longevity.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
- Department of Biology, University of Crete, 71500, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71500, Heraklion, Greece
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007, Uppsala, Sweden
| | - Ioannis H Hatzianestis
- Department of Biology, University of Crete, 71500, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71500, Heraklion, Greece
| | - Thorsten Pfirrmann
- Department of Medicine, Health and Medical University, 14471, Potsdam, Germany
| | - Salim H Reza
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and the Linnean Centre for Plant Biology in Uppsala, Uppsala University, 75236, Uppsala, Sweden
| | - Elena A Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007, Uppsala, Sweden
| | - Ali Moazzami
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007, Uppsala, Sweden
| | - Simon Stael
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007, Uppsala, Sweden
- VIB-Ugent Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Emilio Gutierrez-Beltran
- Instituto de Bioquımica Vegetal y Fotosıntesis, Consejo Superior de Investigaciones Cientıficas (CSIC)-Universidad de Sevilla, 41092, Sevilla, Spain
- Departamento de Bioquımica Vegetal y Biologıa Molecular, Facultad de Biologıa, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Eugenia Pitsili
- VIB-Ugent Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Peter Dörmann
- University of Bonn, Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), Karlrobert Kreiten Straße 13, 53115, Bonn, Germany
| | - Sabine D'Andrea
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052, Ghent, Belgium
| | - Francisco Romero-Campero
- Instituto de Bioquımica Vegetal y Fotosıntesis, Consejo Superior de Investigaciones Cientıficas (CSIC)-Universidad de Sevilla, 41092, Sevilla, Spain
| | - Pingtao Ding
- Institute of Biology Leiden, Leiden University, 2333 BE, Leiden, The Netherlands
| | - Moritz K Nowack
- VIB-Ugent Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Frank Van Breusegem
- VIB-Ugent Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Colney Lane, NR47UH, Norwich, UK
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007, Uppsala, Sweden
| | - Panagiotis N Moschou
- Department of Biology, University of Crete, 71500, Heraklion, Greece.
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71500, Heraklion, Greece.
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007, Uppsala, Sweden.
| |
Collapse
|
4
|
Mentzelopoulou A, Liu C, Moschou PN. Protein Detection and Localization in Plant Cells Using Spot-Tagging. PHYSIOLOGIA PLANTARUM 2024; 176:e14351. [PMID: 38779764 DOI: 10.1111/ppl.14351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
Fluorescent labelling of proteins enables the determination of their spatiotemporal localization but, sometimes, it can perturb their activity, native localization, and functionality. Spot-tag is a12-amino acid peptide recognized by a single-domain nanobody and could potentially resolve the issues associated with large fluorescence tags due to its small size. Here, using as an example the microtubule motor CENTROMERIC PROTEIN E-RELATED KINESIN 7.3 (KIN7.3), we introduce the spot-tag for protein labelling in fixed and living plant cells. Spot-tagging and detection by an anti-spot nanobody of ectopically expressed KIN7.3 did not interfere with its native localization. Most importantly, our spot-tagging pipeline facilitated the localization of KIN7.3 much more rapidly and likely accurately than labelling with large fluorescent proteins or even immunolocalization approaches. We should, though, note some limitations we have not resolved yet. Spot-tagging is functional only in fixed cells; it is available only as two fluorophores and may create a noisy background during imaging. However, we foresee that, besides the limitations of this method, spot-tagging will apply to many proteins, offsetting activity perturbations and low photon quantum yields of other protein-tagging approaches.
Collapse
Affiliation(s)
- Andriani Mentzelopoulou
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - Chen Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Panagiotis Nikolaou Moschou
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
5
|
Liu C, Mentzelopoulou A, Hatzianestis IH, Tzagkarakis E, Skaltsogiannis V, Ma X, Michalopoulou VA, Romero-Campero FJ, Romero-Losada AB, Sarris PF, Marhavy P, Bölter B, Kanterakis A, Gutierrez-Beltran E, Moschou PN. A proxitome-RNA-capture approach reveals that processing bodies repress coregulated hub genes. THE PLANT CELL 2024; 36:559-584. [PMID: 37971938 PMCID: PMC10896293 DOI: 10.1093/plcell/koad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Cellular condensates are usually ribonucleoprotein assemblies with liquid- or solid-like properties. Because these subcellular structures lack a delineating membrane, determining their compositions is difficult. Here we describe a proximity-biotinylation approach for capturing the RNAs of the condensates known as processing bodies (PBs) in Arabidopsis (Arabidopsis thaliana). By combining this approach with RNA detection, in silico, and high-resolution imaging approaches, we studied PBs under normal conditions and heat stress. PBs showed a much more dynamic RNA composition than the total transcriptome. RNAs involved in cell wall development and regeneration, plant hormonal signaling, secondary metabolism/defense, and RNA metabolism were enriched in PBs. RNA-binding proteins and the liquidity of PBs modulated RNA recruitment, while RNAs were frequently recruited together with their encoded proteins. In PBs, RNAs follow distinct fates: in small liquid-like PBs, RNAs get degraded while in more solid-like larger ones, they are stored. PB properties can be regulated by the actin-polymerizing SCAR (suppressor of the cyclic AMP)-WAVE (WASP family verprolin homologous) complex. SCAR/WAVE modulates the shuttling of RNAs between PBs and the translational machinery, thereby adjusting ethylene signaling. In summary, we provide an approach to identify RNAs in condensates that allowed us to reveal a mechanism for regulating RNA fate.
Collapse
Affiliation(s)
- Chen Liu
- Department of Biology, University of Crete, Heraklion 70013, Greece
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Andriani Mentzelopoulou
- Department of Biology, University of Crete, Heraklion 70013, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Ioannis H Hatzianestis
- Department of Biology, University of Crete, Heraklion 70013, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | | | - Vasileios Skaltsogiannis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Xuemin Ma
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Vassiliki A Michalopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Francisco J Romero-Campero
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Avenida Reina Mercedes s/n, Seville 41012, Spain
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Ana B Romero-Losada
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Avenida Reina Mercedes s/n, Seville 41012, Spain
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Panagiotis F Sarris
- Department of Biology, University of Crete, Heraklion 70013, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
- Biosciences, University of Exeter, Exeter, UK
| | - Peter Marhavy
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Bettina Bölter
- Ludwig Maximilians University Munich, Plant Biochemistry, Großhadernerstr. 2-4, Planegg-Martinsried 82152, Germany
| | - Alexandros Kanterakis
- Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Emilio Gutierrez-Beltran
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Panagiotis N Moschou
- Department of Biology, University of Crete, Heraklion 70013, Greece
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| |
Collapse
|
6
|
Li Y, Ma H, Wu Y, Ma Y, Yang J, Li Y, Yue D, Zhang R, Kong J, Lindsey K, Zhang X, Min L. Single-Cell Transcriptome Atlas and Regulatory Dynamics in Developing Cotton Anthers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304017. [PMID: 37974530 PMCID: PMC10797427 DOI: 10.1002/advs.202304017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/08/2023] [Indexed: 11/19/2023]
Abstract
Plant anthers are composed of different specialized cell types with distinct roles in plant reproduction. High temperature (HT) stress causes male sterility, resulting in crop yield reduction. However, the spatial expression atlas and regulatory dynamics during anther development and in response to HT remain largely unknown. Here, the first single-cell transcriptome atlas and chromatin accessibility survey in cotton anther are established, depicting the specific expression and epigenetic landscape of each type of cell in anthers. The reconstruction of meiotic cells, tapetal cells, and middle layer cell developmental trajectories not only identifies novel expressed genes, but also elucidates the precise degradation period of middle layer and reveals a rapid function transition of tapetal cells during the tetrad stage. By applying HT, heterogeneity in HT response is shown among cells of anthers, with tapetal cells responsible for pollen wall synthesis are most sensitive to HT. Specifically, HT shuts down the chromatin accessibility of genes specifically expressed in the tapetal cells responsible for pollen wall synthesis, such as QUARTET 3 (QRT3) and CYTOCHROME P450 703A2 (CYP703A2), resulting in a silent expression of these genes, ultimately leading to abnormal pollen wall and male sterility. Collectively, this study provides substantial information on anthers and provides clues for heat-tolerant crop creation.
Collapse
Affiliation(s)
- Yanlong Li
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei430070China
| | - Huanhuan Ma
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei430070China
| | - Yuanlong Wu
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei430070China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei430070China
| | - Jing Yang
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei430070China
| | - Yawei Li
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei430070China
| | - Dandan Yue
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei430070China
| | - Rui Zhang
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei430070China
| | - Jie Kong
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiang830091China
| | - Keith Lindsey
- Department of BiosciencesDurham UniversityDurham27710UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei430070China
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei430070China
| |
Collapse
|
7
|
Eljebbawi A, Dolata A, Strotmann VI, Stahl Y. Unlocking nature's (sub)cellular symphony: Phase separation in plant meristems. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102480. [PMID: 37862837 DOI: 10.1016/j.pbi.2023.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/22/2023]
Abstract
Plant development is based on the balance of stem cell maintenance and differentiation in the shoot and root meristems. The necessary cell fate decisions are regulated by intricate networks of proteins and biomolecules within plant cells and require robust and dynamic compartmentalization strategies, including liquid-liquid phase separation (LLPS), which allows the formation of membrane-less compartments. This review summarizes the current knowledge about the emerging field of LLPS in plant development, with a particular focus on the shoot and root meristems. LLPS regulates not only floral transition and flowering time while integrating environmental signals in the shoots but also influences auxin signalling and is putatively involved in maintaining the stem cell niche (SCN) in the roots. Therefore, LLPS has the potential to play a crucial role in the plasticity of plant development, necessitating further research for a comprehensive understanding.
Collapse
Affiliation(s)
- Ali Eljebbawi
- Institute for Developmental Genetics, Heinrich-Heine University Duesseldorf, Germany
| | - Anika Dolata
- Institute for Developmental Genetics, Heinrich-Heine University Duesseldorf, Germany
| | - Vivien I Strotmann
- Institute for Developmental Genetics, Heinrich-Heine University Duesseldorf, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich-Heine University Duesseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University Duesseldorf, Germany.
| |
Collapse
|
8
|
Liu C, Mentzelopoulou A, Papagavriil F, Ramachandran P, Perraki A, Claus L, Barg S, Dörmann P, Jaillais Y, Johnen P, Russinova E, Gizeli E, Schaaf G, Moschou PN. SEC14-like condensate phase transitions at plasma membranes regulate root growth in Arabidopsis. PLoS Biol 2023; 21:e3002305. [PMID: 37721949 PMCID: PMC10538751 DOI: 10.1371/journal.pbio.3002305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 09/28/2023] [Accepted: 08/20/2023] [Indexed: 09/20/2023] Open
Abstract
Protein function can be modulated by phase transitions in their material properties, which can range from liquid- to solid-like; yet, the mechanisms that drive these transitions and whether they are important for physiology are still unknown. In the model plant Arabidopsis, we show that developmental robustness is reinforced by phase transitions of the plasma membrane-bound lipid-binding protein SEC14-like. Using imaging, genetics, and in vitro reconstitution experiments, we show that SEC14-like undergoes liquid-like phase separation in the root stem cells. Outside the stem cell niche, SEC14-like associates with the caspase-like protease separase and conserved microtubule motors at unique polar plasma membrane interfaces. In these interfaces, SEC14-like undergoes processing by separase, which promotes its liquid-to-solid transition. This transition is important for root development, as lines expressing an uncleavable SEC14-like variant or mutants of separase and associated microtubule motors show similar developmental phenotypes. Furthermore, the processed and solidified but not the liquid form of SEC14-like interacts with and regulates the polarity of the auxin efflux carrier PINFORMED2. This work demonstrates that robust development can involve liquid-to-solid transitions mediated by proteolysis at unique plasma membrane interfaces.
Collapse
Affiliation(s)
- Chen Liu
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Andriani Mentzelopoulou
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Fotini Papagavriil
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Prashanth Ramachandran
- Department of Organismal Biology, Physiological Botany, Linnean Centre for Plant Biology, Uppsala University, Uppsala, Sweden
| | - Artemis Perraki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Lucas Claus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Ghent, Belgium
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, Lyon, France
| | - Philipp Johnen
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Ghent, Belgium
| | - Electra Gizeli
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Gabriel Schaaf
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Panagiotis Nikolaou Moschou
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
9
|
Fernández-Fernández ÁD, Stael S, Van Breusegem F. Mechanisms controlling plant proteases and their substrates. Cell Death Differ 2023; 30:1047-1058. [PMID: 36755073 PMCID: PMC10070405 DOI: 10.1038/s41418-023-01120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/03/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
In plants, proteolysis is emerging as an important field of study due to a growing understanding of the critical involvement of proteases in plant cell death, disease and development. Because proteases irreversibly modify the structure and function of their target substrates, proteolytic activities are stringently regulated at multiple levels. Most proteases are produced as dormant isoforms and only activated in specific conditions such as altered ion fluxes or by post-translational modifications. Some of the regulatory mechanisms initiating and modulating proteolytic activities are restricted in time and space, thereby ensuring precision activity, and minimizing unwanted side effects. Currently, the activation mechanisms and the substrates of only a few plant proteases have been studied in detail. Most studies focus on the role of proteases in pathogen perception and subsequent modulation of the plant reactions, including the hypersensitive response (HR). Proteases are also required for the maturation of coexpressed peptide hormones that lead essential processes within the immune response and development. Here, we review the known mechanisms for the activation of plant proteases, including post-translational modifications, together with the effects of proteinaceous inhibitors.
Collapse
Affiliation(s)
- Álvaro Daniel Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zürich, Switzerland
| | - Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Uppsala BioCenter, Department of Molecular Sciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium.
| |
Collapse
|
10
|
Liu C, Mentzelopoulou A, Muhammad A, Volkov A, Weijers D, Gutierrez-Beltran E, Moschou PN. An actin remodeling role for Arabidopsis processing bodies revealed by their proximity interactome. EMBO J 2023; 42:e111885. [PMID: 36741000 PMCID: PMC10152145 DOI: 10.15252/embj.2022111885] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Cellular condensates can comprise membrane-less ribonucleoprotein assemblies with liquid-like properties. These cellular condensates influence various biological outcomes, but their liquidity hampers their isolation and characterization. Here, we investigated the composition of the condensates known as processing bodies (PBs) in the model plant Arabidopsis thaliana through a proximity-biotinylation proteomics approach. Using in situ protein-protein interaction approaches, genetics and high-resolution dynamic imaging, we show that processing bodies comprise networks that interface with membranes. Surprisingly, the conserved component of PBs, DECAPPING PROTEIN 1 (DCP1), can localize to unique plasma membrane subdomains including cell edges and vertices. We characterized these plasma membrane interfaces and discovered a developmental module that can control cell shape. This module is regulated by DCP1, independently from its role in decapping, and the actin-nucleating SCAR-WAVE complex, whereby the DCP1-SCAR-WAVE interaction confines and enhances actin nucleation. This study reveals an unexpected function for a conserved condensate at unique membrane interfaces.
Collapse
Affiliation(s)
- Chen Liu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Andriani Mentzelopoulou
- Department of Biology, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Amna Muhammad
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.,University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Andriy Volkov
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, The Netherlands
| | - Emilio Gutierrez-Beltran
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Seville, Spain.,Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.,Department of Biology, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| |
Collapse
|
11
|
Abstract
In contrast to well-studied fungal and animal cells, plant cells assemble bipolar spindles that exhibit a great deal of plasticity in the absence of structurally defined microtubule-organizing centers like the centrosome. While plants employ some evolutionarily conserved proteins to regulate spindle morphogenesis and remodeling, many essential spindle assembly factors found in vertebrates are either missing or not required for producing the plant bipolar microtubule array. Plants also produce proteins distantly related to their fungal and animal counterparts to regulate critical events such as the spindle assembly checkpoint. Plant spindle assembly initiates with microtubule nucleation on the nuclear envelope followed by bipolarization into the prophase spindle. After nuclear envelope breakdown, kinetochore fibers are assembled and unified into the spindle apparatus with convergent poles. Of note, compared to fungal and animal systems, relatively little is known about how plant cells remodel the spindle microtubule array during anaphase. Uncovering mitotic functions of novel proteins for spindle assembly in plants will illuminate both common and divergent mechanisms employed by different eukaryotic organisms to segregate genetic materials.
Collapse
Affiliation(s)
- Bo Liu
- Department of Plant Biology, University of California, Davis, California, USA; ,
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, California, USA; ,
| |
Collapse
|
12
|
Wang P, Meng F, Donaldson P, Horan S, Panchy NL, Vischulis E, Winship E, Conner JK, Krysan PJ, Shiu S, Lehti‐Shiu MD. High-throughput measurement of plant fitness traits with an object detection method using Faster R-CNN. THE NEW PHYTOLOGIST 2022; 234:1521-1533. [PMID: 35218008 PMCID: PMC9310946 DOI: 10.1111/nph.18056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Revealing the contributions of genes to plant phenotype is frequently challenging because loss-of-function effects may be subtle or masked by varying degrees of genetic redundancy. Such effects can potentially be detected by measuring plant fitness, which reflects the cumulative effects of genetic changes over the lifetime of a plant. However, fitness is challenging to measure accurately, particularly in species with high fecundity and relatively small propagule sizes such as Arabidopsis thaliana. An image segmentation-based method using the software ImageJ and an object detection-based method using the Faster Region-based Convolutional Neural Network (R-CNN) algorithm were used for measuring two Arabidopsis fitness traits: seed and fruit counts. The segmentation-based method was error-prone (correlation between true and predicted seed counts, r2 = 0.849) because seeds touching each other were undercounted. By contrast, the object detection-based algorithm yielded near perfect seed counts (r2 = 0.9996) and highly accurate fruit counts (r2 = 0.980). Comparing seed counts for wild-type and 12 mutant lines revealed fitness effects for three genes; fruit counts revealed the same effects for two genes. Our study provides analysis pipelines and models to facilitate the investigation of Arabidopsis fitness traits and demonstrates the importance of examining fitness traits when studying gene functions.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
- DOE Great Lake Bioenergy Research CenterMichigan State UniversityEast LansingMI48824USA
| | - Fanrui Meng
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
- DOE Great Lake Bioenergy Research CenterMichigan State UniversityEast LansingMI48824USA
| | - Paityn Donaldson
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
| | - Sarah Horan
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
| | - Nicholas L. Panchy
- National Institute for Mathematical and Biological SynthesisUniversity of Tennessee1122 Volunteer Blvd, Suite 106KnoxvilleTN37996‐3410USA
| | - Elyse Vischulis
- Genetics and Genome Sciences Graduate ProgramMichigan State UniversityEast LansingMI48824USA
| | - Eamon Winship
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Jeffrey K. Conner
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
- W.K. Kellogg Biological StationMichigan State University3700 E. Gull Lake DriveHickory CornersMI49060USA
- Ecology, Evolution, and Behavior Graduate ProgramMichigan State UniversityEast LansingMI48824USA
| | - Patrick J. Krysan
- Department of HorticultureUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Shin‐Han Shiu
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
- DOE Great Lake Bioenergy Research CenterMichigan State UniversityEast LansingMI48824USA
- Genetics and Genome Sciences Graduate ProgramMichigan State UniversityEast LansingMI48824USA
- Ecology, Evolution, and Behavior Graduate ProgramMichigan State UniversityEast LansingMI48824USA
- Department of Computational Mathematics, Science, and EngineeringMichigan State UniversityEast LansingMI48824USA
| | | |
Collapse
|
13
|
Gu Y, Rasmussen CG. Cell biology of primary cell wall synthesis in plants. THE PLANT CELL 2022; 34:103-128. [PMID: 34613413 PMCID: PMC8774047 DOI: 10.1093/plcell/koab249] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 05/07/2023]
Abstract
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.
Collapse
Affiliation(s)
- Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| |
Collapse
|
14
|
Sharma P, Gayen D. Plant protease as regulator and signaling molecule for enhancing environmental stress-tolerance. PLANT CELL REPORTS 2021; 40:2081-2095. [PMID: 34173047 DOI: 10.1007/s00299-021-02739-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Proteases are ubiquitous in prokaryotes and eukaryotes. Plant proteases are key regulators of various physiological processes, including protein homeostasis, organelle development, senescence, seed germination, protein processing, environmental stress response, and programmed cell death. Proteases are involved in the breakdown of peptide bonds resulting in irreversible posttranslational modification of the protein. Proteases act as signaling molecules that specifically regulate cellular function by cleaving and triggering receptor molecules. Peptides derived from proteolysis regulate ROS signaling under oxidative stress in the plant. It degrades misfolded and abnormal proteins into amino acids to repair the cell damage and regulates the biological process in response to environmental stress. Proteases modulate the biogenesis of phytohormones which control plant growth, development, and environmental stresses. Protein homeostasis, the overall balance between protein synthesis and proteolysis, is required for plant growth and development. Abiotic and biotic stresses are major factors that negatively impact cellular survivability, biomass production, and reduced crop yield potentials. Therefore, the identification of various stress-responsive proteases and their molecular functions may elucidate valuable information for the development of stress-resilient crops with higher yield potentials. However, the understanding of molecular mechanisms of plant protease remains unexplored. This review provides an overview of proteases related to development, signaling, and growth regulation to acclimatize environmental stress in plants.
Collapse
Affiliation(s)
- Punam Sharma
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India
| | - Dipak Gayen
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
15
|
Deli A, Tympa LE, Moschou PN. Analyses of Protein Turnover at the Cell Plate by Fluorescence Recovery After Photobleaching During Cytokinesis. Methods Mol Biol 2021; 2382:233-243. [PMID: 34705243 DOI: 10.1007/978-1-0716-1744-1_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Membrane trafficking is central to cell plate construction during plant cytokinesis. Studies on cell plate formation can provide answers to basic biology questions including molecular mechanisms of membrane trafficking, tissue patterning, and cytoskeletal dynamics. Consequently, a detailed understanding of cytokinesis depends on the characterization of molecules that function in the formation, transport, targeting, and fusion of membrane vesicles and delivery of proteins to the developing and maturing plate. This chapter describes a pipeline based on fluorescence recovery after photobleaching (FRAP) to measure and analyze turnover of peripheral or transmembrane proteins on the cell plate. The approach described here can also be applied in other biological contexts.
Collapse
Affiliation(s)
- Alexandra Deli
- Department of Biology, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Leda-Eleni Tympa
- Department of Biology, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Panagiotis N Moschou
- Department of Biology, University of Crete, Heraklion, Greece. .,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece. .,Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
| |
Collapse
|
16
|
Arora D, Abel NB, Liu C, Van Damme P, Yperman K, Eeckhout D, Vu LD, Wang J, Tornkvist A, Impens F, Korbei B, Van Leene J, Goossens A, De Jaeger G, Ott T, Moschou PN, Van Damme D. Establishment of Proximity-Dependent Biotinylation Approaches in Different Plant Model Systems. THE PLANT CELL 2020; 32:3388-3407. [PMID: 32843435 PMCID: PMC7610282 DOI: 10.1105/tpc.20.00235] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/22/2020] [Accepted: 08/21/2020] [Indexed: 05/19/2023]
Abstract
Proximity labeling is a powerful approach for detecting protein-protein interactions. Most proximity labeling techniques use a promiscuous biotin ligase or a peroxidase fused to a protein of interest, enabling the covalent biotin labeling of proteins and subsequent capture and identification of interacting and neighboring proteins without the need for the protein complex to remain intact. To date, only a few studies have reported on the use of proximity labeling in plants. Here, we present the results of a systematic study applying a variety of biotin-based proximity labeling approaches in several plant systems using various conditions and bait proteins. We show that TurboID is the most promiscuous variant in several plant model systems and establish protocols that combine mass spectrometry-based analysis with harsh extraction and washing conditions. We demonstrate the applicability of TurboID in capturing membrane-associated protein interactomes using Lotus japonicus symbiotically active receptor kinases as a test case. We further benchmark the efficiency of various promiscuous biotin ligases in comparison with one-step affinity purification approaches. We identified both known and novel interactors of the endocytic TPLATE complex. We furthermore present a straightforward strategy to identify both nonbiotinylated and biotinylated peptides in a single experimental setup. Finally, we provide initial evidence that our approach has the potential to suggest structural information of protein complexes.
Collapse
Affiliation(s)
- Deepanksha Arora
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Nikolaj B Abel
- Faculty of Biology, Cell Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Chen Liu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-75007, Sweden
| | - Petra Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Klaas Yperman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jie Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Anna Tornkvist
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-75007, Sweden
| | - Francis Impens
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
- VIB Center for Medical Biotechnology, 9052 Ghent, Belgium
- VIB Proteomics Core, 9052 Ghent, Belgium
| | - Barbara Korbei
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Thomas Ott
- Faculty of Biology, Cell Biology, University of Freiburg, 79104 Freiburg, Germany
- Centre for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Panagiotis Nikolaou Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-75007, Sweden
- Department of Biology, University of Crete, 70013 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
17
|
Fanourakis D, Nikoloudakis N, Pappi P, Markakis E, Doupis G, Charova SN, Delis C, Tsaniklidis G. The Role of Proteases in Determining Stomatal Development and Tuning Pore Aperture: A Review. PLANTS (BASEL, SWITZERLAND) 2020; 9:E340. [PMID: 32182645 PMCID: PMC7154916 DOI: 10.3390/plants9030340] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
Abstract
Plant proteases, the proteolytic enzymes that catalyze protein breakdown and recycling, play an essential role in a variety of biological processes including stomatal development and distribution, as well as, systemic stress responses. In this review, we summarize what is known about the participation of proteases in both stomatal organogenesis and on the stomatal pore aperture tuning, with particular emphasis on their involvement in numerous signaling pathways triggered by abiotic and biotic stressors. There is a compelling body of evidence demonstrating that several proteases are directly or indirectly implicated in the process of stomatal development, affecting stomatal index, density, spacing, as well as, size. In addition, proteases are reported to be involved in a transient adjustment of stomatal aperture, thus orchestrating gas exchange. Consequently, the proteases-mediated regulation of stomatal movements considerably affects plants' ability to cope not only with abiotic stressors, but also to perceive and respond to biotic stimuli. Even though the determining role of proteases on stomatal development and functioning is just beginning to unfold, our understanding of the underlying processes and cellular mechanisms still remains far from being completed.
Collapse
Affiliation(s)
- Dimitrios Fanourakis
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, Heraklion, 71500 Crete, Greece;
- Giannakakis SA, Export Fruits and Vegetables, Tympaki, 70200 Crete, Greece
| | - Nikolaos Nikoloudakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036 Limassol, Cyprus;
| | - Polyxeni Pappi
- Hellenic Agricultural Organization—‘Demeter’, Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, 71307 Crete, Greece; (P.P.); (E.M.); (G.D.)
| | - Emmanouil Markakis
- Hellenic Agricultural Organization—‘Demeter’, Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, 71307 Crete, Greece; (P.P.); (E.M.); (G.D.)
| | - Georgios Doupis
- Hellenic Agricultural Organization—‘Demeter’, Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, 71307 Crete, Greece; (P.P.); (E.M.); (G.D.)
| | - Spyridoula N. Charova
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Development, Heraklion, 70013 Crete, Greece;
- Department of Biology, University of Crete, Heraklion, 70013 Crete, Greece
| | - Costas Delis
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece;
| | - Georgios Tsaniklidis
- Hellenic Agricultural Organization—‘Demeter’, Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, 71307 Crete, Greece; (P.P.); (E.M.); (G.D.)
| |
Collapse
|
18
|
Wang LI, Das A, McKim KS. Sister centromere fusion during meiosis I depends on maintaining cohesins and destabilizing microtubule attachments. PLoS Genet 2019; 15:e1008072. [PMID: 31150390 PMCID: PMC6581285 DOI: 10.1371/journal.pgen.1008072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/18/2019] [Accepted: 05/16/2019] [Indexed: 11/26/2022] Open
Abstract
Sister centromere fusion is a process unique to meiosis that promotes co-orientation of the sister kinetochores, ensuring they attach to microtubules from the same pole during metaphase I. We have found that the kinetochore protein SPC105R/KNL1 and Protein Phosphatase 1 (PP1-87B) regulate sister centromere fusion in Drosophila oocytes. The analysis of these two proteins, however, has shown that two independent mechanisms maintain sister centromere fusion. Maintenance of sister centromere fusion by SPC105R depends on Separase, suggesting cohesin proteins must be maintained at the core centromeres. In contrast, maintenance of sister centromere fusion by PP1-87B does not depend on either Separase or WAPL. Instead, PP1-87B maintains sister centromeres fusion by regulating microtubule dynamics. We demonstrate that this regulation is through antagonizing Polo kinase and BubR1, two proteins known to promote stability of kinetochore-microtubule (KT-MT) attachments, suggesting that PP1-87B maintains sister centromere fusion by inhibiting stable KT-MT attachments. Surprisingly, C(3)G, the transverse element of the synaptonemal complex (SC), is also required for centromere separation in Pp1-87B RNAi oocytes. This is evidence for a functional role of centromeric SC in the meiotic divisions, that might involve regulating microtubule dynamics. Together, we propose two mechanisms maintain co-orientation in Drosophila oocytes: one involves SPC105R to protect cohesins at sister centromeres and another involves PP1-87B to regulate spindle forces at end-on attachments.
Collapse
Affiliation(s)
- Lin-Ing Wang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Arunika Das
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kim S. McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
19
|
Tornkvist A, Liu C, Moschou PN. Proteolysis and nitrogen: emerging insights. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2009-2019. [PMID: 30715465 DOI: 10.1093/jxb/erz024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/10/2019] [Indexed: 05/07/2023]
Abstract
Nitrogen (N) is a core component of fertilizers used in modern agriculture to increase yields and thus to help feed a growing global population. However, this comes at a cost to the environment, through run-off of excess N as a result of poor N-use efficiency (NUE) by crops. An obvious remedy to this problem would therefore be the improvement of NUE, which requires advancing our understanding on N homeostasis, sensing, and uptake. Proteolytic pathways are linked to N homeostasis as they recycle proteins that contain N and carbon; however, emerging data suggest that their functions extend beyond this simple recycling. Here, we highlight roles of proteolytic pathways in non-symbiotic and symbiotic N uptake and in systemic N sensing. We also offer a novel view in which we suggest that proteolytic pathways have roles in N homeostasis that differ from their accepted function in recycling.
Collapse
Affiliation(s)
- Anna Tornkvist
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Chen Liu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| |
Collapse
|
20
|
Li P, Day B. Battlefield Cytoskeleton: Turning the Tide on Plant Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:25-34. [PMID: 30355064 PMCID: PMC6326859 DOI: 10.1094/mpmi-07-18-0195-fi] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The plant immune system comprises a complex network of signaling processes, regulated not only by classically defined immune components (e.g., resistance genes) but also by a suite of developmental, environmental, abiotic, and biotic-associated factors. In total, it is the sum of these interactions-the connectivity to a seemingly endless array of environments-that ensures proper activation, and control, of a system that is responsible for cell surveillance and response to threats presented by invading pests and pathogens. Over the past decade, the field of plant pathology has witnessed the discovery of numerous points of convergence between immunity, growth, and development, as well as overlap with seemingly disparate processes such as those that underpin plant response to changes in the environment. Toward defining how immune signaling is regulated, recent studies have focused on dissecting the mechanisms that underpin receptor-ligand interactions, phospho-regulation of signaling cascades, and the modulation of host gene expression during infection. As one of the major regulators of these immune signaling cascades, the plant cytoskeleton is the stage from which immune-associated processes are mobilized and oriented and, in this role, it controls the movement of the organelles, proteins, and chemical signals that support plant defense signaling. In short, the cytoskeleton is the battlefield from which pathogens and plants volley virulence and resistance, transforming resistance to susceptibility. Herein, we discuss the role of the eukaryotic cytoskeleton as a platform for the function of the plant immune system.
Collapse
Affiliation(s)
- Pai Li
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University Plant Resilience Institute, East Lansing, MI 48824, USA
| |
Collapse
|
21
|
Smertenko A. Phragmoplast expansion: the four-stroke engine that powers plant cytokinesis. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:130-137. [PMID: 30072118 DOI: 10.1016/j.pbi.2018.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/28/2018] [Accepted: 07/13/2018] [Indexed: 05/21/2023]
Abstract
The phragmoplast is a plant-specific secretory module that partitions daughter cells during cytokinesis by constructing a cell plate from membranes and oligosaccharides. The cell plate is typically a long structure, which requires the phragmoplast to expand to complete cytokinesis. The phragmoplast expands by coordinating microtubule dynamics with membrane trafficking. Each step in phragmoplast expansion involves the establishment of anti-parallel microtubule overlaps that are enriched with the protein MAP65, which recruits cytokinetic vesicles through interaction with the tethering factor, TRAPPII. Cell plate assembly triggers dissolution of the anti-parallel overlaps and stabilization of microtubule plus ends through association with the cell plate assembly machinery. This opinion article discusses processes that drive phragmoplast expansion as well as highlights key questions that remain for better understanding its role in plant cell division.
Collapse
Affiliation(s)
- Andrei Smertenko
- Institute of Biological Chemistry, College of Human, Agricultural, and Natural Resource Sciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
22
|
Jiménez-López D, Muñóz-Belman F, González-Prieto JM, Aguilar-Hernández V, Guzmán P. Repertoire of plant RING E3 ubiquitin ligases revisited: New groups counting gene families and single genes. PLoS One 2018; 13:e0203442. [PMID: 30169501 PMCID: PMC6118397 DOI: 10.1371/journal.pone.0203442] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/21/2018] [Indexed: 01/12/2023] Open
Abstract
E3 ubiquitin ligases of the ubiquitin proteasome system (UPS) mediate recognition of substrates and later transfer the ubiquitin (Ub). They are the most expanded components of the system. The Really Interesting New Gene (RING) domain contains 40-60 residues that are highly represented among E3 ubiquitin ligases. The Arabidopsis thaliana E3 ubiquitin ligases with a RING finger primarily contain RING-HC or RING-H2 type domains or less frequently RING-v, RING-C2, RING-D, RING-S/T and RING-G type domains. Our previous work on three E3 ubiquitin ligase families with a RING-H2 type domain, ATL, BTL, and CTL, suggested that a phylogenetic distribution based on the RING domain allowed for the creation a catalog of known domains or unknown conserved motifs. This work provided a useful and comprehensive view of particular families of RING E3 ubiquitin ligases. We updated the annotation of A. thaliana RING proteins and surveyed RING proteins from 30 species across eukaryotes. Based on domain architecture profile of the A. thaliana proteins, we catalogued 4711 RING finger proteins into 107 groups, including 66 previously described gene families or single genes and 36 novel families or undescribed genes. Forty-four groups were specific to a plant lineage while 41 groups consisted of proteins found in all eukaryotic species. Our present study updates the current classification of plant RING finger proteins and reiterates the importance of these proteins in plant growth and adaptation.
Collapse
Affiliation(s)
- Domingo Jiménez-López
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto., México
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
| | - Francisco Muñóz-Belman
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto., México
| | - Juan Manuel González-Prieto
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
| | - Victor Aguilar-Hernández
- CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Col. Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Plinio Guzmán
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto., México
| |
Collapse
|
23
|
van der Hoorn RAL, Rivas S. Unravelling the mode of action of plant proteases. THE NEW PHYTOLOGIST 2018; 218:879-881. [PMID: 29658638 DOI: 10.1111/nph.15156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
| | - Susana Rivas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
24
|
Liu C, Moschou PN. Cutting in the middleman: hidden substrates at the interface between proteases and plant development. THE NEW PHYTOLOGIST 2018; 218:916-922. [PMID: 28262953 DOI: 10.1111/nph.14501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/21/2017] [Indexed: 06/06/2023]
Abstract
Contents Summary 916 I. Introduction 916 II. DEK1: towards identification of protease substrates 917 III. Separases: when proteolytic modules attain nonproteolytic functions 918 IV. The peculiar case of a nonredundant subtilisin 919 V. Towards a solution to the protease redundancy problem 920 VI. Matters arising and closing remarks 921 Acknowledgements 921 References 921 SUMMARY: Proteases are integral components of proteome remodelling networks that regulate turnover of proteins and expand their functional diversity. Accumulating evidence highlights the importance of proteases as being central hubs of developmental programs. Yet the molecular pathways that many proteases act on, their natural substrates and their putative nonproteolytic functions remain largely elusive. Here, we discuss recent findings on proteases with functions that converge into plant development regulation, such as DEFECTIVE KERNEL 1 (DEK1), separase and subtilisins, to highlight conspicuous but unexplored aspects of protease biology. We also suggest an exploratory framework for addressing protease functions.
Collapse
Affiliation(s)
- Chen Liu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
| | - Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
| |
Collapse
|
25
|
Nebenführ A, Dixit R. Kinesins and Myosins: Molecular Motors that Coordinate Cellular Functions in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:329-361. [PMID: 29489391 PMCID: PMC6653565 DOI: 10.1146/annurev-arplant-042817-040024] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Kinesins and myosins are motor proteins that can move actively along microtubules and actin filaments, respectively. Plants have evolved a unique set of motors that function as regulators and organizers of the cytoskeleton and as drivers of long-distance transport of various cellular components. Recent progress has established the full complement of motors encoded in plant genomes and has revealed valuable insights into the cellular functions of many kinesin and myosin isoforms. Interestingly, several of the motors were found to functionally connect the two cytoskeletal systems and thereby to coordinate their activities. In this review, we discuss the available genetic, cell biological, and biochemical data for each of the plant kinesin and myosin families from the context of their subcellular mechanism of action as well as their physiological function in the whole plant. We particularly emphasize work that illustrates mechanisms by which kinesins and myosins coordinate the activities of the cytoskeletal system.
Collapse
Affiliation(s)
- Andreas Nebenführ
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, USA;
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri 63130-4899, USA;
| |
Collapse
|
26
|
Petzold HE, Rigoulot SB, Zhao C, Chanda B, Sheng X, Zhao M, Jia X, Dickerman AW, Beers EP, Brunner AM. Identification of new protein-protein and protein-DNA interactions linked with wood formation in Populus trichocarpa. TREE PHYSIOLOGY 2018; 38:362-377. [PMID: 29040741 DOI: 10.1093/treephys/tpx121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
Cellular processes, such as signal transduction and cell wall deposition, are organized by macromolecule interactions. Experimentally determined protein-protein interactions (PPIs) and protein-DNA interactions (PDIs) relevant to woody plant development are sparse. To begin to develop a Populus trichocarpa Torr. & A. Gray wood interactome, we applied the yeast-two-hybrid (Y2H) assay in different ways to enable the discovery of novel PPIs and connected networks. We first cloned open reading frames (ORFs) for 361 genes markedly upregulated in secondary xylem compared with secondary phloem and performed a binary Y2H screen with these proteins. By screening a xylem cDNA library for interactors of a subset of these proteins and then recapitulating the process by using a subset of the interactors as baits, we ultimately identified 165 PPIs involving 162 different ORFs. Thirty-eight transcription factors (TFs) included in our collection of P. trichocarpa wood ORFs were used in a Y1H screen for binding to promoter regions of three genes involved in lignin biosynthesis resulting in 40 PDIs involving 20 different TFs. The network incorporating both the PPIs and PDIs included 14 connected subnetworks, with the largest having 132 members. Protein-protein interactions and PDIs validated previous reports and also identified new candidate wood formation proteins and modules through their interactions with proteins and promoters known to be involved in secondary cell wall synthesis. Selected examples are discussed including a PPI between Mps one binder (MOB1) and a mitogen-activated protein kinase kinase kinase kinase (M4K) that was further characterized by assays confirming the PPI as well as its effect on subcellular localization. Mapping of published transcriptomic data showing developmentally detailed expression patterns across a secondary stem onto the network supported that the PPIs and PDIs are relevant to wood formation, and also illustrated that wood-associated interactions involve gene products that are not upregulated in secondary xylem.
Collapse
Affiliation(s)
- H Earl Petzold
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Chengsong Zhao
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bidisha Chanda
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061, USA
- US Vegetable Laboratory, Charleston, SC 29414, USA
| | - Xiaoyan Sheng
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mingzhe Zhao
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061, USA
- Agronomy College, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, PR China
| | - Xiaoyan Jia
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allan W Dickerman
- The Biocomplexity Institute at Virginia Tech, Blacksburg, VA 24061, USA
| | - Eric P Beers
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061, USA
| | - Amy M Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
27
|
Liu C, Moschou PN. Phenotypic novelty by CRISPR in plants. Dev Biol 2018; 435:170-175. [DOI: 10.1016/j.ydbio.2018.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 01/15/2023]
|
28
|
Smertenko A, Hewitt SL, Jacques CN, Kacprzyk R, Liu Y, Marcec MJ, Moyo L, Ogden A, Oung HM, Schmidt S, Serrano-Romero EA. Phragmoplast microtubule dynamics - a game of zones. J Cell Sci 2018; 131:jcs.203331. [PMID: 29074579 DOI: 10.1242/jcs.203331] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Plant morphogenesis relies on the accurate positioning of the partition (cell plate) between dividing cells during cytokinesis. The cell plate is synthetized by a specialized structure called the phragmoplast, which consists of microtubules, actin filaments, membrane compartments and associated proteins. The phragmoplast forms between daughter nuclei during the transition from anaphase to telophase. As cells are commonly larger than the originally formed phragmoplast, the construction of the cell plate requires phragmoplast expansion. This expansion depends on microtubule polymerization at the phragmoplast forefront (leading zone) and loss at the back (lagging zone). Leading and lagging zones sandwich the 'transition' zone. A population of stable microtubules in the transition zone facilitates transport of building materials to the midzone where the cell plate assembly takes place. Whereas microtubules undergo dynamic instability in all zones, the overall balance appears to be shifted towards depolymerization in the lagging zone. Polymerization of microtubules behind the lagging zone has not been reported to date, suggesting that microtubule loss there is irreversible. In this Review, we discuss: (1) the regulation of microtubule dynamics in the phragmoplast zones during expansion; (2) mechanisms of the midzone establishment and initiation of cell plate biogenesis; and (3) signaling in the phragmoplast.
Collapse
Affiliation(s)
- Andrei Smertenko
- Institute of Biological Chemistry, Pullman, WA 99164, USA .,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Seanna L Hewitt
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Horticulture, Washington State University, Pullman, WA 99164, USA
| | - Caitlin N Jacques
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | - Rafal Kacprzyk
- Institute of Biological Chemistry, Pullman, WA 99164, USA
| | - Yan Liu
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Matthew J Marcec
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Lindani Moyo
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Aaron Ogden
- Institute of Biological Chemistry, Pullman, WA 99164, USA.,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Hui Min Oung
- Institute of Biological Chemistry, Pullman, WA 99164, USA.,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Sharol Schmidt
- Institute of Biological Chemistry, Pullman, WA 99164, USA.,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Erika A Serrano-Romero
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
29
|
Lehman TA, Smertenko A, Sanguinet KA. Auxin, microtubules, and vesicle trafficking: conspirators behind the cell wall. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3321-3329. [PMID: 28666373 DOI: 10.1093/jxb/erx205] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant morphogenesis depends on the synchronized anisotropic expansion of individual cells in response to developmental and environmental cues. The magnitude of cell expansion depends on the biomechanical properties of the cell wall, which in turn depends on both its biosynthesis and extensibility. Although the control of cell expansion by the phytohormone auxin is well established, its regulation of cell wall composition, trafficking of H+-ATPases, and K+ influx that drives growth is still being elucidated. Furthermore, the maintenance of auxin fluxes via the interaction between the cytoskeleton and PIN protein recycling on the plasma membrane remains under investigation. This review proposes a model that describes how the cell wall, auxin, microtubule binding-protein CLASP and Kin7/separase complexes, and vesicle trafficking are co-ordinated on a cellular level to mediate cell wall loosening during cell expansion.
Collapse
Affiliation(s)
- Thiel A Lehman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
30
|
Müller S. Linking Separase to Microtubule Dynamics. Dev Cell 2017; 37:295-296. [PMID: 27219057 DOI: 10.1016/j.devcel.2016.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The Arabidopsis separase homolog, AtESP, associates with microtubules and affects cell polarity but does not bind microtubules directly. In this issue of Developmental Cell, Moschou et al. (2016) show that AtESP teams up with the CENP-E kinesin Kin7 to promote microtubule stabilization, an activity independent of separase proteolytic activity.
Collapse
Affiliation(s)
- Sabine Müller
- ZMPB, University of Tübingen, Morgenstelle 32, 72076 Tübingen, Germany.
| |
Collapse
|
31
|
Roy R, Bassham DC. TNO1, a TGN-localized SNARE-interacting protein, modulates root skewing in Arabidopsis thaliana. BMC PLANT BIOLOGY 2017; 17:73. [PMID: 28399805 PMCID: PMC5387210 DOI: 10.1186/s12870-017-1024-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/05/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND The movement of plant roots within the soil is key to their ability to interact with the environment and maximize anchorage and nutrient acquisition. Directional growth of roots occurs by a combination of sensing external cues, hormonal signaling and cytoskeletal changes in the root cells. Roots growing on slanted, impenetrable growth medium display a characteristic waving and skewing, and mutants with deviations in these phenotypes assist in identifying genes required for root movement. Our study identifies a role for a trans-Golgi network-localized protein in root skewing. RESULTS We found that Arabidopsis thaliana TNO1 (TGN-localized SYP41-interacting protein), a putative tethering factor localized at the trans-Golgi network, affects root skewing. tno1 knockout mutants display enhanced root skewing and epidermal cell file rotation. Skewing of tno1 roots increases upon microtubule stabilization, but is insensitive to microtubule destabilization. Microtubule destabilization leads to severe defects in cell morphology in tno1 seedlings. Microtubule array orientation is unaffected in the mutant roots, suggesting that the increase in cell file rotation is independent of the orientation of microtubule arrays. CONCLUSIONS We conclude that TNO1 modulates root skewing in a mechanism that is dependent on microtubules but is not linked to disruption of the orientation of microtubule arrays. In addition, TNO1 is required for maintenance of cell morphology in mature regions of roots and the base of hypocotyls. The TGN-localized SNARE machinery might therefore be important for appropriate epidermal cell file rotation and cell expansion during root growth.
Collapse
Affiliation(s)
- Rahul Roy
- Department of Genetics, Development and Cell Biology, 1035B Roy J Carver Co-Lab, 1111 WOI Rd, Iowa State University, Ames, IA 50011 USA
- Interdepartmental Genetics Program, Iowa State University, Ames, IA USA
- Current Address: Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, MN 55108 USA
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, 1035B Roy J Carver Co-Lab, 1111 WOI Rd, Iowa State University, Ames, IA 50011 USA
- Interdepartmental Genetics Program, Iowa State University, Ames, IA USA
- Plant Sciences Institute, Iowa State University, Ames, IA USA
| |
Collapse
|
32
|
Kumar R. Separase: Function Beyond Cohesion Cleavage and an Emerging Oncogene. J Cell Biochem 2017; 118:1283-1299. [PMID: 27966791 DOI: 10.1002/jcb.25835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022]
Abstract
Proper and timely segregation of genetic endowment is necessary for survival and perpetuation of every species. Mis-segregation of chromosomes and resulting aneuploidy leads to genetic instability, which can jeopardize the survival of an individual or population as a whole. Abnormality with segregation of genetic contents has been associated with several medical consequences including cancer, sterility, mental retardation, spontaneous abortion, miscarriages, and other birth related defects. Separase, by irreversible cleavage of cohesin complex subunit, paves the way for metaphase/anaphase transition during the cell cycle. Both over or reduced expression and altered level of separase have been associated with several medical consequences including cancer, as a result separase now emerges as an important oncogene and potential molecular target for medical intervenes. Recently, separase is also found to be essential in separation and duplication of centrioles. Here, I review the role of separase in mitosis, meiosis, non-canonical roles of separase, separase regulation, as a regulator of centriole disengagement, nonproteolytic roles, diverse substrates, structural insights, and association of separase with cancer. At the ends, I proposed a model which showed that separase is active throughout the cell cycle and there is a mere increase in separase activity during metaphase contrary to the common believes that separase is inactive throughout cell cycle except for metaphase. J. Cell. Biochem. 118: 1283-1299, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, Maharashtra, India
| |
Collapse
|
33
|
Kamenz J, Hauf S. Time To Split Up: Dynamics of Chromosome Separation. Trends Cell Biol 2017; 27:42-54. [DOI: 10.1016/j.tcb.2016.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/14/2016] [Accepted: 07/29/2016] [Indexed: 11/16/2022]
|