1
|
Bejcek LP, Eli OS, Kapkayeva DM, Nafie J, Beutler JA, Gallicchio E, Sackett DL, Murelli RP. Deconstruction of Desacetamidocolchicine's B Ring Reveals a Class 3 Atropisomeric AC Ring with Tubulin Binding Properties. J Org Chem 2025. [PMID: 40422813 DOI: 10.1021/acs.joc.5c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Colchicine is one of the oldest known microtubule-targeting agents and also represents a classic example of axial chirality and atropisomerism in medicine. This is because colchicine's axially chiral methoxytropone-trimethoxybenzene (called the AC ring) is directly responsible for tubulin binding and is thermodynamically set into the requisite aR form by a point chiral acetamido group on its B ring. Indeed, desacetamidocolchicine (DAAC), a colchicine analogue without the acetamido group, racemizes within minutes. Herein, we describe the synthesis as well as physical and biological characterization of a series of AC ring-containing molecules that represent B-ring further deconstructed variants of DAAC. These studies revealed a novel analogue with an AC ring that is highly stable to epimerization based not on thermodynamic stabilization but rather a high rotational barrier energy. Profiling and characterization of the dihedral angles were carried out computationally and experimentally using vibrational circular dichroism, demonstrating that the ground state dihedral angles of the new molecules differ significantly from those of colchicine. However, despite this difference, the molecule retained antiproliferative, tubulin-binding, and tubulin polymerization inhibitory activity.
Collapse
Affiliation(s)
- Lauren P Bejcek
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
| | - Orugbani S Eli
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
| | - Diana M Kapkayeva
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Jordan Nafie
- Biotools, Inc., 17546 Bee Line Highway, Jupiter, Florida 33478, United States
| | - John A Beutler
- Molecular Targets Program, National Cancer Institute, National Institutes of Health. 1050 Boyles Street, Frederick, Maryland 21702, United States
| | - Emilio Gallicchio
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
- The Graduate Center of the City University of New York, PhD Program in Biochemistry, New York, New York 10016, United States
| | - Dan L Sackett
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 1 Center Dr, Bethesda, Maryland 20892, United States
| | - Ryan P Murelli
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
- The Graduate Center of the City University of New York, PhD Program in Biochemistry, New York, New York 10016, United States
| |
Collapse
|
2
|
Curinha A, Huang Z, Anglen T, Strong MA, Gliech CR, Jewett CE, Friskes A, Phan TP, Nicholas Z, Holland AJ. Centriole structural integrity defects are a crucial feature of hydrolethalus syndrome. J Cell Biol 2025; 224:e202403022. [PMID: 40009365 PMCID: PMC11864076 DOI: 10.1083/jcb.202403022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/16/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Hydrolethalus syndrome (HLS) is a lethal, autosomal recessive ciliopathy caused by the mutation of the conserved centriole protein HYLS1. How HYLS1 controls centriole function is poorly understood. Here, we show that mice harboring the HYLS1 disease mutation die shortly after birth and exhibit developmental defects that recapitulate several manifestations of HLS. These phenotypes arise from a loss of centriole integrity that causes tissue-specific defects in cilia assembly and function. We show that HYLS1 is recruited to the centriole by CEP120 and stabilizes the localization of centriole inner scaffold proteins that ensure the integrity of the centriolar microtubule wall. The HLS disease mutation reduced the centriole localization of HYLS1 and caused degeneration of the centriole distal end. We propose that tissue-specific defects in centriole integrity caused by the HYLS1 mutation prevent ciliogenesis and contribute to HLS phenotypes.
Collapse
Affiliation(s)
- Ana Curinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhaoyu Huang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taylor Anglen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Margaret A. Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Colin R. Gliech
- Department of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cayla E. Jewett
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anoek Friskes
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Thao P. Phan
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Zachary Nicholas
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew J. Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Skinner MW, Nhan PB, Simington CJ, Jordan PW. Meiotic divisions and round spermatid formation do not require centriole duplication in mice. PLoS Genet 2025; 21:e1011698. [PMID: 40294089 PMCID: PMC12064039 DOI: 10.1371/journal.pgen.1011698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/09/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025] Open
Abstract
Centrosomes, composed of centrioles and pericentriolar matrix proteins, are traditionally viewed as essential microtubule-organizing centers (MTOCs) that facilitate bipolar spindle formation and chromosome segregation during spermatogenesis. In this study, we investigated the role of centrioles in male germ cell development by using a murine conditional knockout (cKO) of Sas4, a critical component of centriole biogenesis. We found that while centriole duplication was impaired in Sas4 cKO spermatocytes, these cells were still capable of progressing through meiosis I and II. Chromosome segregation was able to proceed through the formation of a non-centrosomal MTOC, indicating that centrioles are not required for meiotic divisions. However, spermatids that inherited fewer than two centrioles exhibited severe defects in spermiogenesis, including improper manchette formation, constricted perinuclear rings, disrupted acrosome morphology, and failure to form flagella. Consequently, Sas4 cKO males were infertile due to the absence of functional spermatozoa. Our findings demonstrate that while centrioles are dispensable for meiosis in male germ cells, they are essential for spermiogenesis and sperm maturation. This work provides key insights into the role of centrosomes in male fertility and may have implications for understanding certain conditions of male infertility associated with centriole defects.
Collapse
Affiliation(s)
- Marnie W. Skinner
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Paula B. Nhan
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Carter J. Simington
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Philip W. Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- School of Biomedicine, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
4
|
Pudlowski R, Xu L, Milenkovic L, Kumar C, Hemsworth K, Aqrabawi Z, Stearns T, Wang JT. A delta-tubulin/epsilon-tubulin/Ted protein complex is required for centriole architecture. eLife 2025; 13:RP98704. [PMID: 40067174 PMCID: PMC11896610 DOI: 10.7554/elife.98704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
Centrioles have a unique, conserved architecture formed by three linked, 'triplet', microtubules arranged in ninefold symmetry. The mechanisms by which these triplet microtubules are formed remain unclear but likely involve the noncanonical tubulins delta-tubulin and epsilon-tubulin. Previously, we found that human cells lacking delta-tubulin or epsilon-tubulin form abnormal centrioles, characterized by an absence of triplet microtubules, lack of central core protein POC5, and a futile cycle of centriole formation and disintegration (Wang et al., 2017). Here, we show that human cells lacking either TEDC1 or TEDC2 have similar abnormalities. Using ultrastructure expansion microscopy, we observed that mutant centrioles elongate to the same length as control centrioles in G2 phase and fail to recruit central core scaffold proteins. Remarkably, mutant centrioles also have an expanded proximal region. During mitosis, these mutant centrioles further elongate before fragmenting and disintegrating. All four proteins physically interact and TEDC1 and TEDC2 can form a subcomplex in the absence of the tubulins, supporting an AlphaFold Multimer model of the tetramer. TEDC1 and TEDC2 localize to centrosomes and are mutually dependent on each other and on delta-tubulin and epsilon-tubulin for localization. Our results demonstrate that delta-tubulin, epsilon-tubulin, TEDC1, and TEDC2 function together to promote robust centriole architecture, laying the foundation for future studies on the mechanisms underlying the assembly of triplet microtubules and their interactions with centriole structure.
Collapse
Affiliation(s)
- Rachel Pudlowski
- Department of Biology, Washington University in St. LouisSt. LouisUnited States
| | - Lingyi Xu
- Department of Biology, Washington University in St. LouisSt. LouisUnited States
| | | | - Chandan Kumar
- Department of Biology, Washington University in St. LouisSt. LouisUnited States
| | - Katherine Hemsworth
- Department of Biology, Washington University in St. LouisSt. LouisUnited States
| | - Zayd Aqrabawi
- Department of Biology, Washington University in St. LouisSt. LouisUnited States
| | - Tim Stearns
- Department of Biology, Stanford UniversityStanfordUnited States
- Rockefeller UniversityNew York CityUnited States
| | - Jennifer T Wang
- Department of Biology, Washington University in St. LouisSt. LouisUnited States
| |
Collapse
|
5
|
Iyer SS, Chen F, Ogunmolu FE, Moradi S, Volkov VA, van Grinsven EJ, van Hoorn C, Wu J, Andrea N, Hua S, Jiang K, Vakonakis I, Potočnjak M, Herzog F, Gigant B, Gudimchuk N, Stecker KE, Dogterom M, Steinmetz MO, Akhmanova A. Centriolar cap proteins CP110 and CPAP control slow elongation of microtubule plus ends. J Cell Biol 2025; 224:e202406061. [PMID: 39847124 PMCID: PMC11756378 DOI: 10.1083/jcb.202406061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/24/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025] Open
Abstract
Centrioles are microtubule-based organelles required for the formation of centrosomes and cilia. Centriolar microtubules, unlike their cytosolic counterparts, are stable and grow very slowly, but the underlying mechanisms are poorly understood. Here, we reconstituted in vitro the interplay between the proteins that cap distal centriole ends and control their elongation: CP110, CEP97, and CPAP/SAS-4. We found that whereas CEP97 does not bind to microtubules directly, CP110 autonomously binds microtubule plus ends, blocks their growth, and inhibits depolymerization. Cryo-electron tomography revealed that CP110 associates with the luminal side of microtubule plus ends and suppresses protofilament flaring. CP110 directly interacts with CPAP, which acts as a microtubule polymerase that overcomes CP110-induced growth inhibition. Together, the two proteins impose extremely slow processive microtubule growth. Disruption of CP110-CPAP interaction in cells inhibits centriole elongation and increases incidence of centriole defects. Our findings reveal how two centriolar cap proteins with opposing activities regulate microtubule plus-end elongation and explain their antagonistic relationship during centriole formation.
Collapse
Affiliation(s)
- Saishree S. Iyer
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Fangrui Chen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Funso E. Ogunmolu
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Shoeib Moradi
- Division of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland
| | - Vladimir A. Volkov
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Emma J. van Grinsven
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Chris van Hoorn
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jingchao Wu
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Nemo Andrea
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Shasha Hua
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Kai Jiang
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | - Mia Potočnjak
- Ludwig-Maximilians-Universität München, Munich, Germany
| | - Franz Herzog
- Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benoît Gigant
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nikita Gudimchuk
- Department of Physics, and Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Lomonosov Moscow State University, Moscow, Russia
| | - Kelly E. Stecker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Marileen Dogterom
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Michel O. Steinmetz
- Division of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland
- University of Basel, Biozentrum, Basel, Switzerland
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
6
|
Pei SL, Chen RS, Chen MH. The crucial role of centrioles in tooth growth and development. J Formos Med Assoc 2025; 124:271-277. [PMID: 38704334 DOI: 10.1016/j.jfma.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/07/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Tooth development hinged on reciprocal interactions between enamel and dentin, shaping tooth structures. Centrioles influenced cellular direction, critical for stem cell differentiation. Aberrant centrioles contributed to conditions like Huntington's disease and cancers. Centriole-related gene mutations, like Pericentrin and Centrosomal P4.1-associated protein (CPAP), led to tooth abnormalities, microcephaly. Our study explored the role of centrioles in ameloblasts during molar growth, shedding light on tooth development mechanisms. METHODS Tissue sections underwent immunofluorescence and hematoxylin and eosin staining to observe centriole changes in C57BL/6 mouse molars (1,3,5,7, and 9 days). Emphasis was placed on comparing centrioles in enamel and ameloblasts between Nestin-Cremediated Cpap conditional knockout in p53-deficient mice (Cpap(-/-) mice) and normal mice on the ninth day. RESULTS In mouse molar tissue, ameloblasts and enamel underwent notable changes during the 1-9 days after birth. Centrioles in ameloblasts exhibited dynamic temporal localization, migrating away from cell nuclei towards enamel generation. Correlation between enamel thickness and centriole quantity suggested a relationship. Comparative analysis of normal and Cpap (-/-) mice on the ninth day revealed differences in enamel thickness, ameloblast elongation, and centriole distribution, highlighting the impact of CPAP deficiency on tooth development. CONCLUSION This study affirmed the positive contribution of ciliated centrioles in ameloblasts to enamel growth during the secretory phase. Increased centrioles correlated with enhanced enamel formation. Conversely, CPAP loss disrupted centriole organization, impacting ameloblast morphology and functionality, resembling enamel hypoplasia observed in microcephaly patients. Further research is essential to unravel molecular mechanisms and potential interactions with odontoblast centrioles.
Collapse
Affiliation(s)
- Shan-Li Pei
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Rung-Shu Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Min-Huey Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
7
|
Saunders HAJ, van den Berg CM, Hoogebeen RA, Schweizer D, Stecker KE, Roepman R, Howes SC, Akhmanova A. A network of interacting ciliary tip proteins with opposing activities imparts slow and processive microtubule growth. Nat Struct Mol Biol 2025:10.1038/s41594-025-01483-y. [PMID: 39856351 DOI: 10.1038/s41594-025-01483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
Cilia are motile or sensory organelles present on many eukaryotic cells. Their formation and function rely on axonemal microtubules, which exhibit very slow dynamics, but the underlying mechanisms are largely unexplored. Here we reconstituted in vitro the individual and collective activities of the ciliary tip module proteins CEP104, CSPP1, TOGARAM1, ARMC9 and CCDC66, which interact with each other and with microtubules and, when mutated in humans, cause ciliopathies such as Joubert syndrome. We show that CEP104, a protein with a tubulin-binding TOG domain, and its luminal partner CSPP1 inhibit microtubule growth and shortening. Another TOG-domain protein, TOGARAM1, overcomes growth inhibition imposed by CEP104 and CSPP1. CCDC66 and ARMC9 do not affect microtubule dynamics but act as scaffolds for their partners. Cryo-electron tomography demonstrated that, together, ciliary tip module members form plus-end-specific cork-like structures that reduce protofilament flaring. The combined effect of these proteins is very slow processive microtubule elongation, which recapitulates axonemal dynamics in cells.
Collapse
Affiliation(s)
- Harriet A J Saunders
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Cyntha M van den Berg
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Robin A Hoogebeen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Donna Schweizer
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Kelly E Stecker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stuart C Howes
- Structural Biochemistry, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Saju A, Chen PP, Weng TH, Tsai SY, Tanaka A, Tseng YT, Chang CC, Wang CH, Shimamoto Y, Hsia KC. HURP binding to the vinca domain of β-tubulin accounts for cancer drug resistance. Nat Commun 2024; 15:8844. [PMID: 39397030 PMCID: PMC11471760 DOI: 10.1038/s41467-024-53139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Vinca alkaloids, a class of tubulin-binding agent, are widely used in treating cancer, yet the emerging resistance compromises their efficacy. Hepatoma up-regulated protein (HURP), a microtubule-associated protein displaying heightened expression across various cancer types, reduces cancer cells' sensitivity to vinca-alkaloid drugs upon overexpression. However, the molecular basis behind this drug resistance remains unknown. Here we discover a tubulin-binding domain within HURP, and establish its role in regulating microtubule growth. Cryo-EM analysis reveals interactions between HURP's tubulin-binding domain and the vinca domain on β-tubulin -- the site targeted by vinca alkaloid drugs. Importantly, HURP competes directly with vinorelbine, a vinca alkaloid-based chemotherapeutic agent, countering microtubule growth defects caused by vinorelbine both in vitro and in vivo. Our findings elucidate a mechanism driving drug resistance in HURP-overexpressing cancer cells and emphasize HURP tubulin-binding domain's role in mitotic spindle assembly. This underscores its potential as a therapeutic target to improve cancer treatment.
Collapse
Affiliation(s)
- Athira Saju
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Cell Biology, Taiwan International Graduate Program and National Defense Medical Center, Taipei, Taiwan
| | - Po-Pang Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Biochemistry and Molecular biology, College of Life Sciences, National Yang-Ming Chiao-Tung University, Hsinchu, Taiwan
| | - Tzu-Han Weng
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Su-Yi Tsai
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Akihiro Tanaka
- Department of Chromosome Science, National Institute of Genetics, Shizuoka, Japan
| | - Yu-Ting Tseng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Chia Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Yuta Shimamoto
- Department of Chromosome Science, National Institute of Genetics, Shizuoka, Japan
| | - Kuo-Chiang Hsia
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
- Molecular and Cell Biology, Taiwan International Graduate Program and National Defense Medical Center, Taipei, Taiwan.
- Institute of Biochemistry and Molecular biology, College of Life Sciences, National Yang-Ming Chiao-Tung University, Hsinchu, Taiwan.
| |
Collapse
|
9
|
Laporte MH, Gambarotto D, Bertiaux É, Bournonville L, Louvel V, Nunes JM, Borgers S, Hamel V, Guichard P. Time-series reconstruction of the molecular architecture of human centriole assembly. Cell 2024; 187:2158-2174.e19. [PMID: 38604175 PMCID: PMC11060037 DOI: 10.1016/j.cell.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/21/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Centriole biogenesis, as in most organelle assemblies, involves the sequential recruitment of sub-structural elements that will support its function. To uncover this process, we correlated the spatial location of 24 centriolar proteins with structural features using expansion microscopy. A time-series reconstruction of protein distributions throughout human procentriole assembly unveiled the molecular architecture of the centriole biogenesis steps. We found that the process initiates with the formation of a naked cartwheel devoid of microtubules. Next, the bloom phase progresses with microtubule blade assembly, concomitantly with radial separation and rapid cartwheel growth. In the subsequent elongation phase, the tubulin backbone grows linearly with the recruitment of the A-C linker, followed by proteins of the inner scaffold (IS). By following six structural modules, we modeled 4D assembly of the human centriole. Collectively, this work provides a framework to investigate the spatial and temporal assembly of large macromolecules.
Collapse
Affiliation(s)
- Marine H Laporte
- University of Geneva, Department of Molecular and Cellular Biology, Faculty of Sciences, Geneva, Switzerland
| | - Davide Gambarotto
- University of Geneva, Department of Molecular and Cellular Biology, Faculty of Sciences, Geneva, Switzerland
| | - Éloïse Bertiaux
- University of Geneva, Department of Molecular and Cellular Biology, Faculty of Sciences, Geneva, Switzerland
| | - Lorène Bournonville
- University of Geneva, Department of Molecular and Cellular Biology, Faculty of Sciences, Geneva, Switzerland
| | - Vincent Louvel
- University of Geneva, Department of Molecular and Cellular Biology, Faculty of Sciences, Geneva, Switzerland
| | - José M Nunes
- University of Geneva, Department of Genetic and evolution, Faculty of Sciences, Geneva, Switzerland
| | - Susanne Borgers
- University of Geneva, Department of Molecular and Cellular Biology, Faculty of Sciences, Geneva, Switzerland
| | - Virginie Hamel
- University of Geneva, Department of Molecular and Cellular Biology, Faculty of Sciences, Geneva, Switzerland.
| | - Paul Guichard
- University of Geneva, Department of Molecular and Cellular Biology, Faculty of Sciences, Geneva, Switzerland.
| |
Collapse
|
10
|
Curinha A, Huang Z, Anglen T, Strong MA, Gliech CR, Jewett CE, Friskes A, Holland AJ. Centriole structural integrity defects are a crucial feature of Hydrolethalus Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583733. [PMID: 38496445 PMCID: PMC10942441 DOI: 10.1101/2024.03.06.583733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Hydrolethalus Syndrome (HLS) is a lethal, autosomal recessive ciliopathy caused by the mutation of the conserved centriole protein HYLS1. However, how HYLS1 facilitates the centriole-based templating of cilia is poorly understood. Here, we show that mice harboring the HYLS1 disease mutation die shortly after birth and exhibit developmental defects that recapitulate several manifestations of the human disease. These phenotypes arise from tissue-specific defects in cilia assembly and function caused by a loss of centriole integrity. We show that HYLS1 is recruited to the centriole by CEP120 and functions to recruit centriole inner scaffold proteins that stabilize the centriolar microtubule wall. The HLS mutation disrupts the interaction of HYLS1 with CEP120 leading to HYLS1 displacement and degeneration of the centriole distal end. We propose that tissue-specific defects in centriole integrity caused by the HYLS1 mutation prevent ciliogenesis and drive HLS phenotypes.
Collapse
Affiliation(s)
- Ana Curinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhaoyu Huang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taylor Anglen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Colin R Gliech
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cayla E Jewett
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anoek Friskes
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Rai D, Song Y, Hua S, Stecker K, Monster JL, Yin V, Stucchi R, Xu Y, Zhang Y, Chen F, Katrukha EA, Altelaar M, Heck AJR, Wieczorek M, Jiang K, Akhmanova A. CAMSAPs and nucleation-promoting factors control microtubule release from γ-TuRC. Nat Cell Biol 2024; 26:404-420. [PMID: 38424271 PMCID: PMC10940162 DOI: 10.1038/s41556-024-01366-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
γ-Tubulin ring complex (γ-TuRC) is the major microtubule-nucleating factor. After nucleation, microtubules can be released from γ-TuRC and stabilized by other proteins, such as CAMSAPs, but the biochemical cross-talk between minus-end regulation pathways is poorly understood. Here we reconstituted this process in vitro using purified components. We found that all CAMSAPs could bind to the minus ends of γ-TuRC-attached microtubules. CAMSAP2 and CAMSAP3, which decorate and stabilize growing minus ends but not the minus-end tracking protein CAMSAP1, induced microtubule release from γ-TuRC. CDK5RAP2, a γ-TuRC-interactor, and CLASP2, a regulator of microtubule growth, strongly stimulated γ-TuRC-dependent microtubule nucleation, but only CDK5RAP2 suppressed CAMSAP binding to γ-TuRC-anchored minus ends and their release. CDK5RAP2 also improved selectivity of γ-tubulin-containing complexes for 13- rather than 14-protofilament microtubules in microtubule-capping assays. Knockout and overexpression experiments in cells showed that CDK5RAP2 inhibits the formation of CAMSAP2-bound microtubules detached from the microtubule-organizing centre. We conclude that CAMSAPs can release newly nucleated microtubules from γ-TuRC, whereas nucleation-promoting factors can differentially regulate this process.
Collapse
Affiliation(s)
- Dipti Rai
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Yinlong Song
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Shasha Hua
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Kelly Stecker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Jooske L Monster
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Victor Yin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Riccardo Stucchi
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Yixin Xu
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, Zurich, Switzerland
| | - Yaqian Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Fangrui Chen
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Michal Wieczorek
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, Zurich, Switzerland
| | - Kai Jiang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
12
|
Campanacci V, Gigant B. The C-terminus of stathmin-like proteins governs the stability of their complexes with tubulin. Biochem Biophys Res Commun 2023; 682:244-249. [PMID: 37826947 DOI: 10.1016/j.bbrc.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Microtubule dynamics is modulated by many cellular factors including stathmin family proteins. Vertebrate stathmins sequester two αβ-tubulin heterodimers into a tight complex that cannot be incorporated in microtubules. Stathmins are regulated at the expression level during development and among tissues; they are also regulated by phosphorylation. Here, we study the dissociation kinetics of tubulin:stathmin assemblies in presence of different tubulin-binding proteins and identify a critical role of the C-terminus of the stathmin partner. Destabilizing this C-terminal region may represent an additional regulatory mechanism of the interaction with tubulin of stathmin proteins.
Collapse
Affiliation(s)
- Valérie Campanacci
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Benoît Gigant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
13
|
Jaiswal S, Sanghi S, Singh P. Separation-of-function MCPH-associated mutations in CPAP affect centriole number and length. J Cell Sci 2023; 136:jcs261297. [PMID: 37823337 DOI: 10.1242/jcs.261297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Centrioles are microtubule-based cylindrical ultrastructures characterized by their definite size and robustness. The molecular capping protein, CPAP (also known as CENPJ) engages its N-terminal region with the centriole microtubules to regulate their length. Nevertheless, the conserved C-terminal glycine-rich G-box of CPAP, which interacts with the centriole inner cartwheel protein STIL, is frequently mutated in primary microcephaly (MCPH) patients. Here, we show that two different MCPH-associated variants, E1235V and D1196N in the CPAP G-box, affect distinct functions at centrioles. The E1235V mutation reduces CPAP centriole recruitment and causes overly long centrioles. The D1196N mutation increases centriole numbers without affecting centriole localization. Both mutations prevent binding to STIL, which controls centriole duplication. Our work highlights the involvement of an alternative CEP152-dependent route for CPAP centriole localization. Molecular dynamics simulations suggest that E1235V leads to an increase in G-box flexibility, which could have implications on its molecular interactions. Collectively, we demonstrate that a CPAP region outside the microtubule-interacting domains influences centriole number and length, which translates to spindle defects and reduced cell viability. Our work provides new insights into the molecular causes of primary microcephaly.
Collapse
Affiliation(s)
- Sonal Jaiswal
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar 342037, Jodhpur, Rajasthan, India
| | - Srishti Sanghi
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar 342037, Jodhpur, Rajasthan, India
| | - Priyanka Singh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar 342037, Jodhpur, Rajasthan, India
| |
Collapse
|
14
|
Ryniawec JM, Hannaford MR, Zibrat ME, Fagerstrom CJ, Galletta BJ, Aguirre SE, Guice BA, Dean SM, Rusan NM, Rogers GC. Cep104 is a component of the centriole distal tip complex that regulates centriole growth and contributes to Drosophila spermiogenesis. Curr Biol 2023; 33:4202-4216.e9. [PMID: 37729913 PMCID: PMC10591971 DOI: 10.1016/j.cub.2023.08.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/21/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Proper centrosome number and function relies on the accurate assembly of centrioles, barrel-shaped structures that form the core duplicating elements of the organelle. The growth of centrioles is regulated in a cell cycle-dependent manner; while new daughter centrioles elongate during the S/G2/M phase, mature mother centrioles maintain their length throughout the cell cycle. Centriole length is controlled by the synchronized growth of the microtubules that ensheathe the centriole barrel. Although proteins exist that target the growing distal tips of centrioles, such as CP110 and Cep97, these proteins are generally thought to suppress centriolar microtubule growth, suggesting that distal tips may also contain unidentified counteracting factors that facilitate microtubule polymerization. Currently, a mechanistic understanding of how distal tip proteins balance microtubule growth and shrinkage to either promote daughter centriole elongation or maintain centriole length is lacking. Using a proximity-labeling screen in Drosophila cells, we identified Cep104 as a novel component of a group of evolutionarily conserved proteins that we collectively refer to as the distal tip complex (DTC). We found that Cep104 regulates centriole growth and promotes centriole elongation through its microtubule-binding TOG domain. Furthermore, analysis of Cep104 null flies revealed that Cep104 and Cep97 cooperate during spermiogenesis to align spermatids and coordinate individualization. Lastly, we mapped the complete DTC interactome and showed that Cep97 is the central scaffolding unit required to recruit DTC components to the distal tip of centrioles.
Collapse
Affiliation(s)
- John M Ryniawec
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Matthew R Hannaford
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Melanie E Zibrat
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Carey J Fagerstrom
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brian J Galletta
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sophia E Aguirre
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Bethany A Guice
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Spencer M Dean
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Nasser M Rusan
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
15
|
Steiert B, Faris R, Weber MM. In Search of a Mechanistic Link between Chlamydia trachomatis-Induced Cellular Pathophysiology and Oncogenesis. Infect Immun 2023; 91:e0044322. [PMID: 36695575 PMCID: PMC9933725 DOI: 10.1128/iai.00443-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Centrosome duplication and cell cycle progression are essential cellular processes that must be tightly controlled to ensure cellular integrity. Despite their complex regulatory mechanisms, microbial pathogens have evolved sophisticated strategies to co-opt these processes to promote infection. While misregulation of these processes can greatly benefit the pathogen, the consequences to the host cell can be devastating. During infection, the obligate intracellular pathogen Chlamydia trachomatis induces gross cellular abnormalities, including supernumerary centrosomes, multipolar spindles, and defects in cytokinesis. While these observations were made over 15 years ago, identification of the bacterial factors responsible has been elusive due to the genetic intractability of Chlamydia. Recent advances in techniques of genetic manipulation now allows for the direct linking of bacterial virulence factors to manipulation of centrosome duplication and cell cycle progression. In this review, we discuss the impact, both immediate and downstream, of C. trachomatis infection on the host cell cycle regulatory apparatus and centrosome replication. We highlight links between C. trachomatis infection and cervical and ovarian cancers and speculate whether perturbations of the cell cycle and centrosome are sufficient to initiate cellular transformation. We also explore the biological mechanisms employed by Inc proteins and other secreted effector proteins implicated in the perturbation of these host cell pathways. Future work is needed to better understand the nuances of each effector's mechanism and their collective impact on Chlamydia's ability to induce host cellular abnormalities.
Collapse
Affiliation(s)
- Brianna Steiert
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Robert Faris
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Mary M. Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
16
|
van den Berg CM, Volkov VA, Schnorrenberg S, Huang Z, Stecker KE, Grigoriev I, Gilani S, Frikstad KAM, Patzke S, Zimmermann T, Dogterom M, Akhmanova A. CSPP1 stabilizes growing microtubule ends and damaged lattices from the luminal side. J Cell Biol 2023; 222:213861. [PMID: 36752787 PMCID: PMC9948759 DOI: 10.1083/jcb.202208062] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023] Open
Abstract
Microtubules are dynamic cytoskeletal polymers, and their organization and stability are tightly regulated by numerous cellular factors. While regulatory proteins controlling the formation of interphase microtubule arrays and mitotic spindles have been extensively studied, the biochemical mechanisms responsible for generating stable microtubule cores of centrioles and cilia are poorly understood. Here, we used in vitro reconstitution assays to investigate microtubule-stabilizing properties of CSPP1, a centrosome and cilia-associated protein mutated in the neurodevelopmental ciliopathy Joubert syndrome. We found that CSPP1 preferentially binds to polymerizing microtubule ends that grow slowly or undergo growth perturbations and, in this way, resembles microtubule-stabilizing compounds such as taxanes. Fluorescence microscopy and cryo-electron tomography showed that CSPP1 is deposited in the microtubule lumen and inhibits microtubule growth and shortening through two separate domains. CSPP1 also specifically recognizes and stabilizes damaged microtubule lattices. These data help to explain how CSPP1 regulates the elongation and stability of ciliary axonemes and other microtubule-based structures.
Collapse
Affiliation(s)
- Cyntha M. van den Berg
- https://ror.org/04pp8hn57Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Vladimir A. Volkov
- https://ror.org/04pp8hn57Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands,https://ror.org/02e2c7k09Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | | | - Ziqiang Huang
- EMBL Imaging Centre, EMBL-Heidelberg, Heidelberg, Germany
| | - Kelly E. Stecker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands,Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Ilya Grigoriev
- https://ror.org/04pp8hn57Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Sania Gilani
- https://ror.org/00j9c2840Department of Radiation Biology, Institute of Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway,Department of Molecular Cell Biology, Institute of Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kari-Anne M. Frikstad
- https://ror.org/00j9c2840Department of Radiation Biology, Institute of Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sebastian Patzke
- https://ror.org/00j9c2840Department of Radiation Biology, Institute of Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Marileen Dogterom
- https://ror.org/02e2c7k09Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Anna Akhmanova
- https://ror.org/04pp8hn57Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands,Correspondence to Anna Akhmanova:
| |
Collapse
|
17
|
Computational Approaches to the Rational Design of Tubulin-Targeting Agents. Biomolecules 2023; 13:biom13020285. [PMID: 36830654 PMCID: PMC9952983 DOI: 10.3390/biom13020285] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Microtubules are highly dynamic polymers of α,β-tubulin dimers which play an essential role in numerous cellular processes such as cell proliferation and intracellular transport, making them an attractive target for cancer and neurodegeneration research. To date, a large number of known tubulin binders were derived from natural products, while only one was developed by rational structure-based drug design. Several of these tubulin binders show promising in vitro profiles while presenting unacceptable off-target effects when tested in patients. Therefore, there is a continuing demand for the discovery of safer and more efficient tubulin-targeting agents. Since tubulin structural data is readily available, the employment of computer-aided design techniques can be a key element to focus on the relevant chemical space and guide the design process. Due to the high diversity and quantity of structural data available, we compiled here a guide to the accessible tubulin-ligand structures. Furthermore, we review different ligand and structure-based methods recently used for the successful selection and design of new tubulin-targeting agents.
Collapse
|
18
|
Woglar A, Pierron M, Schneider FZ, Jha K, Busso C, Gönczy P. Molecular architecture of the C. elegans centriole. PLoS Biol 2022; 20:e3001784. [PMID: 36107993 PMCID: PMC9531800 DOI: 10.1371/journal.pbio.3001784] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/04/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
Uncovering organizing principles of organelle assembly is a fundamental pursuit in the life sciences. Caenorhabditis elegans was key in identifying evolutionary conserved components governing assembly of the centriole organelle. However, localizing these components with high precision has been hampered by the minute size of the worm centriole, thus impeding understanding of underlying assembly mechanisms. Here, we used Ultrastructure Expansion coupled with STimulated Emission Depletion (U-Ex-STED) microscopy, as well as electron microscopy (EM) and electron tomography (ET), to decipher the molecular architecture of the worm centriole. Achieving an effective lateral resolution of approximately 14 nm, we localize centriolar and PeriCentriolar Material (PCM) components in a comprehensive manner with utmost spatial precision. We found that all 12 components analysed exhibit a ring-like distribution with distinct diameters and often with a 9-fold radial symmetry. Moreover, we uncovered that the procentriole assembles at a location on the centriole margin where SPD-2 and ZYG-1 also accumulate. Moreover, SAS-6 and SAS-5 were found to be present in the nascent procentriole, with SAS-4 and microtubules recruited thereafter. We registered U-Ex-STED and EM data using the radial array of microtubules, thus allowing us to map each centriolar and PCM protein to a specific ultrastructural compartment. Importantly, we discovered that SAS-6 and SAS-4 exhibit a radial symmetry that is offset relative to microtubules, leading to a chiral centriole ensemble. Furthermore, we established that the centriole is surrounded by a region from which ribosomes are excluded and to which SAS-7 localizes. Overall, our work uncovers the molecular architecture of the C. elegans centriole in unprecedented detail and establishes a comprehensive framework for understanding mechanisms of organelle biogenesis and function.
Collapse
Affiliation(s)
- Alexander Woglar
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Marie Pierron
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Fabian Zacharias Schneider
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Keshav Jha
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Coralie Busso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
19
|
Aydogan MG, Hankins LE, Steinacker TL, Mofatteh M, Saurya S, Wainman A, Wong SS, Lu X, Zhou FY, Raff JW. Centriole distal-end proteins CP110 and Cep97 influence centriole cartwheel growth at the proximal end. J Cell Sci 2022; 135:jcs260015. [PMID: 35707992 PMCID: PMC9450887 DOI: 10.1242/jcs.260015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Centrioles are composed of a central cartwheel tethered to nine-fold symmetric microtubule (MT) blades. The centriole cartwheel and MTs are thought to grow from opposite ends of these organelles, so it is unclear how they coordinate their assembly. We previously showed that in Drosophila embryos an oscillation of Polo-like kinase 4 (Plk4) helps to initiate and time the growth of the cartwheel at the proximal end. Here, in the same model, we show that CP110 and Cep97 form a complex close to the distal-end of the centriole MTs whose levels rise and fall as the new centriole MTs grow, in a manner that appears to be entrained by the core cyclin-dependent kinase (Cdk)-Cyclin oscillator that drives the nuclear divisions in these embryos. These CP110 and Cep97 dynamics, however, do not appear to time the period of centriole MT growth directly. Instead, we find that changing the levels of CP110 and Cep97 appears to alter the Plk4 oscillation and the growth of the cartwheel at the proximal end. These findings reveal an unexpected potential crosstalk between factors normally concentrated at opposite ends of the growing centrioles, which might help to coordinate centriole growth. This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Mustafa G. Aydogan
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Laura E. Hankins
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | - Mohammad Mofatteh
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Siu-Shing Wong
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Felix Y. Zhou
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Jordan W. Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
20
|
Structural convergence for tubulin binding of CPAP and vinca domain microtubule inhibitors. Proc Natl Acad Sci U S A 2022; 119:e2120098119. [PMID: 35507869 PMCID: PMC9171608 DOI: 10.1073/pnas.2120098119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Microtubules are dynamic assemblies of αβ-tubulin that are involved in key cellular functions, including cell division and intracellular transport. Microtubule dynamics is inhibited by several families of small molecules, some of which are used in oncology. The extent to which these compounds target the binding sites of cellular partners of tubulin remains poorly characterized. We show here that a region of the CPAP protein binds to the so-called vinca domain of β-tubulin in a way very similar to that of peptide-like inhibitors produced by bacteria and fungi. Therefore, our work identifies a structural convergence for tubulin binding between inhibitors and a regulator of microtubule dynamics. Microtubule dynamics is regulated by various cellular proteins and perturbed by small-molecule compounds. To what extent the mechanism of the former resembles that of the latter is an open question. We report here structures of tubulin bound to the PN2-3 domain of CPAP, a protein controlling the length of the centrioles. We show that an α-helix of the PN2-3 N-terminal region binds and caps the longitudinal surface of the tubulin β subunit. Moreover, a PN2-3 N-terminal stretch lies in a β-tubulin site also targeted by fungal and bacterial peptide-like inhibitors of the vinca domain, sharing a very similar binding mode with these compounds. Therefore, our results identify several characteristic features of cellular partners that bind to this site and highlight a structural convergence of CPAP with small-molecule inhibitors of microtubule assembly.
Collapse
|
21
|
Vásquez-Limeta A, Lukasik K, Kong D, Sullenberger C, Luvsanjav D, Sahabandu N, Chari R, Loncarek J. CPAP insufficiency leads to incomplete centrioles that duplicate but fragment. J Cell Biol 2022; 221:213119. [PMID: 35404385 PMCID: PMC9007748 DOI: 10.1083/jcb.202108018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Centrioles are structures that assemble centrosomes. CPAP is critical for centrosome assembly, and its mutations are found in patients with diseases such as primary microcephaly. CPAP’s centrosomal localization, its dynamics, and the consequences of its insufficiency in human cells are poorly understood. Here we use human cells genetically engineered for fast degradation of CPAP, in combination with superresolution microscopy, to address these uncertainties. We show that three independent centrosomal CPAP populations are dynamically regulated during the cell cycle. We confirm that CPAP is critical for assembly of human centrioles, but not for recruitment of pericentriolar material on already assembled centrioles. Further, we reveal that CPAP insufficiency leads to centrioles with incomplete microtubule triplets that can convert to centrosomes, duplicate, and form mitotic spindle poles, but fragment owing to loss of cohesion between microtubule blades. These findings further our basic understanding of the role of CPAP in centrosome biogenesis and help understand how CPAP aberrations can lead to human diseases.
Collapse
Affiliation(s)
- Alejandra Vásquez-Limeta
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Kimberly Lukasik
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Dong Kong
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Catherine Sullenberger
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Delgermaa Luvsanjav
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Natalie Sahabandu
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| |
Collapse
|
22
|
Abstract
In this review, Phan et al. discuss the different models that have been proposed to explain how centrosome dysfunction impairs cortical development, and review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Last, they also extend their discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair Primary microcephaly is a brain growth disorder characterized by a severe reduction of brain size and thinning of the cerebral cortex. Many primary microcephaly mutations occur in genes that encode centrosome proteins, highlighting an important role for centrosomes in cortical development. Centrosomes are microtubule organizing centers that participate in several processes, including controlling polarity, catalyzing spindle assembly in mitosis, and building primary cilia. Understanding which of these processes are altered and how these disruptions contribute to microcephaly pathogenesis is a central unresolved question. In this review, we revisit the different models that have been proposed to explain how centrosome dysfunction impairs cortical development. We review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Finally, we also extend our discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair.
Collapse
|
23
|
Gaillard N, Sharma A, Abbaali I, Liu T, Shilliday F, Cook AD, Ehrhard V, Bangera M, Roberts AJ, Moores CA, Morrissette N, Steinmetz MO. Inhibiting parasite proliferation using a rationally designed anti-tubulin agent. EMBO Mol Med 2021; 13:e13818. [PMID: 34661376 PMCID: PMC8573600 DOI: 10.15252/emmm.202013818] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022] Open
Abstract
Infectious diseases caused by apicomplexan parasites remain a global public health threat. The presence of multiple ligand-binding sites in tubulin makes this protein an attractive target for anti-parasite drug discovery. However, despite remarkable successes as anti-cancer agents, the rational development of protozoan parasite-specific tubulin drugs has been hindered by a lack of structural and biochemical information on protozoan tubulins. Here, we present atomic structures for a protozoan tubulin and microtubule and delineate the architectures of apicomplexan tubulin drug-binding sites. Based on this information, we rationally designed the parasite-specific tubulin inhibitor parabulin and show that it inhibits growth of parasites while displaying no effects on human cells. Our work presents for the first time the rational design of a species-specific tubulin drug providing a framework to exploit structural differences between human and protozoa tubulin variants enabling the development of much-needed, novel parasite inhibitors.
Collapse
Affiliation(s)
- Natacha Gaillard
- Laboratory of Biomolecular ResearchDivision of Biology and ChemistryPaul Scherrer InstitutVilligenSwitzerland
| | - Ashwani Sharma
- Laboratory of Biomolecular ResearchDivision of Biology and ChemistryPaul Scherrer InstitutVilligenSwitzerland
| | - Izra Abbaali
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Tianyang Liu
- Institute of Structural and Molecular BiologyBirkbeck, University of LondonLondonUK
| | - Fiona Shilliday
- Institute of Structural and Molecular BiologyBirkbeck, University of LondonLondonUK
| | - Alexander D Cook
- Institute of Structural and Molecular BiologyBirkbeck, University of LondonLondonUK
| | - Valentin Ehrhard
- Laboratory of Biomolecular ResearchDivision of Biology and ChemistryPaul Scherrer InstitutVilligenSwitzerland
| | - Mamata Bangera
- Institute of Structural and Molecular BiologyBirkbeck, University of LondonLondonUK
| | - Anthony J Roberts
- Institute of Structural and Molecular BiologyBirkbeck, University of LondonLondonUK
| | - Carolyn A Moores
- Institute of Structural and Molecular BiologyBirkbeck, University of LondonLondonUK
| | - Naomi Morrissette
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Michel O Steinmetz
- Laboratory of Biomolecular ResearchDivision of Biology and ChemistryPaul Scherrer InstitutVilligenSwitzerland
- Biozentrum University of BaselBaselSwitzerland
| |
Collapse
|
24
|
Pereira SG, Dias Louro MA, Bettencourt-Dias M. Biophysical and Quantitative Principles of Centrosome Biogenesis and Structure. Annu Rev Cell Dev Biol 2021; 37:43-63. [PMID: 34314592 DOI: 10.1146/annurev-cellbio-120219-051400] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The centrosome is a main orchestrator of the animal cellular microtubule cytoskeleton. Dissecting its structure and assembly mechanisms has been a goal of cell biologists for over a century. In the last two decades, a good understanding of the molecular constituents of centrosomes has been achieved. Moreover, recent breakthroughs in electron and light microscopy techniques have enabled the inspection of the centrosome and the mapping of its components with unprecedented detail. However, we now need a profound and dynamic understanding of how these constituents interact in space and time. Here, we review the latest findings on the structural and molecular architecture of the centrosome and how its biogenesis is regulated, highlighting how biophysical techniques and principles as well as quantitative modeling are changing our understanding of this enigmatic cellular organelle. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
|
25
|
Gudi R, Palanisamy V, Vasu C. Centrosomal P4.1-associated protein (CPAP) positively regulates endocytic vesicular transport and lysosome targeting of EGFR. Sci Rep 2021; 11:12689. [PMID: 34135376 PMCID: PMC8209166 DOI: 10.1038/s41598-021-91818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/01/2021] [Indexed: 11/09/2022] Open
Abstract
Centrosomal P4.1-associated protein (CPAP) plays a critical role in restricting the centriole length in human cells. Here, we report a novel, positive regulatory influence for CPAP on endocytic vesicular transport (EVT) and lysosome targeting of internalized-cell surface receptor EGFR. We observed that higher CPAP levels cause an increase in the abundance of multi-vesicular body (MVB) and EGFR is detectable in CPAP-overexpression induced puncta. The surface and cellular levels of EGFR are higher under CPAP deficiency and lower under CPAP overexpression. While ligand-engagement induced internalization or routing of EGFR into early endosomes is not influenced by cellular levels of CPAP, we found that targeting of ligand-activated, internalized EGFR to lysosome is impacted by CPAP levels. Transport of ligand-bound EGFR from early endosome to late endosome/MVB and lysosome is diminished in CPAP-depleted cells. Moreover, CPAP depleted cells appear to show a diminished ability to form MVB structures upon EGFR activation. These observations suggest a positive regulatory effect of CPAP on EVT of ligand-bound EGFR-like cell surface receptors to MVB and lysosome. Overall, identification of a non-centriolar function of CPAP in endocytic trafficking provides new insights in understanding the non-canonical cellular functions of CPAP.
Collapse
Affiliation(s)
- Radhika Gudi
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Viswanathan Palanisamy
- Department of Biochemistry, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
26
|
Badarudeen B, Anand U, Mukhopadhyay S, Manna TK. Ubiquitin signaling in the control of centriole duplication. FEBS J 2021; 289:4830-4849. [PMID: 34115927 DOI: 10.1111/febs.16069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/22/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
The centrosome plays an essential role in maintaining genetic stability, ciliogenesis and cell polarisation. The core of the centrosome is made up of two centrioles that duplicate precisely once during every cell cycle to generate two centrosomes that are required for bipolar spindle assembly and chromosome segregation. Abundance of centriole proteins at optimal levels and their recruitment to the centrosome are tightly regulated in time and space in order to restrict aberrant duplication of centrioles, a phenomenon that is observed in many cancers. Recent advances have conclusively shown that dedicated ubiquitin ligase-dependent protein degradation machineries are involved in governing centriole duplication. These studies revealed intricate mechanistic insights into how the ubiquitin ligases target different centriole proteins. In certain cases, a specific ubiquitin ligase targets a number of substrate proteins that co-regulate centriole assembly, prompting the possibility that substrate-targeting occurs during formation of the sub-centriolar structures. There are also instances where a specific centriole duplication protein is targeted by several ubiquitin ligases at different stages of the cell cycle, suggesting synchronised actions. Recent evidence also indicated a direct association of E3 ubiquitin ligase with the centrioles, supporting the notion that substrate-targeting occurs in the organelle itself. In this review, we highlight these advances by underlining the mechanisms of how different ubiquitin ligase machineries control centriole duplication and discuss our views on their coordination.
Collapse
Affiliation(s)
- Binshad Badarudeen
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| | - Ushma Anand
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| | - Swarnendu Mukhopadhyay
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| |
Collapse
|
27
|
Mühlethaler T, Gioia D, Prota AE, Sharpe ME, Cavalli A, Steinmetz MO. Comprehensive Analysis of Binding Sites in Tubulin. Angew Chem Int Ed Engl 2021; 60:13331-13342. [PMID: 33951246 PMCID: PMC8251789 DOI: 10.1002/anie.202100273] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 01/01/2023]
Abstract
Tubulin plays essential roles in vital cellular activities and is the target of a wide range of proteins and ligands. Here, using a combined computational and crystallographic fragment screening approach, we addressed the question of how many binding sites exist in tubulin. We identified 27 distinct sites, of which 11 have not been described previously, and analyzed their relationship to known tubulin-protein and tubulin-ligand interactions. We further observed an intricate pocket communication network and identified 56 chemically diverse fragments that bound to 10 distinct tubulin sites. Our results offer a unique structural basis for the development of novel small molecules for use as tubulin modulators in basic research applications or as drugs. Furthermore, our method lays down a framework that may help to discover new pockets in other pharmaceutically important targets and characterize them in terms of chemical tractability and allosteric modulation.
Collapse
Affiliation(s)
- Tobias Mühlethaler
- Laboratory of Biomolecular ResearchDepartment of Biology and ChemistryPaul Scherrer Institut5232Villigen PSISwitzerland
| | - Dario Gioia
- Computational & Chemical BiologyIstituto Italiano di Tecnologiavia Morego, 3016163GenovaItaly
| | - Andrea E. Prota
- Laboratory of Biomolecular ResearchDepartment of Biology and ChemistryPaul Scherrer Institut5232Villigen PSISwitzerland
| | - May E. Sharpe
- Swiss Light SourcePaul Scherrer Institut5232Villigen PSISwitzerland
| | - Andrea Cavalli
- Computational & Chemical BiologyIstituto Italiano di Tecnologiavia Morego, 3016163GenovaItaly
- Department of Pharmacy and BiotechnologyAlma Mater StudiorumUniversity of Bolognavia Belmeloro 640126BolognaItaly
| | - Michel O. Steinmetz
- Laboratory of Biomolecular ResearchDepartment of Biology and ChemistryPaul Scherrer Institut5232Villigen PSISwitzerland
- University of BaselBiozentrum4056BaselSwitzerland
| |
Collapse
|
28
|
Zhao JZ, Ye Q, Wang L, Lee SC. Centrosome amplification in cancer and cancer-associated human diseases. Biochim Biophys Acta Rev Cancer 2021; 1876:188566. [PMID: 33992724 DOI: 10.1016/j.bbcan.2021.188566] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/07/2022]
Abstract
Accumulated evidence from genetically modified cell and animal models indicates that centrosome amplification (CA) can initiate tumorigenesis with metastatic potential and enhance cell invasion. Multiple human diseases are associated with CA and carcinogenesis as well as metastasis, including infection with oncogenic viruses, type 2 diabetes, toxicosis by environmental pollution and inflammatory disease. In this review, we summarize (1) the evidence for the roles of CA in tumorigenesis and tumor cell invasion; (2) the association between diseases and carcinogenesis as well as metastasis; (3) the current knowledge of CA in the diseases; and (4) the signaling pathways of CA. We then give our own thinking and discuss perspectives relevant to CA in carcinogenesis and cancer metastasis in human diseases. In conclusion, investigations in this area might not only identify CA as a biological link between these diseases and the development of cancer but also prove the causal role of CA in cancer and progression under pathophysiological conditions, potentially taking cancer research into a new era.
Collapse
Affiliation(s)
- Ji Zhong Zhao
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Qin Ye
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Lan Wang
- School of Life Sciences, Shanxi University, Taiyuan, Shanxi, PR China
| | - Shao Chin Lee
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China.
| |
Collapse
|
29
|
Mühlethaler T, Gioia D, Prota AE, Sharpe ME, Cavalli A, Steinmetz MO. Comprehensive Analysis of Binding Sites in Tubulin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tobias Mühlethaler
- Laboratory of Biomolecular Research Department of Biology and Chemistry Paul Scherrer Institut 5232 Villigen PSI Switzerland
| | - Dario Gioia
- Computational & Chemical Biology Istituto Italiano di Tecnologia via Morego, 30 16163 Genova Italy
| | - Andrea E. Prota
- Laboratory of Biomolecular Research Department of Biology and Chemistry Paul Scherrer Institut 5232 Villigen PSI Switzerland
| | - May E. Sharpe
- Swiss Light Source Paul Scherrer Institut 5232 Villigen PSI Switzerland
| | - Andrea Cavalli
- Computational & Chemical Biology Istituto Italiano di Tecnologia via Morego, 30 16163 Genova Italy
- Department of Pharmacy and Biotechnology Alma Mater Studiorum University of Bologna via Belmeloro 6 40126 Bologna Italy
| | - Michel O. Steinmetz
- Laboratory of Biomolecular Research Department of Biology and Chemistry Paul Scherrer Institut 5232 Villigen PSI Switzerland
- University of Basel Biozentrum 4056 Basel Switzerland
| |
Collapse
|
30
|
Ruehle MD, Stemm-Wolf AJ, Pearson CG. Sas4 links basal bodies to cell division via Hippo signaling. J Cell Biol 2021; 219:151794. [PMID: 32435796 PMCID: PMC7401811 DOI: 10.1083/jcb.201906183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 03/10/2020] [Accepted: 05/01/2020] [Indexed: 01/07/2023] Open
Abstract
Basal bodies (BBs) are macromolecular complexes required for the formation and cortical positioning of cilia. Both BB assembly and DNA replication are tightly coordinated with the cell cycle to ensure their accurate segregation and propagation to daughter cells, but the mechanisms ensuring coordination are unclear. The Tetrahymena Sas4/CPAP protein is enriched at assembling BBs, localizing to the core BB structure and to the base of BB-appendage microtubules and striated fiber. Sas4 is necessary for BB assembly and cortical microtubule organization, and Sas4 loss disrupts cell division furrow positioning and DNA segregation. The Hippo signaling pathway is known to regulate cell division furrow position, and Hippo molecules localize to BBs and BB-appendages. We find that Sas4 loss disrupts localization of the Hippo activator, Mob1, suggesting that Sas4 mediates Hippo activity by promoting scaffolds for Mob1 localization to the cell cortex. Thus, Sas4 links BBs with an ancient signaling pathway known to promote the accurate and symmetric segregation of the genome.
Collapse
Affiliation(s)
- Marisa D Ruehle
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Alexander J Stemm-Wolf
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
31
|
Centrosome dysfunction in human diseases. Semin Cell Dev Biol 2021; 110:113-122. [DOI: 10.1016/j.semcdb.2020.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
|
32
|
Persico V, Callaini G, Riparbelli MG. Sas-4 Colocalizes with the Ciliary Rootlets of the Drosophila Sensory Organs. J Dev Biol 2021; 9:jdb9010001. [PMID: 33466292 PMCID: PMC7839044 DOI: 10.3390/jdb9010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 11/24/2022] Open
Abstract
The Drosophila eye displays peculiar sensory organs of unknown function, the mechanosensory bristles, that are intercalated among the adjacent ommatidia. Like the other Drosophila sensory organs, the mechanosensory bristles consist of a bipolar neuron and two tandemly aligned centrioles, the distal of which nucleates the ciliary axoneme and represents the starting point of the ciliary rootlets. We report here that the centriole associated protein Sas-4 colocalizes with the short ciliary rootlets of the mechanosensory bristles and with the elongated rootlets of chordotonal and olfactory neurons. This finding suggests an unexpected cytoplasmic localization of Sas-4 protein and points to a new underscored role for this protein. Moreover, we observed that the sheath cells associated with the sensory neurons also display two tandemly aligned centrioles but lacks ciliary axonemes, suggesting that the dendrites of the sensory neurons are dispensable for the assembly of aligned centrioles and rootlets.
Collapse
Affiliation(s)
- Veronica Persico
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (V.P.); (M.G.R.)
| | - Giuliano Callaini
- Department of Medical Biotechnologies, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Correspondence:
| | - Maria Giovanna Riparbelli
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (V.P.); (M.G.R.)
| |
Collapse
|
33
|
Sharma A, Olieric N, Steinmetz MO. Centriole length control. Curr Opin Struct Biol 2020; 66:89-95. [PMID: 33220554 DOI: 10.1016/j.sbi.2020.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 10/22/2022]
Abstract
Centrioles are microtubule-based structures involved in cell division and ciliogenesis. Centriole formation is a highly regulated cellular process and aberrations in centriole structure, size or numbers have implications in multiple human pathologies. In this review, we propose that the proteins that control centriole length can be subdivided into two classes based on their antagonistic activities on centriolar microtubules, which we refer to as 'centriole elongation activators' (CEAs) and 'centriole elongation inhibitors' (CEIs). We discuss and illustrate the structure-function relationship of CEAs and CEIs as well as their interaction networks. Based on our current knowledge, we formulate some outstanding open questions in the field and present possible routes for future studies.
Collapse
Affiliation(s)
- Ashwani Sharma
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland.
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland.
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland; University of Basel, Biozentrum, CH-4056 Basel, Switzerland.
| |
Collapse
|
34
|
LeGuennec M, Klena N, Aeschlimann G, Hamel V, Guichard P. Overview of the centriole architecture. Curr Opin Struct Biol 2020; 66:58-65. [PMID: 33176264 DOI: 10.1016/j.sbi.2020.09.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
The centriole is a magnificent molecular assembly of several giga-daltons, one of the largest of the eukaryotic cell, and whose atomic structure remains unsolved to date. However, numerous electron microscopy, cryo-tomography, and super-resolution studies now make it possible to establish a global architectural view of it with its different sub-regions. These analyses broaden our understanding by providing additional informations to cell biology and structural biology approaches. In this review, we describe current knowledge on the overall organization of the centriole. We will highlight each sub-structural element, their differences between species and their putative protein composition. We will conclude on the current limitations that still take us away from a complete atomic view of the centriole architecture.
Collapse
Affiliation(s)
- Maeva LeGuennec
- University of Geneva, Department of Cell Biology, Sciences III, Geneva, Switzerland
| | - Nikolai Klena
- University of Geneva, Department of Cell Biology, Sciences III, Geneva, Switzerland
| | - Gabriel Aeschlimann
- Ribosome Studio Aeschlimann, Einsiedlerstrasse 6, Oberrieden, 8942, Switzerland
| | - Virginie Hamel
- University of Geneva, Department of Cell Biology, Sciences III, Geneva, Switzerland.
| | - Paul Guichard
- University of Geneva, Department of Cell Biology, Sciences III, Geneva, Switzerland.
| |
Collapse
|
35
|
Knossow M, Campanacci V, Khodja LA, Gigant B. The Mechanism of Tubulin Assembly into Microtubules: Insights from Structural Studies. iScience 2020; 23:101511. [PMID: 32920486 PMCID: PMC7491153 DOI: 10.1016/j.isci.2020.101511] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/03/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022] Open
Abstract
Microtubules are cytoskeletal components involved in pivotal eukaryotic functions such as cell division, ciliogenesis, and intracellular trafficking. They assemble from αβ-tubulin heterodimers and disassemble in a process called dynamic instability, which is driven by GTP hydrolysis. Structures of the microtubule and of soluble tubulin have been determined by cryo-EM and by X-ray crystallography, respectively. Altogether, these data define the mechanism of tubulin assembly-disassembly at atomic or near-atomic level. We review here the structural changes that occur during assembly, tubulin switching from a curved conformation in solution to a straight one in the microtubule core. We also present more subtle changes associated with GTP binding, leading to tubulin activation for assembly. Finally, we show how cryo-EM and X-ray crystallography are complementary methods to characterize the interaction of tubulin with proteins involved either in intracellular transport or in microtubule dynamics regulation.
Collapse
Affiliation(s)
- Marcel Knossow
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Valérie Campanacci
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Liza Ammar Khodja
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Benoît Gigant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
36
|
McLamarrah TA, Speed SK, Ryniawec JM, Buster DW, Fagerstrom CJ, Galletta BJ, Rusan NM, Rogers GC. A molecular mechanism for the procentriole recruitment of Ana2. J Cell Biol 2020; 219:132764. [PMID: 31841145 PMCID: PMC7041687 DOI: 10.1083/jcb.201905172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
McLamarrah et al. characterize an early step in centriole duplication. They show that Plk4 hyperphosphorylates Ana2, which increases the affinity of Ana2 for the G-box domain of Sas4, promoting Ana2’s accumulation at the procentriole and, consequently, daughter centriole formation. During centriole duplication, a preprocentriole forms at a single site on the mother centriole through a process that includes the hierarchical recruitment of a conserved set of proteins, including the Polo-like kinase 4 (Plk4), Ana2/STIL, and the cartwheel protein Sas6. Ana2/STIL is critical for procentriole assembly, and its recruitment is controlled by the kinase activity of Plk4, but how this works remains poorly understood. A structural motif called the G-box in the centriole outer wall protein Sas4 interacts with a short region in the N terminus of Ana2/STIL. Here, we show that binding of Ana2 to the Sas4 G-box enables hyperphosphorylation of the Ana2 N terminus by Plk4. Hyperphosphorylation increases the affinity of the Ana2–G-box interaction, and, consequently, promotes the accumulation of Ana2 at the procentriole to induce daughter centriole formation.
Collapse
Affiliation(s)
- Tiffany A McLamarrah
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Sarah K Speed
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - John M Ryniawec
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Daniel W Buster
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Carey J Fagerstrom
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Brian J Galletta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Nasser M Rusan
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| |
Collapse
|
37
|
Dobbelaere J, Schmidt Cernohorska M, Huranova M, Slade D, Dammermann A. Cep97 Is Required for Centriole Structural Integrity and Cilia Formation in Drosophila. Curr Biol 2020; 30:3045-3056.e7. [PMID: 32589908 DOI: 10.1016/j.cub.2020.05.078] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/25/2020] [Accepted: 05/26/2020] [Indexed: 01/19/2023]
Abstract
Centrioles are highly elaborate microtubule-based structures responsible for the formation of centrosomes and cilia. Despite considerable variation across species and tissues within any given tissue, their size is essentially constant [1, 2]. While the diameter of the centriole cylinder is set by the dimensions of the inner scaffolding structure of the cartwheel [3], how centriole length is set so precisely and stably maintained over many cell divisions is not well understood. Cep97 and CP110 are conserved proteins that localize to the distal end of centrioles and have been reported to limit centriole elongation in vertebrates [4, 5]. Here, we examine Cep97 function in Drosophila melanogaster. We show that Cep97 is essential for formation of full-length centrioles in multiple tissues of the fly. We further identify the microtubule deacetylase Sirt2 as a Cep97 interactor. Deletion of Sirt2 likewise affects centriole size. Interestingly, so does deletion of the acetylase Atat1, indicating that loss of stabilizing acetyl marks impairs centriole integrity. Cep97 and CP110 were originally identified as inhibitors of cilia formation in vertebrate cultured cells [6], and loss of CP110 is a widely used marker of basal body maturation. In contrast, in Drosophila, Cep97 appears to be only transiently removed from basal bodies and loss of Cep97 strongly impairs ciliogenesis. Collectively, our results support a model whereby Cep97 functions as part of a protective cap that acts together with the microtubule acetylation machinery to maintain centriole stability, essential for proper function in cilium biogenesis.
Collapse
Affiliation(s)
- Jeroen Dobbelaere
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, 1030 Vienna, Austria.
| | - Marketa Schmidt Cernohorska
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Martina Huranova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Dea Slade
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, 1030 Vienna, Austria
| | - Alexander Dammermann
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
38
|
Gartenmann L, Vicente CC, Wainman A, Novak ZA, Sieber B, Richens JH, Raff JW. Drosophila Sas-6, Ana2 and Sas-4 self-organise into macromolecular structures that can be used to probe centriole and centrosome assembly. J Cell Sci 2020; 133:jcs244574. [PMID: 32409564 PMCID: PMC7328145 DOI: 10.1242/jcs.244574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/24/2020] [Indexed: 01/02/2023] Open
Abstract
Centriole assembly requires a small number of conserved proteins. The precise pathway of centriole assembly has been difficult to study, as the lack of any one of the core assembly proteins [Plk4, Ana2 (the homologue of mammalian STIL), Sas-6, Sas-4 (mammalian CPAP) or Asl (mammalian Cep152)] leads to the absence of centrioles. Here, we use Sas-6 and Ana2 particles (SAPs) as a new model to probe the pathway of centriole and centrosome assembly. SAPs form in Drosophila eggs or embryos when Sas-6 and Ana2 are overexpressed. SAP assembly requires Sas-4, but not Plk4, whereas Asl helps to initiate SAP assembly but is not required for SAP growth. Although not centrioles, SAPs recruit and organise many centriole and centrosome components, nucleate microtubules, organise actin structures and compete with endogenous centrosomes to form mitotic spindle poles. SAPs require Asl to efficiently recruit pericentriolar material (PCM), but Spd-2 (the homologue of mammalian Cep192) can promote some PCM assembly independently of Asl. These observations provide new insights into the pathways of centriole and centrosome assembly.
Collapse
Affiliation(s)
- Lisa Gartenmann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Catarina C Vicente
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Zsofi A Novak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Boris Sieber
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Jennifer H Richens
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| |
Collapse
|
39
|
Sullenberger C, Vasquez-Limeta A, Kong D, Loncarek J. With Age Comes Maturity: Biochemical and Structural Transformation of a Human Centriole in the Making. Cells 2020; 9:cells9061429. [PMID: 32526902 PMCID: PMC7349492 DOI: 10.3390/cells9061429] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Centrioles are microtubule-based cellular structures present in most human cells that build centrosomes and cilia. Proliferating cells have only two centrosomes and this number is stringently maintained through the temporally and spatially controlled processes of centriole assembly and segregation. The assembly of new centrioles begins in early S phase and ends in the third G1 phase from their initiation. This lengthy process of centriole assembly from their initiation to their maturation is characterized by numerous structural and still poorly understood biochemical changes, which occur in synchrony with the progression of cells through three consecutive cell cycles. As a result, proliferating cells contain three structurally, biochemically, and functionally distinct types of centrioles: procentrioles, daughter centrioles, and mother centrioles. This age difference is critical for proper centrosome and cilia function. Here we discuss the centriole assembly process as it occurs in somatic cycling human cells with a focus on the structural, biochemical, and functional characteristics of centrioles of different ages.
Collapse
|
40
|
Hou Y, Wu Z, Zhang Y, Chen H, Hu J, Guo Y, Peng Y, Wei Q. Functional Analysis of Hydrolethalus Syndrome Protein HYLS1 in Ciliogenesis and Spermatogenesis in Drosophila. Front Cell Dev Biol 2020; 8:301. [PMID: 32509774 PMCID: PMC7253586 DOI: 10.3389/fcell.2020.00301] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/07/2020] [Indexed: 12/02/2022] Open
Abstract
Cilia and flagella are conserved subcellular organelles, which arise from centrioles and play critical roles in development and reproduction of eukaryotes. Dysfunction of cilia leads to life-threatening ciliopathies. HYLS1 is an evolutionarily conserved centriole protein, which is critical for ciliogenesis, and its mutation causes ciliopathy–hydrolethalus syndrome. However, the molecular function of HYLS1 remains elusive. Here, we investigated the function of HYLS1 in cilia formation using the Drosophila model. We demonstrated that Drosophila HYLS1 is a conserved centriole and basal body protein. Deletion of HYLS1 led to sensory cilia dysfunction and spermatogenesis abnormality. Importantly, we found that Drosophila HYLS1 is essential for giant centriole/basal body elongation in spermatocytes and is required for spermatocyte centriole to efficiently recruit pericentriolar material and for spermatids to assemble the proximal centriole-like structure (the precursor of the second centriole for zygote division). Hence, by taking advantage of the giant centriole/basal body of Drosophila spermatocyte, we uncover previously uncharacterized roles of HYLS1 in centriole elongation and assembly.
Collapse
Affiliation(s)
- Yanan Hou
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Zhimao Wu
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Zhang
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huicheng Chen
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Yi Guo
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Ying Peng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Institute of Medicine and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qing Wei
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
41
|
Marthiens V, Basto R. Centrosomes: The good and the bad for brain development. Biol Cell 2020; 112:153-172. [PMID: 32170757 DOI: 10.1111/boc.201900090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 12/15/2022]
Abstract
Centrosomes nucleate and organise the microtubule cytoskeleton in animal cells. These membraneless organelles are key structures for tissue organisation, polarity and growth. Centrosome dysfunction, defined as deviation in centrosome numbers and/or structural integrity, has major impact on brain size and functionality, as compared with other tissues of the organism. In this review, we discuss the contribution of centrosomes to brain growth during development. We discuss in particular the impact of centrosome dysfunction in Drosophila and mammalian neural stem cell division and fitness, which ultimately underlie brain growth defects.
Collapse
Affiliation(s)
- Véronique Marthiens
- Biology of Centrosomes and Genetic Instability Laboratory, Institut Curie, PSL Research University, CNRS, UMR144, Paris, 75005, France
| | - Renata Basto
- Biology of Centrosomes and Genetic Instability Laboratory, Institut Curie, PSL Research University, CNRS, UMR144, Paris, 75005, France
| |
Collapse
|
42
|
Rodríguez-García R, Volkov VA, Chen CY, Katrukha EA, Olieric N, Aher A, Grigoriev I, López MP, Steinmetz MO, Kapitein LC, Koenderink G, Dogterom M, Akhmanova A. Mechanisms of Motor-Independent Membrane Remodeling Driven by Dynamic Microtubules. Curr Biol 2020; 30:972-987.e12. [PMID: 32032506 PMCID: PMC7090928 DOI: 10.1016/j.cub.2020.01.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/09/2019] [Accepted: 01/10/2020] [Indexed: 12/26/2022]
Abstract
Microtubule-dependent organization of membranous organelles occurs through motor-based pulling and by coupling microtubule dynamics to membrane remodeling. For example, tubules of endoplasmic reticulum (ER) can be extended by kinesin- and dynein-mediated transport and through the association with the tips of dynamic microtubules. The binding between ER and growing microtubule plus ends requires End Binding (EB) proteins and the transmembrane protein STIM1, which form a tip-attachment complex (TAC), but it is unknown whether these proteins are sufficient for membrane remodeling. Furthermore, EBs and their partners undergo rapid turnover at microtubule ends, and it is unclear how highly transient protein-protein interactions can induce load-bearing processive motion. Here, we reconstituted membrane tubulation in a minimal system with giant unilamellar vesicles, dynamic microtubules, an EB protein, and a membrane-bound protein that can interact with EBs and microtubules. We showed that these components are sufficient to drive membrane remodeling by three mechanisms: membrane tubulation induced by growing microtubule ends, motor-independent membrane sliding along microtubule shafts, and membrane pulling by shrinking microtubules. Experiments and modeling demonstrated that the first two mechanisms can be explained by adhesion-driven biased membrane spreading on microtubules. Optical trapping revealed that growing and shrinking microtubule ends can exert forces of ∼0.5 and ∼5 pN, respectively, through attached proteins. Rapidly exchanging molecules that connect membranes to dynamic microtubules can thus bear a sufficient load to induce membrane deformation and motility. Furthermore, combining TAC components and a membrane-attached kinesin in the same in vitro assays demonstrated that they can cooperate in promoting membrane tubule extension.
Collapse
Affiliation(s)
- Ruddi Rodríguez-García
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | - Vladimir A Volkov
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629, the Netherlands
| | - Chiung-Yi Chen
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Amol Aher
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | - Ilya Grigoriev
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | | | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen 5232, Switzerland; University of Basel, Biozentrum, Klingelbergstrasse, Basel 4056, Switzerland
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | - Gijsje Koenderink
- Department of Living Matter, AMOLF, Science Park 104, Amsterdam 1098, the Netherlands
| | - Marileen Dogterom
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629, the Netherlands.
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands.
| |
Collapse
|
43
|
Galletta BJ, Ortega JM, Smith SL, Fagerstrom CJ, Fear JM, Mahadevaraju S, Oliver B, Rusan NM. Sperm Head-Tail Linkage Requires Restriction of Pericentriolar Material to the Proximal Centriole End. Dev Cell 2020; 53:86-101.e7. [PMID: 32169161 DOI: 10.1016/j.devcel.2020.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/22/2019] [Accepted: 02/07/2020] [Indexed: 01/27/2023]
Abstract
The centriole, or basal body, is the center of attachment between the sperm head and tail. While the distal end of the centriole templates the cilia, the proximal end associates with the nucleus. Using Drosophila, we identify a centriole-centric mechanism that ensures proper proximal end docking to the nucleus. This mechanism relies on the restriction of pericentrin-like protein (PLP) and the pericentriolar material (PCM) to the proximal end of the centriole. PLP is restricted proximally by limiting its mRNA and protein to the earliest stages of centriole elongation. Ectopic positioning of PLP to more distal portions of the centriole is sufficient to redistribute PCM and microtubules along the entire centriole length. This results in erroneous, lateral centriole docking to the nucleus, leading to spermatid decapitation as a result of a failure to form a stable head-tail linkage.
Collapse
Affiliation(s)
- Brian J Galletta
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jacob M Ortega
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samantha L Smith
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carey J Fagerstrom
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Justin M Fear
- Developmental Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sharvani Mahadevaraju
- Developmental Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian Oliver
- Developmental Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nasser M Rusan
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Mittl PR, Ernst P, Plückthun A. Chaperone-assisted structure elucidation with DARPins. Curr Opin Struct Biol 2020; 60:93-100. [PMID: 31918361 DOI: 10.1016/j.sbi.2019.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/16/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
Designed ankyrin repeat proteins (DARPins) are artificial binding proteins that have found many uses in therapy, diagnostics and biochemical research. They substantially extend the scope of antibody-derived binders. Their high affinity and specificity, rigidity, extended paratope, and facile bacterial production make them attractive for structural biology. Complexes with simple DARPins have been crystallized for a long time, but particularly the rigid helix fusion strategy has opened new opportunities. Rigid DARPin fusions expand crystallization space, enable recruitment of targets in a host lattice and reduce the size limit for cryo-EM. Besides applications in structural biology, rigid DARPin fusions also serve as molecular probes in cells to investigate spatial restraints in targets.
Collapse
Affiliation(s)
- Peer Re Mittl
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Patrick Ernst
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
45
|
La Sala G, Olieric N, Sharma A, Viti F, de Asis Balaguer Perez F, Huang L, Tonra JR, Lloyd GK, Decherchi S, Díaz JF, Steinmetz MO, Cavalli A. Structure, Thermodynamics, and Kinetics of Plinabulin Binding to Two Tubulin Isotypes. Chem 2019. [DOI: 10.1016/j.chempr.2019.08.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
46
|
Riparbelli MG, Persico V, Callaini G. A transient microtubule-based structure uncovers a new intrinsic asymmetry between the mother centrioles in the early Drosophila spermatocytes. Cytoskeleton (Hoboken) 2019; 75:472-480. [PMID: 30381895 DOI: 10.1002/cm.21503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/27/2018] [Accepted: 10/25/2018] [Indexed: 12/23/2022]
Abstract
Parent centrioles are characterized in most organisms by individual morphological traits and have distinct asymmetries that provide different functional properties. By contrast, mother and daughter centrioles are morphologically undistinguishable during Drosophila male gametogenesis. Here we report the presence of previously unrecognized microtubule-based structures that extend into the peripheral cytoplasm of the Drosophila polar spermatocytes at the onset of the first meiosis and are positive for the typical centriolar protein Sas-4 and for the kinesin-like protein Klp10A. These structures have a short lifespan and are no longer found in early apolar spermatocytes. Remarkably, each polar spermatocyte holds only one microtubule-based structure that is associated with one of the sister centriole pairs and specifically with the mother centriole. These findings reveal an inherent asymmetry between the parent centrioles at the onset of male meiosis and also uncover unexpected functional properties between the mother centrioles of the same cells.
Collapse
|
47
|
Fréal A, Rai D, Tas RP, Pan X, Katrukha EA, van de Willige D, Stucchi R, Aher A, Yang C, Altelaar AFM, Vocking K, Post JA, Harterink M, Kapitein LC, Akhmanova A, Hoogenraad CC. Feedback-Driven Assembly of the Axon Initial Segment. Neuron 2019; 104:305-321.e8. [PMID: 31474508 PMCID: PMC6839619 DOI: 10.1016/j.neuron.2019.07.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/14/2019] [Accepted: 07/22/2019] [Indexed: 11/01/2022]
Abstract
The axon initial segment (AIS) is a unique neuronal compartment that plays a crucial role in the generation of action potential and neuronal polarity. The assembly of the AIS requires membrane, scaffolding, and cytoskeletal proteins, including Ankyrin-G and TRIM46. How these components cooperate in AIS formation is currently poorly understood. Here, we show that Ankyrin-G acts as a scaffold interacting with End-Binding (EB) proteins and membrane proteins such as Neurofascin-186 to recruit TRIM46-positive microtubules to the plasma membrane. Using in vitro reconstitution and cellular assays, we demonstrate that TRIM46 forms parallel microtubule bundles and stabilizes them by acting as a rescue factor. TRIM46-labeled microtubules drive retrograde transport of Neurofascin-186 to the proximal axon, where Ankyrin-G prevents its endocytosis, resulting in stable accumulation of Neurofascin-186 at the AIS. Neurofascin-186 enrichment in turn reinforces membrane anchoring of Ankyrin-G and subsequent recruitment of TRIM46-decorated microtubules. Our study reveals feedback-based mechanisms driving AIS assembly.
Collapse
Affiliation(s)
- Amélie Fréal
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Department of Axonal Signaling, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Dipti Rai
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Roderick P Tas
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Xingxiu Pan
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Dieudonnée van de Willige
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Riccardo Stucchi
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Amol Aher
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Chao Yang
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - A F Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Karin Vocking
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Jan Andries Post
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Martin Harterink
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
48
|
Moyer TC, Holland AJ. PLK4 promotes centriole duplication by phosphorylating STIL to link the procentriole cartwheel to the microtubule wall. eLife 2019; 8:46054. [PMID: 31115335 PMCID: PMC6570480 DOI: 10.7554/elife.46054] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Centrioles play critical roles in organizing the assembly of the mitotic spindle and templating the formation of primary cilia. Centriole duplication occurs once per cell cycle and is regulated by Polo-like kinase 4 (PLK4). Although significant progress has been made in understanding centriole composition, we have limited knowledge of how PLK4 activity controls specific steps in centriole formation. Here, we show that PLK4 phosphorylates its centriole substrate STIL on a conserved site, S428, to promote STIL binding to CPAP. This phospho-dependent binding interaction is conserved in Drosophila and facilitates the stable incorporation of both STIL and CPAP into the centriole. We propose that procentriole assembly requires PLK4 to phosphorylate STIL in two different regions: phosphorylation of residues in the STAN motif allow STIL to bind SAS6 and initiate cartwheel assembly, while phosphorylation of S428 promotes the binding of STIL to CPAP, linking the cartwheel to microtubules of the centriole wall. A cell’s DNA is the chemical instruction manual for everything it does. Each cell in our bodies contains over two meters of DNA, which is divided into 46 packages of information called chromosomes. When the body needs to make more cells, for example during growth or repair, existing cells divide in two in order to replicate themselves. This means that they also need to copy all of their DNA and then deliver identical sets of chromosomes to each new cell. Animal cells use structures called centrioles to help them divide their sets of chromosomes accurately. When cells are about to divide, they make a new set of centrioles by assembling a variety of proteins. This assembly process must be carefully controlled; if too many or too few centrioles are built, cell division errors can occur that lead to the generation of new cells with abnormal numbers of chromosomes. The enzyme PLK4 helps to assemble centrioles, but its exact role in the construction process has remained largely unknown. For example, how it might modify different components of the centriole, and why this matters, is poorly understood. By performing cell biological and biochemical experiments using human cells, Moyer and Holland show that PLK4 interacts with a protein called STIL that is found in the central part of the centriole. The modification of STIL at a specific location by PLK4 was needed to link it to another protein in the outer wall of the centriole, and was also necessary for the cells to build new centrioles. Cells in which PLK4 was unable to modify STIL had too few centrioles when they were beginning to divide. Testing the activity of PLK4 in fruit flies revealed that it plays a similar role as in human cells. This suggests that the modification of STIL by PLK4 is important for normal cell division across different species. The results presented by Moyer and Holland help us to understand how dividing cells build the complex machinery that enables them to pass on their genetic material accurately. Future work that builds on these findings could provide insight into human diseases, such as brain development disorders and cancer, where centrioles are either defective or present in the wrong number.
Collapse
Affiliation(s)
- Tyler Chistopher Moyer
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Andrew Jon Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
49
|
O'Neill RS, Schoborg TA, Rusan NM. Same but different: pleiotropy in centrosome-related microcephaly. Mol Biol Cell 2019; 29:241-246. [PMID: 29382806 PMCID: PMC5996963 DOI: 10.1091/mbc.e17-03-0192] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/22/2017] [Accepted: 11/30/2017] [Indexed: 01/19/2023] Open
Abstract
An intimate link between centrosome function and neurogenesis is revealed by the identification of many genes with centrosome-associated functions that are mutated in microcephaly disorders. Consistent with the major role of the centrosome in mitosis, mutations in these centrosome-related microcephaly (CRM) genes are thought to affect neurogenesis by depleting the pool of neural progenitor cells, primarily through apoptosis as a consequence of mitotic failure or premature differentiation as a consequence of cell cycle delay and randomization of spindle orientation. However, as suggested by the wide range of microcephaly phenotypes and the multifunctional nature of many CRM proteins, this picture of CRM gene function is incomplete. Here, we explore several examples of CRM genes pointing to additional functions that contribute to microcephaly, including regulation of cell cycle signaling, actin cytoskeleton, and Hippo pathway proteins, as well as functions in postmitotic neurons and glia. As these examples are likely just the tip of the iceberg, further exploration of the roles of microcephaly-related genes are certain to reveal additional unforeseen functions important for neurodevelopment.
Collapse
Affiliation(s)
- Ryan S O'Neill
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Todd A Schoborg
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
50
|
Abstract
The centriole organelle consists of microtubules (MTs) that exhibit a striking 9-fold radial symmetry. Centrioles play fundamental roles across eukaryotes, notably in cell signaling, motility and division. In this Cell Science at a Glance article and accompanying poster, we cover the cellular life cycle of this organelle - from assembly to disappearance - focusing on human centrioles. The journey begins at the end of mitosis when centriole pairs disengage and the newly formed centrioles mature to begin a new duplication cycle. Selection of a single site of procentriole emergence through focusing of polo-like kinase 4 (PLK4) and the resulting assembly of spindle assembly abnormal protein 6 (SAS-6) into a cartwheel element are evoked next. Subsequently, we cover the recruitment of peripheral components that include the pinhead structure, MTs and the MT-connecting A-C linker. The function of centrioles in recruiting pericentriolar material (PCM) and in forming the template of the axoneme are then introduced, followed by a mention of circumstances in which centrioles form de novo or are eliminated.
Collapse
Affiliation(s)
- Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Georgios N Hatzopoulos
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|