1
|
Bock F, Dong X, Li S, Viquez OM, Sha E, Tantengco M, Hennen EM, Plosa E, Ramezani A, Brown KL, Whang YM, Terker AS, Arroyo JP, Harrison DG, Fogo A, Brakebusch CH, Pozzi A, Zent R. Rac1 promotes kidney collecting duct repair by mechanically coupling cell morphology to mitotic entry. SCIENCE ADVANCES 2024; 10:eadi7840. [PMID: 38324689 PMCID: PMC10849615 DOI: 10.1126/sciadv.adi7840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
Prolonged obstruction of the ureter, which leads to injury of the kidney collecting ducts, results in permanent structural damage, while early reversal allows for repair. Cell structure is defined by the actin cytoskeleton, which is dynamically organized by small Rho guanosine triphosphatases (GTPases). In this study, we identified the Rho GTPase, Rac1, as a driver of postobstructive kidney collecting duct repair. After the relief of ureteric obstruction, Rac1 promoted actin cytoskeletal reconstitution, which was required to maintain normal mitotic morphology allowing for successful cell division. Mechanistically, Rac1 restricted excessive actomyosin activity that stabilized the negative mitotic entry kinase Wee1. This mechanism ensured mechanical G2-M checkpoint stability and prevented premature mitotic entry. The repair defects following injury could be rescued by direct myosin inhibition. Thus, Rac1-dependent control of the actin cytoskeleton integrates with the cell cycle to mediate kidney tubular repair by preventing dysmorphic cells from entering cell division.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xinyu Dong
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shensen Li
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Olga M. Viquez
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric Sha
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew Tantengco
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth M. Hennen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Erin Plosa
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alireza Ramezani
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | - Kyle L. Brown
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Young Mi Whang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew S. Terker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Juan Pablo Arroyo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Agnes Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cord H. Brakebusch
- Biotech Research Center, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Physiology and Molecular Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
2
|
Tian L, Guo S, Zhao Z, Chen Y, Wang C, Li Q, Li Y. miR-30a-3p Regulates Autophagy in the Involution of Mice Mammary Glands. Int J Mol Sci 2023; 24:14352. [PMID: 37762652 PMCID: PMC10531886 DOI: 10.3390/ijms241814352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
The mammary gland undergoes intensive remodeling during the lactation cycle, and the involution process of mammary gland contains extensive epithelial cells involved in the process of autophagy. Our studies of mice mammary glands suggest that miR-30a-3p expression was low during involution compared with its high expression in the mammary glands of lactating mice. Then, we revealed that miR-30a-3p negatively regulated autophagy by autophagy related 12 (Atg12) in mouse mammary gland epithelial cells (MMECs). Restoring ATG12, knocking down autophagy related 5 (Atg5), starvation, and Rapamycin were used to further confirm this conclusion. Overexpression of miR-30a-3p inhibited autophagy and altered mammary structure in the involution of the mammary glands of mice, which was indicative of alteration in mammary remodeling. Taken together, these results elucidated the molecular mechanisms of miR-30a-3p as a key induction mediator of autophagy by targeting Atg12 within the transition period between lactation and involution in mammary glands.
Collapse
Affiliation(s)
- Lei Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (L.T.); (S.G.); (Z.Z.); (Y.C.)
| | - Shancheng Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (L.T.); (S.G.); (Z.Z.); (Y.C.)
| | - Zhiye Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (L.T.); (S.G.); (Z.Z.); (Y.C.)
| | - Yuxu Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (L.T.); (S.G.); (Z.Z.); (Y.C.)
| | - Chunmei Wang
- Key Laboratory of Dairy Science of Education Ministry, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China;
| | - Qingzhang Li
- Key Laboratory of Dairy Science of Education Ministry, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China;
| | - Ye Li
- School of Medicine, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
3
|
Stewart KS, Gonzales KAU, Yuan S, Tierney MT, Bonny AR, Yang Y, Infarinato NR, Cowley CJ, Levorse JM, Pasolli HA, Ghosh S, Rothlin CV, Fuchs E. Stem cells tightly regulate dead cell clearance to maintain tissue fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541773. [PMID: 37293114 PMCID: PMC10245816 DOI: 10.1101/2023.05.22.541773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Macrophages and dendritic cells have long been appreciated for their ability to migrate to and engulf dying cells and debris, including some of the billions of cells that are naturally eliminated from our body daily. However, a substantial number of these dying cells are cleared by 'non-professional phagocytes', local epithelial cells that are critical to organismal fitness. How non-professional phagocytes sense and digest nearby apoptotic corpses while still performing their normal tissue functions is unclear. Here, we explore the molecular mechanisms underlying their multifunctionality. Exploiting the cyclical bouts of tissue regeneration and degeneration during the hair cycle, we show that stem cells can transiently become non-professional phagocytes when confronted with dying cells. Adoption of this phagocytic state requires both local lipids produced by apoptotic corpses to activate RXRα, and tissue-specific retinoids for RARγ activation. This dual factor dependency enables tight regulation of the genes requisite to activate phagocytic apoptotic clearance. The tunable phagocytic program we describe here offers an effective mechanism to offset phagocytic duties against the primary stem cell function of replenishing differentiated cells to preserve tissue integrity during homeostasis. Our findings have broad implications for other non-motile stem or progenitor cells which experience cell death in an immune-privileged niche.
Collapse
Affiliation(s)
- Katherine S Stewart
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Kevin AU Gonzales
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Shaopeng Yuan
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Matthew T Tierney
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Alain R Bonny
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Yihao Yang
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Nicole R Infarinato
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Christopher J Cowley
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - John M Levorse
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Hilda Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Sourav Ghosh
- Departments of Neurology and Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Carla V Rothlin
- Departments of Immunobiology and Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| |
Collapse
|
4
|
Fur removal promotes an earlier expression of involution-related genes in mammary gland of lactating mice. J Comp Physiol B 2023; 193:171-192. [PMID: 36650338 PMCID: PMC9992052 DOI: 10.1007/s00360-023-01474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Peak lactation occurs when milk production is at its highest. The factors limiting peak lactation performance have been subject of intense debate. Milk production at peak lactation appears limited by the capacity of lactating females to dissipate body heat generated as a by-product of processing food and producing milk. As a result, manipulations that enhance capacity to dissipate body heat (such as fur removal) increase peak milk production. We investigated the potential correlates of shaving-induced increases in peak milk production in laboratory mice. By transcriptomic profiling of the mammary gland, we searched for the mechanisms underlying experimentally increased milk production and its consequences for mother-young conflict over weaning, manifested by advanced or delayed involution of mammary gland. We demonstrated that shaving-induced increases in milk production were paradoxically linked to reduced expression of some milk synthesis-related genes. Moreover, the mammary glands of shaved mice had a gene expression profile indicative of earlier involution relative to unshaved mice. Once provided with enhanced capacity to dissipate body heat, shaved mice were likely to rear their young to independence faster than unshaved mothers.
Collapse
|
5
|
Chen F, Gurler SB, Novo D, Selli C, Alferez DG, Eroglu S, Pavlou K, Zhang J, Sims AH, Humphreys NE, Adamson A, Campbell A, Sansom OJ, Tournier C, Clarke RB, Brennan K, Streuli CH, Ucar A. RAC1B function is essential for breast cancer stem cell maintenance and chemoresistance of breast tumor cells. Oncogene 2023; 42:679-692. [PMID: 36599922 PMCID: PMC9957727 DOI: 10.1038/s41388-022-02574-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
Breast cancer stem cells (BCSC) are presumed to be responsible for treatment resistance, tumor recurrence and metastasis of breast tumors. However, development of BCSC-targeting therapies has been held back by their heterogeneity and the lack of BCSC-selective molecular targets. Here, we demonstrate that RAC1B, the only known alternatively spliced variant of the small GTPase RAC1, is expressed in a subset of BCSCs in vivo and its function is required for the maintenance of BCSCs and their chemoresistance to doxorubicin. In human breast cancer cell line MCF7, RAC1B is required for BCSC plasticity and chemoresistance to doxorubicin in vitro and for tumor-initiating abilities in vivo. Unlike Rac1, Rac1b function is dispensable for normal mammary gland development and mammary epithelial stem cell (MaSC) activity. In contrast, loss of Rac1b function in a mouse model of breast cancer hampers the BCSC activity and increases their chemosensitivity to doxorubicin treatment. Collectively, our data suggest that RAC1B is a clinically relevant molecular target for the development of BCSC-targeting therapies that may improve the effectiveness of doxorubicin-mediated chemotherapy.
Collapse
Affiliation(s)
- Fuhui Chen
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sevim B Gurler
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - David Novo
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Cigdem Selli
- Applied Bioinformatics of Cancer, Institute of Genetics and Cancer, University of Edinburgh Cancer Research Centre, Edinburgh, UK
| | - Denis G Alferez
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Secil Eroglu
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kyriaki Pavlou
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jingwei Zhang
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrew H Sims
- Applied Bioinformatics of Cancer, Institute of Genetics and Cancer, University of Edinburgh Cancer Research Centre, Edinburgh, UK
| | - Neil E Humphreys
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Antony Adamson
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Cathy Tournier
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert B Clarke
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Keith Brennan
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Charles H Streuli
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ahmet Ucar
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Mironov A, Fisher M, Narayanan P, Elsayed R, Karabulutoglu M, Akhtar N. Rac1 controls cell turnover and reversibility of the involution process in postpartum mammary glands. PLoS Biol 2023; 21:e3001583. [PMID: 36656812 PMCID: PMC9851507 DOI: 10.1371/journal.pbio.3001583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/11/2022] [Indexed: 01/20/2023] Open
Abstract
Cell turnover in adult tissues is essential for maintaining tissue homeostasis over a life span and for inducing the morphological changes associated with the reproductive cycle. However, the underlying mechanisms that coordinate the balance of cell death and proliferation remain unsolved. Using the mammary gland, we have discovered that Rac1 acts as a nexus to control cell turnover. Postlactational tissue regression is characterised by the death of milk secreting alveoli, but the process is reversible within the first 48 h if feeding recommences. In mice lacking epithelial Rac1, alveolar regression was delayed. This defect did not result from failed cell death but rather increased cell turnover. Fitter progenitor cells inappropriately divided, regenerating the alveoli, but cell death also concomitantly accelerated. We discovered that progenitor cell hyperproliferation was linked to nonautonomous effects of Rac1 deletion on the macrophageal niche with heightened inflammation. Moreover, loss of Rac1 impaired cell death with autophagy but switched the cell death route to apoptosis. Finally, mammary gland reversibility failed in the absence of Rac1 as the alveoli failed to recommence lactation upon resuckling.
Collapse
Affiliation(s)
- Aleksandr Mironov
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Matthew Fisher
- The Bateson Centre and Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Priya Narayanan
- The Bateson Centre and Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Randa Elsayed
- The Bateson Centre and Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Melis Karabulutoglu
- The Bateson Centre and Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Nasreen Akhtar
- The Bateson Centre and Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Pan S, Guo Y, Yu W, Hong F, Qiao X, Zhang J, Xu P, Zhai Y. Environmental chemical TCPOBOP disrupts milk lipid homeostasis during pregnancy and lactation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114463. [PMID: 38321682 DOI: 10.1016/j.ecoenv.2022.114463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 02/08/2024]
Abstract
Humans are exposed to different kinds of environmental contaminants or drugs throughout their lifetimes. The widespread presence of these compounds has raised concerns about the consequent adverse effects on lactating women. The constitutive androstane receptor (CAR, Nr1i3) is known as a xenobiotic sensor for environmental pollution or drugs. In this study, the model environmental chemical 1, 4-bis [2-(3, 5-dichloropyridyloxy)] benzene, TCPOBOP (TC), which is a highly specific agonist of CAR, was used to investigate the effects of exogenous exposure on lactation function and offspring health in mice. The results revealed that TC exposure decreased the proliferation of mammary epithelial cells during pregnancy. This deficiency further compromised lobular-alveolar structures, resulting in alveolar cell apoptosis, as well as premature stoppage of the lactation cycle and aberrant lactation. Furthermore, TC exposure significantly altered the size and number of milk lipid droplets, suggesting that TC exposure inhibits milk lipid synthesis. Additionally, TC exposure interfered with the milk lipid metabolism network, resulting in the inability of TC-exposed mice to efficiently secrete nutrients and feed their offspring. These findings demonstrated that restricted synthesis and secretion of milk lipids would indirectly block mammary gland form and function, which explained the possible reasons for lactation failure and retarded offspring growth.
Collapse
Affiliation(s)
- Shijia Pan
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yuan Guo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Wen Yu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Fan Hong
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Xiaoxiao Qiao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Jia Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Pengfei Xu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
8
|
Sheng YR, Hu WT, Shen HH, Wei CY, Liu YK, Ma XQ, Li MQ, Zhu XY. An imbalance of the IL-33/ST2-AXL-efferocytosis axis induces pregnancy loss through metabolic reprogramming of decidual macrophages. Cell Mol Life Sci 2022; 79:173. [PMID: 35244789 PMCID: PMC11073329 DOI: 10.1007/s00018-022-04197-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/04/2022] [Accepted: 02/06/2022] [Indexed: 02/07/2023]
Abstract
During embryo implantation, apoptosis is inevitable. These apoptotic cells (ACs) are removed by efferocytosis, in which macrophages are filled with a metabolite load nearly equal to the phagocyte itself. A timely question pertains to the relationship between efferocytosis-related metabolism and the immune behavior of decidual macrophages (dMΦs) and its effect on pregnancy outcome. Here, we report positive feedback of IL-33/ST2-AXL-efferocytosis leading to pregnancy failure through metabolic reprogramming of dMΦs. We compared the serum levels of IL-33 and sST2, along with IL-33 and ST2, efferocytosis and metabolism of dMΦs, from patients with normal pregnancies and unexplained recurrent pregnancy loss (RPL). We revealed disruption of the IL-33/ST2 axis, increased apoptotic cells and elevated efferocytosis of dMΦs from patients with RPL. The dMΦs that engulfed many apoptotic cells secreted more sST2 and less TGF-β, which polarized dMΦs toward the M1 phenotype. Moreover, the elevated sST2 biased the efferocytosis-related metabolism of RPL dMΦs toward oxidative phosphorylation and exacerbated the disruption of the IL-33/ST2 signaling pathway. Metabolic disorders also lead to dysfunction of efferocytosis, resulting in more uncleared apoptotic cells and secondary necrosis. We also screened the efferocytotic molecule AXL regulated by IL-33/ST2. This positive feedback axis of IL-33/ST2-AXL-efferocytosis led to pregnancy failure. IL-33 knockout mice demonstrated poor pregnancy outcomes, and exogenous supplementation with mouse IL-33 reduced the embryo losses. These findings highlight a new etiological mechanism whereby dMΦs leverage immunometabolism for homeostasis of the microenvironment at the maternal-fetal interface.
Collapse
Affiliation(s)
- Yan-Ran Sheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080, China
| | - Wen-Ting Hu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080, China
| | - Hui-Hui Shen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080, China
| | - Chun-Yan Wei
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080, China
| | - Yu-Kai Liu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080, China
| | - Xiao-Qian Ma
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080, China.
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China.
| | - Xiao-Yong Zhu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080, China.
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China.
| |
Collapse
|
9
|
Vallone SA, Solá MG, Schere-Levy C, Meiss RP, Hermida GN, Chodosh LA, Kordon EC, Hynes NE, Gattelli A. Aberrant RET expression impacts on normal mammary gland post-lactation transition enhancing cancer potential. Dis Model Mech 2022; 15:274874. [PMID: 35044452 PMCID: PMC8990024 DOI: 10.1242/dmm.049286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022] Open
Abstract
RET is a receptor tyrosine kinase with oncogenic potential in the mammary epithelium. Several receptors with oncogenic activity in the breast are known to participate in specific developmental stages. We found that RET is differentially expressed during mouse mammary gland development: RET is present in lactation and its expression dramatically decreases in involution, the period during which the lactating gland returns to a quiescent state after weaning. Based on epidemiological and pre-clinical findings, involution has been described as tumor promoting. Using the Ret/MTB doxycycline-inducible mouse transgenic system, we show that sustained expression of RET in the mammary epithelium during the post-lactation transition to involution is accompanied by alterations in tissue remodeling and an enhancement of cancer potential. Following constitutive Ret expression, we observed a significant increase in neoplastic lesions in the post-involuting versus the virgin mammary gland. Furthermore, we show that abnormal RET overexpression during lactation promotes factors that prime involution, including premature activation of Stat3 signaling and, using RNA sequencing, an acute-phase inflammatory signature. Our results demonstrate that RET overexpression negatively affects the normal post-lactation transition. Summary: We show that RET activation stimulates Stat3 signaling in mammary epithelial cell culture and in vivo during post-lactation transition, demonstrating that the RET receptor participates in the post-lactation transition priming tumorigenesis.
Collapse
Affiliation(s)
- Sabrina A. Vallone
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Intendente Güiraldes 2160, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
| | - Martín García Solá
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Intendente Güiraldes 2160, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
| | - Carolina Schere-Levy
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Intendente Güiraldes 2160, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
| | - Roberto P. Meiss
- Academia Nacional de Medicina de Buenos Aires, Av. Gral. Las Heras 3092, C1425ASU CABA, Buenos Aires, Argentina
| | - Gladys N. Hermida
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental (DBBE), Biología de Anfibios-Histología Animal, Facultad de Ciencias Exactas y Naturales (FCEN), Buenos Aires, Argentina
| | - Lewis A. Chodosh
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania (Upenn), 614 BRB II/III, 421 Curie Blvd, Philadelphia, USA
| | - Edith C. Kordon
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Intendente Güiraldes 2160, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
| | - Nancy E. Hynes
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, CH-4058 Basel, Switzerland
- University of Basel, CH-4002 Basel, Switzerland
| | - Albana Gattelli
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Intendente Güiraldes 2160, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
| |
Collapse
|
10
|
Physiological Roles of Apoptotic Cell Clearance: Beyond Immune Functions. Life (Basel) 2021; 11:life11111141. [PMID: 34833017 PMCID: PMC8621940 DOI: 10.3390/life11111141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The clearance of apoptotic cells is known to be a critical step in maintaining tissue and organism homeostasis. This process is rapidly/promptly mediated by recruited or resident phagocytes. Phagocytes that engulf apoptotic cells have been closely linked to the release of anti-inflammatory cytokines to eliminate inflammatory responses. Defective clearance of apoptotic cells can cause severe inflammation and autoimmune responses due to secondary necrosis of apoptotic cells. Recently accumulated evidence indicates that apoptotic cells and their clearance have important physiological roles in addition to immune-related functions. Herein, we review the current understanding of the mechanisms and fundamental roles of apoptotic cell clearance and the beneficial roles of apoptotic cells in physiological processes such as differentiation and development.
Collapse
|
11
|
Floerchinger A, Murphy KJ, Latham SL, Warren SC, McCulloch AT, Lee YK, Stoehr J, Mélénec P, Guaman CS, Metcalf XL, Lee V, Zaratzian A, Da Silva A, Tayao M, Rolo S, Phimmachanh M, Sultani G, McDonald L, Mason SM, Ferrari N, Ooms LM, Johnsson AKE, Spence HJ, Olson MF, Machesky LM, Sansom OJ, Morton JP, Mitchell CA, Samuel MS, Croucher DR, Welch HCE, Blyth K, Caldon CE, Herrmann D, Anderson KI, Timpson P, Nobis M. Optimizing metastatic-cascade-dependent Rac1 targeting in breast cancer: Guidance using optical window intravital FRET imaging. Cell Rep 2021; 36:109689. [PMID: 34525350 DOI: 10.1016/j.celrep.2021.109689] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 07/06/2021] [Accepted: 08/18/2021] [Indexed: 01/18/2023] Open
Abstract
Assessing drug response within live native tissue provides increased fidelity with regards to optimizing efficacy while minimizing off-target effects. Here, using longitudinal intravital imaging of a Rac1-Förster resonance energy transfer (FRET) biosensor mouse coupled with in vivo photoswitching to track intratumoral movement, we help guide treatment scheduling in a live breast cancer setting to impair metastatic progression. We uncover altered Rac1 activity at the center versus invasive border of tumors and demonstrate enhanced Rac1 activity of cells in close proximity to live tumor vasculature using optical window imaging. We further reveal that Rac1 inhibition can enhance tumor cell vulnerability to fluid-flow-induced shear stress and therefore improves overall anti-metastatic response to therapy during transit to secondary sites such as the lung. Collectively, this study demonstrates the utility of single-cell intravital imaging in vivo to demonstrate that Rac1 inhibition can reduce tumor progression and metastases in an autochthonous setting to improve overall survival.
Collapse
Affiliation(s)
- Alessia Floerchinger
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Kendelle J Murphy
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Sharissa L Latham
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Sean C Warren
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Andrew T McCulloch
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Young-Kyung Lee
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Janett Stoehr
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Pauline Mélénec
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Cris S Guaman
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Xanthe L Metcalf
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Victoria Lee
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Anaiis Zaratzian
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Andrew Da Silva
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Michael Tayao
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Sonia Rolo
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Monica Phimmachanh
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Ghazal Sultani
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Laura McDonald
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Susan M Mason
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Nicola Ferrari
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G111QH, UK
| | - Lisa M Ooms
- Cancer Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | | | - Heather J Spence
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Michael F Olson
- Department of Chemistry and Biology, Ryerson University, Toronto ON, M5B 2K3, Canada
| | - Laura M Machesky
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G111QH, UK
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G111QH, UK
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, SA Pathology and University of South Australia; and the School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - David R Croucher
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Heidi C E Welch
- Signalling Programme, Babraham Institute, Cambridge CB223AT, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G111QH, UK
| | - C Elizabeth Caldon
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - David Herrmann
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Kurt I Anderson
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK; Francis Crick Institute, London NW11AT, UK
| | - Paul Timpson
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia.
| | - Max Nobis
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia.
| |
Collapse
|
12
|
Cai M, Du B, Si Y, Miao J, Ge J, Zhang J, Song J, Bao H. Knockdown of VDAC1 alleviates the cognitive dysfunction secondary to sepsis-associated encephalopathy. Am J Transl Res 2021; 13:7538-7555. [PMID: 34377234 PMCID: PMC8340252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is a serious and diffuse cerebral dysregulation with a high morbidity and mortality caused by sepsis. Mitophagy plays an important role in SAE, and microglial phagocytosis of apoptotic cells (efferocytosis) is the core of the brain regenerative response. Voltage dependent anion channel (VDAC1) is an important regulator of mitophagy. However, it remains unknown whether VDAC1 influences SAE progression by regulating mitophagy and efferocytosis. Herein, we explored the mechanism where knockdown of VDAC1 alleviated the cognitive dysfunction caused by sepsis-associated encephalopathy and further elucidated the underlying molecular mechanisms. SAE model in mice was established through caecal ligation and puncture (CLP). The increased mitophagy and decreased efferocytosis were observed by the transmission electron microscope (TEM) in the SAE model. Besides, immunoblot tests showed an interaction between autophagy and efferocytosis. Further behavior tests and TEM results indicated that knockdown of VDAC1 alleviated the cognitive dysfunction by decreasing the autophagy and increasing the efferocytosis in a PINK1/Parkin-dependent manner. Based on these results, we conclude that knockdown of VDAC1 alleviates the cognitive dysfunction in the CLP-induced SAE mouse model.
Collapse
Affiliation(s)
- Mengmeng Cai
- Department of Anesthesiology, Affiliated Nanjing Hospital of Nanjing Medical University (Nanjing First Hospital)Nanjing, Jiangsu Province, China
| | - Boxiang Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong UniversityNantong, Jiangsu Province, China
| | - Yanna Si
- Department of Anesthesiology, Affiliated Nanjing Hospital of Nanjing Medical University (Nanjing First Hospital)Nanjing, Jiangsu Province, China
| | - Juanjuan Miao
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong UniversityNantong, Jiangsu Province, China
| | - Jianyun Ge
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong UniversityNantong, Jiangsu Province, China
| | - Jiejie Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong UniversityNantong, Jiangsu Province, China
| | - Jie Song
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong UniversityNantong, Jiangsu Province, China
| | - Hongguang Bao
- Department of Anesthesiology, Affiliated Nanjing Hospital of Nanjing Medical University (Nanjing First Hospital)Nanjing, Jiangsu Province, China
| |
Collapse
|
13
|
Ding ST, Gao YJ, Qin CX, Liu HY, Zhang HW, Li Y, Zhang Y. Granulomatous mastitis in multiparae during pregnancy and lactation: Observational study (STROBE compliant). Medicine (Baltimore) 2021; 100:e25912. [PMID: 34160380 PMCID: PMC8238367 DOI: 10.1097/md.0000000000025912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 04/22/2021] [Indexed: 01/04/2023] Open
Abstract
The incidence of granulomatous mastitis (GLM) in multiparae as seriously affected the quality of life and breastfeeding of pregnant women after delivery, but the treatment is rarely reported. In this article, the development, healing, and lactation of 13 cases were reported and a retrospective analysis was performed. 10 cases of GLM were treated at the Breast Disease Prevention and Treatment Center of Haidian Maternal & Child Health Hospital of Beijing and 3 cases of GLM were treated in the Breast Department of Weihai Municipal Hospital of Shandong province from February 2017 to May 2019.Among the 13 patients, conservative symptomatic treatment was adopted during pregnancy and lactation: anti-infective therapy consisting of oral cephalosporin antibiotic for patients; ultrasound-guided puncture and drainage of pus or incision and drainage after abscess formation. Observation continued during the sinus tract phase. Postpartum breastfeeding was encouraged, especially on the affected side. In this study, the median healing time was 20 months and the average healing time was 30.4 months in 5 healthy breast lactation cases. In 8 cases of bilateral breast lactation, the median healing time was 30 months and the average healing time was 26.5 months. Linear regression test analysis: whether the affected breast was breast-fed after delivery had no effect on the postpartum wound healing time, P = .792. The wounds of 13 patients healed well after lactation, and none of them recurred since the last follow-up visit. There were no adverse events in all infants.Conservative symptomatic treatment for GLM of multiparous women during pregnancy and lactation and encouraging breastfeeding after delivery have no effect on infant health and the recovery time of patients.
Collapse
Affiliation(s)
- Song-tao Ding
- Breast Department of Haidian Maternal & Child Health Hospital, Beijing, China
| | - Ya-jun Gao
- Breast Department of Haidian Maternal & Child Health Hospital, Beijing, China
| | - Chun-xin Qin
- Department of Thyroid and Breast of Xiyuan Yard of Breast Department of Weihai Municipal Hospital, Weihai, Shangdong Province, China
| | - Hong-yan Liu
- Breast Department of Haidian Maternal & Child Health Hospital, Beijing, China
| | - Hong-wei Zhang
- Breast Department of Haidian Maternal & Child Health Hospital, Beijing, China
| | - Yan Li
- Breast Department of Haidian Maternal & Child Health Hospital, Beijing, China
| | - Yi Zhang
- Breast Department of Haidian Maternal & Child Health Hospital, Beijing, China
| |
Collapse
|
14
|
Slepicka PF, Somasundara AVH, Dos Santos CO. The molecular basis of mammary gland development and epithelial differentiation. Semin Cell Dev Biol 2021; 114:93-112. [PMID: 33082117 PMCID: PMC8052380 DOI: 10.1016/j.semcdb.2020.09.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Our understanding of the molecular events underpinning the development of mammalian organ systems has been increasing rapidly in recent years. With the advent of new and improved next-generation sequencing methods, we are now able to dig deeper than ever before into the genomic and epigenomic events that play critical roles in determining the fates of stem and progenitor cells during the development of an embryo into an adult. In this review, we detail and discuss the genes and pathways that are involved in mammary gland development, from embryogenesis, through maturation into an adult gland, to the role of pregnancy signals in directing the terminal maturation of the mammary gland into a milk producing organ that can nurture the offspring. We also provide an overview of the latest research in the single-cell genomics of mammary gland development, which may help us to understand the lineage commitment of mammary stem cells (MaSCs) into luminal or basal epithelial cells that constitute the mammary gland. Finally, we summarize the use of 3D organoid cultures as a model system to study the molecular events during mammary gland development. Our increased investigation of the molecular requirements for normal mammary gland development will advance the discovery of targets to predict breast cancer risk and the development of new breast cancer therapies.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Camila O Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
15
|
Kupsco A, Prada D, Valvi D, Hu L, Petersen MS, Coull B, Grandjean P, Weihe P, Baccarelli AA. Human milk extracellular vesicle miRNA expression and associations with maternal characteristics in a population-based cohort from the Faroe Islands. Sci Rep 2021; 11:5840. [PMID: 33712635 PMCID: PMC7970999 DOI: 10.1038/s41598-021-84809-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Human milk plays a critical role in infant development and health, particularly in cognitive, immune, and cardiometabolic functions. Milk contains extracellular vesicles (EVs) that can transport biologically relevant cargo from mother to infant, including microRNAs (miRNAs). We aimed to characterize milk EV-miRNA profiles in a human population cohort, assess potential pathways and ontology, and investigate associations with maternal characteristics. We conducted the first study to describe the EV miRNA profile of human milk in 364 mothers from a population-based mother-infant cohort in the Faroe Islands using small RNA sequencing. We detected 1523 miRNAs with ≥ one read in 70% of samples. Using hierarchical clustering, we determined five EV-miRNA clusters, the top three consisting of 15, 27 and 67 miRNAs. Correlation coefficients indicated that the expression of many miRNAs within the top three clusters was highly correlated. Top-cluster human milk EV-miRNAs were involved in pathways enriched for the endocrine system, cellular community, neurodevelopment, and cancers. miRNA expression was associated with time to milk collection post-delivery, maternal body mass index, and maternal smoking, but not maternal parity. Future studies investigating determinants of human EV-miRNAs and associated health outcomes are needed to elucidate the role of human milk EV-miRNAs in health and disease.
Collapse
Affiliation(s)
- Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA.
| | - Diddier Prada
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA
- Unit for Biomedical Research in Cancer, Instituto Nacional de Cancerologia, Universidad Nacional Autonoma de Mexico, 14080, Mexico City, Mexico
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lisa Hu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA
| | - Maria Skaalum Petersen
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands
- Center of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Brent Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Philippe Grandjean
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Medicine, University of Southern Denmark, Odense C, Denmark
| | - Pal Weihe
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands
- Center of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA
| |
Collapse
|
16
|
Ma Z, Jiang K, Wang D, Wang Z, Gu Z, Li G, Jiang R, Tian Y, Kang X, Li H, Liu X. Comparative analysis of hypothalamus transcriptome between laying hens with different egg-laying rates. Poult Sci 2021; 100:101110. [PMID: 34102485 PMCID: PMC8187251 DOI: 10.1016/j.psj.2021.101110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/30/2020] [Accepted: 03/02/2021] [Indexed: 12/27/2022] Open
Abstract
Egg-laying performance is one of the most important economic traits in the poultry industry. Commercial layers can lay one egg almost every day during their peak-laying period. However, many Chinese indigenous chicken breeds show a relatively low egg-laying rate, even during their peak-laying period. To understand what makes the difference in egg production, we compared the hypothalamus transcriptome profiles of Lushi blue-shelled-egg chickens (LBS), a Chinese indigenous breed with low egg-laying rate and Rhode Island Red chickens (RIR), a commercial layer with relatively high egg-laying rate using RNA-seq. A total of 753 differentially expressed genes (DEGs) were obtained. Of these DEGs, 38 genes were enriched in 2 Gene Ontology (GO) terms, namely reproduction term and the reproductive process term, and 6 KEGG pathways, namely Wnt signaling pathway, Oocyte meiosis, GnRH signaling pathway, Thyroid hormone signaling pathway, Thyroid hormone synthesis and MAPK signaling pathway, which have been long known to be involved in egg production regulation. To further determine the core genes from the 38 DEGs, protein-protein interaction (PPI) network, co-expression network and transcriptional regulatory network analyses were carried out. After integrated analysis and experimental validation, 4 core genes including RAC1, MRE11A, MAP7 and SOX5 were identified as the potential core genes that are responsible for the laying-rate difference between the 2 breeds. These findings paved the way for future investigating the mechanism of egg-laying regulation and enriched the chicken reproductive regulation theory.
Collapse
Affiliation(s)
- Zheng Ma
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China; School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Keren Jiang
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Dandan Wang
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhang Wang
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhenzhen Gu
- School of life Sciences and Technology, Xinjiang University, Urumqi 830046, China
| | - Guoxi Li
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
17
|
Cooperative epithelial phagocytosis enables error correction in the early embryo. Nature 2021; 590:618-623. [PMID: 33568811 DOI: 10.1038/s41586-021-03200-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/24/2020] [Indexed: 01/31/2023]
Abstract
Errors in early embryogenesis are a cause of sporadic cell death and developmental failure1,2. Phagocytic activity has a central role in scavenging apoptotic cells in differentiated tissues3-6. However, how apoptotic cells are cleared in the blastula embryo in the absence of specialized immune cells remains unknown. Here we show that the surface epithelium of zebrafish and mouse embryos, which is the first tissue formed during vertebrate development, performs efficient phagocytic clearance of apoptotic cells through phosphatidylserine-mediated target recognition. Quantitative four-dimensional in vivo imaging analyses reveal a collective epithelial clearance mechanism that is based on mechanical cooperation by two types of Rac1-dependent basal epithelial protrusions. The first type of protrusion, phagocytic cups, mediates apoptotic target uptake. The second, a previously undescribed type of fast and extended actin-based protrusion that we call 'epithelial arms', promotes the rapid dispersal of apoptotic targets through Arp2/3-dependent mechanical pushing. On the basis of experimental data and modelling, we show that mechanical load-sharing enables the long-range cooperative uptake of apoptotic cells by multiple epithelial cells. This optimizes the efficiency of tissue clearance by extending the limited spatial exploration range and local uptake capacity of non-motile epithelial cells. Our findings show that epithelial tissue clearance facilitates error correction that is relevant to the developmental robustness and survival of the embryo, revealing the presence of an innate immune function in the earliest stages of embryonic development.
Collapse
|
18
|
Integrin-mediated adhesion and mechanosensing in the mammary gland. Semin Cell Dev Biol 2020; 114:113-125. [PMID: 33187835 DOI: 10.1016/j.semcdb.2020.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
The mammary gland is dynamically remodelled during its postnatal development and the reproductive cycles. This inherent plasticity has been suggested to increase the susceptibility of the organ to carcinogenesis. Morphological changes in the mammary epithelium involve cell proliferation, differentiation, apoptosis, and migration which, in turn, are affected by cell adhesion to the extracellular matrix (ECM). Integrin adhesion receptors function in the sensing of the biochemical composition, patterning and mechanical properties of the ECM surrounding the cells, and strongly influence cell fate. This review aims to summarize the existing literature on how different aspects of integrin-mediated adhesion and mechanosensing, including ECM composition; stiffness and topography; integrin expression patterns; focal adhesion assembly; dynamic regulation of the actin cytoskeleton; and nuclear mechanotransduction affect mammary gland development, function and homeostasis. As the mechanical properties of a complex tissue environment are challenging to replicate in vitro, emphasis has been placed on studies conducted in vivo or using organoid models. Outright, these studies indicate that mechanosensing also contributes to the regulation of mammary gland morphogenesis in multiple ways.
Collapse
|
19
|
Cayre S, Faraldo MM, Bardin S, Miserey-Lenkei S, Deugnier MA, Goud B. RAB6 GTPase regulates mammary secretory function by controlling the activation of STAT5. Development 2020; 147:dev.190744. [PMID: 32895290 PMCID: PMC7561474 DOI: 10.1242/dev.190744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
The Golgi-associated RAB GTPases, RAB6A and RAB6A', regulate anterograde and retrograde transport pathways from and to the Golgi. In vitro, RAB6A/A' control several cellular functions including cell division, migration, adhesion and polarity. However, their role remains poorly described in vivo Here, we generated BlgCre; Rab6a F/F mice presenting a specific deletion of Rab6a in the mammary luminal secretory lineage during gestation and lactation. Rab6a loss severely impaired the differentiation, maturation and maintenance of the secretory tissue, compromising lactation. The mutant epithelium displayed a decreased activation of STAT5, a key regulator of the lactogenic process primarily governed by prolactin. Data obtained with a mammary epithelial cell line suggested that defective STAT5 activation might originate from a perturbed transport of the prolactin receptor, altering its membrane expression and signaling cascade. Despite the major functional defects observed upon Rab6a deletion, the polarized organization of the mammary epithelial bilayer was preserved. Altogether, our data reveal a crucial role for RAB6A/A' in the lactogenic function of the mammary gland and suggest that the trafficking pathways controlled by RAB6A/A' depend on cell-type specialization and tissue context.
Collapse
Affiliation(s)
- Surya Cayre
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| | - Marisa M Faraldo
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France.,INSERM, Paris F-75013, France
| | - Sabine Bardin
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| | - Stéphanie Miserey-Lenkei
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| | - Marie-Ange Deugnier
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France .,INSERM, Paris F-75013, France
| | - Bruno Goud
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| |
Collapse
|
20
|
Ethanol Extract of the Infructescence of Platycarya strobilacea Sieb. et Zucc. Induces Methuosis of Human Nasopharyngeal Carcinoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2760979. [PMID: 32419796 PMCID: PMC7206861 DOI: 10.1155/2020/2760979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/24/2022]
Abstract
The infructescence of Platycarya strobilacea Sieb. et Zucc. (PS) has been used in the treatment of rhinitis and sinusitis in clinical practice. Our preliminary study showed that an ethanol extract of the infructescence of PS (EPS) had significant antinasopharyngeal carcinoma (NPC) effects in vitro. However, the mechanism underlying the NPS cell death induced by EPS remains unclear. The aim of the present study was to investigate the inhibitory effects of EPS on NPC cells and to elucidate the underlying mechanism. The effects of EPS on NPC cells were investigated in CNE1 and CNE2 cells in vitro. In EPS-treated cells, the cell morphological changes were evaluated through fluorescence microscope, transmission electron microscopy, and flow cytometry. The underlying mechanism was analyzed via network pharmacology and further verified by western blot analysis. The anticancer effects of EPS were associated with the generation of CNE1 and CNE2 cell fusion and vacuoles, the perturbation of lysosomal vesicle transportation, and the induction of methuosis. The network pharmacology and western blot results indicated that the effect of EPS in NPC cells might be achieved via regulation of the Ras proto-oncogene (RAS)/mitogen-activated protein kinase (MAPK) signaling pathway and the transcription factor c-Fos proto-oncogene (c-FOS) and its downstream genes. EPS induces NPC cell death through methuosis. The mechanism might be related to regulation of the transcription factor c-FOS and its downstream genes.
Collapse
|
21
|
Wang P, Wu J, Wood A, Jones M, Pedley R, Li W, Ross RS, Ballestrem C, Gilmore AP, Streuli CH. Vinculins interaction with talin is essential for mammary epithelial differentiation. Sci Rep 2019; 9:18400. [PMID: 31804547 PMCID: PMC6895056 DOI: 10.1038/s41598-019-54784-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/18/2019] [Indexed: 11/08/2022] Open
Abstract
Vinculin is an essential component of cell adhesion complexes, where it regulates the strength and stability of adhesions. Whilst the role of vinculin in cell motility is well established, it remains unclear how vinculin contributes to other aspects of tissue function. Here we examine the role of vinculin in mammary epithelial cell phenotype. In these cells, correct adhesion to the extracellular matrix is essential for both the formation of polarised secretory acini and for the transcription of tissue-specific milk protein genes. We show that vinculin, through its interaction with talin, controls milk protein gene expression. However, vinculin is not required for the formation of polarised acini. This work reveals new roles for vinculin that are central to cellular differentiation, and for the ability of cells to interpret their extracellular microenvironment.
Collapse
Affiliation(s)
- Pengbo Wang
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
- CRUK Manchester Institute, Manchester, UK
| | - Jian Wu
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
| | - Amber Wood
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
| | - Matthew Jones
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
| | - Robert Pedley
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
| | - Weiping Li
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
| | - Robert S Ross
- UCSD School of Medicine, Department of Medicine, La Jolla, CA, UK
- Veterans Administration Healthcare San Diego, San Diego, CA, USA
| | - Christoph Ballestrem
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
| | - Andrew P Gilmore
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK.
| | - Charles H Streuli
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
| |
Collapse
|
22
|
Living on the Edge: Efferocytosis at the Interface of Homeostasis and Pathology. Immunity 2019; 50:1149-1162. [PMID: 31117011 DOI: 10.1016/j.immuni.2019.04.018] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 01/23/2023]
Abstract
Nearly every tissue in the body undergoes routine turnover of cells as part of normal healthy living. The majority of these cells undergoing turnover die via apoptosis, and then are rapidly removed by phagocytes by the process of efferocytosis that is anti-inflammatory. However, a number of pathologies have recently been linked to defective clearance of apoptotic cells. Perturbed clearance arises for many reasons, including overwhelming of the clearance machinery, disruptions at different stages of efferocytosis, and responses of phagocytes during efferocytosis, all of which can alter the homeostatic tissue environment. This review covers linkages of molecules involved in the different phases of efferocytosis to disease pathologies that can arise due to their loss or altered function.
Collapse
|
23
|
Pinet K, McLaughlin KA. Mechanisms of physiological tissue remodeling in animals: Manipulating tissue, organ, and organism morphology. Dev Biol 2019; 451:134-145. [DOI: 10.1016/j.ydbio.2019.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
|
24
|
Plasterer C, Tsaih SW, Peck AR, Chervoneva I, O’Meara C, Sun Y, Lemke A, Murphy D, Smith J, Ran S, Kovatich AJ, Hooke JA, Shriver CD, Hu H, Mitchell EP, Bergom C, Joshi A, Auer P, Prokop J, Rui H, Flister MJ. Neuronatin is a modifier of estrogen receptor-positive breast cancer incidence and outcome. Breast Cancer Res Treat 2019; 177:77-91. [DOI: 10.1007/s10549-019-05307-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/29/2019] [Indexed: 01/13/2023]
|
25
|
Wallace TR, Tarullo SE, Crump LS, Lyons TR. Studies of postpartum mammary gland involution reveal novel pro-metastatic mechanisms. ACTA ACUST UNITED AC 2019; 5. [PMID: 30847405 PMCID: PMC6400586 DOI: 10.20517/2394-4722.2019.01] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Postpartum involution is the process by which the lactating mammary gland returns to the pre-pregnant state after weaning. Expression of tumor-promotional collagen, upregulation of matrix metalloproteinases, infiltration of M2 macrophages, and remodeling of blood and lymphatic vasculature are all characteristics shared by the involuting mammary gland and breast tumor microenvironment. The tumor promotional nature of the involuting mammary gland is perhaps best evidenced by cases of postpartum breast cancer (PPBC), or those cases diagnosed within 10 years of most recent childbirth. Women with PPBC experience more aggressive disease and higher risk of metastasis than nulliparous patients and those diagnosed outside the postpartum window. Semaphorin 7a (SEMA7A), cyclooxygenase-2 (COX-2), and collagen are all expressed in the involuting mammary gland and, together, predict for decreased metastasis free survival in breast cancer. Studies investigating the role of these proteins in involution have been important for understanding their contributions to PPBC. Postpartum involution thus represents a valuable model for the identification of novel molecular drivers of PPBC and classical cancer hallmarks. In this review, we will highlight the similarities between involution and cancer in the mammary gland, and further define the contribution of SEMA7A/COX-2/collagen interplay to postpartum involution and breast tumor progression and metastasis.
Collapse
Affiliation(s)
- Taylor R Wallace
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah E Tarullo
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lyndsey S Crump
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Traci R Lyons
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,University of Colorado Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
26
|
Streuli CH, Meng QJ. Influence of the extracellular matrix on cell-intrinsic circadian clocks. J Cell Sci 2019; 132:jcs207498. [PMID: 30709969 DOI: 10.1242/jcs.207498] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell-autonomous circadian clocks coordinate tissue homeostasis with a 24-hourly rhythm. The molecular circadian clock machinery controls tissue- and cell type-specific sets of rhythmic genes. Disruptions of clock mechanisms are linked to an increased risk of acquiring diseases, especially those associated with aging, metabolic dysfunction and cancer. Despite rapid advances in understanding the cyclic outputs of different tissue clocks, less is known about how the clocks adapt to their local niche within tissues. We have discovered that tissue stiffness regulates circadian clocks, and that this occurs in a cell-type-dependent manner. In this Review, we summarise new work linking the extracellular matrix with differential control of circadian clocks. We discuss how the changes in tissue structure and cellular microenvironment that occur throughout life may impact on the molecular control of circadian cycles. We also consider how altered clocks may have downstream impacts on the acquisition of diseases.
Collapse
Affiliation(s)
- Charles H Streuli
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
27
|
Cheng AA, Li W, Hernandez LL. Effect of high-fat diet feeding and associated transcriptome changes in the peak lactation mammary gland in C57BL/6 dams. Physiol Genomics 2018; 50:1059-1070. [DOI: 10.1152/physiolgenomics.00052.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Maternal consumption of a high-fat diet (HFD) during pregnancy has established adverse effects on the developing neonate. In this study, we aimed to investigate the effect of an HFD on the murine mammary gland during midlactation. Female C57BL/6J mice were placed on either a low-fat diet (LFD/10% fat) or HFD (60% fat) from 3 wk of age through peak lactation (lactation day 11/L11). After 4 wk of consuming either the LFD or HFD, female mice were bred. There were no significant differences in milk yield between treatment groups, which was measured from L1 to L9. On L10, mice were subjected to an overnight fast and then euthanized on the morning of L11. Total RNA was isolated from inguinal mammary glands for whole transcriptome sequencing. We found 628 genes that were differentially expressed between the treatment groups. Notably, HFD feeding resulted in expression alterations of genes involved in collagen and cytoplasmic components. Additionally, genes related to inflammatory and immune responses were also impacted. Differential expression in gene transcript isoforms between the treatment groups was detected in three genes related to mammary duct development. This study sheds light as to how an HFD may affect the mammary gland transcriptome during midlactation.
Collapse
Affiliation(s)
- A. A. Cheng
- Department of Dairy Sciences, University of Wisconsin, Madison, Wisconsin
| | - W. Li
- United States Department of Agriculture Dairy Forage, Madison, Wisconsin
| | - L. L. Hernandez
- Department of Dairy Sciences, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
28
|
Broadberry E, McConnell J, Williams J, Yang N, Zindy E, Leek A, Waddington R, Joseph L, Howe M, Meng QJ, Streuli CH. Disrupted circadian clocks and altered tissue mechanics in primary human breast tumours. Breast Cancer Res 2018; 20:125. [PMID: 30348208 PMCID: PMC6198506 DOI: 10.1186/s13058-018-1053-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Circadian rhythms maintain tissue homeostasis during the 24-h day-night cycle. Cell-autonomous circadian clocks play fundamental roles in cell division, DNA damage responses and metabolism. Circadian disruptions have been proposed as a contributing factor for cancer initiation and progression, although definitive evidence for altered molecular circadian clocks in cancer is still lacking. In this study, we looked at circadian clocks in breast cancer. METHODS We isolated primary tumours and normal tissues from the same individuals who had developed breast cancer with no metastases. We assessed circadian clocks within primary cells of the patients by lentiviral expression of circadian reporters, and the levels of clock genes in tissues by qPCR. We histologically examined collagen organisation within the normal and tumour tissue areas, and probed the stiffness of the stroma adjacent to normal and tumour epithelium using atomic force microscopy. RESULTS Epithelial ducts were disorganised within the tumour areas. Circadian clocks were altered in cultured tumour cells. Tumour regions were surrounded by stroma with an altered collagen organisation and increased stiffness. Levels of Bmal1 messenger RNA (mRNA) were significantly altered in the tumours in comparison to normal epithelia. CONCLUSION Circadian rhythms are suppressed in breast tumour epithelia in comparison to the normal epithelia in paired patient samples. This correlates with increased tissue stiffness around the tumour region. We suggest possible involvement of altered circadian clocks in the development and progression of breast cancer.
Collapse
Affiliation(s)
- Eleanor Broadberry
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - James McConnell
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Jack Williams
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Nan Yang
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Egor Zindy
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Angela Leek
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Rachel Waddington
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Leena Joseph
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Miles Howe
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Charles H Streuli
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| |
Collapse
|
29
|
Olabi S, Ucar A, Brennan K, Streuli CH. Integrin-Rac signalling for mammary epithelial stem cell self-renewal. Breast Cancer Res 2018; 20:128. [PMID: 30348189 PMCID: PMC6198444 DOI: 10.1186/s13058-018-1048-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
Background Stem cells are precursors for all mammary epithelia, including ductal and alveolar epithelia, and myoepithelial cells. In vivo mammary epithelia reside in a tissue context and interact with their milieu via receptors such as integrins. Extracellular matrix receptors coordinate important cellular signalling platforms, of which integrins are the central architects. We have previously shown that integrins are required for mammary epithelial development and function, including survival, cell cycle, and polarity, as well as for the expression of mammary-specific genes. In the present study we looked at the role of integrins in mammary epithelial stem cell self-renewal. Methods We used an in vitro stem cell assay with primary mouse mammary epithelial cells isolated from genetically altered mice. This involved a 3D organoid assay, providing an opportunity to distinguish the stem cell- or luminal progenitor-driven organoids as structures with solid or hollow appearances, respectively. Results We demonstrate that integrins are essential for the maintenance and self-renewal of mammary epithelial stem cells. Moreover integrins activate the Rac1 signalling pathway in stem cells, which leads to the stimulation of a Wnt pathway, resulting in expression of β-catenin target genes such as Axin2 and Lef1. Conclusions Integrin/Rac signalling has a role in specifying the activation of a canonical Wnt pathway that is required for mammary epithelial stem cell self-renewal. Electronic supplementary material The online version of this article (10.1186/s13058-018-1048-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Safiah Olabi
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Ahmet Ucar
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Keith Brennan
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Charles H Streuli
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
30
|
Golan Y, Kambe T, Assaraf YG. The role of the zinc transporter SLC30A2/ZnT2 in transient neonatal zinc deficiency. Metallomics 2018; 9:1352-1366. [PMID: 28665435 DOI: 10.1039/c7mt00162b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Breast milk is the optimal nutrient mix for infants until the age of 6 months. However, in some cases, due to genetic alterations as well as nutrient deficiencies in nursing mothers, infants may suffer from inadequate levels of micronutrients upon exclusive breastfeeding. In this respect, transient neonatal zinc deficiency (TNZD) is caused by loss-of-function mutations in the zinc transporter SLC30A2/ZnT2 gene, resulting in poor secretion of zinc into the breast milk. Consequently, infants exclusively breastfed with zinc-deficient breast milk develop severe zinc deficiency. The main initial symptoms of zinc deficiency are dermatitis, diarrhea, alopecia, and loss of appetite. Importantly, zinc supplementation of these zinc-deficient infants effectively and rapidly resolves these TNZD symptoms. In the current review, we present the major steps towards the identification of the molecular mechanisms underlying TNZD and propose novel approaches that could be implemented in order to achieve an early diagnosis of TNZD towards the prevention of TNZD morbidity. We also discuss the importance of assessing the prevalence of TNZD in the general population, while taking into consideration its autosomal dominant inheritance that was recently established, also supported by a large number of SLC30A2/ZnT2 variants recently identified in American lactating mothers. These findings indicating that TNZD is more frequent than initially thought, along with the increasing number of TNZD cases that were recently reported worldwide, prompted us here to highlight the importance of early diagnosis of SLC30A2/ZnT2 variants in order to supplement zinc-deficient infants in real-time, thus preventing TNZD morbidity and enhancing newborn health. This early genetic diagnosis of zinc deficiency could possibly prove to be a useful platform for the identification of other micronutrient deficiencies, which could be readily resolved by proper real-time supplementation of the infant's diet.
Collapse
Affiliation(s)
- Yarden Golan
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| | | | | |
Collapse
|
31
|
Zhang B, Wang X, Li Y, Wu M, Wang SY, Li S. Matrine Is Identified as a Novel Macropinocytosis Inducer by a Network Target Approach. Front Pharmacol 2018; 9:10. [PMID: 29434546 PMCID: PMC5790780 DOI: 10.3389/fphar.2018.00010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/05/2018] [Indexed: 01/11/2023] Open
Abstract
Comprehensively understanding pharmacological functions of natural products is a key issue to be addressed for the discovery of new drugs. Unlike some single-target drugs, natural products always exert diverse therapeutic effects through acting on a "network" that consists of multiple targets, making it necessary to develop a systematic approach, e.g., network pharmacology, to reveal pharmacological functions of natural products and infer their mechanisms of action. In this work, to identify the "network target" of a natural product, we perform a functional analysis of matrine, a marketed drug in China extracted from a medical herb Ku-Shen (Radix Sophorae Flavescentis). Here, the network target of matrine was firstly predicted by drugCIPHER, a genome-wide target prediction method. Based on the network target of matrine, we performed a functional gene set enrichment analysis to computationally identify the potential pharmacological functions of matrine, most of which are supported by the literature evidence, including neurotoxicity and neuropharmacological activities of matrine. Furthermore, computational results demonstrated that matrine has the potential for the induction of macropinocytosis and the regulation of ATP metabolism. Our experimental data revealed that the large vesicles induced by matrine are consistent with the typical characteristics of macropinosome. Our verification results also suggested that matrine could decrease cellular ATP level. These findings demonstrated the availability and effectiveness of the network target strategy for identifying the comprehensive pharmacological functions of natural products.
Collapse
Affiliation(s)
- Bo Zhang
- MOE Key Laboratory of Bioinformatics, TCM-X Center, Bioinformatics Division, TNLIST, Department of Automation, Tsinghua University, Beijing, China.,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Xin Wang
- MOE Key Laboratory of Bioinformatics, TCM-X Center, Bioinformatics Division, TNLIST, Department of Automation, Tsinghua University, Beijing, China
| | - Yan Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Min Wu
- MOE Key Laboratory of Bioinformatics, TCM-X Center, Bioinformatics Division, TNLIST, Department of Automation, Tsinghua University, Beijing, China
| | - Shu-Yan Wang
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Shao Li
- MOE Key Laboratory of Bioinformatics, TCM-X Center, Bioinformatics Division, TNLIST, Department of Automation, Tsinghua University, Beijing, China
| |
Collapse
|
32
|
Nobis M, Herrmann D, Warren SC, Kadir S, Leung W, Killen M, Magenau A, Stevenson D, Lucas MC, Reischmann N, Vennin C, Conway JRW, Boulghourjian A, Zaratzian A, Law AM, Gallego-Ortega D, Ormandy CJ, Walters SN, Grey ST, Bailey J, Chtanova T, Quinn JMW, Baldock PA, Croucher PI, Schwarz JP, Mrowinska A, Zhang L, Herzog H, Masedunskas A, Hardeman EC, Gunning PW, Del Monte-Nieto G, Harvey RP, Samuel MS, Pajic M, McGhee EJ, Johnsson AKE, Sansom OJ, Welch HCE, Morton JP, Strathdee D, Anderson KI, Timpson P. A RhoA-FRET Biosensor Mouse for Intravital Imaging in Normal Tissue Homeostasis and Disease Contexts. Cell Rep 2017; 21:274-288. [PMID: 28978480 DOI: 10.1016/j.celrep.2017.09.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/06/2017] [Accepted: 09/05/2017] [Indexed: 01/04/2023] Open
Abstract
The small GTPase RhoA is involved in a variety of fundamental processes in normal tissue. Spatiotemporal control of RhoA is thought to govern mechanosensing, growth, and motility of cells, while its deregulation is associated with disease development. Here, we describe the generation of a RhoA-fluorescence resonance energy transfer (FRET) biosensor mouse and its utility for monitoring real-time activity of RhoA in a variety of native tissues in vivo. We assess changes in RhoA activity during mechanosensing of osteocytes within the bone and during neutrophil migration. We also demonstrate spatiotemporal order of RhoA activity within crypt cells of the small intestine and during different stages of mammary gestation. Subsequently, we reveal co-option of RhoA activity in both invasive breast and pancreatic cancers, and we assess drug targeting in these disease settings, illustrating the potential for utilizing this mouse to study RhoA activity in vivo in real time.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Biosensing Techniques
- Bone and Bones/cytology
- Bone and Bones/metabolism
- Cell Movement/drug effects
- Dasatinib/pharmacology
- Erlotinib Hydrochloride/pharmacology
- Female
- Fluorescence Resonance Energy Transfer/instrumentation
- Fluorescence Resonance Energy Transfer/methods
- Gene Expression Regulation
- Intestine, Small/metabolism
- Intestine, Small/ultrastructure
- Intravital Microscopy/instrumentation
- Intravital Microscopy/methods
- Mammary Glands, Animal/blood supply
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/ultrastructure
- Mammary Neoplasms, Experimental/blood supply
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/ultrastructure
- Mechanotransduction, Cellular
- Mice
- Mice, Transgenic
- Neutrophils/metabolism
- Neutrophils/ultrastructure
- Osteocytes/metabolism
- Osteocytes/ultrastructure
- Pancreatic Neoplasms/blood supply
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/ultrastructure
- Time-Lapse Imaging/instrumentation
- Time-Lapse Imaging/methods
- rho GTP-Binding Proteins/genetics
- rho GTP-Binding Proteins/metabolism
- rhoA GTP-Binding Protein
Collapse
Affiliation(s)
- Max Nobis
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - David Herrmann
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Sean C Warren
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Shereen Kadir
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Wilfred Leung
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Monica Killen
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Astrid Magenau
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - David Stevenson
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Morghan C Lucas
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Nadine Reischmann
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Claire Vennin
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - James R W Conway
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Alice Boulghourjian
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Anaiis Zaratzian
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Andrew M Law
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - David Gallego-Ortega
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Christopher J Ormandy
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Stacey N Walters
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Shane T Grey
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Jacqueline Bailey
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Tatyana Chtanova
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Julian M W Quinn
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Paul A Baldock
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Peter I Croucher
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Juliane P Schwarz
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Agata Mrowinska
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Lei Zhang
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Herbert Herzog
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Andrius Masedunskas
- Neuromuscular and Regenerative Medicine Unit, University of New South Wales, Sydney, NSW 2010, Australia; Oncology Research Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW 2010, Australia
| | - Edna C Hardeman
- Neuromuscular and Regenerative Medicine Unit, University of New South Wales, Sydney, NSW 2010, Australia
| | - Peter W Gunning
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW 2010, Australia
| | - Gonzalo Del Monte-Nieto
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; St. Vincent's Clinical School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; St. Vincent's Clinical School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, SA Pathology and University of South Australia School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Marina Pajic
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Ewan J McGhee
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Heidi C E Welch
- Signalling Programme, Babraham Institute, Cambridge CB223AT, UK
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Douglas Strathdee
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | | | - Paul Timpson
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia.
| |
Collapse
|
33
|
Abstract
Mammary epithelial phagocytosis is critical for removal of apoptotic cells during involution, but the mechanisms governing this process are largely unknown. In this issue of Developmental Cell, Akhtar et al. (2016) provide insight into mechanisms regulating involution, demonstrating that Rac1 drives the switch from differentiation to phagocytosis in mammary epithelium.
Collapse
Affiliation(s)
- Matthew J Naylor
- School of Medical Sciences and Bosch Institute, Sydney Medical School, The University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
34
|
Wang S, Sekiguchi R, Daley WP, Yamada KM. Patterned cell and matrix dynamics in branching morphogenesis. J Cell Biol 2017; 216:559-570. [PMID: 28174204 PMCID: PMC5350520 DOI: 10.1083/jcb.201610048] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/05/2016] [Accepted: 12/21/2016] [Indexed: 12/16/2022] Open
Abstract
Many embryonic organs undergo branching morphogenesis to maximize their functional epithelial surface area. Branching morphogenesis requires the coordinated interplay of multiple types of cells with the extracellular matrix (ECM). During branching morphogenesis, new branches form by "budding" or "clefting." Cell migration, proliferation, rearrangement, deformation, and ECM dynamics have varied roles in driving budding versus clefting in different organs. Elongation of the newly formed branch and final maturation of the tip involve cellular mechanisms that include cell elongation, intercalation, convergent extension, proliferation, and differentiation. New methodologies such as high-resolution live imaging, tension sensors, and force-mapping techniques are providing exciting new opportunities for future research into branching morphogenesis.
Collapse
Affiliation(s)
- Shaohe Wang
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Rei Sekiguchi
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - William P Daley
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|