1
|
Trinh DC, Melogno I, Martin M, Trehin C, Smith RS, Hamant O. Arabidopsis floral buds are locked through stress-induced sepal tip curving. NATURE PLANTS 2024; 10:1258-1266. [PMID: 39060423 DOI: 10.1038/s41477-024-01760-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
In most plant species, sepals-the outermost floral organs-provide a protective shield for reproductive organs. How the floral bud becomes sealed is unknown. In Arabidopsis, we identified a small region at the sepal tip that is markedly curved inward early on and remains curved even after anthesis. Through modelling and quantitative growth analysis, we find that this hook emerges from growth arrest at the tip at a stage when cortical microtubules align with growth-derived tensile stress. Depolymerizing microtubules specifically at young sepal tips hindered hook formation and resulted in open floral buds. Mutants with defective growth pattern at the tip failed to curve inwards, whereas mutants with enhanced alignment of cortical microtubules at the tip exhibited a stronger hook. We propose that floral buds are locked due to a stress-derived growth arrest event curving the sepal tip and forming a rigid hook early on during flower development.
Collapse
Affiliation(s)
- Duy-Chi Trinh
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon, France.
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology (VAST), Cau Giay, Vietnam.
| | - Isaty Melogno
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon, France
| | - Marjolaine Martin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon, France
| | - Christophe Trehin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon, France
| | - Richard S Smith
- Department of Computational and Systems Biology, John Innes Centre, Norwich, UK
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon, France.
| |
Collapse
|
2
|
Sun X, Decker J, Sanchez-Luege N, Rebay I. Inter-plane feedback coordinates cell morphogenesis and maintains 3D tissue organization in the Drosophila pupal retina. Development 2024; 151:dev201757. [PMID: 38533736 PMCID: PMC11006395 DOI: 10.1242/dev.201757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/12/2024] [Indexed: 03/28/2024]
Abstract
How complex organs coordinate cellular morphogenetic events to achieve three-dimensional (3D) form is a central question in development. The question is uniquely tractable in the late Drosophila pupal retina, where cells maintain stereotyped contacts as they elaborate the specialized cytoskeletal structures that pattern the apical, basal and longitudinal planes of the epithelium. In this study, we combined cell type-specific genetic manipulation of the cytoskeletal regulator Abelson (Abl) with 3D imaging to explore how the distinct cellular morphogenetic programs of photoreceptors and interommatidial pigment cells (IOPCs) organize tissue pattern to support retinal integrity. Our experiments show that photoreceptor and IOPC terminal differentiation is unexpectedly interdependent, connected by an intercellular feedback mechanism that coordinates and promotes morphogenetic change across orthogonal tissue planes to ensure correct 3D retinal pattern. We propose that genetic regulation of specialized cellular differentiation programs combined with inter-plane mechanical feedback confers spatial coordination to achieve robust 3D tissue morphogenesis.
Collapse
Affiliation(s)
- Xiao Sun
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jacob Decker
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Nicelio Sanchez-Luege
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Burda I, Martin AC, Roeder AHK, Collins MA. The dynamics and biophysics of shape formation: Common themes in plant and animal morphogenesis. Dev Cell 2023; 58:2850-2866. [PMID: 38113851 PMCID: PMC10752614 DOI: 10.1016/j.devcel.2023.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
The emergence of tissue form in multicellular organisms results from the complex interplay between genetics and physics. In both plants and animals, cells must act in concert to pattern their behaviors. Our understanding of the factors sculpting multicellular form has increased dramatically in the past few decades. From this work, common themes have emerged that connect plant and animal morphogenesis-an exciting connection that solidifies our understanding of the developmental basis of multicellular life. In this review, we will discuss the themes and the underlying principles that connect plant and animal morphogenesis, including the coordination of gene expression, signaling, growth, contraction, and mechanical and geometric feedback.
Collapse
Affiliation(s)
- Isabella Burda
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Genetic Genomics and Development Program, Cornell University, Ithaca, NY 14853, USA
| | - Adam C Martin
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Genetic Genomics and Development Program, Cornell University, Ithaca, NY 14853, USA; School of Integrative Plant Sciences, Section of Plant Biology, Cornell University, Ithaca, NY 14850, USA.
| | - Mary Ann Collins
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Sun X, Decker J, Sanchez-Luege N, Rebay I. Orthogonal coupling of a 3D cytoskeletal scaffold coordinates cell morphogenesis and maintains tissue organization in the Drosophila pupal retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531386. [PMID: 36945525 PMCID: PMC10028844 DOI: 10.1101/2023.03.06.531386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
How complex three-dimensional (3D) organs coordinate cellular morphogenetic events to achieve the correct final form is a central question in development. The question is uniquely tractable in the late Drosophila pupal retina where cells maintain stereotyped contacts as they elaborate the specialized cytoskeletal structures that pattern the apical, basal and longitudinal planes of the epithelium. In this study, we combined cell type-specific genetic manipulation of the cytoskeletal regulator Abelson (Abl) with 3D imaging to explore how the distinct cellular morphogenetic programs of photoreceptors and interommatidial pigment cells coordinately organize tissue pattern to support retinal integrity. Our experiments revealed an unanticipated intercellular feedback mechanism whereby correct cellular differentiation of either cell type can non-autonomously induce cytoskeletal remodeling in the other Abl mutant cell type, restoring retinal pattern and integrity. We propose that genetic regulation of specialized cellular differentiation programs combined with inter-plane mechanical feedback confers spatial coordination to achieve robust 3D tissue morphogenesis.
Collapse
|
5
|
Vijayan A, Strauss S, Tofanelli R, Mody TA, Lee K, Tsiantis M, Smith RS, Schneitz K. The annotation and analysis of complex 3D plant organs using 3DCoordX. PLANT PHYSIOLOGY 2022; 189:1278-1295. [PMID: 35348744 PMCID: PMC9237718 DOI: 10.1093/plphys/kiac145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
A fundamental question in biology concerns how molecular and cellular processes become integrated during morphogenesis. In plants, characterization of 3D digital representations of organs at single-cell resolution represents a promising approach to addressing this problem. A major challenge is to provide organ-centric spatial context to cells of an organ. We developed several general rules for the annotation of cell position and embodied them in 3DCoordX, a user-interactive computer toolbox implemented in the open-source software MorphoGraphX. 3DCoordX enables rapid spatial annotation of cells even in highly curved biological shapes. Using 3DCoordX, we analyzed cellular growth patterns in organs of several species. For example, the data indicated the presence of a basal cell proliferation zone in the ovule primordium of Arabidopsis (Arabidopsis thaliana). Proof-of-concept analyses suggested a preferential increase in cell length associated with neck elongation in the archegonium of Marchantia (Marchantia polymorpha) and variations in cell volume linked to central morphogenetic features of a trap of the carnivorous plant Utricularia (Utricularia gibba). Our work demonstrates the broad applicability of the developed strategies as they provide organ-centric spatial context to cellular features in plant organs of diverse shape complexity.
Collapse
Affiliation(s)
| | | | - Rachele Tofanelli
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Tejasvinee Atul Mody
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | - Miltos Tsiantis
- Department of Comparative Developmental and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Richard S Smith
- Department of Comparative Developmental and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- The John Innes Centre, Norwich, UK
| | | |
Collapse
|
6
|
Nakayama H, Koga H, Long Y, Hamant O, Ferjani A. Looking beyond the gene network - metabolic and mechanical cell drivers of leaf morphogenesis. J Cell Sci 2022; 135:275072. [PMID: 35438169 DOI: 10.1242/jcs.259611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The above-ground organs in plants display a rich diversity, yet they grow to characteristic sizes and shapes. Organ morphogenesis progresses through a sequence of key events, which are robustly executed spatiotemporally as an emerging property of intrinsic molecular networks while adapting to various environmental cues. This Review focuses on the multiscale control of leaf morphogenesis. Beyond the list of known genetic determinants underlying leaf growth and shape, we focus instead on the emerging novel mechanisms of metabolic and biomechanical regulations that coordinate plant cell growth non-cell-autonomously. This reveals how metabolism and mechanics are not solely passive outcomes of genetic regulation but play instructive roles in leaf morphogenesis. Such an integrative view also extends to fluctuating environmental cues and evolutionary adaptation. This synthesis calls for a more balanced view on morphogenesis, where shapes are considered from the standpoints of geometry, genetics, energy and mechanics, and as emerging properties of the cellular expression of these different properties.
Collapse
Affiliation(s)
- Hokuto Nakayama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Hiroyuki Koga
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Yuchen Long
- Department of Biological Sciences, The National University of Singapore, Singapore 117543, Singapore
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69007 Lyon, France
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, 184-8501 Tokyo, Japan
| |
Collapse
|
7
|
Lucas M. Future Challenges in Plant Systems Biology. Methods Mol Biol 2022; 2395:325-337. [PMID: 34822161 DOI: 10.1007/978-1-0716-1816-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant systems biology is currently facing several important challenges, whose nature depend on the considered frame of reference and associated scale. This review covers some of the issues associated respectively with the molecular, tissue, and whole-plant scales, as well as discusses the potential for latest advances in synthetic biology and machine-learning methods to be of use in the future of plant systems biology.
Collapse
Affiliation(s)
- Mikaël Lucas
- DIADE, Univ Montpellier, IRD, CIRAD, Montpellier, France.
| |
Collapse
|
8
|
Bhatia N, Runions A, Tsiantis M. Leaf Shape Diversity: From Genetic Modules to Computational Models. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:325-356. [PMID: 34143649 DOI: 10.1146/annurev-arplant-080720-101613] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plant leaves display considerable variation in shape. Here, we introduce key aspects of leaf development, focusing on the morphogenetic basis of leaf shape diversity. We discuss the importance of the genetic control of the amount, duration, and direction of cellular growth for the emergence of leaf form. We highlight how the combined use of live imaging and computational frameworks can help conceptualize how regulated cellular growth is translated into different leaf shapes. In particular, we focus on the morphogenetic differences between simple and complex leaves and how carnivorous plants form three-dimensional insect traps. We discuss how evolution has shaped leaf diversity in the case of complex leaves, by tinkering with organ-wide growth and local growth repression, and in carnivorous plants, by modifying the relative growth of the lower and upper sides of the leaf primordium to create insect-digesting traps.
Collapse
Affiliation(s)
- Neha Bhatia
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| | - Adam Runions
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
- Current affiliation: Department of Computer Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Miltos Tsiantis
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| |
Collapse
|
9
|
Trinh DC, Alonso-Serra J, Asaoka M, Colin L, Cortes M, Malivert A, Takatani S, Zhao F, Traas J, Trehin C, Hamant O. How Mechanical Forces Shape Plant Organs. Curr Biol 2021; 31:R143-R159. [PMID: 33561417 DOI: 10.1016/j.cub.2020.12.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plants produce organs of various shapes and sizes. While much has been learned about genetic regulation of organogenesis, the integration of mechanics in the process is also gaining attention. Here, we consider the role of forces as instructive signals in organ morphogenesis. Turgor pressure is the primary cause of mechanical signals in developing organs. Because plant cells are glued to each other, mechanical signals act, in essence, at multiple scales, through cell wall contiguity and water flux. In turn, cells use such signals to resist mechanical stress, for instance, by reinforcing their cell walls. We show that the three elemental shapes behind plant organs - spheres, cylinders and lamina - can be actively maintained by such a mechanical feedback. Combinations of this 3-letter alphabet can generate more complex shapes. Furthermore, mechanical conflicts emerge at the boundary between domains exhibiting different growth rates or directions. These secondary mechanical signals contribute to three other organ shape features - folds, shape reproducibility and growth arrest. The further integration of mechanical signals with the molecular network offers many fruitful prospects for the scientific community, including the role of proprioception in organ shape robustness or the definition of cell and organ identities as a result of an interplay between biochemical and mechanical signals.
Collapse
Affiliation(s)
- Duy-Chi Trinh
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France; Department of Pharmacological, Medical and Agronomical Biotechnology, University of Science and Technology of Hanoi, Cau Giay District, Hanoi, Vietnam
| | - Juan Alonso-Serra
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Mariko Asaoka
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Leia Colin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Matthieu Cortes
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Alice Malivert
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Shogo Takatani
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Feng Zhao
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Jan Traas
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Christophe Trehin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
10
|
Vijayan A, Tofanelli R, Strauss S, Cerrone L, Wolny A, Strohmeier J, Kreshuk A, Hamprecht FA, Smith RS, Schneitz K. A digital 3D reference atlas reveals cellular growth patterns shaping the Arabidopsis ovule. eLife 2021; 10:e63262. [PMID: 33404501 PMCID: PMC7787667 DOI: 10.7554/elife.63262] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/19/2020] [Indexed: 12/23/2022] Open
Abstract
A fundamental question in biology is how morphogenesis integrates the multitude of processes that act at different scales, ranging from the molecular control of gene expression to cellular coordination in a tissue. Using machine-learning-based digital image analysis, we generated a three-dimensional atlas of ovule development in Arabidopsis thaliana, enabling the quantitative spatio-temporal analysis of cellular and gene expression patterns with cell and tissue resolution. We discovered novel morphological manifestations of ovule polarity, a new mode of cell layer formation, and previously unrecognized subepidermal cell populations that initiate ovule curvature. The data suggest an irregular cellular build-up of WUSCHEL expression in the primordium and new functions for INNER NO OUTER in restricting nucellar cell proliferation and the organization of the interior chalaza. Our work demonstrates the analytical power of a three-dimensional digital representation when studying the morphogenesis of an organ of complex architecture that eventually consists of 1900 cells.
Collapse
Affiliation(s)
- Athul Vijayan
- Plant Developmental Biology, School of Life Sciences, Technical University of MunichFreisingGermany
| | - Rachele Tofanelli
- Plant Developmental Biology, School of Life Sciences, Technical University of MunichFreisingGermany
| | - Sören Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding ResearchCologneGermany
| | - Lorenzo Cerrone
- Heidelberg Collaboratory for Image Processing, Dept. of Physics and Astronomy, Heidelberg UniversityHeidelbergGermany
| | - Adrian Wolny
- Heidelberg Collaboratory for Image Processing, Dept. of Physics and Astronomy, Heidelberg UniversityHeidelbergGermany
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Joanna Strohmeier
- Plant Developmental Biology, School of Life Sciences, Technical University of MunichFreisingGermany
| | - Anna Kreshuk
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Fred A Hamprecht
- Heidelberg Collaboratory for Image Processing, Dept. of Physics and Astronomy, Heidelberg UniversityHeidelbergGermany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding ResearchCologneGermany
| | - Kay Schneitz
- Plant Developmental Biology, School of Life Sciences, Technical University of MunichFreisingGermany
| |
Collapse
|
11
|
Abstract
Development encapsulates the morphogenesis of an organism from a single fertilized cell to a functional adult. A critical part of development is the specification of organ forms. Beyond the molecular control of morphogenesis, shape in essence entails structural constraints and thus mechanics. Revisiting recent results in biophysics and development, and comparing animal and plant model systems, we derive key overarching principles behind the formation of organs across kingdoms. In particular, we highlight how growing organs are active rather than passive systems and how such behavior plays a role in shaping the organ. We discuss the importance of considering different scales in understanding how organs form. Such an integrative view of organ development generates new questions while calling for more cross-fertilization between scientific fields and model system communities.
Collapse
Affiliation(s)
- O Hamant
- Laboratoire de Reproduction et Développement des Plantes, École normale supérieure (ENS) de Lyon, Université Claude Bernard Lyon (UCBL), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), CNRS, Université de Lyon, 69364 Lyon, France;
| | - T E Saunders
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore 117411; .,Institute of Molecular and Cell Biology, A*Star, Proteos, Singapore 138673
| |
Collapse
|
12
|
Rambaud-Lavigne L, Hay A. Floral organ development goes live. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2472-2478. [PMID: 31970400 PMCID: PMC7210761 DOI: 10.1093/jxb/eraa038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/20/2020] [Indexed: 05/19/2023]
Abstract
The chance to watch floral organs develop live is not to be missed! Here, we outline reasons why quantitative, live-cell imaging is an important approach to study floral morphogenesis, and provide a basic workflow of how to get started. We highlight key advances in morphodynamics of lateral organ development, and discuss recent work that uses live confocal imaging to address the regulation of floral organ number, its robustness, and patterning mechanisms that exploit stochasticity.
Collapse
Affiliation(s)
- Léa Rambaud-Lavigne
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Köln, Germany
| | - Angela Hay
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Köln, Germany
| |
Collapse
|
13
|
Takatani S, Verger S, Okamoto T, Takahashi T, Hamant O, Motose H. Microtubule Response to Tensile Stress Is Curbed by NEK6 to Buffer Growth Variation in the Arabidopsis Hypocotyl. Curr Biol 2020; 30:1491-1503.e2. [DOI: 10.1016/j.cub.2020.02.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/11/2020] [Accepted: 02/10/2020] [Indexed: 01/05/2023]
|
14
|
ROBINSON SARAH, DURAND‐SMET PAULINE. Combining tensile testing and microscopy to address a diverse range of questions. J Microsc 2020; 278:145-153. [DOI: 10.1111/jmi.12863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/23/2022]
Affiliation(s)
- SARAH ROBINSON
- The Sainsbury Laboratory Cambridge University Bateman Street Cambridge UK
| | | |
Collapse
|
15
|
Lee KJI, Bushell C, Koide Y, Fozard JA, Piao C, Yu M, Newman J, Whitewoods C, Avondo J, Kennaway R, Marée AFM, Cui M, Coen E. Shaping of a three-dimensional carnivorous trap through modulation of a planar growth mechanism. PLoS Biol 2019; 17:e3000427. [PMID: 31600203 PMCID: PMC6786542 DOI: 10.1371/journal.pbio.3000427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/05/2019] [Indexed: 11/18/2022] Open
Abstract
Leaves display a remarkable range of forms, from flat sheets with simple outlines to cup-shaped traps. Although much progress has been made in understanding the mechanisms of planar leaf development, it is unclear whether similar or distinctive mechanisms underlie shape transformations during development of more complex curved forms. Here, we use 3D imaging and cellular and clonal analysis, combined with computational modelling, to analyse the development of cup-shaped traps of the carnivorous plant Utricularia gibba. We show that the transformation from a near-spherical form at early developmental stages to an oblate spheroid with a straightened ventral midline in the mature form can be accounted for by spatial variations in rates and orientations of growth. Different hypotheses regarding spatiotemporal control predict distinct patterns of cell shape and size, which were tested experimentally by quantifying cellular and clonal anisotropy. We propose that orientations of growth are specified by a proximodistal polarity field, similar to that hypothesised to account for Arabidopsis leaf development, except that in Utricularia, the field propagates through a highly curved tissue sheet. Independent evidence for the polarity field is provided by the orientation of glandular hairs on the inner surface of the trap. Taken together, our results show that morphogenesis of complex 3D leaf shapes can be accounted for by similar mechanisms to those for planar leaves, suggesting that simple modulations of a common growth framework underlie the shaping of a diverse range of morphologies. Many plant and animal organs derive from tissue sheets, but how are they shaped to create the diversity of forms observed in nature? This study uses a combination of imaging and mathematical modelling to show how carnivorous plant traps shape themselves in 3D by a growth framework oriented by tissue polarity, similar to that found in planar leaves.
Collapse
Affiliation(s)
- Karen J. I. Lee
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Claire Bushell
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Yohei Koide
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - John A. Fozard
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Chunlan Piao
- College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Linan, Zhejiang, China
| | - Man Yu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Jacob Newman
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Christopher Whitewoods
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Jerome Avondo
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Richard Kennaway
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Athanasius F. M. Marée
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Minlong Cui
- College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Linan, Zhejiang, China
- * E-mail: (EC); (MC)
| | - Enrico Coen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- * E-mail: (EC); (MC)
| |
Collapse
|
16
|
Echevin E, Le Gloanec C, Skowrońska N, Routier-Kierzkowska AL, Burian A, Kierzkowski D. Growth and biomechanics of shoot organs. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3573-3585. [PMID: 31037307 DOI: 10.1093/jxb/erz205] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Plant organs arise through complex interactions between biological and physical factors that control morphogenesis. While there has been tremendous progress in the understanding of the genetics behind development, we know much less about how mechanical forces control growth in plants. In recent years, new multidisciplinary research combining genetics, live-imaging, physics, and computational modeling has begun to fill this gap by revealing the crucial role of biomechanics in the establishment of plant organs. In this review, we provide an overview of our current understanding of growth during initiation, patterning, and expansion of shoot lateral organs. We discuss how growth is controlled by physical forces, and how mechanical stresses generated during growth can control morphogenesis at the level of both cells and tissues. Understanding the mechanical basis of growth and morphogenesis in plants is in its early days, and many puzzling facts are yet to be deciphered.
Collapse
Affiliation(s)
- Emilie Echevin
- Institut de Recherche en Biologie Végétale, Department of Biological Sciences, University of Montreal, Montréal, QC, Canada
| | - Constance Le Gloanec
- Institut de Recherche en Biologie Végétale, Department of Biological Sciences, University of Montreal, Montréal, QC, Canada
| | - Nikolina Skowrońska
- Department of Biophysics and Morphogenesis of Plants, University of Silesia, Jagiellońska, Katowice, Poland
| | - Anne-Lise Routier-Kierzkowska
- Institut de Recherche en Biologie Végétale, Department of Biological Sciences, University of Montreal, Montréal, QC, Canada
| | - Agata Burian
- Department of Biophysics and Morphogenesis of Plants, University of Silesia, Jagiellońska, Katowice, Poland
| | - Daniel Kierzkowski
- Institut de Recherche en Biologie Végétale, Department of Biological Sciences, University of Montreal, Montréal, QC, Canada
| |
Collapse
|
17
|
Abstract
Differential growth is the driver of tissue morphogenesis in plants, and also plays a fundamental role in animal development. Although the contributions of growth to shape change have been captured through modelling tissue sheets or isotropic volumes, a framework for modelling both isotropic and anisotropic volumetric growth in three dimensions over large changes in size and shape has been lacking. Here, we describe an approach based on finite-element modelling of continuous volumetric structures, and apply it to a range of forms and growth patterns, providing mathematical validation for examples that admit analytic solution. We show that a major difference between sheet and bulk tissues is that the growth of bulk tissue is more constrained, reducing the possibility of tissue conflict resolution through deformations such as buckling. Tissue sheets or cylinders may be generated from bulk shapes through anisotropic specified growth, oriented by a polarity field. A second polarity field, orthogonal to the first, allows sheets with varying lengths and widths to be generated, as illustrated by the wide range of leaf shapes observed in nature. The framework we describe thus provides a key tool for developing hypotheses for plant morphogenesis and is also applicable to other tissues that deform through differential growth or contraction.
Collapse
Affiliation(s)
- Richard Kennaway
- Cell and Developmental Biology, John Innes Centre , Norwich , UK
| | - Enrico Coen
- Cell and Developmental Biology, John Innes Centre , Norwich , UK
| |
Collapse
|
18
|
Kierzkowski D, Runions A, Vuolo F, Strauss S, Lymbouridou R, Routier-Kierzkowska AL, Wilson-Sánchez D, Jenke H, Galinha C, Mosca G, Zhang Z, Canales C, Dello Ioio R, Huijser P, Smith RS, Tsiantis M. A Growth-Based Framework for Leaf Shape Development and Diversity. Cell 2019; 177:1405-1418.e17. [PMID: 31130379 PMCID: PMC6548024 DOI: 10.1016/j.cell.2019.05.011] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/15/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022]
Abstract
How do genes modify cellular growth to create morphological diversity? We study this problem in two related plants with differently shaped leaves: Arabidopsis thaliana (simple leaf shape) and Cardamine hirsuta (complex shape with leaflets). We use live imaging, modeling, and genetics to deconstruct these organ-level differences into their cell-level constituents: growth amount, direction, and differentiation. We show that leaf shape depends on the interplay of two growth modes: a conserved organ-wide growth mode that reflects differentiation; and a local, directional mode that involves the patterning of growth foci along the leaf edge. Shape diversity results from the distinct effects of two homeobox genes on these growth modes: SHOOTMERISTEMLESS broadens organ-wide growth relative to edge-patterning, enabling leaflet emergence, while REDUCED COMPLEXITY inhibits growth locally around emerging leaflets, accentuating shape differences created by patterning. We demonstrate the predictivity of our findings by reconstructing key features of C. hirsuta leaf morphology in A. thaliana. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Daniel Kierzkowski
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Adam Runions
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Francesco Vuolo
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Sören Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Rena Lymbouridou
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Anne-Lise Routier-Kierzkowska
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - David Wilson-Sánchez
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Hannah Jenke
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Carla Galinha
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Gabriella Mosca
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Zhongjuan Zhang
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Claudia Canales
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Raffaele Dello Ioio
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Peter Huijser
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| |
Collapse
|
19
|
Verger S, Liu M, Hamant O. Mechanical Conflicts in Twisting Growth Revealed by Cell-Cell Adhesion Defects. FRONTIERS IN PLANT SCIENCE 2019; 10:173. [PMID: 30858857 PMCID: PMC6397936 DOI: 10.3389/fpls.2019.00173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/01/2019] [Indexed: 05/31/2023]
Abstract
Many plants grow organs and tissues with twisted shapes. Arabidopsis mutants with impaired microtubule dynamics exhibit such a phenotype constitutively. Although the activity of the corresponding microtubule regulators is better understood at the molecular level, how large-scale twisting can emerge in the mutants remains largely unknown. Classically, oblique cortical microtubules would constrain the deposition of cellulose microfibrils in cells, and such conflicts at the cell level would be relaxed at the tissue scale by supracellular torsion. This model implicitly assumes that cell-cell adhesion is a key step to transpose local mechanical conflicts into a macroscopic twisting phenotype. Here we tested this prediction using the quasimodo1 mutant, which displays cell-cell adhesion defects. Using the spriral2/tortifolia1 mutant with hypocotyl helical growth, we found that qua1-induced cell-cell adhesion defects restore straight growth in qua1-1 spr2-2. Detached cells in qua1-1 spr2-2 displayed helical growth, confirming that straight growth results from the lack of mechanical coupling between cells rather than a restoration of SPR2 activity in the qua1 mutant. Because adhesion defects in qua1 depend on tension in the outer wall, we also showed that hypocotyl twisting in qua1-1 spr2-2 could be restored when decreasing the matrix potential of the growth medium, i.e., by reducing the magnitude of the pulling force between adjacent cells, in the double mutant. Interestingly, the induction of straight growth in qua1-1 spr2-2 could be achieved beyond hypocotyls, as leaves also displayed a flat phenotype in the double mutant. Altogether, these results provide formal experimental support for a scenario in which twisted growth in spr2 mutant would result from the relaxation of local mechanical conflicts between adjacent cells via global organ torsion.
Collapse
|
20
|
Scholz S, Pleßmann J, Enugutti B, Hüttl R, Wassmer K, Schneitz K. The AGC protein kinase UNICORN controls planar growth by attenuating PDK1 in Arabidopsis thaliana. PLoS Genet 2019; 15:e1007927. [PMID: 30742613 PMCID: PMC6386418 DOI: 10.1371/journal.pgen.1007927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/22/2019] [Accepted: 01/02/2019] [Indexed: 11/19/2022] Open
Abstract
Tissue morphogenesis critically depends on the coordination of cellular growth patterns. In plants, many organs consist of clonally distinct cell layers, such as the epidermis, whose cells undergo divisions that are oriented along the plane of the layer. The developmental control of such planar growth is poorly understood. We have previously identified the Arabidopsis AGCVIII-class protein kinase UNICORN (UCN) as a central regulator of this process. Plants lacking UCN activity show spontaneous formation of ectopic multicellular protrusions in integuments and malformed petals indicating that UCN suppresses uncontrolled growth in those tissues. In the current model UCN regulates planar growth of integuments in part by directly repressing the putative transcription factor ABERRANT TESTA SHAPE (ATS). Here we report on the identification of 3-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE 1 (PDK1) as a novel factor involved in UCN-mediated growth control. PDK1 constitutes a basic component of signaling mediated by AGC protein kinases throughout eukaryotes. Arabidopsis PDK1 is implied in stress responses and growth promotion. Here we show that loss-of-function mutations in PDK1 suppress aberrant growth in integuments and petals of ucn mutants. Additional genetic, in vitro, and cell biological data support the view that UCN functions by repressing PDK1. Furthermore, our data indicate that PDK1 is indirectly required for deregulated growth caused by ATS overexpression. Our findings support a model proposing that UCN suppresses ectopic growth in integuments through two independent processes: the attenuation of the protein kinase PDK1 in the cytoplasm and the repression of the transcription factor ATS in the nucleus.
Collapse
Affiliation(s)
- Sebastian Scholz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Janys Pleßmann
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Balaji Enugutti
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Regina Hüttl
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Katrin Wassmer
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Kay Schneitz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- * E-mail:
| |
Collapse
|
21
|
Kierzkowski D, Routier-Kierzkowska AL. Cellular basis of growth in plants: geometry matters. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:56-63. [PMID: 30308452 DOI: 10.1016/j.pbi.2018.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 05/28/2023]
Abstract
The growth of individual cells underlies the development of biological forms. In plants, cells are interconnected by rigid walls, fixing their position with respect to one another and generating mechanical feedbacks between cells. Current research is shedding new light on how plant growth is controlled by physical inputs at the level of individual cells and growing tissues. In this review, we discuss recent progress in our understanding of the cellular basis of growth from a biomechanical perspective. We describe the role of the cell wall and turgor pressure in growth and highlight the often-overlooked role of cell geometry in this process. It is becoming apparent that a combination of experimental and theoretical approaches is required to answer new emerging questions in the biomechanics of plant morphogenesis. We summarise how this multidisciplinary approach brings us closer to a unified understanding of the generation of biological forms in plants.
Collapse
Affiliation(s)
- Daniel Kierzkowski
- Plant Science Research Institute, Department of Biological Sciences, University of Montreal, 4101 Sherbrooke Est, Montréal H1X 2B2, QC, Canada
| | - Anne-Lise Routier-Kierzkowska
- Plant Science Research Institute, Department of Biological Sciences, University of Montreal, 4101 Sherbrooke Est, Montréal H1X 2B2, QC, Canada.
| |
Collapse
|
22
|
Richardson AE, Hake S. Drawing a Line: Grasses and Boundaries. PLANTS 2018; 8:plants8010004. [PMID: 30585196 PMCID: PMC6359313 DOI: 10.3390/plants8010004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 11/26/2022]
Abstract
Delineation between distinct populations of cells is essential for organ development. Boundary formation is necessary for the maintenance of pluripotent meristematic cells in the shoot apical meristem (SAM) and differentiation of developing organs. Boundaries form between the meristem and organs, as well as between organs and within organs. Much of the research into the boundary gene regulatory network (GRN) has been carried out in the eudicot model Arabidopsis thaliana. This work has identified a dynamic network of hormone and gene interactions. Comparisons with other eudicot models, like tomato and pea, have shown key conserved nodes in the GRN and species-specific alterations, including the recruitment of the boundary GRN in leaf margin development. How boundaries are defined in monocots, and in particular the grass family which contains many of the world’s staple food crops, is not clear. In this study, we review knowledge of the grass boundary GRN during vegetative development. We particularly focus on the development of a grass-specific within-organ boundary, the ligule, which directly impacts leaf architecture. We also consider how genome engineering and the use of natural diversity could be leveraged to influence key agronomic traits relative to leaf and plant architecture in the future, which is guided by knowledge of boundary GRNs.
Collapse
Affiliation(s)
- Annis E Richardson
- Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| | - Sarah Hake
- Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
- USDA Plant Gene Expression Center, 800 Buchanan Street, Albany, CA 94710, USA.
| |
Collapse
|
23
|
Cullen E, Fernández-Mazuecos M, Glover BJ. Evolution of nectar spur length in a clade of Linaria reflects changes in cell division rather than in cell expansion. ANNALS OF BOTANY 2018; 122:801-809. [PMID: 29370374 PMCID: PMC6215036 DOI: 10.1093/aob/mcx213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/08/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Nectar spurs (tubular outgrowths of a floral organ which contain, or give the appearance of containing, nectar) are hypothesized to be a 'key innovation' which can lead to rapid speciation within a lineage, because they are involved in pollinator specificity. Despite the ecological importance of nectar spurs, relatively little is known about their development. We used a comparative approach to investigate variation in nectar spur length in a clade of eight Iberian toadflaxes. METHODS Spur growth was measured at the macroscopic level over time in all eight species, and growth rate and growth duration compared. Evolution of growth rate was reconstructed across the phylogeny. Within the clade we then focused on Linaria becerrae and Linaria clementei, a pair of sister species which have extremely long and short spurs, respectively. Characterization at a micromorphological level was performed across a range of key developmental stages to determine whether the difference in spur length is due to differential cell expansion or cell division. KEY RESULTS We detected a significant difference in the evolved growth rates, while developmental timing of both the initiation and the end of spur growth remained similar. Cell number is three times higher in the long spurred L. becerrae compared with L. clementei, whereas cell length is only 1.3 times greater. In addition, overall anisotropy of mature cells is not significantly different between the two species. CONCLUSIONS We found that changes in cell number and therefore in cell division largely explain evolution of spur length. This contrasts with previous studies in Aquilegia which have found that variation in nectar spur length is due to directed cell expansion (anisotropy) over variable time frames. Our study adds to knowledge about nectar spur development in a comparative context and indicates that different systems may have evolved nectar spurs using disparate mechanisms.
Collapse
Affiliation(s)
- E Cullen
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - M Fernández-Mazuecos
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Real Jardín Botánico (RJB-CSIC), Madrid, Spain
| | - B J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Woźniak NJ, Sicard A. Evolvability of flower geometry: Convergence in pollinator-driven morphological evolution of flowers. Semin Cell Dev Biol 2018; 79:3-15. [DOI: 10.1016/j.semcdb.2017.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 01/01/2023]
|
25
|
Liu J, Moore S, Chen C, Lindsey K. Crosstalk Complexities between Auxin, Cytokinin, and Ethylene in Arabidopsis Root Development: From Experiments to Systems Modeling, and Back Again. MOLECULAR PLANT 2017; 10:1480-1496. [PMID: 29162416 DOI: 10.1016/j.molp.2017.11.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 05/23/2023]
Abstract
Understanding how hormones and genes interact to coordinate plant growth in a changing environment is a major challenge in plant developmental biology. Auxin, cytokinin, and ethylene are three important hormones that regulate many aspects of plant development. This review critically evaluates the crosstalk between the three hormones in Arabidopsis root development. We integrate a variety of experimental data into a crosstalk network, which reveals multiple layers of complexity in auxin, cytokinin, and ethylene crosstalk. In particular, data integration reveals an additional, largely overlooked link between the ethylene and cytokinin pathways, which acts through a phosphorelay mechanism. This proposed link addresses outstanding questions on whether ethylene application promotes or inhibits receptor kinase activity of the ethylene receptors. Elucidating the complexity in auxin, cytokinin, and ethylene crosstalk requires a combined experimental and systems modeling approach. We evaluate important modeling efforts for establishing how crosstalk between auxin, cytokinin, and ethylene regulates patterning in root development. We discuss how a novel methodology that iteratively combines experiments with systems modeling analysis is essential for elucidating the complexity in crosstalk of auxin, cytokinin, and ethylene in root development. Finally, we discuss the future challenges from a combined experimental and modeling perspective.
Collapse
Affiliation(s)
- Junli Liu
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Simon Moore
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
26
|
Abstract
The mechanisms by which organisms acquire their sizes and shapes through growth was a major focus of D'Arcy Thompson's book On Growth and Form. By applying mathematical and physical principles to a range of biological forms, Thompson achieved fresh insights, such as the notion that diverse biological shapes could be related through simple deformations of a coordinate system. However, Thompson considered genetics to lie outside the scope of his work, even though genetics was a growing discipline at the time the book was published. Here, we review how recent advances in cell, developmental, evolutionary and computational biology allow Thompson's ideas to be integrated with genes and the processes they influence to provide a deeper understanding of growth and morphogenesis. We consider how genes interact with subcellular-, cellular- and tissue-level processes in plants to yield patterns of growth that underlie the developmental and evolutionary shape transformations Thompson so eloquently described.
Collapse
Affiliation(s)
- Enrico Coen
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Richard Kennaway
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Christopher Whitewoods
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| |
Collapse
|
27
|
Hervieux N, Tsugawa S, Fruleux A, Dumond M, Routier-Kierzkowska AL, Komatsuzaki T, Boudaoud A, Larkin JC, Smith RS, Li CB, Hamant O. Mechanical Shielding of Rapidly Growing Cells Buffers Growth Heterogeneity and Contributes to Organ Shape Reproducibility. Curr Biol 2017; 27:3468-3479.e4. [DOI: 10.1016/j.cub.2017.10.033] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/06/2017] [Accepted: 10/11/2017] [Indexed: 01/02/2023]
|
28
|
Abstract
Inspired by the differential-growth-driven morphogenesis of leaves, flowers, and other tissues, there is increasing interest in artificial analogs of these shape-shifting thin sheets made of active materials that respond to environmental stimuli such as heat, light, and humidity. But how can we determine the growth patterns to achieve a given shape from another shape? We solve this geometric inverse problem of determining the growth factors and directions (the metric tensors) for a given isotropic elastic bilayer to grow into a target shape by posing and solving an elastic energy minimization problem. A mathematical equivalence between bilayers and curved monolayers simplifies the inverse problem considerably by providing algebraic expressions for the growth metric tensors in terms of those of the final shape. This approach also allows us to prove that we can grow any target surface from any reference surface using orthotropically growing bilayers. We demonstrate this by numerically simulating the growth of a flat sheet into a face, a cylindrical sheet into a flower, and a flat sheet into a complex canyon-like structure.
Collapse
|
29
|
Jackson MDB, Duran-Nebreda S, Bassel GW. Network-based approaches to quantify multicellular development. J R Soc Interface 2017; 14:20170484. [PMID: 29021161 PMCID: PMC5665831 DOI: 10.1098/rsif.2017.0484] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/14/2017] [Indexed: 12/26/2022] Open
Abstract
Multicellularity and cellular cooperation confer novel functions on organs following a structure-function relationship. How regulated cell migration, division and differentiation events generate cellular arrangements has been investigated, providing insight into the regulation of genetically encoded patterning processes. Much less is known about the higher-order properties of cellular organization within organs, and how their functional coordination through global spatial relations shape and constrain organ function. Key questions to be addressed include: why are cells organized in the way they are? What is the significance of the patterns of cellular organization selected for by evolution? What other configurations are possible? These may be addressed through a combination of global cellular interaction mapping and network science to uncover the relationship between organ structure and function. Using this approach, global cellular organization can be discretized and analysed, providing a quantitative framework to explore developmental processes. Each of the local and global properties of integrated multicellular systems can be analysed and compared across different tissues and models in discrete terms. Advances in high-resolution microscopy and image analysis continue to make cellular interaction mapping possible in an increasing variety of biological systems and tissues, broadening the further potential application of this approach. Understanding the higher-order properties of complex cellular assemblies provides the opportunity to explore the evolution and constraints of cell organization, establishing structure-function relationships that can guide future organ design.
Collapse
Affiliation(s)
| | | | - George W Bassel
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
30
|
|
31
|
Sato EM, Baroux C. Analysis of 3D Cellular Organization of Fixed Plant Tissues Using a User-guided Platform for Image Segmentation. Bio Protoc 2017; 7:e2355. [PMID: 34541102 DOI: 10.21769/bioprotoc.2355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/08/2017] [Accepted: 05/25/2017] [Indexed: 11/02/2022] Open
Abstract
The advent of non-invasive, high-resolution microscopy imaging techniques and computational pipelines for high-throughput image processing has contributed to gain insights in plant organ morphogenesis at the cellular level. Confocal scanning laser microscopy (CSLM) allows the generation of three dimensional images constituted of serial optical sections reporting on stained subcellular structures. Fluorescent labels of cell walls or cell membranes, either chemically or through reporter proteins, are particularly useful for the analyses of tissue organization and cellular shapes in 3D. Image segmentation based on cell boundary signals is used as an input to generate 3D-segments representing cells. These digitalized, 3D objects provide quantitative data on cell shape, size, geometry, position or on (intercellular) intensity signals if additional reporters are used. Herein, we report a detailed, annotated workflow for image segmentation using microscopic data. We used it in the context of a study of tissue patterning during ovule primordium development in Arabidopsis thaliana. Whole carpels are stained for cell boundaries using a modified pseudo-Schiff propidium iodide (mPS-PI) protocol, 3D images are acquired at high resolution by CSLM, segmented and annotated for individual cell types using ImarisCell. This allows for quantitative analyses of cell shape and cell number that are relevant for tissue morphodynamic studies.
Collapse
Affiliation(s)
- Ethel Mendocilla Sato
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Célia Baroux
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
32
|
|
33
|
|
34
|
Rebocho AB, Southam P, Kennaway JR, Bangham JA, Coen E. Generation of shape complexity through tissue conflict resolution. eLife 2017; 6:e20156. [PMID: 28166865 PMCID: PMC5295819 DOI: 10.7554/elife.20156] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/02/2017] [Indexed: 12/22/2022] Open
Abstract
Out-of-plane tissue deformations are key morphogenetic events during plant and animal development that generate 3D shapes, such as flowers or limbs. However, the mechanisms by which spatiotemporal patterns of gene expression modify cellular behaviours to generate such deformations remain to be established. We use the Snapdragon flower as a model system to address this problem. Combining cellular analysis with tissue-level modelling, we show that an orthogonal pattern of growth orientations plays a key role in generating out-of-plane deformations. This growth pattern is most likely oriented by a polarity field, highlighted by PIN1 protein localisation, and is modulated by dorsoventral gene activity. The orthogonal growth pattern interacts with other patterns of differential growth to create tissue conflicts that shape the flower. Similar shape changes can be generated by contraction as well as growth, suggesting tissue conflict resolution provides a flexible morphogenetic mechanism for generating shape diversity in plants and animals.
Collapse
Affiliation(s)
- Alexandra B Rebocho
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, England
| | - Paul Southam
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, England
| | - J Richard Kennaway
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, England
| | - J Andrew Bangham
- School of Computational Sciences, University of East Anglia, Norwich, England
| | - Enrico Coen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, England
| |
Collapse
|