1
|
Wang X, Zhu R, Yu P, Qi S, Zhong Z, Jin R, Wang Y, Gu Y, Ye D, Chen K, Shu Y, Wang Y, Yu FX. WWC proteins-mediated compensatory mechanism restricts schwannomatosis driven by NF2 loss of function. SCIENCE ADVANCES 2025; 11:eadp4765. [PMID: 39841844 PMCID: PMC11753430 DOI: 10.1126/sciadv.adp4765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025]
Abstract
NF2-related schwannomatosis, previously known as neurofibromatosis type 2, is a genetic disorder characterized by nerve tumors due to NF2 gene mutations. Mice with Nf2 deletion develop schwannomas slowly with low penetrance, hence inconvenient for preclinical studies. Here, we show that NF2, by recruiting E3 ubiquitin ligases β-TrCP1/2, promotes WWC1-3 ubiquitination and degradation. In NF2 mutated cells, WWC1-3 accumulation is a compensatory mechanism to prevent YAP/TAZ hyperactivation and rapid tumorigenesis. Accordingly, we generate a synthetic mouse model with complete penetrance and short latency by concurrently deleting Nf2 and Wwc1/2 in Schwann cells. This model closely resembles NF2-related schwannomatosis in patients, as confirmed by histological and single-cell transcriptome analysis. Moreover, a cell line from mouse schwannomas and a syngeneic tumor model in immune-competent mice are established. Furthermore, a screen using established models has identified candidate drugs that effectively suppress schwannoma progression. Hence, this work has developed rapid and transplantable models that will facilitate both basic and translational research on NF2-related schwannomatosis.
Collapse
Affiliation(s)
- Xueying Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Zhu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pengcheng Yu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sixian Qi
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenxing Zhong
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruxin Jin
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Gu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan Ye
- Huashan Hospital and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kang Chen
- Department of Obstetrics and Gynecology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yi Wang
- Department of Neurology, Children’s Hospital of Fudan University, National Children’s Medical Center, Fudan University, Shanghai, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Elwakiel A, Gupta D, Rana R, Manoharan J, Al-Dabet MM, Ambreen S, Fatima S, Zimmermann S, Mathew A, Li Z, Singh K, Gupta A, Pal S, Sulaj A, Kopf S, Schwab C, Baber R, Geffers R, Götze T, Alo B, Lamers C, Kluge P, Kuenze G, Kohli S, Renné T, Shahzad K, Isermann B. Factor XII signaling via uPAR-integrin β1 axis promotes tubular senescence in diabetic kidney disease. Nat Commun 2024; 15:7963. [PMID: 39261453 PMCID: PMC11390906 DOI: 10.1038/s41467-024-52214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Coagulation factor XII (FXII) conveys various functions as an active protease that promotes thrombosis and inflammation, and as a zymogen via surface receptors like urokinase-type plasminogen activator receptor (uPAR). While plasma levels of FXII are increased in diabetes mellitus and diabetic kidney disease (DKD), a pathogenic role of FXII in DKD remains unknown. Here we show that FXII is locally expressed in kidney tubular cells and that urinary FXII correlates with kidney dysfunction in DKD patients. F12-deficient mice (F12-/-) are protected from hyperglycemia-induced kidney injury. Mechanistically, FXII interacts with uPAR on tubular cells promoting integrin β1-dependent signaling. This signaling axis induces oxidative stress, persistent DNA damage and senescence. Blocking uPAR or integrin β1 ameliorates FXII-induced tubular cell injury. Our findings demonstrate that FXII-uPAR-integrin β1 signaling on tubular cells drives senescence. These findings imply previously undescribed diagnostic and therapeutic approaches to detect or treat DKD and possibly other senescence-associated diseases.
Collapse
Affiliation(s)
- Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany.
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Jayakumar Manoharan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Moh'd Mohanad Al-Dabet
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
- Department of Medical Laboratory Sciences, School of Science, University of Jordan, Amman, Jordan
| | - Saira Ambreen
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Zhiyang Li
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Surinder Pal
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Alba Sulaj
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Stefan Kopf
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Constantin Schwab
- Institute of pathology, University of Heidelberg, Heidelberg, Germany
| | - Ronny Baber
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
- Leipzig Medical Biobank, Leipzig University, Leipzig, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tom Götze
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Bekas Alo
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Christina Lamers
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Paul Kluge
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Georg Kuenze
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, Leipzig, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
3
|
Ding X, Gao X, Ren A, Xu J, Jiang X, Liang X, Xie K, Zhou Y, Hu C, Huang D. Sevoflurane enhances autophagy via Rac1 to attenuate lung ischaemia‒reperfusion injury. Chem Biol Interact 2024; 397:111078. [PMID: 38815668 DOI: 10.1016/j.cbi.2024.111078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Sevoflurane can attenuate lung ischaemia‒reperfusion injury (LIRI). However, the protective mechanism is unclear. In this study, we developed a LIRI model in vivo that animals (SD, n = 15) were subjected to the administration of 2.2 % sevoflurane 30 min before the onset of left pulmonary artery clamping for 45 min, which was then followed by 60 min of reperfusion treatment. Then, transcriptome sequencing was used to analyse lung tissues. Autophagy inhibition (3-MA) and Rac1-overexpression transfection plasmids were used in BEAS-2B cells, and BEAS-2B cells were subjected to hypoxia reoxygenation (H/R) and sevoflurane treatment. In both animal tissue and cells, inflammatory cytokines and apoptotic and autophagy molecules were measured by quantitative real-time PCR, western blotting and immunostaining. As a result, decreased arterial partial oxygen and damage to the histological structure of lung tissues were observed in LIRI model rats, and these effects were reversed by sevoflurane treatment. Activation of inflammation (elevated IL-1β, IL-6, and TNF-α) and apoptosis (elevated cleaved caspase3/caspase3 and Bax, degraded expression of Bcl2) and inhibition of autophagy (elevated P62, degraded expression of Beclin1 and LC3-II/LC3I) in the model group were ameliorated by sevoflurane. Transcriptome sequencing indicated that the PI3K/Akt pathway regulated by Rac1 plays an important role in LIRI. Furthermore, overexpression of Rac1 in a cell line inhibited the protective effect of sevoflurane in LIRI. Autophagy inhibition (3-MA) also prevented the protective effect of sevoflurane on inflammation and apoptosis. As shown in the present study, sevoflurane enhances autophagy via Rac1/PI3K/AKT signalling to attenuate lung ischaemia‒reperfusion injury.
Collapse
Affiliation(s)
- Xian Ding
- Department of Anesthesiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214000, China
| | - Xiang Gao
- Department of Anesthesiology, The Affiliated Fujian Maternity and Child Health Hospital of Fujian Medical University, 350001, China
| | - Aolin Ren
- Department of Anesthesiology and Pain Medicine, Jiangnan University Medical Center, Wuxi No.2 People's Hospital, 214002, China
| | - Jingjing Xu
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214023, China
| | - Xuliang Jiang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200030, China
| | - Xiao Liang
- Department of Anesthesiology and Pain Medicine, Jiangnan University Medical Center, Wuxi No.2 People's Hospital, 214002, China
| | - Kangjie Xie
- Department of Anesthesiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Research Center for Neuro-Oncology Interaction, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, China
| | - Yan Zhou
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214023, China
| | - Chunxiao Hu
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214023, China
| | - Dongxiao Huang
- Department of Anesthesiology and Pain Medicine, Jiangnan University Medical Center, Wuxi No.2 People's Hospital, 214002, China.
| |
Collapse
|
4
|
Pei L, Ouyang Z, Zhang H, Huang S, Jiang R, Liu B, Tang Y, Feng M, Yuan M, Wang H, Yao S, Shi S, Yu Z, Xu D, Gong G, Wei K. Thrombospondin 1 and Reelin act through Vldlr to regulate cardiac growth and repair. Basic Res Cardiol 2024; 119:169-192. [PMID: 38147128 DOI: 10.1007/s00395-023-01021-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/27/2023]
Abstract
Adult mammalian cardiomyocytes have minimal cell cycle capacity, which leads to poor regeneration after cardiac injury such as myocardial infarction. Many positive regulators of cardiomyocyte cell cycle and cardioprotective signals have been identified, but extracellular signals that suppress cardiomyocyte proliferation are poorly understood. We profiled receptors enriched in postnatal cardiomyocytes, and found that very-low-density-lipoprotein receptor (Vldlr) inhibits neonatal cardiomyocyte cell cycle. Paradoxically, Reelin, the well-known Vldlr ligand, expressed in cardiac Schwann cells and lymphatic endothelial cells, promotes neonatal cardiomyocyte proliferation. Thrombospondin1 (TSP-1), another ligand of Vldlr highly expressed in adult heart, was then found to inhibit cardiomyocyte proliferation through Vldlr, and may contribute to Vldlr's overall repression on proliferation. Mechanistically, Rac1 and subsequent Yap phosphorylation and nucleus translocation mediate the regulation of the cardiomyocyte cell cycle by TSP-1/Reelin-Vldlr signaling. Importantly, Reln mutant neonatal mice displayed impaired cardiomyocyte proliferation and cardiac regeneration after apical resection, while cardiac-specific Thbs1 deletion and cardiomyocyte-specific Vldlr deletion promote cardiomyocyte proliferation and are cardioprotective after myocardial infarction. Our results identified a novel role of Vldlr in consolidating extracellular signals to regulate cardiomyocyte cell cycle activity and survival, and the overall suppressive TSP-1-Vldlr signal may contribute to the poor cardiac repair capacity of adult mammals.
Collapse
Affiliation(s)
- Lijuan Pei
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhaohui Ouyang
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Hongjie Zhang
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shiqi Huang
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Rui Jiang
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Bilin Liu
- Institute for Regenerative Medicine, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
| | - Yansong Tang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Mengying Feng
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Min Yuan
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Haocun Wang
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Su Yao
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shuyue Shi
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhao Yu
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Dachun Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Guohua Gong
- Institute for Regenerative Medicine, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
| | - Ke Wei
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
5
|
Gerardo-Ramírez M, Giam V, Becker D, Groth M, Hartmann N, Morrison H, May-Simera HL, Radsak MP, Marquardt JU, Galle PR, Herrlich P, Straub BK, Hartmann M. Deletion of Cd44 Inhibits Metastasis Formation of Liver Cancer in Nf2-Mutant Mice. Cells 2023; 12:cells12091257. [PMID: 37174657 PMCID: PMC10177437 DOI: 10.3390/cells12091257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Primary liver cancer is the third leading cause of cancer-related death worldwide. An increasing body of evidence suggests that the Hippo tumor suppressor pathway plays a critical role in restricting cell proliferation and determining cell fate during physiological and pathological processes in the liver. Merlin (Moesin-Ezrin-Radixin-like protein) encoded by the NF2 (neurofibromatosis type 2) gene is an upstream regulator of the Hippo signaling pathway. Targeting of Merlin to the plasma membrane seems to be crucial for its major tumor-suppressive functions; this is facilitated by interactions with membrane-associated proteins, including CD44 (cluster of differentiation 44). Mutations within the CD44-binding domain of Merlin have been reported in many human cancers. This study evaluated the relative contribution of CD44- and Merlin-dependent processes to the development and progression of liver tumors. To this end, mice with a liver-specific deletion of the Nf2 gene were crossed with Cd44-knockout mice and subjected to extensive histological, biochemical and molecular analyses. In addition, cells were isolated from mutant livers and analyzed by in vitro assays. Deletion of Nf2 in the liver led to substantial liver enlargement and generation of hepatocellular carcinomas (HCCs), intrahepatic cholangiocarcinomas (iCCAs), as well as mixed hepatocellular cholangiocarcinomas. Whilst deletion of Cd44 had no influence on liver size or primary liver tumor development, it significantly inhibited metastasis formation in Nf2-mutant mice. CD44 upregulates expression of integrin β2 and promotes transendothelial migration of liver cancer cells, which may facilitate metastatic spreading. Overall, our results suggest that CD44 may be a promising target for intervening with metastatic spreading of liver cancer.
Collapse
Affiliation(s)
- Monserrat Gerardo-Ramírez
- Department of Medicine I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Vanessa Giam
- Department of Medicine I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Diana Becker
- Department of Medicine I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Marco Groth
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Nils Hartmann
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Helen Morrison
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller University, 07745 Jena, Germany
| | - Helen L May-Simera
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Markus P Radsak
- Department of Medicine III, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Jens U Marquardt
- Department of Medicine I, University Medical Center Schleswig-Holstein, Campus Lübeck, 23558 Lübeck, Germany
| | - Peter R Galle
- Department of Medicine I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Peter Herrlich
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Beate K Straub
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Monika Hartmann
- Department of Medicine I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
6
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021; 102:455-510. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Orgaz
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Samantha George
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
7
|
Wu R, Högberg J, Adner M, Stenius U, Zheng H. Crystalline silica particles induce DNA damage in respiratory epithelium by ATX secretion and Rac1 activation. Biochem Biophys Res Commun 2021; 548:91-97. [PMID: 33636640 DOI: 10.1016/j.bbrc.2021.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/05/2021] [Indexed: 11/28/2022]
Abstract
Autotaxin (ATX) and its product lysophosphatidic acid (LPA) have been implicated in lung fibrosis and cancer. We have studied their roles in DNA damage induced by carcinogenic crystalline silica particles (CSi). In an earlier study on bronchial epithelia, we concluded that ATX, via paracrine signaling, amplifies DNA damage. This effect was seen at 6-16 h. A succeeding study showed that CSi induced NLRP3 phosphorylation, mitochondrial depolarization, double strand breaks (DSBs), and NHEJ repair enzymes within minutes. In the current study we hypothesized a role for the ATX-LPA axis also in this rapid DNA damage. Using 16HBE human bronchial epithelial cells, we show ATX secretion at 3 min, and that ATX inhibitors (HA130 and PF8380) prevented both CSi-induced mitochondrial depolarization and DNA damage (detected by γH2AX and Comet assay analysis). Experiments with added LPA gave similar rapid effects as CSi. Furthermore, Rac1 was activated at 3 min, and a Rac1 inhibitor (NSC23766) prevented mitochondrial depolarization and genotoxicity. In mice the bronchial epithelia exhibited histological signs of ATX activation and signs of DSBs (53BP1 positive nuclei) minutes after a single inhalation of CSi. Our data indicate that CSi rapidly activate the ATX-LPA axis and within minutes this leads to DNA damage in bronchial epithelial cells. Thus, ATX mediates very rapid DNA damaging effects of inhaled particles.
Collapse
Affiliation(s)
- Rongrong Wu
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177, Stockholm, Sweden
| | - Johan Högberg
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177, Stockholm, Sweden
| | - Mikael Adner
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177, Stockholm, Sweden
| | - Ulla Stenius
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177, Stockholm, Sweden
| | - Huiyuan Zheng
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177, Stockholm, Sweden.
| |
Collapse
|
8
|
Magalhaes YT, Farias JO, Silva LE, Forti FL. GTPases, genome, actin: A hidden story in DNA damage response and repair mechanisms. DNA Repair (Amst) 2021; 100:103070. [PMID: 33618126 DOI: 10.1016/j.dnarep.2021.103070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/18/2022]
Abstract
The classical small Rho GTPase (Rho, Rac, and Cdc42) protein family is mainly responsible for regulating cell motility and polarity, membrane trafficking, cell cycle control, and gene transcription. Cumulative recent evidence supports important roles for these proteins in the maintenance of genomic stability. Indeed, DNA damage response (DDR) and repair mechanisms are some of the prime biological processes that underlie several disease phenotypes, including genetic disorders, cancer, senescence, and premature aging. Many reports guided by different experimental approaches and molecular hypotheses have demonstrated that, to some extent, direct modulation of Rho GTPase activity, their downstream effectors, or actin cytoskeleton regulation contribute to these cellular events. Although much attention has been paid to this family in the context of canonical actin cytoskeleton remodeling, here we provide a contextualized review of the interplay between Rho GTPase signaling pathways and the DDR and DNA repair signaling components. Interesting questions yet to be addressed relate to the spatiotemporal dynamics of this collective response and whether it correlates with different subcellular pools of Rho GTPases. We highlight the direct and indirect targets, some of which still lack experimental validation data, likely associated with Rho GTPase activation that provides compelling evidence for further investigation in DNA damage-associated events and with potential therapeutic applications in translational medicine.
Collapse
Affiliation(s)
- Yuli T Magalhaes
- Laboratory of Biomolecular Systems Signaling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | - Jessica O Farias
- Laboratory of Biomolecular Systems Signaling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | - Luiz E Silva
- Laboratory of Biomolecular Systems Signaling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | - Fabio L Forti
- Laboratory of Biomolecular Systems Signaling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Wang F, Fan M, Zhou X, Yu Y, Cai Y, Wu H, Zhang Y, Liu J, Huang S, He N, Hu Z, Ding G, Jin X. A positive feedback loop between TAZ and miR-942-3p modulates proliferation, angiogenesis, epithelial-mesenchymal transition process, glycometabolism and ROS homeostasis in human bladder cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:44. [PMID: 33499877 PMCID: PMC7836562 DOI: 10.1186/s13046-021-01846-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/14/2021] [Indexed: 12/26/2022]
Abstract
Background Transcriptional coactivator with PDZ-binding motif (TAZ) has been reported to be involved in tumor progression, angiogenesis, epithelial-mesenchymal transition (EMT), glycometabolic modulation and reactive oxygen species (ROS) buildup. Herein, the underlying molecular mechanisms of the TAZ-induced biological effects in bladder cancer were discovered. Methods qRT-PCR, western blotting and immunohistochemistry were performed to determine the levels of TAZ in bladder cancer cells and tissues. CCK-8, colony formation, tube formation, wound healing and Transwell assays and flow cytometry were used to evaluate the biological functions of TAZ, miR-942-3p and growth arrest-specific 1 (GAS1). QRT-PCR and western blotting were used to determine the expression levels of related genes. Chromatin immunoprecipitation and a dual-luciferase reporter assay were performed to confirm the interaction between TAZ and miR-942. In vivo tumorigenesis and colorimetric glycolytic assays were also conducted. Results We confirmed the upregulation and vital roles of TAZ in bladder cancer. TAZ-induced upregulation of miR-942-3p expression amplified upstream signaling by inhibiting the expression of large tumor suppressor 2 (LATS2, a TAZ inhibitor). MiR-942-3p attenuated the impacts on cell proliferation, angiogenesis, EMT, glycolysis and ROS levels induced by TAZ knockdown. Furthermore, miR-942-3p restrained the expression of GAS1 to modulate biological behaviors. Conclusion Our study identified a novel positive feedback loop between TAZ and miR-942-3p that regulates biological functions in bladder cancer cells via GAS1 expression and illustrated that TAZ, miR-942-3p and GAS1 might be potential therapeutic targets for bladder cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01846-5.
Collapse
Affiliation(s)
- Feifan Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Mengjing Fan
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, P.R. China
| | - Xuejian Zhou
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Yanlan Yu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yueshu Cai
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Hongshen Wu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Yan Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Jiaxin Liu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Shihan Huang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Ning He
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Zhenghui Hu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Guoqing Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, P. R. China.
| | - Xiaodong Jin
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China.
| |
Collapse
|
10
|
Bone marrow stromal cells stimulated by strontium-substituted calcium silicate ceramics: release of exosomal miR-146a regulates osteogenesis and angiogenesis. Acta Biomater 2021; 119:444-457. [PMID: 33129987 DOI: 10.1016/j.actbio.2020.10.038] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023]
Abstract
Dual-functional regulation for angiogenesis and osteogenesis is crucial for desired bone regeneration especially in large-sized bone defects. Exosomes have been demonstrated to facilitate bone regeneration through enhanced osteogenesis and angiogenesis. Moreover, functional stimulation to mesenchymal stromal cells (MSCs) was reported to further boost the pro-angiogenic ability of exosomes secreted. However, whether the stimulation by bioactive trace elements of biomaterials could enhance pro-angiogenic capability of bone marrow stromal cells (BMSCs)-derived exosomes and consequently promote in vivo vascularized bone regeneration has not been investigated. In this study, strontium-substituted calcium silicate (Sr-CS) was chosen and the biological function of BMSCs-derived exosomes after Sr-CS stimulation (Sr-CS-Exo) was systemically investigated. The results showed that Sr-CS-Exo could significantly promote in vitro angiogenesis of human umbilical vein endothelial cells (HUVECs), which might be attributed to elevated pro-angiogenic miR-146a cargos and inhibition of Smad4 and NF2 proteins. Moreover, the in vivo study confirmed that Sr-CS-Exo possessed superior pro-angiogenic ability, which contributed to the accelerated developmental vascularization in zebrafish along with the neovascularization and bone regeneration in rat distal femur defects. Our findings may provide new insights into the mechanisms underlying Sr-containing biomaterials-induced angiogenesis, and for the first time, proposed that Sr-CS-Exo may serve as the candidate engineered-exosomes with dual-functional regulation for angiogenesis and osteogenesis in vascularized bone regeneration.
Collapse
|
11
|
Cui Y, Ma L, Schacke S, Yin JC, Hsueh YP, Jin H, Morrison H. Merlin cooperates with neurofibromin and Spred1 to suppress the Ras-Erk pathway. Hum Mol Genet 2020; 29:3793-3806. [PMID: 33331896 DOI: 10.1093/hmg/ddaa263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
The Ras-Erk pathway is frequently overactivated in human tumors. Neurofibromatosis types 1 and 2 (NF1, NF2) are characterized by multiple tumors of Schwann cell origin. The NF1 tumor suppressor neurofibromin is a principal Ras-GAP accelerating Ras inactivation, whereas the NF2 tumor suppressor merlin is a scaffold protein coordinating multiple signaling pathways. We have previously reported that merlin interacts with Ras and p120RasGAP. Here, we show that merlin can also interact with the neurofibromin/Spred1 complex via merlin-binding sites present on both proteins. Further, merlin can directly bind to the Ras-binding domain (RBD) and the kinase domain (KiD) of Raf1. As the third component of the neurofibromin/Spred1 complex, merlin cannot increase the Ras-GAP activity; rather, it blocks Ras binding to Raf1 by functioning as a 'selective Ras barrier'. Merlin-deficient Schwann cells require the Ras-Erk pathway activity for proliferation. Accordingly, suppression of the Ras-Erk pathway likely contributes to merlin's tumor suppressor activity. Taken together, our results, and studies by others, support targeting or co-targeting of this pathway as a therapy for NF2 inactivation-related tumors.
Collapse
Affiliation(s)
- Yan Cui
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Lin Ma
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany.,College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Stephan Schacke
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Jiani C Yin
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou 310016, China
| | - Helen Morrison
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Germany
| |
Collapse
|
12
|
Yang H, Xu D, Yang Z, Yao F, Zhao H, Schmid RA, Peng RW. Systematic Analysis of Aberrant Biochemical Networks and Potential Drug Vulnerabilities Induced by Tumor Suppressor Loss in Malignant Pleural Mesothelioma. Cancers (Basel) 2020; 12:E2310. [PMID: 32824422 PMCID: PMC7465812 DOI: 10.3390/cancers12082310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Malignant pleural mesothelioma (MPM) is driven by the inactivation of tumor suppressor genes (TSGs). An unmet need in the field is the translation of the genomic landscape into effective TSG-specific therapies. Methods: We correlated genomes against transcriptomes of patients' MPM tumors, by weighted gene co-expression network analysis (WGCNA). The identified aberrant biochemical networks and potential drug targets induced by tumor suppressor loss were validated by integrative data analysis and functional interrogation. Results: CDKN2A/2B loss activates G2/M checkpoint and PI3K/AKT, prioritizing a co-targeting strategy for CDKN2A/2B-null MPM. CDKN2A deficiency significantly co-occurs with deletions of anti-viral type I interferon (IFN-I) genes and BAP1 mutations, that enriches the IFN-I signature, stratifying a unique subset, with deficient IFN-I, but proficient BAP1 for oncolytic viral immunotherapies. Aberrant p53 attenuates differentiation and SETD2 loss acquires the dependency on EGFRs, highlighting the potential of differentiation therapy and pan-EGFR inhibitors for these subpopulations, respectively. LATS2 deficiency is linked with dysregulated immunoregulation, suggesting a rationale for immune checkpoint blockade. Finally, multiple lines of evidence support Dasatinib as a promising therapeutic for LATS2-mutant MPM. Conclusions: Systematic identification of abnormal cellular processes and potential drug vulnerabilities specified by TSG alterations provide a framework for precision oncology in MPM.
Collapse
Affiliation(s)
- Haitang Yang
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 50, CH3008 Bern, Switzerland; (H.Y.); (D.X.); (Z.Y.)
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China; (F.Y.); (H.Z.)
| | - Duo Xu
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 50, CH3008 Bern, Switzerland; (H.Y.); (D.X.); (Z.Y.)
| | - Zhang Yang
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 50, CH3008 Bern, Switzerland; (H.Y.); (D.X.); (Z.Y.)
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China; (F.Y.); (H.Z.)
| | - Heng Zhao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China; (F.Y.); (H.Z.)
| | - Ralph A. Schmid
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 50, CH3008 Bern, Switzerland; (H.Y.); (D.X.); (Z.Y.)
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 50, CH3008 Bern, Switzerland; (H.Y.); (D.X.); (Z.Y.)
| |
Collapse
|
13
|
Dai L, Qiao J, Yin J, Goldstein A, Lin HY, Post SR, Qin Z. Kaposi Sarcoma-Associated Herpesvirus and Staphylococcus aureus Coinfection in Oral Cavities of HIV-Positive Patients: A Unique Niche for Oncogenic Virus Lytic Reactivation. J Infect Dis 2020; 221:1331-1341. [PMID: 31111897 PMCID: PMC7325796 DOI: 10.1093/infdis/jiz249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/09/2019] [Indexed: 01/22/2023] Open
Abstract
Collectively, viruses are the principal cause of cancers arising in patients with immune dysfunction, including human immunodeficiency virus (HIV)-positive patients. Kaposi sarcoma (KS) etiologically linked to Kaposi sarcoma-associated herpesvirus (KSHV) continues to be the most common AIDS-associated tumor. The involvement of the oral cavity represents one of the most common clinical manifestations of this tumor. HIV infection incurs an increased risk among individuals with periodontal diseases and oral carriage of a variety of pathogenic bacteria. However, whether interactions involving periodontal bacteria and oncogenic viruses in the local environment facilitate replication or maintenance of these viruses in the oral cavity of HIV-positive patients remain largely unknown. We previously showed that pathogen-associated molecular patterns (PAMPs) from specific periodontal bacteria promoted KSHV entry into oral cells and subsequent establishment of latency. In the current study, we demonstrate that Staphylococcus aureus, one of common pathogens causing infection in HIV-positive patients, and its PAMPs can effectively induce KSHV lytic reactivation from infected oral cells, through the Toll-like receptor reactive oxygen species and cyclin D1-Dicer-viral microRNA axis. This investigation provides further clinical evidence about the relevance of coinfection due to these 2 pathogens in the oral cavities of a cohort HIV-positive patients and reveals novel mechanisms through which these coinfecting pathogens potentially promote virus-associated cancer development in the unique niche of immunocompromised patients.
Collapse
Affiliation(s)
- Lu Dai
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock
| | - Jing Qiao
- Department of Pediatrics, Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai China
| | - Jun Yin
- Department of Pediatrics, Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai China
| | - Alana Goldstein
- Departments of Diagnostic Sciences, School of Dentistry, New Orleans
| | - Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans
| | - Steven R Post
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock
| |
Collapse
|
14
|
Sánchez NC, Medrano-Jiménez E, Aguilar-León D, Pérez-Martínez L, Pedraza-Alva G. Tumor Necrosis Factor-Induced miR-146a Upregulation Promotes Human Lung Adenocarcinoma Metastasis by Targeting Merlin. DNA Cell Biol 2020; 39:484-497. [PMID: 31999471 DOI: 10.1089/dna.2019.4620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inflammation plays a key role in carcinogenesis and metastasis. This process involves the inactivation of tumor suppressor molecules, yet the molecular mechanisms by which inflammation impairs tumor suppressors are not completely understood. In this study, we show that proinflammatory signals such as tumor necrosis factor (TNF) support lung cancer metastasis by reducing the levels of the tumor suppressor Merlin through regulation of miR-146a. Immunodeficient mice inoculated with A549 cells expressing high miR-146a levels and low Merlin protein levels exhibited reduced survival, which correlated with the number of metastatic nodes formed. Accordingly, restoring Merlin protein levels inhibited metastasis and increased survival of the mice. Consistent with these results, we found that elevated miR-146a expression levels correlated with low Merlin protein levels in human lung adenocarcinoma. Furthermore, human invasive and metastatic tumors showed higher TNF and miR-146a levels, but lower Merlin protein levels than noninvasive tumors. These findings indicate that upregulation of miR-146a by TNF in lung adenocarcinoma promotes Merlin protein inhibition and metastasis. Thus, we suggest that the ratio between miR-146a and Merlin protein levels could be a relevant molecular biomarker that can predict lung cancer progression and that the TNF/miR-146a/Merlin pathway is a promising new therapeutic target to inhibit lung adenocarcinoma progression.
Collapse
Affiliation(s)
- Nilda C Sánchez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México.,Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos
| | - Elisa Medrano-Jiménez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Diana Aguilar-León
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| |
Collapse
|
15
|
White SM, Avantaggiati ML, Nemazanyy I, Di Poto C, Yang Y, Pende M, Gibney GT, Ressom HW, Field J, Atkins MB, Yi C. YAP/TAZ Inhibition Induces Metabolic and Signaling Rewiring Resulting in Targetable Vulnerabilities in NF2-Deficient Tumor Cells. Dev Cell 2020; 49:425-443.e9. [PMID: 31063758 DOI: 10.1016/j.devcel.2019.04.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 02/04/2019] [Accepted: 04/08/2019] [Indexed: 02/09/2023]
Abstract
Merlin/NF2 is a bona fide tumor suppressor whose mutations underlie inherited tumor syndrome neurofibromatosis type 2 (NF2), as well as various sporadic cancers including kidney cancer. Multiple Merlin/NF2 effector pathways including the Hippo-YAP/TAZ pathway have been identified. However, the molecular mechanisms underpinning the growth and survival of NF2-mutant tumors remain poorly understood. Using an inducible orthotopic kidney tumor model, we demonstrate that YAP/TAZ silencing is sufficient to induce regression of pre-established NF2-deficient tumors. Mechanistically, YAP/TAZ depletion diminishes glycolysis-dependent growth and increases mitochondrial respiration and reactive oxygen species (ROS) buildup, resulting in oxidative-stress-induced cell death when challenged by nutrient stress. Furthermore, we identify lysosome-mediated cAMP-PKA/EPAC-dependent activation of RAF-MEK-ERK signaling as a resistance mechanism to YAP/TAZ inhibition. Finally, unbiased analysis of TCGA primary kidney tumor transcriptomes confirms a positive correlation of a YAP/TAZ signature with glycolysis and inverse correlations with oxidative phosphorylation and lysosomal gene expression, supporting the clinical relevance of our findings.
Collapse
Affiliation(s)
- Shannon M White
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | | | - Ivan Nemazanyy
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1151, Institut Necker Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Cristina Di Poto
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Yang Yang
- Department of Systems Pharmacology and Translational Therapeutics, Perelmen School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mario Pende
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1151, Institut Necker Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Geoffrey T Gibney
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Habtom W Ressom
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Jeffery Field
- Department of Systems Pharmacology and Translational Therapeutics, Perelmen School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael B Atkins
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA.
| |
Collapse
|
16
|
Murakami S, Nemazanyy I, White SM, Chen H, Nguyen CDK, Graham GT, Saur D, Pende M, Yi C. A Yap-Myc-Sox2-p53 Regulatory Network Dictates Metabolic Homeostasis and Differentiation in Kras-Driven Pancreatic Ductal Adenocarcinomas. Dev Cell 2019; 51:113-128.e9. [PMID: 31447265 DOI: 10.1016/j.devcel.2019.07.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/19/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022]
Abstract
Employing inducible genetically engineered and orthotopic mouse models, we demonstrate a key role for transcriptional regulator Yap in maintenance of Kras-mutant pancreatic tumors. Integrated transcriptional and metabolomics analysis reveals that Yap transcribes Myc and cooperates with Myc to maintain global transcription of metabolic genes. Yap loss triggers acute metabolic stress, which causes tumor regression while inducing epigenetic reprogramming and Sox2 upregulation in a subset of pancreatic neoplastic cells. Sox2 restores Myc expression and metabolic homeostasis in Yap-deficient neoplastic ductal cells, which gradually re-differentiate into acinar-like cells, partially restoring pancreatic parenchyma in vivo. Both the short-term and long-term effects of Yap loss in inducing cell death and re-differentiation, respectively, are blunted in advanced, poorly differentiated p53-mutant pancreatic tumors. Collectively, these findings reveal a highly dynamic and interdependent metabolic, transcriptional, and epigenetic regulatory network governed by Yap, Myc, Sox2, and p53 that dictates pancreatic tumor metabolism, growth, survival, and differentiation.
Collapse
Affiliation(s)
- Shigekazu Murakami
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Ivan Nemazanyy
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institut Necker Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Shannon M White
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Hengye Chen
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Chan D K Nguyen
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Garrett T Graham
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Dieter Saur
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, München, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Division of Translational Cancer Research, Heidelberg, Germany
| | - Mario Pende
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institut Necker Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
17
|
Manmadhan S, Ehmer U. Hippo Signaling in the Liver - A Long and Ever-Expanding Story. Front Cell Dev Biol 2019; 7:33. [PMID: 30931304 PMCID: PMC6423448 DOI: 10.3389/fcell.2019.00033] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/25/2019] [Indexed: 12/27/2022] Open
Abstract
The first description of Hippo signaling in mammals a little more than 10 years ago showed a striking phenotype in the liver, linking the role of this signaling pathway to organ size control and carcinogenesis. Even though Hippo signaling has been extensively studied in the liver and other organs over the recent years, many open questions remain in our understanding of its role in hepatic physiology and disease. The functions of Hippo signaling extend well beyond cancer and organ size determination: components of upstream Hippo signaling and the downstream effectors YAP and TAZ are involved in a multitude of cell and non-cell autonomous functions including cell proliferation, survival, development, differentiation, metabolism, and cross-talk with the immune system. Moreover, regulation and biological functions of Hippo signaling are often organ or even cell type specific – making its role even more complex. Here, we give a concise overview of the role of Hippo signaling in the liver with a focus on cell-type specific functions. We outline open questions and future research directions that will help to improve our understanding of this important pathway in liver disease.
Collapse
Affiliation(s)
- Saumya Manmadhan
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Ursula Ehmer
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
18
|
Yu F, Tian T, Deng B, Wang T, Qi Q, Zhu M, Yan C, Ding H, Wang J, Dai J, Ma H, Ding Y, Jin G. Multi-marker analysis of genomic annotation on gastric cancer GWAS data from Chinese populations. Gastric Cancer 2019; 22:60-68. [PMID: 29859005 DOI: 10.1007/s10120-018-0841-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/24/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the high-incidence and high-mortality cancers all over the world. Though genome-wide association studies (GWASs) have found some genetic loci related to GC, they could only explain a small fraction of the potential pathogenesis for GC. METHODS We used multi-marker analysis of genomic annotation (MAGMA) to analyze pathways from four public pathway databases based on Chinese GWAS data including 2631 GC cases and 4373 controls. The differential expressions of selected genes in certain pathways were assessed on the basis of The Cancer Genome Atlas database. Immunohistochemistry was also conducted on 55 GC and paired normal tissues of Chinese patients to localize the expression of genes and further validate the differential expression. RESULTS We identified three pathways including chemokine signaling pathway, potassium ion import pathway, and interleukin-7 (IL7) pathway, all of which were associated with GC risk. NMI in IL7 pathway and RAC1 in chemokine signaling pathway might be two new candidate genes involved in GC pathogenesis. Additionally, NMI and RAC1 were overexpressed in GC tissues than normal tissues. CONCLUSION Immune and inflammatory associated processes and potassium transporting might participate in the development of GC. Besides, NMI and RAC1 might represent two new key genes related to GC. Our findings might give new insight into the biological mechanism and immunotherapy for GC.
Collapse
Affiliation(s)
- Fei Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Centre For Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Tian Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Nantong University, Nantong, 226019, China
| | - Bin Deng
- Department of Gastroenterology, the Affiliated Hospital of Yangzhou University, Yangzhou, 225001, China
| | - Tianpei Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Qi
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Caiwang Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hui Ding
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jinchen Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Centre For Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Centre For Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yanbing Ding
- Department of Gastroenterology, the Affiliated Hospital of Yangzhou University, Yangzhou, 225001, China.
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Centre For Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
19
|
Ye YP, Jiao HL, Wang SY, Xiao ZY, Zhang D, Qiu JF, Zhang LJ, Zhao YL, Li TT, Li-Liang, Liao WT, Ding YQ. Hypermethylation of DMTN promotes the metastasis of colorectal cancer cells by regulating the actin cytoskeleton through Rac1 signaling activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:299. [PMID: 30514346 PMCID: PMC6277997 DOI: 10.1186/s13046-018-0958-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/12/2018] [Indexed: 01/20/2023]
Abstract
Background Colorectal cancer (CRC) is one of the most common digestive malignant tumors, and DMTN is a transcriptionally differentially expressed gene that was identified using CRC mRNA sequencing data from The Cancer Genome Atlas (TCGA). Our preliminary work suggested that the expression of DMTN was downregulated in CRC, and the Rac1 signaling pathway was significantly enriched in CRC tissues with low DMTN expression. However, the specific functions and underlying molecular mechanisms of DMTN in the progression of CRC and the upstream factors regulating the downregulation of the gene remain unclear. Methods DMTN expression was analyzed in CRC tissues, and the relationship between DMTN expression and the clinicopathological parameters was analyzed. In vitro and in vivo experimental models were used to detect the effects of DMTN dysregulation on invasion and metastasis of CRC cells. GSEA assay was performed to explore the mechanism of DMTN in invasion and metastasis of CRC. Westernblot, Co-IP and GST-Pull-Down assay were used to detect the interaction between DMTN and ARHGEF2, as well as the activation of the RAC1 signaling. Bisulfite genomic sequence (BSP) assay was used to test the degree of methylation of DMTN gene promoter in CRC tissues. Results We found that the expression of DMTN was significantly decreased in CRC tissues, and the downregulation of DMTN was associated with advanced progression and poor survival and was regarded as an independent predictive factor of CRC patient prognosis. The overexpression of DMTN inhibited, while the knockdown of DMTN promoted, invasion and metastasis in CRC cells. Moreover, hypermethylation and the deletion of DMTN relieved binding to the ARHGEF2 protein, activated the Rac1 signaling pathway, regulated actin cytoskeletal rearrangements, and promoted the invasion and metastasis of CRC cells. Conclusion Our study demonstrated that the downregulation of DMTN promoted the metastasis of colorectal cancer cells by regulating the actin cytoskeleton through RAC1 signaling activation, potentially providing a new therapeutic target to enable cancer precision medicine for CRC patients. Electronic supplementary material The online version of this article (10.1186/s13046-018-0958-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ya-Ping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Hong-Li Jiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Shu-Yang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Zhi-Yuan Xiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Dan Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Jun-Feng Qiu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Ling-Jie Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Ya-Li Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Ting-Ting Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Li-Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wen-Ting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.
| |
Collapse
|
20
|
Xie W, Zhang W, Sun M, Lu C, Shen Y. Deacetylmycoepoxydiene is an agonist of Rac1, and simultaneously induces autophagy and apoptosis. Appl Microbiol Biotechnol 2018; 102:5965-5975. [DOI: 10.1007/s00253-018-9058-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/25/2022]
|
21
|
Fan Z, Xia H, Xu H, Ma J, Zhou S, Hou W, Tang Q, Gong Q, Nie Y, Bi F. Standard CD44 modulates YAP1 through a positive feedback loop in hepatocellular carcinoma. Biomed Pharmacother 2018; 103:147-156. [PMID: 29649630 DOI: 10.1016/j.biopha.2018.03.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023] Open
Abstract
High expression levels of CD44 and YAP have been identified as poor prognostic factors in hepatocellular carcinoma (HCC). However, the mechanistic relationship between CD44 and YAP during HCC tumorigenesis remains largely unknown. To investigate the mutual regulation between standard CD44 (CD44S) and YAP1 in HCC cell lines and tissue samples, CD44S and YAP1 expression in 40 pairs of tumor samples and matched distal normal tissues from HCC patients was examined by immunohistochemical staining. High expression of either CD44S or YAP1 was associated with a younger age and worse pathology grade. In addition, high levels of CD44S and YAP1 were associated with increased vascular invasion and more severe liver cirrhosis, respectively. CD44S expression was positively correlated with YAP1 expression in these HCC tissues. In vitro experiments suggested that CD44S could positively regulate the expression of YAP1 and its target genes via the PI3K/Akt pathway in HCC cells. Moreover, CD44S is regulated by the YAP1/TEAD axis. These results reveal a novel positive feedback loop involving CD44S and YAP1, in which CD44S functions as both an upstream regulator and a downstream effector of YAP1 in HCC. This feedback loop might constitute a broadly conserved module for regulating cell proliferation and invasion during HCC tumorigenesis. Blocking this positive feedback loop that involves CD44S and YAP1 might represent a new approach for HCC treatment.
Collapse
Affiliation(s)
- Zhenhai Fan
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Key Laboratory of Cell Engineering of Guizhou, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, 573003, PR China
| | - Hongwei Xia
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Huanji Xu
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Ji Ma
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Department of Breast Surgery, Lanzhou General Hospital of PLA, Lanzhou, Gansu, 730000, PR China
| | - Sheng Zhou
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Wanting Hou
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qiulin Tang
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qiyong Gong
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digest Diseases, Fourth Military Medical University, Xi'an, Shanxi, 710032, PR China
| | - Feng Bi
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
22
|
Miller CA, Dahiya S, Li T, Fulton RS, Smyth MD, Dunn GP, Rubin JB, Mardis ER. Resistance-promoting effects of ependymoma treatment revealed through genomic analysis of multiple recurrences in a single patient. Cold Spring Harb Mol Case Stud 2018; 4:mcs.a002444. [PMID: 29440180 PMCID: PMC5880262 DOI: 10.1101/mcs.a002444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/26/2017] [Indexed: 12/11/2022] Open
Abstract
As in other brain tumors, multiple recurrences after complete resection and irradiation of supratentorial ependymoma are common and frequently result in patient death. This standard-of-care treatment was established in the pregenomic era without the ability to evaluate the effect that mutagenic therapies may exert on tumor evolution and in promoting resistance, recurrence, and death. We seized a rare opportunity to characterize treatment effects and the evolution of a single patient's ependymoma across four recurrences after different therapies. A combination of high-depth whole-genome and exome-based DNA sequencing of germline and tumor specimens, RNA sequencing of tumor specimens, and advanced computational analyses were used. Treatment with radiation and chemotherapies resulted in a substantial increase in mutational burden and diversification of the tumor subclonal architecture without eradication of the founding clone. Notable somatic alterations included a MEN1 driver, several epigenetic modifiers, and therapy-induced mutations that impacted multiple other cancer-relevant pathways and altered the neoantigen landscape. These genomic data provided new mechanistic insights into the genesis of ependymoma and pathways of resistance. They also revealed that radiation and chemotherapy were significant forces in shaping the increased subclonal complexity of each tumor recurrence while also failing to eradicate the founding clone. This raises the question of whether standard-of-care treatments have similar consequences in other patients with ependymoma and other types of brain tumors. If so, the perspective obtained by real-time genomic characterization of a tumor may be essential for making effective patient-specific and adaptive clinical decisions.
Collapse
Affiliation(s)
- Christopher A Miller
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Tiandao Li
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Robert S Fulton
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Matthew D Smyth
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Gavin P Dunn
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, and The Ohio State University College of Medicine, Columbus, Ohio 43205, USA
| |
Collapse
|
23
|
Programmed death ligand 1 expression and tumor infiltrating lymphocytes in neurofibromatosis type 1 and 2 associated tumors. J Neurooncol 2018; 138:183-190. [PMID: 29427150 DOI: 10.1007/s11060-018-2788-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022]
Abstract
Immune checkpoint inhibitors targeting programmed cell death 1 (PD-1) or its ligand (PD-L1) have been shown to be effective in treating patients with a variety of cancers. Biomarker studies have found positive associations between clinical response rates and PD-L1 expression on tumor cells, as well as the presence of tumor infiltrating lymphocytes (TILs). It is currently unknown whether tumors associated with neurofibromatosis types 1 and 2 (NF1 and NF2) express PD-L1. We performed immunohistochemistry for PD-L1 (clones SP142 and E1L3N), CD3, CD20, CD8, and CD68 in NF1-related tumors (ten dermal and six plexiform neurofibromas) and NF2-related tumors (ten meningiomas and ten schwannomas) using archival formalin-fixed paraffin-embedded tissues. Expression of PD-L1 was considered positive in cases with > 5% membranous staining of tumor cells, in accordance with previously published biomarker studies. PD-L1 expression in tumor cells (using the SP142 and E1L3N clones, respectively) was assessed as positive in plexiform neurofibromas (6/6 and 5/6) dermal neurofibromas (8/10 and 6/10), schwannomas (7/10 and 10/10), and meningiomas (4/10 and 2/10). Sparse to moderate presence of CD68, CD3, or CD8 positive TILs was found in 36 (100%) of tumor specimens. Our findings indicate that adaptive resistance to cell-mediated immunity may play a major role in the tumor immune microenvironment of NF1 and NF2-associated tumors. Expression of PD-L1 on tumor cells and the presence of TILs suggest that these tumors might be responsive to immunotherapy with immune checkpoint inhibitors, which should be explored in clinical trials for NF patients.
Collapse
|