1
|
Llense F, Ferraro T, Yang X, Song H, Labouesse M. Muscle and intestine innexins with muscle DEG/ENaC channels promote muscle coordination and embryo elongation in C. elegans. Development 2025; 152:dev204242. [PMID: 40151885 DOI: 10.1242/dev.204242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Body axis elongation represents a fundamental morphogenetic process in development, which involves cell shape changes powered by mechanical forces. How mechanically interconnected tissues coordinate during organismal development remains largely unexplored. During Caenorhabditis elegans elongation, cyclic forces generated by muscle contractions induce remodeling of adherens junctions and the actin cytoskeleton in the epidermis, facilitating gradual embryo lengthening. Although previous studies have identified key players in epidermal cells, understanding how muscle cells coordinate their activity for proper embryo elongation remains unsolved. Using a calcium sensor to monitor muscle activity during elongation, we identified two cells in each muscle quadrant with a leader cell function that orchestrate muscle activity within their respective quadrants. Strikingly, ablation of these cells halted muscle contractions and delayed elongation. A targeted RNA interference screen focusing on communication channels identified two innexins and two DEG/ENaC channels regulating muscle activity, which proved to be required for normal embryonic elongation. Interestingly, one innexin exhibited specific expression in intestinal cells. Our findings provide insights into how embryonic body wall muscles coordinate their activity and how interconnected tissues ensure proper morphogenesis.
Collapse
Affiliation(s)
- Flora Llense
- Laboratoire Développement, Adaptation et Vieillissement, Sorbonne Université, IBPS, Dev2A, CNRS UMR8263 - Inserm U1345, 7 Quai St-Bernard, 75005 Paris, France
| | - Teresa Ferraro
- Laboratoire Développement, Adaptation et Vieillissement, Sorbonne Université, IBPS, Dev2A, CNRS UMR8263 - Inserm U1345, 7 Quai St-Bernard, 75005 Paris, France
| | - Xinyi Yang
- Laboratoire Développement, Adaptation et Vieillissement, Sorbonne Université, IBPS, Dev2A, CNRS UMR8263 - Inserm U1345, 7 Quai St-Bernard, 75005 Paris, France
| | - Hanla Song
- Laboratoire Développement, Adaptation et Vieillissement, Sorbonne Université, IBPS, Dev2A, CNRS UMR8263 - Inserm U1345, 7 Quai St-Bernard, 75005 Paris, France
| | - Michel Labouesse
- Laboratoire Développement, Adaptation et Vieillissement, Sorbonne Université, IBPS, Dev2A, CNRS UMR8263 - Inserm U1345, 7 Quai St-Bernard, 75005 Paris, France
| |
Collapse
|
2
|
Liu Y, Peng F, Shu J, Li X, Yuan C. Decoding Epilepsy: Prickle2 and Multifaceted Molecular Pathway Connections. Curr Pharm Des 2025; 31:1130-1145. [PMID: 39754765 DOI: 10.2174/0113816128333500241031100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND The Prickle2 (Pk2) gene shows promising potential in uncovering the underlying causes of epilepsy, a neurological disorder that is currently not well understood. This paper utilizes the online tool PubMed to gather and condense information on the involvement of PCP channels and the associated roles of PCP pathway molecules in the onset of epilepsy. These findings are significant for advancing epilepsy treatment. Additionally, the paper discusses future directions for clinical trials and outlines potential therapeutic targets. METHODS This review systematically analyzes the biological functions and mechanisms of the Prickle2 gene in epilepsy. Studies were retrieved from PubMed using keywords such as "Prickle2", "epilepsy", and "PCP pathway", focusing on research published between 2000 and 2023 in English. Inclusion criteria included original studies and reviews on Prickle2's role in epilepsy. Studies unrelated to these topics or lacking sufficient data were excluded. Key data on Prickle2's functions and its link to epilepsy were extracted, and findings were summarized after a quality assessment of the literature. RESULTS Although there are currently conflicting results regarding the possibility that Prickle2 may cause epilepsy in different organisms, we believe that as more cases involving Prickle2 mutations are reported and more related animal experiments are conducted, the findings will become clearer. CONCLUSION Due to the biological functions and mechanisms associated with the Prickle2 protein, it may serve as a useful biomarker or potential therapeutic target for epilepsy treatment.
Collapse
Affiliation(s)
- Yuhang Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China
| | - Fan Peng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China
| | - Jie Shu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China
| | - Xiaolan Li
- The Second People's Hospital of China Three Gorges University, Yichang, Hubei, China
- Department of Gynecology, The Second People's Hospital of Yichang, Hubei, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
3
|
Peysson A, Zariohi N, Gendrel M, Chambert-Loir A, Frébault N, Cheynet E, Andrini O, Boulin T. Wnt-Ror-Dvl signalling and the dystrophin complex organize planar-polarized membrane compartments in C. elegans muscles. Nat Commun 2024; 15:4935. [PMID: 38858388 PMCID: PMC11164867 DOI: 10.1038/s41467-024-49154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
Cell polarity mechanisms allow the formation of specialized membrane domains with unique protein compositions, signalling properties, and functional characteristics. By analyzing the localization of potassium channels and proteins belonging to the dystrophin-associated protein complex, we reveal the existence of distinct planar-polarized membrane compartments at the surface of C. elegans muscle cells. We find that muscle polarity is controlled by a non-canonical Wnt signalling cascade involving the ligand EGL-20/Wnt, the receptor CAM-1/Ror, and the intracellular effector DSH-1/Dishevelled. Interestingly, classical planar cell polarity proteins are not required for this process. Using time-resolved protein degradation, we demonstrate that -while it is essentially in place by the end of embryogenesis- muscle polarity is a dynamic state, requiring continued presence of DSH-1 throughout post-embryonic life. Our results reveal the unsuspected complexity of the C. elegans muscle membrane and establish a genetically tractable model system to study cellular polarity and membrane compartmentalization in vivo.
Collapse
Affiliation(s)
- Alice Peysson
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Noura Zariohi
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Marie Gendrel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université Paris Sciences et Lettres Research University, Paris, 75005, France
| | - Amandine Chambert-Loir
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Noémie Frébault
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Elise Cheynet
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Olga Andrini
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Thomas Boulin
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France.
| |
Collapse
|
4
|
Gredler ML, Zallen JA. Multicellular rosettes link mesenchymal-epithelial transition to radial intercalation in the mouse axial mesoderm. Dev Cell 2023:S1534-5807(23)00134-X. [PMID: 37080203 DOI: 10.1016/j.devcel.2023.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
Mesenchymal-epithelial transitions are fundamental drivers of development and disease, but how these behaviors generate epithelial structure is not well understood. Here, we show that mesenchymal-epithelial transitions promote epithelial organization in the mouse node and notochordal plate through the assembly and radial intercalation of three-dimensional rosettes. Axial mesoderm rosettes acquire junctional and apical polarity, develop a central lumen, and dynamically expand, coalesce, and radially intercalate into the surface epithelium, converting mesenchymal-epithelial transitions into higher-order tissue structure. In mouse Par3 mutants, axial mesoderm rosettes establish central tight junction polarity but fail to form an expanded apical domain and lumen. These defects are associated with altered rosette dynamics, delayed radial intercalation, and formation of a small, fragmented surface epithelial structure. These results demonstrate that three-dimensional rosette behaviors translate mesenchymal-epithelial transitions into collective radial intercalation and epithelial formation, providing a strategy for building epithelial sheets from individual self-organizing units in the mammalian embryo.
Collapse
Affiliation(s)
- Marissa L Gredler
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
5
|
Xu Y, Cheng Y, Chen AT, Bao Z. A compound PCP scheme underlies sequential rosettes-based cell intercalation. Development 2023; 150:dev201493. [PMID: 36975724 PMCID: PMC10263146 DOI: 10.1242/dev.201493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
The formation of sequential rosettes is a type of collective cell behavior recently discovered in the Caenorhabditis elegans embryo that mediates directional cell migration through sequential formation and resolution of multicellular rosettes involving the migrating cell and its neighboring cells along the way. Here, we show that a planar cell polarity (PCP)-based polarity scheme regulates sequential rosettes, which is distinct from the known mode of PCP regulation in multicellular rosettes during the process of convergent extension. Specifically, non-muscle myosin (NMY) localization and edge contraction are perpendicular to that of Van Gogh as opposed to colocalizing with Van Gogh. Further analyses suggest a two-component polarity scheme: one being the canonical PCP pathway with MIG-1/Frizzled and VANG-1/Van Gogh localized to the vertical edges, the other being MIG-1/Frizzled and NMY-2 localized to the midline/contracting edges. The NMY-2 localization and contraction of the midline edges also required LAT-1/Latrophilin, an adhesion G protein-coupled receptor that has not been shown to regulate multicellular rosettes. Our results establish a distinct mode of PCP-mediated cell intercalation and shed light on the versatile nature of the PCP pathway.
Collapse
Affiliation(s)
- Yichi Xu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Yunsheng Cheng
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Allison T. Chen
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
6
|
Uechi H, Kuranaga E. Underlying mechanisms that ensure actomyosin-mediated directional remodeling of cell-cell contacts for multicellular movement: Tricellular junctions and negative feedback as new aspects underlying actomyosin-mediated directional epithelial morphogenesis: Tricellular junctions and negative feedback as new aspects underlying actomyosin-mediated directional epithelial morphogenesis. Bioessays 2023; 45:e2200211. [PMID: 36929512 DOI: 10.1002/bies.202200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
Actomyosin (actin-myosin II complex)-mediated contractile forces are central to the generation of multifaceted uni- and multi-cellular material properties and dynamics such as cell division, migration, and tissue morphogenesis. In the present article, we summarize our recent researches addressing molecular mechanisms that ensure actomyosin-mediated directional cell-cell junction remodeling, either shortening or extension, driving cell rearrangement for epithelial morphogenesis. Genetic perturbation clarified two points concerning cell-cell junction remodeling: an inhibitory mechanism against negative feedback in which actomyosin contractile forces, which are well known to induce cell-cell junction shortening, can concomitantly alter actin dynamics, oppositely leading to perturbation of the shortening; and tricellular junctions as a point that organizes extension of new cell-cell junctions after shortening. These findings highlight the notion that cells develop underpinning mechanisms to transform the multi-tasking property of actomyosin contractile forces into specific and proper cellular dynamics in space and time.
Collapse
Affiliation(s)
- Hiroyuki Uechi
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Erina Kuranaga
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
7
|
Sakai N, Sun P, Kim B, Emmons SW. Function of cell adhesion molecules in differentiation of ray sensory neurons in C. elegans. G3 (BETHESDA, MD.) 2023; 13:jkac338. [PMID: 36573343 PMCID: PMC9997551 DOI: 10.1093/g3journal/jkac338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022]
Abstract
For proper functioning of the nervous system, it is crucial that neurons find their appropriate partners and build the correct neural connection patterns. Although cell adhesion molecules (CAMs) have been studied for many years as essential players in neural connections, we have yet to unravel the code by which CAMs encode synaptic specificity. We analyzed the effects of mutations in CAM genes on the morphology and synapses of a set of sensory neurons in the Caenorhabditis elegans male tail. B-type ray sensory neurons express 10 genes encoding CAMs. We examined the effect on axon trajectory and localization of pre-synaptic components in viable mutants of nine of these. We found axon trajectory defects in mutants of UNC-40/DCC, SAX-3/ROBO, and FMI-1/Flamingo/Celsr1. None of the mutations caused loss of pre-synaptic components in axons, and in several the level even appeared to increase, suggesting possible accumulation of pre-synapses. B-type sensory neurons fasciculate with a second type of ray sensory neuron, the A-type, in axon commissures. We found a CAM expressed in A-type functions additively with a CAM expressed in B-type in axon guidance, and lack of a CAM expressed in B-type affected A-type axon guidance. Overall, single and multiple mutants of CAM genes had limited effects on ray neuron trajectories and accumulation of synaptic components.
Collapse
Affiliation(s)
- Naoko Sakai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 162-8666, USA
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Shinjyuku, Tokyo 10326, Japan
| | - Peter Sun
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 162-8666, USA
| | - Byunghyuk Kim
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 162-8666, USA
- Department of Life Science, Dongguk University, Bronx 10461, South Korea
| | - Scott W Emmons
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 162-8666, USA
| |
Collapse
|
8
|
Serre JM, Slabodnick MM, Goldstein B, Hardin J. SRGP-1/srGAP and AFD-1/afadin stabilize HMP-1/⍺-catenin at rosettes to seal internalization sites following gastrulation in C. elegans. PLoS Genet 2023; 19:e1010507. [PMID: 36867663 PMCID: PMC10016700 DOI: 10.1371/journal.pgen.1010507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/15/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
A hallmark of gastrulation is the establishment of germ layers by internalization of cells initially on the exterior. In C. elegans the end of gastrulation is marked by the closure of the ventral cleft, a structure formed as cells internalize during gastrulation, and the subsequent rearrangement of adjacent neuroblasts that remain on the surface. We found that a nonsense allele of srgp-1/srGAP leads to 10-15% cleft closure failure. Deletion of the SRGP-1/srGAP C-terminal domain led to a comparable rate of cleft closure failure, whereas deletion of the N-terminal F-BAR region resulted in milder defects. Loss of the SRGP-1/srGAP C-terminus or F-BAR domain results in defects in rosette formation and defective clustering of HMP-1/⍺-catenin in surface cells during cleft closure. A mutant form of HMP-1/⍺-catenin with an open M domain can suppress cleft closure defects in srgp-1 mutant backgrounds, suggesting that this mutation acts as a gain-of-function allele. Since SRGP-1 binding to HMP-1/⍺-catenin is not favored in this case, we sought another HMP-1 interactor that might be recruited when HMP-1/⍺-catenin is constitutively open. A good candidate is AFD-1/afadin, which genetically interacts with cadherin-based adhesion later during embryonic elongation. AFD-1/afadin is prominently expressed at the vertex of neuroblast rosettes in wildtype, and depletion of AFD-1/afadin increases cleft closure defects in srgp-1/srGAP and hmp-1R551/554A/⍺-catenin backgrounds. We propose that SRGP-1/srGAP promotes nascent junction formation in rosettes; as junctions mature and sustain higher levels of tension, the M domain of HMP-1/⍺-catenin opens, allowing maturing junctions to transition from recruitment of SRGP-1/srGAP to AFD-1/afadin. Our work identifies new roles for ⍺-catenin interactors during a process crucial to metazoan development.
Collapse
Affiliation(s)
- Joel M. Serre
- Program in Genetics University of Wisconsin-Madison, Wisconsin, United States of America
| | - Mark M. Slabodnick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, Knox University, Galesburg, Illinois, United States of America
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeff Hardin
- Program in Genetics University of Wisconsin-Madison, Wisconsin, United States of America
- Department of Integrative Biology, University of Wisconsin-Madison, Wisconsin, United States of America
| |
Collapse
|
9
|
Xiao L, Fan D, Qi H, Cong Y, Du Z. Defect-buffering cellular plasticity increases robustness of metazoan embryogenesis. Cell Syst 2022; 13:615-630.e9. [PMID: 35882226 DOI: 10.1016/j.cels.2022.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/14/2022] [Accepted: 06/30/2022] [Indexed: 01/26/2023]
Abstract
Developmental processes are intrinsically robust so as to preserve a normal-like state in response to genetic and environmental fluctuations. However, the robustness and potential phenotypic plasticity of individual developing cells under genetic perturbations remain to be systematically evaluated. Using large-scale gene perturbation, live imaging, lineage tracing, and single-cell phenomics, we quantified the phenotypic landscape of C. elegans embryogenesis in >2,000 embryos following individual knockdown of over 750 conserved genes. We observed that cellular genetic systems are not sufficiently robust to single-gene perturbations across all cells; rather, gene knockdowns frequently induced cellular defects. Dynamic phenotypic analyses revealed many cellular defects to be transient, with cells exhibiting phenotypic plasticity that serves to alleviate, correct, and accommodate the defects. Moreover, potential developmentally related cell modules may buffer the phenotypic effects of individual cell position changes. Our findings reveal non-negligible contributions of cellular plasticity and multicellularity as compensatory strategies to increase developmental robustness.
Collapse
Affiliation(s)
- Long Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duchangjiang Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Qi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yulin Cong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Ardiel EL, Lauziere A, Xu S, Harvey BJ, Christensen RP, Nurrish S, Kaplan JM, Shroff H. Stereotyped behavioral maturation and rhythmic quiescence in C.elegans embryos. eLife 2022; 11:76836. [PMID: 35929725 PMCID: PMC9448323 DOI: 10.7554/elife.76836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Systematic analysis of rich behavioral recordings is being used to uncover how circuits encode complex behaviors. Here, we apply this approach to embryos. What are the first embryonic behaviors and how do they evolve as early neurodevelopment ensues? To address these questions, we present a systematic description of behavioral maturation for Caenorhabditis elegans embryos. Posture libraries were built using a genetically encoded motion capture suit imaged with light-sheet microscopy and annotated using custom tracking software. Analysis of cell trajectories, postures, and behavioral motifs revealed a stereotyped developmental progression. Early movement is dominated by flipping between dorsal and ventral coiling, which gradually slows into a period of reduced motility. Late-stage embryos exhibit sinusoidal waves of dorsoventral bends, prolonged bouts of directed motion, and a rhythmic pattern of pausing, which we designate slow wave twitch (SWT). Synaptic transmission is required for late-stage motion but not for early flipping nor the intervening inactive phase. A high-throughput behavioral assay and calcium imaging revealed that SWT is elicited by the rhythmic activity of a quiescence-promoting neuron (RIS). Similar periodic quiescent states are seen prenatally in diverse animals and may play an important role in promoting normal developmental outcomes.
Collapse
Affiliation(s)
- Evan L Ardiel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Andrew Lauziere
- National Institute of Biomedical Imaging and Bioengineering, Bethesda, United States
| | - Stephen Xu
- National Institute of Biomedical Imaging and Bioengineering, Bethesda, United States
| | - Brandon J Harvey
- National Institute of Biomedical Imaging and Bioengineering, Bethesda, United States
| | | | - Stephen Nurrish
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Hari Shroff
- National Institute of Biomedical Imaging and Bioengineering, Bethesda, United States
| |
Collapse
|
11
|
Santella A, Kolotuev I, Kizilyaprak C, Bao Z. Cross-modality synthesis of EM time series and live fluorescence imaging. eLife 2022; 11:77918. [PMID: 35666127 PMCID: PMC9213002 DOI: 10.7554/elife.77918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/05/2022] [Indexed: 11/13/2022] Open
Abstract
Analyses across imaging modalities allow the integration of complementary spatiotemporal information about brain development, structure, and function. However, systematic atlasing across modalities is limited by challenges to effective image alignment. We combine highly spatially resolved electron microscopy (EM) and highly temporally resolved time-lapse fluorescence microscopy (FM) to examine the emergence of a complex nervous system in Caenorhabditis elegans embryogenesis. We generate an EM time series at four classic developmental stages and create a landmark-based co-optimization algorithm for cross-modality image alignment, which handles developmental heterochrony among datasets to achieve accurate single-cell level alignment. Synthesis based on the EM series and time-lapse FM series carrying different cell-specific markers reveals critical dynamic behaviors across scales of identifiable individual cells in the emergence of the primary neuropil, the nerve ring, as well as a major sensory organ, the amphid. Our study paves the way for systematic cross-modality data synthesis in C. elegans and demonstrates a powerful approach that may be applied broadly.
Collapse
Affiliation(s)
- Anthony Santella
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Irina Kolotuev
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | | | - Zhirong Bao
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
12
|
Cell polarity control by Wnt morphogens. Dev Biol 2022; 487:34-41. [DOI: 10.1016/j.ydbio.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023]
|
13
|
Wang Z, Xu Y, Wang D, Yang J, Bao Z. Hierarchical deep reinforcement learning reveals a modular mechanism of cell movement. NAT MACH INTELL 2022; 4:73-83. [DOI: 10.1038/s42256-021-00431-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Sengupta T, Koonce NL, Vázquez-Martínez N, Moyle MW, Duncan LH, Emerson SE, Han X, Shao L, Wu Y, Santella A, Fan L, Bao Z, Mohler W, Shroff H, Colón-Ramos DA. Differential adhesion regulates neurite placement via a retrograde zippering mechanism. eLife 2021; 10:71171. [PMID: 34783657 PMCID: PMC8843091 DOI: 10.7554/elife.71171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
During development, neurites and synapses segregate into specific neighborhoods or layers within nerve bundles. The developmental programs guiding placement of neurites in specific layers, and hence their incorporation into specific circuits, are not well understood. We implement novel imaging methods and quantitative models to document the embryonic development of the C. elegans brain neuropil, and discover that differential adhesion mechanisms control precise placement of single neurites onto specific layers. Differential adhesion is orchestrated via developmentally-regulated expression of the IgCAM SYG-1, and its partner ligand SYG-2. Changes in SYG-1 expression across neuropil layers result in changes in adhesive forces, which sort SYG-2-expressing neurons. Sorting to layers occurs, not via outgrowth from the neurite tip, but via an alternate mechanism of retrograde zippering, involving interactions between neurite shafts. Our study indicates that biophysical principles from differential adhesion govern neurite placement and synaptic specificity in vivo in developing neuropil bundles.
Collapse
Affiliation(s)
- Titas Sengupta
- Yale University School of Medicine, New Haven, United States
| | - Noelle L Koonce
- Yale University School of Medicine, New Haven, United States
| | | | - Mark W Moyle
- Yale University School of Medicine, New Haven, United States
| | | | - Sarah E Emerson
- Yale University School of Medicine, New Haven, United States
| | - Xiaofei Han
- National Institutes of Health, Bethesda, United States
| | - Lin Shao
- Yale University School of Medicine, New Haven, United States
| | - Yicong Wu
- National Institutes of Health, Bethesda, United States
| | - Anthony Santella
- Developmental Biology Program, Molecular Cytology Core, Sloan-Kettering Institute, New York, United States
| | - Li Fan
- Helen and Robert Appel Alzheimer's Disease Institute, Weill Cornell Medicine, New York, United States
| | - Zhirong Bao
- Developmental Biology Program, Sloan-Kettering Institute, New York, United States
| | - William Mohler
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, United States
| | - Hari Shroff
- National Institutes of Health, Bethesda, United States
| | | |
Collapse
|
15
|
Rapti G. A perspective on C. elegans neurodevelopment: from early visionaries to a booming neuroscience research. J Neurogenet 2021; 34:259-272. [PMID: 33446023 DOI: 10.1080/01677063.2020.1837799] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The formation of the nervous system and its striking complexity is a remarkable feat of development. C. elegans served as a unique model to dissect the molecular events in neurodevelopment, from its early visionaries to the current booming neuroscience community. Soon after being introduced as a model, C. elegans was mapped at the level of genes, cells, and synapses, providing the first metazoan with a complete cell lineage, sequenced genome, and connectome. Here, I summarize mechanisms underlying C. elegans neurodevelopment, from the generation and diversification of neural components to their navigation and connectivity. I point out recent noteworthy findings in the fields of glia biology, sex dimorphism and plasticity in neurodevelopment, highlighting how current research connects back to the pioneering studies by Brenner, Sulston and colleagues. Multifaceted investigations in model organisms, connecting genes to cell function and behavior, expand our mechanistic understanding of neurodevelopment while allowing us to formulate emerging questions for future discoveries.
Collapse
Affiliation(s)
- Georgia Rapti
- European Molecular Biology Laboratory, Unit of Developmental Biology, Heidelberg, Germany
| |
Collapse
|
16
|
Grimbert S, Mastronardi K, Richard V, Christensen R, Law C, Zardoui K, Fay D, Piekny A. Multi-tissue patterning drives anterior morphogenesis of the C. elegans embryo. Dev Biol 2021; 471:49-64. [PMID: 33309948 PMCID: PMC8597047 DOI: 10.1016/j.ydbio.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 11/23/2022]
Abstract
Complex structures derived from multiple tissue types are challenging to study in vivo, and our knowledge of how cells from different tissues are coordinated is limited. Model organisms have proven invaluable for improving our understanding of how chemical and mechanical cues between cells from two different tissues can govern specific morphogenetic events. Here we used Caenorhabditis elegans as a model system to show how cells from three different tissues are coordinated to give rise to the anterior lumen. While some aspects of pharyngeal morphogenesis have been well-described, it is less clear how cells from the pharynx, epidermis and neuroblasts coordinate to define the location of the anterior lumen and supporting structures. Using various microscopy and software approaches, we define the movements and patterns of these cells during anterior morphogenesis. Projections from the anterior-most pharyngeal cells (arcade cells) provide the first visible markers for the location of the future lumen, and facilitate patterning of the surrounding neuroblasts. These neuroblast patterns control the rate of migration of the anterior epidermal cells, whereas the epidermal cells ultimately reinforce and control the position of the future lumen, as they must join with the pharyngeal cells for their epithelialization. Our studies are the first to characterize anterior morphogenesis in C. elegans in detail and should lay the framework for identifying how these different patterns are controlled at the molecular level.
Collapse
Affiliation(s)
- Stéphanie Grimbert
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Karina Mastronardi
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Victoria Richard
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Ryan Christensen
- Laboratory of High Resolution Optical Imaging, NIH/NIBIB, 13 South Drive, Bethesda, MD, 20892, USA
| | - Christopher Law
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Khashayar Zardoui
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - David Fay
- Department of Molecular Biology, University of Wyoming, 1000 E. University Ave., Laramie, WY, 82071, USA
| | - Alisa Piekny
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada.
| |
Collapse
|
17
|
Barnes KM, Fan L, Moyle MW, Brittin CA, Xu Y, Colón-Ramos DA, Santella A, Bao Z. Cadherin preserves cohesion across involuting tissues during C. elegans neurulation. eLife 2020; 9:e58626. [PMID: 33030428 PMCID: PMC7544503 DOI: 10.7554/elife.58626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
The internalization of the central nervous system, termed neurulation in vertebrates, is a critical step in embryogenesis. Open questions remain regarding how force propels coordinated tissue movement during the process, and little is known as to how internalization happens in invertebrates. We show that in C. elegans morphogenesis, apical constriction in the retracting pharynx drives involution of the adjacent neuroectoderm. HMR-1/cadherin mediates this process via inter-tissue attachment, as well as cohesion within the neuroectoderm. Our results demonstrate that HMR-1 is capable of mediating embryo-wide reorganization driven by a centrally located force generator, and indicate a non-canonical use of cadherin on the basal side of an epithelium that may apply to vertebrate neurulation. Additionally, we highlight shared morphology and gene expression in tissues driving involution, which suggests that neuroectoderm involution in C. elegans is potentially homologous with vertebrate neurulation and thus may help elucidate the evolutionary origin of the brain.
Collapse
Affiliation(s)
- Kristopher M Barnes
- Developmental Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Graduate Program in Neuroscience, Weill Cornell MedicineNew YorkUnited States
| | - Li Fan
- Developmental Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Mark W Moyle
- Department of Neuroscience and Department of Cell Biology, Yale University School of MedicineNew HavenUnited States
| | - Christopher A Brittin
- Developmental Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Yichi Xu
- Developmental Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Daniel A Colón-Ramos
- Department of Neuroscience and Department of Cell Biology, Yale University School of MedicineNew HavenUnited States
- Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto RicoSan JuanUnited States
| | - Anthony Santella
- Developmental Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Molecular Cytology Core, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Zhirong Bao
- Developmental Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
18
|
Perez-Vale KZ, Peifer M. Orchestrating morphogenesis: building the body plan by cell shape changes and movements. Development 2020; 147:dev191049. [PMID: 32917667 PMCID: PMC7502592 DOI: 10.1242/dev.191049] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During embryonic development, a simple ball of cells re-shapes itself into the elaborate body plan of an animal. This requires dramatic cell shape changes and cell movements, powered by the contractile force generated by actin and myosin linked to the plasma membrane at cell-cell and cell-matrix junctions. Here, we review three morphogenetic events common to most animals: apical constriction, convergent extension and collective cell migration. Using the fruit fly Drosophila as an example, we discuss recent work that has revealed exciting new insights into the molecular mechanisms that allow cells to change shape and move without tearing tissues apart. We also point out parallel events at work in other animals, which suggest that the mechanisms underlying these morphogenetic processes are conserved.
Collapse
Affiliation(s)
- Kia Z Perez-Vale
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
Game of Tissues: How the Epidermis Thrones C. elegans Shape. J Dev Biol 2020; 8:jdb8010007. [PMID: 32182901 PMCID: PMC7151205 DOI: 10.3390/jdb8010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
The versatility of epithelial cell structure is universally exploited by organisms in multiple contexts. Epithelial cells can establish diverse polarized axes within their tridimensional structure which enables them to flexibly communicate with their neighbors in a 360° range. Hence, these cells are central to multicellularity, and participate in diverse biological processes such as organismal development, growth or immune response and their misfunction ultimately impacts disease. During the development of an organism, the first task epidermal cells must complete is the formation of a continuous sheet, which initiates its own morphogenic process. In this review, we will focus on the C. elegans embryonic epithelial morphogenesis. We will describe how its formation, maturation, and spatial arrangements set the final shape of the nematode C. elegans. Special importance will be given to the tissue-tissue interactions, regulatory tissue-tissue feedback mechanisms and the players orchestrating the process.
Collapse
|
20
|
Abstract
Convergent extension is a conserved mechanism for elongating tissues. In the Drosophila embryo, convergent extension is driven by planar polarized cell intercalation and is a paradigm for understanding the cellular, molecular, and biophysical mechanisms that establish tissue structure. Studies of convergent extension in Drosophila have provided key insights into the force-generating molecules that promote convergent extension in epithelial tissues, as well as the global systems of spatial information that systematically organize these cell behaviors. A general framework has emerged in which asymmetrically localized proteins involved in cytoskeletal tension and cell adhesion direct oriented cell movements, and spatial signals provided by the Toll, Tartan, and Teneurin receptor families break planar symmetry to establish and coordinate planar cell polarity throughout the tissue. In this chapter, we describe the cellular, molecular, and biophysical mechanisms that regulate cell intercalation in the Drosophila embryo, and discuss how research in this system has revealed conserved biological principles that control the organization of multicellular tissues and animal body plans.
Collapse
Affiliation(s)
- Adam C Paré
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States.
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States.
| |
Collapse
|
21
|
Cravo J, van den Heuvel S. Tissue polarity and PCP protein function: C. elegans as an emerging model. Curr Opin Cell Biol 2019; 62:159-167. [PMID: 31884395 DOI: 10.1016/j.ceb.2019.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Polarity is the basis for the generation of cell diversity, as well as the organization, morphogenesis, and functioning of tissues. Studies in Caenorhabditis elegans have provided much insight into PAR-protein mediated polarity; however, the molecules and mechanisms critical for cell polarization within the plane of epithelia have been identified in other systems. Tissue polarity in C. elegans is organized by Wnt-signaling with some resemblance to the Wnt/planar cell polarity (PCP) pathway, but lacking core PCP protein functions. Nonetheless, recent studies revealed that conserved PCP proteins regulate directed cell migratory events in C. elegans, such as convergent extension movements and neurite formation and guidance. Here, we discuss the latest insights and use of C. elegans as a PCP model.
Collapse
Affiliation(s)
- Janine Cravo
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Sander van den Heuvel
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| |
Collapse
|
22
|
Wang D, Lu Z, Xu Y, Wang ZI, Santella A, Bao Z. Cellular structure image classification with small targeted training samples. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2019; 7:148967-148974. [PMID: 32832309 PMCID: PMC7442139 DOI: 10.1109/access.2019.2940161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell shapes provide crucial biological information on complex tissues. Different cell types often have distinct cell shapes, and collective shape changes usually indicate morphogenetic events and mechanisms. The identification and detection of collective cell shape changes in an extensive collection of 3D time-lapse images of complex tissues is an important step in assaying such mechanisms but is a tedious and time-consuming task. Machine learning provides new opportunities to automatically detect cell shape changes. However, it is challenging to generate sufficient training samples for pattern identification through deep learning because of a limited amount of images and annotations. We present a deep learning approach with minimal well-annotated training samples and apply it to identify multicellular rosettes from 3D live images of the Caenorhabditis elegans embryo with fluorescently labeled cell membranes. Our strategy is to combine two approaches, namely, feature transfer and generative adversarial networks (GANs), to boost image classification with small training samples. Specifically, we use a GAN framework and conduct an unsupervised training to capture the general characteristics of cell membrane images with 11,250 unlabelled images. We then transfer the structure of the GAN discriminator into a new Alex-style neural network for further learning with several dozen labeled samples. Our experiments showed that with 10-15 well-labeled rosette images and 30-40 randomly selected nonrosette images our approach can identify rosettes with more than 80% accuracy and capture more than 90% of the model accuracy achieved with a training data et that is five times larger. We also established a public benchmark dataset for rosette detection. This GAN-based transfer approach can be applied to the study of other cellular structures with minimal training samples.
Collapse
Affiliation(s)
- Dali Wang
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37934, USA
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zheng Lu
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37934, USA
| | - Yichi Xu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Z I Wang
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37934, USA
| | - Anthony Santella
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
23
|
Wang S, Ochoa SD, Khaliullin RN, Gerson-Gurwitz A, Hendel JM, Zhao Z, Biggs R, Chisholm AD, Desai A, Oegema K, Green RA. A high-content imaging approach to profile C. elegans embryonic development. Development 2019; 146:dev174029. [PMID: 30890570 PMCID: PMC6467471 DOI: 10.1242/dev.174029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/11/2019] [Indexed: 11/20/2022]
Abstract
The Caenorhabditis elegans embryo is an important model for analyzing mechanisms of cell fate specification and tissue morphogenesis. Sophisticated lineage-tracing approaches for analyzing embryogenesis have been developed but are labor intensive and do not naturally integrate morphogenetic readouts. To enable the rapid classification of developmental phenotypes, we developed a high-content method that employs two custom strains: a Germ Layer strain that expresses nuclear markers in the ectoderm, mesoderm and endoderm/pharynx; and a Morphogenesis strain that expresses markers labeling epidermal cell junctions and the neuronal cell surface. We describe a procedure that allows simultaneous live imaging of development in 80-100 embryos and provide a custom program that generates cropped, oriented image stacks of individual embryos to facilitate analysis. We demonstrate the utility of our method by perturbing 40 previously characterized developmental genes in variants of the two strains containing RNAi-sensitizing mutations. The resulting datasets yielded distinct, reproducible signature phenotypes for a broad spectrum of genes that are involved in cell fate specification and morphogenesis. In addition, our analysis provides new in vivo evidence for MBK-2 function in mesoderm fate specification and LET-381 function in elongation.
Collapse
Affiliation(s)
- Shaohe Wang
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stacy D Ochoa
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Renat N Khaliullin
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Adina Gerson-Gurwitz
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeffrey M Hendel
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhiling Zhao
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronald Biggs
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Rebecca A Green
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
24
|
Force Transmission between Three Tissues Controls Bipolar Planar Polarity Establishment and Morphogenesis. Curr Biol 2019; 29:1360-1368.e4. [DOI: 10.1016/j.cub.2019.02.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/22/2019] [Accepted: 02/27/2019] [Indexed: 01/09/2023]
|
25
|
Fan L, Kovacevic I, Heiman MG, Bao Z. A multicellular rosette-mediated collective dendrite extension. eLife 2019; 8:38065. [PMID: 30767892 PMCID: PMC6400498 DOI: 10.7554/elife.38065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
Coordination of neurite morphogenesis with surrounding tissues is crucial to the establishment of neural circuits, but the underlying cellular and molecular mechanisms remain poorly understood. We show that neurons in a C. elegans sensory organ, called the amphid, undergo a collective dendrite extension to form the sensory nerve. The amphid neurons first assemble into a multicellular rosette. The vertex of the rosette, which becomes the dendrite tips, is attached to the anteriorly migrating epidermis and carried to the sensory depression, extruding the dendrites away from the neuronal cell bodies. Multiple adhesion molecules including DYF-7, SAX-7, HMR-1 and DLG-1 function redundantly in rosette-to-epidermis attachment. PAR-6 is localized to the rosette vertex and dendrite tips, and promotes DYF-7 localization and dendrite extension. Our results suggest a collective mechanism of neurite extension that is distinct from the classical pioneer-follower model and highlight the role of mechanical cues from surrounding tissues in shaping neurites.
Collapse
Affiliation(s)
- Li Fan
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Ismar Kovacevic
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Maxwell G Heiman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| |
Collapse
|
26
|
He CW, Liao CP, Chen CK, Teulière J, Chen CH, Pan CL. The polarity protein VANG-1 antagonizes Wnt signaling by facilitating Frizzled endocytosis. Development 2018; 145:dev.168666. [PMID: 30504124 DOI: 10.1242/dev.168666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/16/2018] [Indexed: 01/17/2023]
Abstract
Signaling that instructs the migration of neurons needs to be tightly regulated to ensure precise positioning of neurons and subsequent wiring of the neuronal circuits. Wnt-Frizzled signaling controls neuronal migration in metazoans, in addition to many other aspects of neural development. We show that Caenorhabditis elegans VANG-1, a membrane protein that acts in the planar cell polarity (PCP) pathway, antagonizes Wnt signaling by facilitating endocytosis of the Frizzled receptors. Mutations of vang-1 suppress migration defects of multiple classes of neurons in the Frizzled mutants, and overexpression of vang-1 causes neuronal migration defects similar to those of the Frizzled mutants. Our genetic experiments suggest that VANG-1 facilitates Frizzled endocytosis through β-arrestin2. Co-immunoprecipitation experiments indicate that Frizzled proteins and VANG-1 form a complex, and this physical interaction requires the Frizzled cysteine-rich domain. Our work reveals a novel mechanism mediated by the PCP protein VANG-1 that downregulates Wnt signaling through Frizzled endocytosis.
Collapse
Affiliation(s)
- Chun-Wei He
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chien-Po Liao
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chung-Kuan Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Jérôme Teulière
- Department of Molecular Cell Biology, University of California, Berkeley, CA 94720-3204, USA
| | - Chun-Hao Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chun-Liang Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| |
Collapse
|
27
|
Huebner RJ, Wallingford JB. Coming to Consensus: A Unifying Model Emerges for Convergent Extension. Dev Cell 2018; 46:389-396. [PMID: 30130529 PMCID: PMC6140352 DOI: 10.1016/j.devcel.2018.08.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 12/31/2022]
Abstract
Cell motility is a widespread biological property that is best understood in the context of individual cell migration. Indeed, studies of migration in culture have provided tremendous insight into the signals and mechanics involved and have laid the foundation for our understanding of similar migrations by larger cellular collectives. By contrast, our understanding of another flavor of movement, cell intercalation during convergent extension, is only now emerging. Here, we integrate divergent findings related to intercalation in different settings into a unifying model, paying attention to how this model does and does not resemble current models for directed cell migration.
Collapse
Affiliation(s)
- Robert J Huebner
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
28
|
Abstract
Planar cell polarity (PCP) signaling orients developmental events in vertebrates and invertebrates, including convergent extension (CE). In this issue of Development Cell, Shah and Tanner et al. (2017) report that ROBO/SAX-3 signaling acts in parallel with PCP signaling to drive the CE required for ventral nerve cord assembly in C. elegans.
Collapse
Affiliation(s)
- Martha C Soto
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|