1
|
Seaman K, Lin C, Song X, Sassi A, Du WW, Yang B, Sun Y, You L. Mechanical Loading of Osteocytes via Oscillatory Fluid Flow Regulates Early-Stage PC-3 Prostate Cancer Metastasis to Bone. Adv Biol (Weinh) 2025; 9:e2400824. [PMID: 39969425 PMCID: PMC12000999 DOI: 10.1002/adbi.202400824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/05/2025] [Indexed: 02/20/2025]
Abstract
Bone metastasis is a devastating complication for advanced-stage prostate cancer patients. Osteocytes, as the primary mechanosensors in bone, have been recently investigated for their role in prostate cancer bone metastasis. In vivo findings show potential benefits of exercise as a preventative intervention strategy for bone metastasis. In contrast, in vitro studies indicate direct prostate cancer-osteocyte interactions under mechanical loading promote prostate cancer growth and migration. These findings are not consistent with in vivo results and may be more reflective of late-stage metastatic colonization. Here, the role of flow-stimulated osteocytes during early-stage bone metastasis, particularly prostate cancer-endothelial interactions, is examined. Flow-stimulated osteocytes reduce PC-3 prostate cancer cell adhesion and trans-endothelial migration by 32.3% and 40% compared to static controls. Both MLO-Y4 and primary murine osteocytes under mechanical loading regulate the extravasation distance and frequency of PC-3 cells in a microfluidic tissue model. Application of vascular cellular adhesion molecule 1 (VCAM-1) neutralizing antibody abolishes the difference in cancer cell adhesion, extravasation frequency, and number of extravasated PC-3 cells between static and flow-stimulated groups. Taken together, the role of osteocytes in early-stage bone metastasis using PC-3 cells as a model is demonstrated here, bridging the gap between in vitro and in vivo findings.
Collapse
Affiliation(s)
- Kimberly Seaman
- Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
| | - Chun‐Yu Lin
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioM5S 3G9Canada
| | - Xin Song
- Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
| | - Amel Sassi
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioM5S 3G9Canada
| | - William W. Du
- Sunnybrook Research Institute and Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioM4N 3M5Canada
| | - Burton Yang
- Sunnybrook Research Institute and Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioM4N 3M5Canada
| | - Yu Sun
- Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioM5S 3G9Canada
| | - Lidan You
- Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioM5S 3G9Canada
- Department of Mechanical and Materials EngineeringQueen's UniversityKingstonOntarioK7L 3N6Canada
| |
Collapse
|
2
|
Ma G, Cheng S, Han Y, Tang W, Pang W, Chen L, Ding Z, Cao H. The p53-miR17 family-Rankl axis bridges liver-bone communication. Mol Ther 2025; 33:631-648. [PMID: 40308192 PMCID: PMC11853355 DOI: 10.1016/j.ymthe.2024.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/08/2024] [Accepted: 12/27/2024] [Indexed: 05/02/2025] Open
Abstract
Our study elucidates the crucial role of the liver in bone homeostasis through the p53-miR17 family (miR17-miR20/miR20-miR106/miR93-miR106)-Rankl axis. We demonstrate the enhanced hepatocyte Rankl expression in inflammaging conditions, such as aging, ovariectomized (OVX) mice, and elderly humans. Mice with hepatocyte-specific Rankl deletion exhibit significant resistance to bone mass loss associated with aging, lipopolysaccharide (LPS)-induced inflammation, or estrogen deficiency, compared with controls. Our study highlights hepatocytes as the primary source of Rankl in the liver and serum under these conditions. We identify the p53-miR17 family axis as a crucial regulator for hepatocyte Rankl expression, with p53 inhibiting the miR17 family transcription. Through bioinformatics analysis and in vitro validation, we identify Rankl mRNA as a direct target of the miR17 family. Targeting this axis via CasRx-mediated mRNA editing or miRNA interference significantly attenuates bone mass loss in mice. Our investigation underscores the pivotal significance and therapeutic potential of modulating the p53-miR17 family-Rankl axis in the treatment of inflammaging-associated osteoporosis.
Collapse
Affiliation(s)
- Guixing Ma
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyuan Cheng
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yingying Han
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wanze Tang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Pang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Litong Chen
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhen Ding
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
3
|
Yu G, Corn PG, Mak CSL, Liang X, Zhang M, Troncoso P, Song JH, Lin SC, Song X, Liu J, Zhang J, Logothetis CJ, Melancon MP, Panaretakis T, Wang G, Lin SH. Prostate cancer-induced endothelial-cell-to-osteoblast transition drives immunosuppression in the bone-tumor microenvironment through Wnt pathway-induced M2 macrophage polarization. Proc Natl Acad Sci U S A 2024; 121:e2402903121. [PMID: 39102549 PMCID: PMC11331113 DOI: 10.1073/pnas.2402903121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Immune checkpoint therapy has limited efficacy for patients with bone-metastatic castration-resistant prostate cancer (bmCRPC). To improve immunotherapy for bmCRPC, we aimed to identify the mechanism of bmCRPC-induced changes in the immune microenvironment. Among bmCRPC patients, higher levels of a 32-gene M2-like macrophage signature in bone metastasis samples correlated with shorter overall survival. Immunohistochemistry showed that CD206-positive (CD206+) macrophages were enriched in bmCRPC bone biopsy specimens compared with primary tumors or lymph node metastases. In preclinical osteogenic prostate cancer (Pca) xenograft models, CD206+ macrophages were recruited to areas with tumor-induced bone. RNA sequencing (RNAseq) analysis showed higher expression of an M2-like gene signature, with activated canonical and noncanonical Wnt pathways, in tumor-associated macrophages isolated from osteogenic tumors (bone-TAMs) than in TAMs isolated from nonosteogenic tumors (ctrl-TAMs). Mechanistic studies showed that endothelial cells (ECs) that had undergone EC-to-osteoblast (EC-to-OSB) transition, the precursors of tumor-induced OSBs, produced paracrine factors, including Wnts, CXCL14, and lysyl oxidase, which induced M2 polarization and recruited M2-like TAMs to the bone-tumor microenvironment (bone-TME). Bone-TAMs suppressed CD8+ T cells' proliferation and cytolytic activity, and these effects were partially reversed by treating bone-TAMs with Wnt inhibitors. Genetic or pharmacological inhibition of Pca-induced EC-to-OSB transition reduced the levels of M2-like macrophages in osteogenic tumors. Our study demonstrates that Pca-induced EC-to-OSB transition drives immunosuppression in the bone-TME, suggesting that therapies that reduce Pca-induced bone formation may improve immunotherapeutic outcomes for bmCRPC.
Collapse
Affiliation(s)
- Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Paul G. Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Celia Sze Ling Mak
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Xin Liang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Miao Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jian H. Song
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jingjing Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030
| |
Collapse
|
4
|
Trompet D, Melis S, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone development and repair. J Bone Miner Res 2024; 39:633-654. [PMID: 38696703 DOI: 10.1093/jbmr/zjae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
Bone development, growth, and repair are complex processes involving various cell types and interactions, with central roles played by skeletal stem and progenitor cells. Recent research brought new insights into the skeletal precursor populations that mediate intramembranous and endochondral bone development. Later in life, many of the cellular and molecular mechanisms determining development are reactivated upon fracture, with powerful trauma-induced signaling cues triggering a variety of postnatal skeletal stem/progenitor cells (SSPCs) residing near the bone defect. Interestingly, in this injury context, the current evidence suggests that the fates of both SSPCs and differentiated skeletal cells can be considerably flexible and dynamic, and that multiple cell sources can be activated to operate as functional progenitors generating chondrocytes and/or osteoblasts. The combined implementation of in vivo lineage tracing, cell surface marker-based cell selection, single-cell molecular analyses, and high-resolution in situ imaging has strongly improved our insights into the diversity and roles of developmental and reparative stem/progenitor subsets, while also unveiling the complexity of their dynamics, hierarchies, and relationships. Albeit incompletely understood at present, findings supporting lineage flexibility and possibly plasticity among sources of osteogenic cells challenge the classical dogma of a single primitive, self-renewing, multipotent stem cell driving bone tissue formation and regeneration from the apex of a hierarchical and strictly unidirectional differentiation tree. We here review the state of the field and the newest discoveries in the origin, identity, and fates of skeletal progenitor cells during bone development and growth, discuss the contributions of adult SSPC populations to fracture repair, and reflect on the dynamism and relationships among skeletal precursors and differentiated cell lineages. Further research directed at unraveling the heterogeneity and capacities of SSPCs, as well as the regulatory cues determining their fate and functioning, will offer vital new options for clinical translation toward compromised fracture healing and bone regenerative medicine.
Collapse
Affiliation(s)
- Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Seppe Melis
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Andrei S Chagin
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Lin SC, Yu G, Corn PG, Damasco J, Lee YC, Song JH, Navone NM, Logothetis CJ, Melancon MP, Panaretakis T, Lin SH. Radium-223 Treatment Produces Prolonged Suppression of Resident Osteoblasts and Decreased Bone Mineral Density in Trabecular Bone in Osteoblast Reporter Mice. Cancers (Basel) 2024; 16:2603. [PMID: 39061241 PMCID: PMC11274981 DOI: 10.3390/cancers16142603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Radium 223 (Ra-223) is an α-emitting bone-homing radiopharmaceutical that targets tumor-induced osteoblasts and is used to reduce bone pain and prolong overall survival in men with bone-metastatic, castrate-resistant prostate cancer. However, increased fracture risk in skeletal sites with no bone metastasis has been observed in patients treated with Ra-223. Both luciferase- or green fluorescence protein (GFP)-labeled osteoblast reporter mice were used to monitor the effect of Ra-223 on resident osteoblasts and normal bone structure. Upon Ra-223 treatment, 70% of resident osteoblasts were reduced within 2 days, and the osteoblast reduction lasted for at least 18 weeks without detectable recovery, as measured by in vivo bioluminescent imaging. In GFP-labeled osteoblast reporter mice, Ra-223 mainly reduced osteoblasts localized in the trabecular bone areas; the osteoblasts in the growth plates were less affected. Micro-computed tomography analyses showed that Ra-223 significantly reduced bone mineral density and bone microstructure in the trabecular area of femurs but not in the cortical bone. Tumor-induced bone was generated by inoculating osteogenic TRAMP-BMP4 prostate cancer cells into the mouse femurs; Ra-223 treatment significantly reduced tumor-induced osteoblasts. Our study shows that Ra-223 affects bone structures that are not involved in bone metastasis. Strategies that improve bone health may reduce fracture risk in patients receiving Ra-223.
Collapse
Affiliation(s)
- Song-Chang Lin
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA; (S.-C.L.); (G.Y.); (Y.-C.L.)
| | - Guoyu Yu
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA; (S.-C.L.); (G.Y.); (Y.-C.L.)
| | - Paul G. Corn
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA; (P.G.C.); (J.H.S.); (N.M.N.); (C.J.L.)
| | - Jossana Damasco
- Department of Interventional Radiology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA; (J.D.); (M.P.M.)
| | - Yu-Chen Lee
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA; (S.-C.L.); (G.Y.); (Y.-C.L.)
| | - Jian H. Song
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA; (P.G.C.); (J.H.S.); (N.M.N.); (C.J.L.)
| | - Nora M. Navone
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA; (P.G.C.); (J.H.S.); (N.M.N.); (C.J.L.)
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA; (P.G.C.); (J.H.S.); (N.M.N.); (C.J.L.)
| | - Marites P. Melancon
- Department of Interventional Radiology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA; (J.D.); (M.P.M.)
- UTHealth Houston Graduate School of Biomedical Sciences, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA; (P.G.C.); (J.H.S.); (N.M.N.); (C.J.L.)
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA; (S.-C.L.); (G.Y.); (Y.-C.L.)
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA; (P.G.C.); (J.H.S.); (N.M.N.); (C.J.L.)
- UTHealth Houston Graduate School of Biomedical Sciences, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| |
Collapse
|
6
|
Huang Y, Liu Z, Li M, Wang D, Ye J, Hu Q, Zhang Q, Lin Y, Chen R, Liang X, Li X, Lin X. Deciphering the impact of aging on splenic endothelial cell heterogeneity and immunosenescence through single-cell RNA sequencing analysis. Immun Ageing 2024; 21:48. [PMID: 39026350 PMCID: PMC11256597 DOI: 10.1186/s12979-024-00452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Aging is associated with significant structural and functional changes in the spleen, leading to immunosenescence, yet the detailed effects on splenic vascular endothelial cells (ECs) and their immunomodulatory roles are not fully understood. In this study, a single-cell RNA (scRNA) atlas of EC transcriptomes from young and aged mouse spleens was constructed to reveal age-related molecular changes, including increased inflammation and reduced vascular development and also the potential interaction between splenic endothelial cells and immune cells. RESULTS Ten clusters of splenic endothelial cells were identified. DEGs analysis across different EC clusters revealed the molecular changes with aging, showing the increase in the overall inflammatory microenvironment and the loss in vascular development function of aged ECs. Notably, four EC clusters with immunological functions were identified, suggesting an Endothelial-to-Immune-like Cell Transition (EndICLT) potentially driven by aging. Pseudotime analysis of the Immunology4 cluster further indicated a possible aging-induced transitional state, potentially initiated by Ctss gene activation. Finally, the effects of aging on cell signaling communication between different EC clusters and immune cells were analyzed. CONCLUSIONS This comprehensive atlas elucidates the complex interplay between ECs and immune cells in the aging spleen, offering new insights into endothelial heterogeneity, reprogramming, and the mechanisms of immunosenescence.
Collapse
Affiliation(s)
- Yanjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Mengke Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Dongliang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jinguo Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Qiuling Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yuheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Rongxin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xuanwei Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xingyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
7
|
McAndrews KM, Mahadevan KK, Kalluri R. Mouse Models to Evaluate the Functional Role of the Tumor Microenvironment in Cancer Progression and Therapy Responses. Cold Spring Harb Perspect Med 2024; 14:a041411. [PMID: 38191175 PMCID: PMC11216184 DOI: 10.1101/cshperspect.a041411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The tumor microenvironment (TME) is a complex ecosystem of both cellular and noncellular components that functions to impact the evolution of cancer. Various aspects of the TME have been targeted for the control of cancer; however, TME composition is dynamic, with the overall abundance of immune cells, endothelial cells (ECs), fibroblasts, and extracellular matrix (ECM) as well as subsets of TME components changing at different stages of progression and in response to therapy. To effectively treat cancer, an understanding of the functional role of the TME is needed. Genetically engineered mouse models have enabled comprehensive insight into the complex interactions within the TME ecosystem that regulate disease progression. Here, we review recent advances in mouse models that have been employed to understand how the TME regulates cancer initiation, progression, metastasis, and response to therapy.
Collapse
Affiliation(s)
- Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Krishnan K Mahadevan
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Department of Bioengineering, Rice University, Houston, Texas 77251, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
8
|
Maji S, Kumar A, Emdad L, Fisher PB, Das SK. Molecular landscape of prostate cancer bone metastasis. Adv Cancer Res 2024; 161:321-365. [PMID: 39032953 DOI: 10.1016/bs.acr.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer (PC) has a high propensity to develop bone metastases, causing severe pain and pathological fractures that profoundly impact a patients' normal functions. Current clinical intervention is mainly palliative focused on pain management, and tumor progression is refractory to standard therapeutic regimens. This limited treatment efficacy is at least partially due to a lack of comprehensive understanding of the molecular landscape of the disease pathology, along with the intensive overlapping of physiological and pathological molecular signaling. The niche is overwhelmed with diverse cell types with inter- and intra-heterogeneity, along with growth factor-enriched cells that are supportive of invading cell proliferation, providing an additional layer of complexity. This review seeks to provide molecular insights into mechanisms underlying PC bone metastasis development and progression.
Collapse
Affiliation(s)
- Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
9
|
Wu D, Khan FA, Zhang K, Pandupuspitasari NS, Negara W, Guan K, Sun F, Huang C. Retinoic acid signaling in development and differentiation commitment and its regulatory topology. Chem Biol Interact 2024; 387:110773. [PMID: 37977248 DOI: 10.1016/j.cbi.2023.110773] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Retinoic acid (RA), the derivative of vitamin A/retinol, is a signaling molecule with important implications in health and disease. It is a well-known developmental morphogen that functions mainly through the transcriptional activity of nuclear RA receptors (RARs) and, uncommonly, through other nuclear receptors, including peroxisome proliferator-activated receptors. Intracellular RA is under spatiotemporally fine-tuned regulation by synthesis and degradation processes catalyzed by retinaldehyde dehydrogenases and P450 family enzymes, respectively. In addition to dictating the transcription architecture, RA also impinges on cell functioning through non-genomic mechanisms independent of RAR transcriptional activity. Although RA-based differentiation therapy has achieved impressive success in the treatment of hematologic malignancies, RA also has pro-tumor activity. Here, we highlight the relevance of RA signaling in cell-fate determination, neurogenesis, visual function, inflammatory responses and gametogenesis commitment. Genetic and post-translational modifications of RAR are also discussed. A better understanding of RA signaling will foster the development of precision medicine to improve the defects caused by deregulated RA signaling.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
10
|
Xu L, Huang X, Lou Y, Xie W, He J, Yang Z, Yang Y, Zhang Y. Prognostic analysis of percutaneous vertebroplasty (PVP) combined with 125I implantation on lumbosacral vertebral osteoblastic metastases. World J Surg Oncol 2023; 21:391. [PMID: 38124135 PMCID: PMC10731753 DOI: 10.1186/s12957-023-03268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVE Lumbosacral vertebral osteoblastic metastasis is treated with percutaneous vertebroplasty (PVP) combined with 125I seed implantation and PVP alone. Compared to PVP alone, we evaluated the effects of combination therapy with PVP and 125I seed implantation on pain, physical condition, and survival and evaluated the clinical value of PVP combined with 125I particle implantation. METHODS We retrospectively analyzed 62 patients with lumbosacral vertebral osseous metastases treated at our hospital between 2016 and 2019. All the patients met the inclusion criteria for 125I implantation, and they were randomly divided into a combined treatment group and a pure PVP surgery group. The visual analog pain scale (VAS), Karnofsky Performance Status (KPS), and survival time were recorded at different time points, including preoperative, postoperative 1 day, 1 month, 3 months, 6 months, 12 months, and 36 months in each group. The variation in clinical indicators and differences between the groups were analyzed using SPSS version 20.0. Correlations between different variables were analyzed using the nonparametric Spearman's rank test. The Kaplan-Meier method was used to estimate the relationship between survival time and KPS score, VAS score, or primary tumor progression, and survival differences were analyzed using the log-rank test. Multivariate analyses were performed using a stepwise Cox proportional hazards model to identify independent prognostic factors. RESULTS Compared to the PVP treatment group, the pain level in the combined treatment group was significantly reduced (P = 0.000), and the patient's physical condition in the combination treatment group significantly improved. Kaplan-Meier analysis showed that the survival rate of the PVP group was significantly lower than that of the combination group (P = 0.038). We also found that the median survival of patients in both groups significantly increased with an increase in the KPS score (14 months vs. 33 months) (P = 0.020). Patients with more than three transfer sections had significantly lower survival rates than those with one or two segments of the section (P = 0.001). Further, Cox regression analysis showed that age (P = 0.002), the spinal segment for spinal metastasis (P = 0.000), and primary tumor growth rate (P = 0.005) were independent factors that affected the long-term survival of patients with lumbosacral vertebral osseous metastases. CONCLUSIONS PVP combined 125I seeds implantation surgery demonstrated superior effectiveness compared to PVP surgery alone in treating lumbosacral vertebral osseous metastases, which had feasibility in the clinical operation. Preoperative KPS score, spine transfer section, and primary tumor growth rate were closely related to the survival of patients with lumbosacral vertebral osteoblastic metastasis. Age, spinal segment for spinal metastasis, and primary tumor growth can serve as prognostic indicators and guide clinical treatment.
Collapse
Affiliation(s)
- Lei Xu
- Department of Orthopedics, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, Sichuan, 610213, China.
| | - Xin Huang
- Department of Orthopedics, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, Sichuan, 610213, China
| | - Yan Lou
- Department of Orthopedic Oncology, Spine Tumor Center, Changzheng Hospital, Naval Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Wei Xie
- Department of Orthopedics, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, Sichuan, 610213, China
| | - Jun He
- Department of Orthopedics, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, Sichuan, 610213, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, Yunnan, 650118, People's Republic of China.
| | - Yihao Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, Yunnan, 650118, People's Republic of China
| | - Ya Zhang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, Yunnan, 650118, People's Republic of China
| |
Collapse
|
11
|
Zhong X, Moresco JJ, Diedrich JK, Pinto AM, SoRelle JA, Wang J, Keller K, Ludwig S, Moresco EMY, Beutler B, Choi JH. Essential role of MFSD1-GLMP-GIMAP5 in lymphocyte survival and liver homeostasis. Proc Natl Acad Sci U S A 2023; 120:e2314429120. [PMID: 38055739 PMCID: PMC10723049 DOI: 10.1073/pnas.2314429120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023] Open
Abstract
We detected ENU-induced alleles of Mfsd1 (encoding the major facilitator superfamily domain containing 1 protein) that caused lymphopenia, splenomegaly, progressive liver pathology, and extramedullary hematopoiesis (EMH). MFSD1 is a lysosomal membrane-bound solute carrier protein with no previously described function in immunity. By proteomic analysis, we identified association between MFSD1 and both GLMP (glycosylated lysosomal membrane protein) and GIMAP5 (GTPase of immunity-associated protein 5). Germline knockout alleles of Mfsd1, Glmp, and Gimap5 each caused lymphopenia, liver pathology, EMH, and lipid deposition in the bone marrow and liver. We found that the interactions of MFSD1 and GLMP with GIMAP5 are essential to maintain normal GIMAP5 expression, which in turn is critical to support lymphocyte development and liver homeostasis that suppresses EMH. These findings identify the protein complex MFSD1-GLMP-GIMAP5 operating in hematopoietic and extrahematopoietic tissues to regulate immunity and liver homeostasis.
Collapse
Affiliation(s)
- Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - James J. Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92037
| | - Antonio M. Pinto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92037
| | - Jeffrey A. SoRelle
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Katie Keller
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Eva Marie Y. Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
12
|
Yu G, Corn PG, Mak CSL, Liang X, Zhang M, Troncoso P, Song JH, Lin SC, Song X, Liu J, Zhang J, Logothetis CJ, Melancon MP, Panaretakis T, Wang G, Lin SH. Prostate cancer-induced endothelial-to-osteoblast transition generates an immunosuppressive bone tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569496. [PMID: 38076845 PMCID: PMC10705502 DOI: 10.1101/2023.11.30.569496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/14/2024]
Abstract
Immune checkpoint therapy has limited efficacy for patients with bone metastatic castrate-resistant prostate cancer (bmCRPC). In this study, we revealed a novel mechanism that may account for the relative resistance of bmCRPC to immune checkpoint therapy. We found that prostate cancer (PCa)-induced bone via endothelial-to-osteoblast (EC-to-OSB) transition causes an ingress of M2-like macrophages, leading to an immunosuppressive bone tumor microenvironment (bone-TME). Analysis of a bmCRPC RNA-seq dataset revealed shorter overall survival in patients with an M2-high versus M2-low signature. Immunohistochemical (IHC) analysis showed CD206 + M2-like macrophages were enriched in bmCRPC specimens compared with primary tumors or lymph node metastasis. In osteogenic PCa xenografts, CD206 + macrophages were enriched adjacent to tumor-induced bone. FACS analysis showed an increase in CD206 + cells in osteogenic tumors compared to non-osteogenic tumors. Genetic or pharmacological inhibition of the EC-to-OSB transition reduced aberrant bone and M2-like macrophages in osteogenic tumors. RNAseq analysis of tumor-associated macrophages from osteogenic (bone-TAMs) versus non-osteogenic (ctrl-TAMs) tumors showed high expression of an M2-like gene signature, canonical and non-canonical Wnt pathways, and a decrease in an M1-like gene signature. Isolated bone-TAMs suppressed T-cell proliferation while ctrl-TAMs did not. Mechanistically, EC-OSB hybrid cells produced paracrine factors, including Wnts, CXCL14 and LOX, which induced M2 polarization and recruited M2-like TAMs to bone-TME. Our study thus links the unique EC-to-OSB transition as an "upstream" event that drives "downstream" immunosuppression in the bone-TME. These studies suggest that therapeutic strategies that inhibit PCa-induced EC-to-OSB transition may reverse immunosuppression to promote immunotherapeutic outcomes in bmCRPC. Significance The insight that prostate cancer-induced bone generates an immunosuppressive bone tumor microenvironment offers a strategy to improve responses to immunotherapy approaches in patients with bone metastatic castrate-resistant prostate cancer.
Collapse
|
13
|
Ji S, Wu W, Jiang Q. Crosstalk between Endothelial Cells and Tumor Cells: A New Era in Prostate Cancer Progression. Int J Mol Sci 2023; 24:16893. [PMID: 38069225 PMCID: PMC10707594 DOI: 10.3390/ijms242316893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Prostate cancer stands as one of the most prevalent malignancies afflicting men worldwide. The tumor microenvironment plays a pivotal role in tumor progression, comprising various cell types including endothelial cells, tumor-associated fibroblasts, and macrophages. Recent accumulating evidence underscores the indispensable contribution of endothelial cells to prostate cancer development. Both endothelial cells and tumor cells release a multitude of factors that instigate angiogenesis, metastasis, and even drug resistance in prostate cancer. These factors serve as regulators within the tumor microenvironment and represent potential therapeutic targets for managing prostate cancer. In this review, we provide an overview of the crucial functions of endothelial cells in angiogenesis, metastasis, and drug resistance, and their prospective therapeutic applications in combating this disease.
Collapse
Affiliation(s)
| | | | - Qi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China; (S.J.); (W.W.)
| |
Collapse
|
14
|
Zhang F, Chen F, Wang C, Zhou FH. The functional roles of m6A modification in prostate cancer. Proteomics Clin Appl 2023; 17:e2200108. [PMID: 37070355 DOI: 10.1002/prca.202200108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/19/2023]
Abstract
Prostate cancer (PCa) is the most prevalent malignancy of the male genitourinary system, and its etiology suggests that genetics is an essential risk factor for its development and progression, while exogenous factors may have an significant impact on this risk. Initial diagnosis of advanced PCa is relatively frequent, and androgen deprivation therapy (ADT) is the predominant standard of care for PCa and the basis for various novel combination therapy regimens, and is often required throughout the patient's subsequent treatment. Although diagnostic modalities and treatment options are evolving, some patients suffer from complications, including biochemical relapse, metastasis and treatment resistance. Mechanisms of PCa pathogenesis and progression have been the focus of research. N6-methyladenosine (m6A) is an RNA modification involved in cell physiology and tumor metabolism. It has been observed to affect the evolution of diverse cancers through the regulation of gene expression. Genes associated with m6A are prominent in PCa and are involved in multiple aspects of desmoresistant PCa occurrence, progression, PCa bone metastasis (BM), and treatment resistance. Here, we explore the role of m6A modifications in promoting PCa.
Collapse
Affiliation(s)
- Fa Zhang
- Department of Urology, Gansu Provincial People's Hospital, Lanzhou, Gansu, China
| | - Feng Chen
- Department of Anaesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Chao Wang
- Department of Anaesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Feng-Hai Zhou
- Department of Urology, Gansu Provincial People's Hospital, Lanzhou, Gansu, China
| |
Collapse
|
15
|
Zhang X, Jiang P, Wang C. The role of prostate-specific antigen in the osteoblastic bone metastasis of prostate cancer: a literature review. Front Oncol 2023; 13:1127637. [PMID: 37746292 PMCID: PMC10513387 DOI: 10.3389/fonc.2023.1127637] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Prostate cancer is the only human malignancy that generates predominantly osteoblastic bone metastases, and osteoblastic bone metastases account for more than 90% of osseous metastases of prostate cancer. Prostate-specific antigen (PSA) plays an important role in the osteoblastic bone metastasis of prostate cancer, which can promote osteomimicry of prostate cancer cells, suppress osteoclast differentiation, and facilitate osteoblast proliferation and activation at metastatic sites. In the meantime, it can activate osteogenic factors, including insulin-like growth factor, transforming growth factor β2 and urokinase-type plasminogen activator, and meanwhile suppress osteolytic factors such as parathyroid hormone-related protein. To recapitulate, PSA plays a significant role in the osteoblastic predominance of prostate cancer bone metastasis and bone remodeling by regulating multiple cells and factors involved in osseous metastasis.
Collapse
Affiliation(s)
| | | | - Chaojun Wang
- Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Fang J, Lu Y, Zheng J, Jiang X, Shen H, Shang X, Lu Y, Fu P. Exploring the crosstalk between endothelial cells, immune cells, and immune checkpoints in the tumor microenvironment: new insights and therapeutic implications. Cell Death Dis 2023; 14:586. [PMID: 37666809 PMCID: PMC10477350 DOI: 10.1038/s41419-023-06119-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
The tumor microenvironment (TME) is a highly intricate milieu, comprising a multitude of components, including immune cells and stromal cells, that exert a profound influence on tumor initiation and progression. Within the TME, angiogenesis is predominantly orchestrated by endothelial cells (ECs), which foster the proliferation and metastasis of malignant cells. The interplay between tumor and immune cells with ECs is complex and can either bolster or hinder the immune system. Thus, a comprehensive understanding of the intricate crosstalk between ECs and immune cells is essential to advance the development of immunotherapeutic interventions. Despite recent progress, the underlying molecular mechanisms that govern the interplay between ECs and immune cells remain elusive. Nevertheless, the immunomodulatory function of ECs has emerged as a pivotal determinant of the immune response. In light of this, the study of the relationship between ECs and immune checkpoints has garnered considerable attention in the field of immunotherapy. By targeting specific molecular pathways and signaling molecules associated with ECs in the TME, novel immunotherapeutic strategies may be devised to enhance the efficacy of current treatments. In this vein, we sought to elucidate the relationship between ECs, immune cells, and immune checkpoints in the TME, with the ultimate goal of identifying novel therapeutic targets and charting new avenues for immunotherapy.
Collapse
Affiliation(s)
- Jianwen Fang
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Yue Lu
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of Huzhou University, 313000, Huzhou, China
| | - Jingyan Zheng
- Department of Breast and Thyroid Surgery, Lishui People's Hospital, The Six Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China
| | - Xiaocong Jiang
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Haixing Shen
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Department of Breast and Thyroid Surgery, Cixi People's Hospital, 315300, Cixi, China
| | - Xi Shang
- Department of Breast and Thyroid Surgery, Taizhou Hospital, Zhejiang University, 318000, Taizhou, China
| | - Yuexin Lu
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China.
| |
Collapse
|
17
|
Haerinck J, Goossens S, Berx G. The epithelial-mesenchymal plasticity landscape: principles of design and mechanisms of regulation. Nat Rev Genet 2023; 24:590-609. [PMID: 37169858 DOI: 10.1038/s41576-023-00601-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/13/2023]
Abstract
Epithelial-mesenchymal plasticity (EMP) enables cells to interconvert between several states across the epithelial-mesenchymal landscape, thereby acquiring hybrid epithelial/mesenchymal phenotypic features. This plasticity is crucial for embryonic development and wound healing, but also underlies the acquisition of several malignant traits during cancer progression. Recent research using systems biology and single-cell profiling methods has provided novel insights into the main forces that shape EMP, which include the microenvironment, lineage specification and cell identity, and the genome. Additionally, key roles have emerged for hysteresis (cell memory) and cellular noise, which can drive stochastic transitions between cell states. Here, we review these forces and the distinct but interwoven layers of regulatory control that stabilize EMP states or facilitate epithelial-mesenchymal transitions (EMTs) and discuss the therapeutic potential of manipulating the EMP landscape.
Collapse
Affiliation(s)
- Jef Haerinck
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
18
|
Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis 2023; 26:313-347. [PMID: 37060495 PMCID: PMC10105163 DOI: 10.1007/s10456-023-09876-7] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/26/2023] [Indexed: 04/16/2023]
Abstract
In multicellular organisms, angiogenesis, the formation of new blood vessels from pre-existing ones, is an essential process for growth and development. Different mechanisms such as vasculogenesis, sprouting, intussusceptive, and coalescent angiogenesis, as well as vessel co-option, vasculogenic mimicry and lymphangiogenesis, underlie the formation of new vasculature. In many pathological conditions, such as cancer, atherosclerosis, arthritis, psoriasis, endometriosis, obesity and SARS-CoV-2(COVID-19), developmental angiogenic processes are recapitulated, but are often done so without the normal feedback mechanisms that regulate the ordinary spatial and temporal patterns of blood vessel formation. Thus, pathological angiogenesis presents new challenges yet new opportunities for the design of vascular-directed therapies. Here, we provide an overview of recent insights into blood vessel development and highlight novel therapeutic strategies that promote or inhibit the process of angiogenesis to stabilize, reverse, or even halt disease progression. In our review, we will also explore several additional aspects (the angiogenic switch, hypoxia, angiocrine signals, endothelial plasticity, vessel normalization, and endothelial cell anergy) that operate in parallel to canonical angiogenesis mechanisms and speculate how these processes may also be targeted with anti-angiogenic or vascular-directed therapies.
Collapse
Affiliation(s)
- Andrew C Dudley
- Department of Microbiology, Immunology and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Damasco JA, Yu G, Kumar A, Perez J, Lirag RCM, Whitley EM, Lin SH, Melancon MP. Alendronate conjugate for targeted delivery to bone-forming prostate cancer. Talanta 2023; 256:124308. [PMID: 36774896 PMCID: PMC10031627 DOI: 10.1016/j.talanta.2023.124308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
Bone is the primary metastasis site for lethal prostate cancer, often resulting in poor prognosis, crippling pain, and diminished functioning that drastically reduce both quality of life and survivability Uniquely, prostate cancer bone metastasis induces aberrant bone overgrowth, due to an increase of osteoblasts induced by tumor-secreted bone morphogenetic protein 4 (BMP4). Conjugating drugs to substances that target the tumor-induced bone area within the metastatic tumor foci would be a promising strategy for drug delivery. To develop such a strategy, we conjugated a near infrared (NIR) fluorescent probe, the dye Cy5.5, to serve as a surrogate for drugs, with alendronate, which targets bone. Characterization, such as infrared spectroscopy, confirmed the synthesis of the Cy5.5-ALN conjugate. The maximum absorbance of free Cy5.5, which was at 675 nm, did not change upon conjugation. Alendronate targeted the bone component hydroxyapatite in a dose-dependent manner up to 2.5 μM, with a maximum of 85% of Cy5.5-ALN bound to hydroxyapatite, while free Cy5.5 alone had 6% binding. In in vitro cell binding studies, Cy5.5-ALN bound specifically with mineralized bone matrix of differentiated MC3T3-E1 cells or 2H11 endothelial cells that were induced to become osteoblasts through endothelial-to-osteoblast transition, the underlying mechanism of prostate-cancer-induced bone formation. Neither Cy5.5-ALN nor free Cy5.5 bound to undifferentiated MC3T3-E1 or 2H11 cells. Bone-targeting efficiency studies in non-tumor-bearing mice revealed accumulation over time in the spine, jaw, knees, and paws injected with Cy5.5-ALN, and quantification showed higher accumulation in femurs than in muscle at up to 28 days, while the free Cy5.5 dye was observed circulating without preferential accumulation and decreased over time. There was a linear relationship with fluorescence when the injected concentration of Cy5.5-ALN was between 0.313 and 1.25 nmol/27 g of mouse, as quantified in mouse femurs both in vivo and ex vivo. Ex vivo evaluation of bone-targeting efficiency in nude mice was 3 times higher for bone-forming C4-2b-BMP4 tumors compared to non-bone-forming C4-2b tumors (p-value <0.001). Fluorescence microscopy imaging of the tumors showed that Cy5.5-ALN co-localized with the bone matrix surrounding tumor-induced bone, but not with the viable tumor cells. Together, these results suggest that a drug-ALN conjugate is a promising approach for targeted delivery of drug to the tumor-induced bone area in the metastatic foci of prostate cancer.
Collapse
Affiliation(s)
- Jossana A Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Ajay Kumar
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Department of Biomedical Engineering, Rice University, Houston, TX 77004, USA.
| | - Joy Perez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Rio Carlo M Lirag
- Department of Chemistry, Physics, and Engineering, Cameron University-Duncan, Duncan, OK 73533, USA.
| | - Elizabeth M Whitley
- Department of Veterinary Medicine and Surgery, And The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| | - Marites P Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Lin SC, Yu G, Lee YC, Song JH, Song X, Zhang J, Panaretakis T, Logothetis CJ, Komatsu Y, Yu-Lee LY, Wang G, Lin SH. Endothelial-to-osteoblast transition in normal mouse bone development. iScience 2023; 26:105994. [PMID: 36798441 PMCID: PMC9926118 DOI: 10.1016/j.isci.2023.105994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Metastatic prostate cancer (PCa) in bone induces bone-forming lesions. We have previously shown that PCa-induced bone originates from endothelial cells (ECs) that have undergone EC-to-osteoblast (OSB) transition. Here, we investigated whether EC-to-OSB transition also occurs during normal bone formation. We developed an EC and OSB dual-color reporter mouse (DRM) model that marks EC-OSB hybrid cells with red and green fluorescent proteins. We observed EC-to-OSB transition (RFP and GFP co-expression) in both endochondral and intramembranous bone formation during embryonic development and in adults. Co-expression was confirmed in cells isolated from DRM. Bone marrow- and lung-derived ECs underwent transition to OSBs and mineralization in osteogenic medium. RNA-sequencing revealed GATA family transcription factors were upregulated in EC-OSB hybrid cells and knockdown of GATA3 inhibited BMP4-induced mineralization. Our findings support that EC-to-OSB transition occurs during normal bone development and suggest a new paradigm regarding the endothelial origin of OSBs.
Collapse
Affiliation(s)
- Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu-Chen Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian H. Song
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Li-Yuan Yu-Lee
- Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
21
|
Zhang W, Xu Z, Hao X, He T, Li J, Shen Y, Liu K, Gao Y, Liu J, Edwards D, Muscarella AM, Wu L, Yu L, Xu L, Chen X, Wu YH, Bado IL, Ding Y, Aguirre S, Wang H, Gugala Z, Satcher RL, Wong ST, Zhang XHF. Bone Metastasis Initiation Is Coupled with Bone Remodeling through Osteogenic Differentiation of NG2+ Cells. Cancer Discov 2023; 13:474-495. [PMID: 36287038 PMCID: PMC9905315 DOI: 10.1158/2159-8290.cd-22-0220] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/06/2022] [Accepted: 10/21/2022] [Indexed: 02/07/2023]
Abstract
The bone microenvironment is dynamic and undergoes remodeling in normal and pathologic conditions. Whether such remodeling affects disseminated tumor cells (DTC) and bone metastasis remains poorly understood. Here, we demonstrated that pathologic fractures increase metastatic colonization around the injury. NG2+ cells are a common participant in bone metastasis initiation and bone remodeling in both homeostatic and fractured conditions. NG2+ bone mesenchymal stem/stromal cells (BMSC) often colocalize with DTCs in the perivascular niche. Both DTCs and NG2+ BMSCs are recruited to remodeling sites. Ablation of NG2+ lineage impaired bone remodeling and concurrently diminished metastatic colonization. In cocultures, NG2+ BMSCs, especially when undergoing osteodifferentiation, enhanced cancer cell proliferation and migration. Knockout of N-cadherin in NG2+ cells abolished these effects in vitro and phenocopied NG2+ lineage depletion in vivo. These findings uncover dual roles of NG2+ cells in metastasis and remodeling and indicate that osteodifferentiation of BMSCs promotes metastasis initiation via N-cadherin-mediated cell-cell interaction. SIGNIFICANCE The bone colonization of cancer cells occurs in an environment that undergoes constant remodeling. Our study provides mechanistic insights into how bone homeostasis and pathologic repair lead to the outgrowth of disseminated cancer cells, thereby opening new directions for further etiologic and epidemiologic studies of tumor recurrences. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhan Xu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoxin Hao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tiancheng He
- Department of Systems Medicine and Bioengineering and Translational Biophotonics Laboratory, Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Jiasong Li
- Department of Systems Medicine and Bioengineering and Translational Biophotonics Laboratory, Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Yichao Shen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kai Liu
- Department of Systems Medicine and Bioengineering and Translational Biophotonics Laboratory, Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Yang Gao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Edwards
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aaron M. Muscarella
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ling Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liqun Yu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Longyong Xu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi Chen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Hsuan Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Igor L. Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yunfeng Ding
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sergio Aguirre
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zbigniew Gugala
- Department of Orthopedic Surgery & Rehabilitation, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert L Satcher
- Department of Orthopedic Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephen T. Wong
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Systems Medicine and Bioengineering and Translational Biophotonics Laboratory, Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Xiang H.-F. Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: Xiang H.-F. Zhang, mailing address: One Baylor Plaza, BCM 600, Houston, TX 77030; ; TEL: 713-798-6239.
| |
Collapse
|
22
|
Abstract
Despite advancement in therapeutic options, Non-Small Cell lung cancer (NSCLC) remains a lethal disease mostly due to late diagnosis at metastatic phase and drug resistance. Bone is one of the more frequent sites for NSCLC metastatization. A defined subset of cancer stem cells (CSCs) that possess motile properties, mesenchymal features and tumor initiation potential are defined as metastasis initiating cells (MICs). A better understanding of the mechanisms supporting MIC dissemination and interaction with bone microenvironment is fundamental to design novel rational therapeutic option for long lasting efficient treatment of NSCLC. In this review we will summarize findings about bone metastatic process initiated by NSCLC MICs. We will review how MICs can reach bone and interact with its microenvironment that supports their extravasation, seeding, dormancy/proliferation. The role of different cell types inside the bone metastatic niche, such as endothelial cells, bone cells, hematopoietic stem cells and immune cells will be discussed in regards of their impact in dictating the success of metastasis establishment by MICs. Finally, novel therapeutic options to target NSCLC MIC-induced bone metastases, increasing the survival of patients, will be presented.
Collapse
|
23
|
Yu G, Corn PG, Shen P, Song JH, Lee YC, Lin SC, Pan J, Agarwal SK, Panaretakis T, Pacifici M, Logothetis CJ, Yu-Lee LY, Lin SH. Retinoic Acid Receptor Activation Reduces Metastatic Prostate Cancer Bone Lesions by Blocking the Endothelial-to-Osteoblast Transition. Cancer Res 2022; 82:3158-3171. [PMID: 35802768 PMCID: PMC9444986 DOI: 10.1158/0008-5472.can-22-0170] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/11/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023]
Abstract
Metastatic prostate cancer in the bone induces bone-forming lesions that contribute to progression and therapy resistance. Prostate cancer-induced bone formation originates from endothelial cells (EC) that have undergone endothelial-to-osteoblast (EC-to-OSB) transition in response to tumor-secreted BMP4. Current strategies targeting prostate cancer-induced bone formation are lacking. Here, we show that activation of retinoic acid receptor (RAR) inhibits EC-to-OSB transition and reduces prostate cancer-induced bone formation. Treatment with palovarotene, an RARγ agonist being tested for heterotopic ossification in fibrodysplasia ossificans progressiva, inhibited EC-to-OSB transition and osteoblast mineralization in vitro and decreased tumor-induced bone formation and tumor growth in several osteogenic prostate cancer models, and similar effects were observed with the pan-RAR agonist all-trans-retinoic acid (ATRA). Knockdown of RARα, β, or γ isoforms in ECs blocked BMP4-induced EC-to-OSB transition and osteoblast mineralization, indicating a role for all three isoforms in prostate cancer-induced bone formation. Furthermore, treatment with palovarotene or ATRA reduced plasma Tenascin C, a factor secreted from EC-OSB cells, which may be used to monitor treatment response. Mechanistically, BMP4-activated pSmad1 formed a complex with RAR in the nucleus of ECs to activate EC-to-OSB transition. RAR activation by palovarotene or ATRA caused pSmad1 degradation by recruiting the E3-ubiquitin ligase Smad ubiquitination regulatory factor1 (Smurf1) to the nuclear pSmad1/RARγ complex, thus blocking EC-to-OSB transition. Collectively, these findings suggest that palovarotene can be repurposed to target prostate cancer-induced bone formation to improve clinical outcomes for patients with bone metastasis. SIGNIFICANCE This study provides mechanistic insights into how RAR agonists suppress prostate cancer-induced bone formation and offers a rationale for developing RAR agonists for prostate cancer bone metastasis therapy. See related commentary by Bhowmick and Bhowmick, p. 2975.
Collapse
Affiliation(s)
- Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center; Houston, Texas 77030
| | - Paul G. Corn
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center; Houston, Texas 77030
| | - Pengfei Shen
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center; Houston, Texas 77030
| | - Jian H. Song
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center; Houston, Texas 77030
| | - Yu-Chen Lee
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center; Houston, Texas 77030
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center; Houston, Texas 77030
| | - Jing Pan
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center; Houston, Texas 77030
| | - Sandeep K. Agarwal
- Department of Medicine, Section of Immunology Allergy & Rheumatology, Baylor College of Medicine; Houston, Texas 77030
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center; Houston, Texas 77030
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, The Children’s Hospital of Philadelphia; Philadelphia
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center; Houston, Texas 77030
| | - Li-Yuan Yu-Lee
- Department of Medicine, Section of Immunology Allergy & Rheumatology, Baylor College of Medicine; Houston, Texas 77030,Co-Corresponding authors: Dr. Sue-Hwa Lin, Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030. Phone: 713-794-1559; Fax: 713-834-6084; ; Dr. Li-yuan Yu-Lee, Department of Medicine, Section of Immunology Allergy & Rheumatology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030. Phone: 713-798-4770;
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center; Houston, Texas 77030,Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center; Houston, Texas 77030,The University of Texas Graduate School of Biomedical Sciences at Houston; Houston, Texas.,Co-Corresponding authors: Dr. Sue-Hwa Lin, Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030. Phone: 713-794-1559; Fax: 713-834-6084; ; Dr. Li-yuan Yu-Lee, Department of Medicine, Section of Immunology Allergy & Rheumatology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030. Phone: 713-798-4770;
| |
Collapse
|
24
|
Bone Marrow Endothelial Cells Increase Prostate Cancer Cell Apoptosis in 3D Triculture Model of Reactive Stroma. BIOLOGY 2022; 11:biology11091271. [PMID: 36138750 PMCID: PMC9495890 DOI: 10.3390/biology11091271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 12/01/2022]
Abstract
Simple Summary Prostate cancer (PCa) metastasizes preferentially to the bone marrow where it becomes difficult to treat. PCa cells in the bone marrow may survive, dormant and undetected for many years before patients eventually relapse with metastatic disease. Bone marrow is a complex tissue that initially is hostile to the PCa cells, Understanding how cancer cells survive in the bone marrow and what changes to the bone microenvironment permit them to switch to an actively growing state could offer new therapeutic strategies to combat metastatic PCa. In this study, we describe a method to culture PCa cells with two other cell types from the bone marrow, stromal cells and endothelial cells, as a way to study the interactions among these cell types. We found that factors produced by bone marrow endothelial cells, but not endothelial cells from other tissues, trigger PCa cells to either die or enter a dormant state, similar to what has been observed in patients when PCa cells initially colonize the bone marrow. Further analysis of the cell interactions within the culture model described in this study will offer increased understanding of PCa interaction with the bone marrow environment. Abstract The bone marrow tumor microenvironment (BMTE) is a complex network of cells, extracellular matrix, and sequestered signaling factors that initially act as a hostile environment for disseminating tumor cells (DTCs) from the cancerous prostate. Three-dimensional (3D) culture systems offer an opportunity to better model these complex interactions in reactive stroma, providing contextual behaviors for cancer cells, stromal cells, and endothelial cells. Using a new system designed for the triculture of osteoblastic prostate cancer (PCa) cells, stromal cells, and microvascular endothelial cells, we uncovered a context-specific pro-apoptotic effect of endothelial cells of the bone marrow different from those derived from the lung or dermis. The paracrine nature of this effect was demonstrated by observations that conditioned medium from bone marrow endothelial cells, but not from dermal or lung endothelial cells, led to PCa cell death in microtumors grown in 3D BMTE-simulating hydrogels. Analysis of the phosphoproteome by reverse phase protein analysis (RPPA) of PCa cells treated with conditioned media from different endothelial cells identified the differential regulation of pathways involved in proliferation, cell cycle regulation, and apoptosis. The findings from the RPPA were validated by western blotting for representative signaling factors identified, including forkhead box M1 (FOXM1; proliferation factor), pRb (cell cycle regulator), and Smac/DIABLO (pro-apoptosis) among treatment conditions. The 3D model presented here thus presents an accurate model to study the influence of the reactive BMTE, including stromal and endothelial cells, on the adaptive behaviors of cancer cells modeling DTCs at sites of bone metastasis. These findings in 3D culture systems can lead to a better understanding of the real-time interactions among cells present in reactive stroma than is possible using animal models.
Collapse
|
25
|
Antagonizing exosomal miR-18a-5p derived from prostate cancer cells ameliorates metastasis-induced osteoblastic lesions by targeting Hist1h2bc and activating Wnt/β-catenin pathway. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Abstract
Metastasis is responsible for a large majority of death from malignant solid tumors. Bone is one of the most frequently affected organs in cancer metastasis, especially in breast and prostate cancer. Development of bone metastasis requires cancer cells to successfully complete a number of challenging steps, including local invasion and intravasation, survival in circulation, extravasation and initial seeding, and finally, formation of metastatic colonies after a period of dormancy or indolent growth. During this process, cancer cells often undergo a series of cellular and molecular changes to gain cellular plasticity that helps them adapt to various environments they encounter along the journey of metastasis. Understanding the mechanisms behind cellular plasticity and adaptation during the formation of bone metastasis is crucial for the development of novel therapies.
Collapse
Affiliation(s)
- Cao Fang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
27
|
Owen-Woods C, Kusumbe A. Fundamentals of bone vasculature: Specialization, interactions and functions. Semin Cell Dev Biol 2022; 123:36-47. [PMID: 34281770 DOI: 10.1016/j.semcdb.2021.06.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
Angiogenesis, hematopoiesis and osteogenesis are fundamental processes mediating complex and essential biological functions. In the bone marrow, endothelial cells (ECs) are a principal mediator of regulatory signals that govern hematopoietic and mesenchymal stem cells. EC and osteoblast interactions and niche functions of ECs are fundamental in maintaining bone health and coordinating repair and regeneration following injury. These cellular interactions are subject to dysregulation and deterioration under stress, aging, chronic disease states and malignancy. Thus, the prospect of manipulating the bone vasculature has tremendous potential to advance therapeutic interventions for the management of bone diseases. This review discusses the current state of vascular-skeletal tissue interactions focusing on osteoblast and hematopoietic stem cells interaction with ECs.
Collapse
Affiliation(s)
- Charlotte Owen-Woods
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Anjali Kusumbe
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK.
| |
Collapse
|
28
|
Lee YC, Lin SC, Yu G, Zhu M, Song JH, Rivera K, Pappin DJ, Logothetis CJ, Panaretakis T, Wang G, Yu-Lee LY, Lin SH. Prostate tumor-induced stromal reprogramming generates Tenascin C that promotes prostate cancer metastasis through YAP/TAZ inhibition. Oncogene 2022; 41:757-769. [PMID: 34845375 PMCID: PMC8818031 DOI: 10.1038/s41388-021-02131-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022]
Abstract
Metastatic prostate cancer (PCa) in bone induces bone-forming lesions that enhance PCa progression. How tumor-induced bone formation enhances PCa progression is not known. We have previously shown that PCa-induced bone originates from endothelial cells (ECs) that have undergone endothelial-to-osteoblast (EC-to-OSB) transition by tumor-secreted bone morphogenetic protein 4 (BMP4). Here, we show that EC-to-OSB transition leads to changes in the tumor microenvironment that increases the metastatic potential of PCa cells. We found that conditioned medium (CM) from EC-OSB hybrid cells increases the migration, invasion, and survival of PC3-mm2 and C4-2B4 PCa cells. Quantitative mass spectrometry (Isobaric Tags for Relative and Absolute Quantitation) identified Tenascin C (TNC) as one of the major proteins secreted from EC-OSB hybrid cells. TNC expression in tumor-induced OSBs was confirmed by immunohistochemistry of MDA PCa-118b xenograft and human bone metastasis specimens. Mechanistically, BMP4 increases TNC expression in EC-OSB cells through the Smad1-Notch/Hey1 pathway. How TNC promotes PCa metastasis was next interrogated by in vitro and in vivo studies. In vitro studies showed that a TNC-neutralizing antibody inhibits EC-OSB-CM-mediated PCa cell migration and survival. TNC knockdown decreased, while the addition of recombinant TNC or TNC overexpression increased migration and anchorage-independent growth of PC3 or C4-2b cells. When injected orthotopically, PC3-mm2-shTNC clones decreased metastasis to bone, while C4-2b-TNC-overexpressing cells increased metastasis to lymph nodes. TNC enhances PCa cell migration through α5β1 integrin-mediated YAP/TAZ inhibition. These studies elucidate that tumor-induced stromal reprogramming generates TNC that enhances PCa metastasis and suggest that TNC may be a target for PCa therapy.
Collapse
Affiliation(s)
- Yu-Chen Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ming Zhu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jian H Song
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Keith Rivera
- Cold Spring Harbor Laboratory, Cold Spring Harbor, 11724, NY, USA
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, 11724, NY, USA
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Li-Yuan Yu-Lee
- Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
29
|
Satcher RL, Zhang XHF. Evolving cancer-niche interactions and therapeutic targets during bone metastasis. Nat Rev Cancer 2022; 22:85-101. [PMID: 34611349 DOI: 10.1038/s41568-021-00406-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
Many cancer types metastasize to bone. This propensity may be a product of genetic traits of the primary tumour in some cancers. Upon arrival, cancer cells establish interactions with various bone-resident cells during the process of colonization. These interactions, to a large degree, dictate cancer cell fates at multiple steps of the metastatic cascade, from single cells to overt metastases. The bone microenvironment may even influence cancer cells to subsequently spread to multiple other organs. Therefore, it is imperative to spatiotemporally delineate the evolving cancer-bone crosstalk during bone colonization. In this Review, we provide a summary of the bone microenvironment and its impact on bone metastasis. On the basis of the microscopic anatomy, we tentatively define a roadmap of the journey of cancer cells through bone relative to various microenvironment components, including the potential of bone to function as a launch pad for secondary metastasis. Finally, we examine common and distinct features of bone metastasis from various cancer types. Our goal is to stimulate future studies leading to the development of a broader scope of potent therapies.
Collapse
Affiliation(s)
- Robert L Satcher
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
30
|
Sui L, Sanders A, Jiang WG, Ye L. Deregulated molecules and pathways in the predisposition and dissemination of breast cancer cells to bone. Comput Struct Biotechnol J 2022; 20:2745-2758. [PMID: 35685372 PMCID: PMC9168524 DOI: 10.1016/j.csbj.2022.05.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/28/2022] Open
|
31
|
Cui J, Chen H, Zhang K, Li X. Targeting the Wnt signaling pathway for breast cancer bone metastasis therapy. J Mol Med (Berl) 2021; 100:373-384. [PMID: 34821953 DOI: 10.1007/s00109-021-02159-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023]
Abstract
Osteolytic bone destruction is found in approximately 60% of advanced breast cancer patients. With the pathogenesis of bone metastasis being unclear, traditional antiresorptive therapeutic strategies might not be ideal for treatment. The Wnt pathway is a highly organized cascade involved in multiple stages of cancer bone metastasis, and Wnt-targeted therapeutic strategies have shown promise in achieving favorable outcomes. In this review, we summarize the current progress of pharmacological Wnt modulators against breast cancer bone metastasis, discuss emerging therapeutic strategies based on Wnt pathway-related targets for bone therapy, and highlight opportunities to better harness the Wnt pathway for bone metastasis therapeutics to further reveal the implications of the Wnt pathway in bone metastasis pathology and provide new ideas for the development of Wnt-based intervention strategies against breast cancer bone metastasis.
Collapse
Affiliation(s)
- Jingyao Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Haoran Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiwen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
32
|
Mediterranean Diet Food Components as Possible Adjuvant Therapies to Counteract Breast and Prostate Cancer Progression to Bone Metastasis. Biomolecules 2021; 11:biom11091336. [PMID: 34572548 PMCID: PMC8470063 DOI: 10.3390/biom11091336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022] Open
Abstract
Bone metastasis is a serious and often lethal complication of particularly frequent carcinomas, such as breast and prostate cancers, which not only reduces survival but also worsens the patients’ quality of life. Therefore, it is important to find new and/or additional therapeutic possibilities that can counteract the colonization of bone tissue. High adherence to the Mediterranean diet (MD) is effective in the prevention of cancer and improves cancer patients’ health, thus, here, we considered its impact on bone metastasis. We highlighted some molecular events relevant for the development of a metastatic phenotype in cancer cells and the alterations of physiological bone remodeling, which occur during skeleton colonization. We then considered those natural compounds present in MD foods with a recognized role to inhibit or reverse the metastatic process both in in vivo and in vitro systems, and we reported the identified mechanisms of action. The knowledge of this bioactivity by the dietary components of the MD, together with its wide access to all people, could help not only to maintain healthy status but also to improve the quality of life of patients with bone metastases.
Collapse
|
33
|
Yu G, Shen P, Lee YC, Pan J, Song JH, Pan T, Lin SC, Liang X, Wang G, Panaretakis T, Logothetis CJ, Gallick GE, Yu-Lee LY, Lin SH. Multiple pathways coordinating reprogramming of endothelial cells into osteoblasts by BMP4. iScience 2021; 24:102388. [PMID: 33981975 PMCID: PMC8086028 DOI: 10.1016/j.isci.2021.102388] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/28/2021] [Accepted: 03/30/2021] [Indexed: 02/03/2023] Open
Abstract
Cell type transition occurs during normal development and under pathological conditions. In prostate cancer bone metastasis, prostate cancer-secreted BMP4 induces endothelial cell-to-osteoblast (EC-to-OSB) transition. Such tumor-induced stromal reprogramming supports prostate cancer progression. We delineate signaling pathways mediating EC-to-OSB transition using EC lines 2H11 and SVR. We found that BMP4-activated pSmad1-Notch-Hey1 pathway inhibits EC migration and tube formation. BMP4-activated GSK3β-βcatenin-Slug pathway stimulates Osx expression. In addition, pSmad1-regulated Dlx2 converges with the Smad1 and β-catenin pathways to stimulate osteocalcin expression. By co-expressing Osx, Dlx2, Slug and Hey1, we were able to achieve EC-to-OSB transition, leading to bone matrix mineralization in the absence of BMP4. In human prostate cancer bone metastasis specimens and MDA-PCa-118b and C4-2b-BMP4 osteogenic xenografts, immunohistochemical analysis showed that β-catenin and pSmad1 are detected in activated osteoblasts rimming the tumor-induced bone. Our results elucidated the pathways and key molecules coordinating prostate cancer-induced stromal programming and provide potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Pengfei Shen
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu-Chen Lee
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Pan
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian H. Song
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Tianhong Pan
- Department of Orthopedic Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Xin Liang
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Gary E. Gallick
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Li-Yuan Yu-Lee
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA,Corresponding author
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA,Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA,Corresponding author
| |
Collapse
|
34
|
Vardaki I, Corn P, Gentile E, Song JH, Madan N, Hoang A, Parikh N, Guerra L, Lee YC, Lin SC, Yu G, Santos E, Melancon MP, Troncoso P, Navone N, Gallick GE, Efstathiou E, Subudhi SK, Lin SH, Logothetis CJ, Panaretakis T. Radium-223 Treatment Increases Immune Checkpoint Expression in Extracellular Vesicles from the Metastatic Prostate Cancer Bone Microenvironment. Clin Cancer Res 2021; 27:3253-3264. [PMID: 33753455 DOI: 10.1158/1078-0432.ccr-20-4790] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/25/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Radium-223 prolongs survival in a fraction of men with bone metastatic prostate cancer (PCa). However, there are no markers for monitoring response and resistance to Radium-223 treatment. Exosomes are mediators of intercellular communication and may reflect response of the bone microenvironment to Radium-223 treatment. We performed molecular profiling of exosomes and compared the molecular profile in patients with favorable and unfavorable overall survival. EXPERIMENTAL DESIGN We performed exosomal transcriptome analysis in plasma derived from our preclinical models (MDA-PCa 118b tumors, TRAMP-C2/BMP4 PCa) and from the plasma of 25 patients (paired baseline and end of treatment) treated with Radium-223. All samples were run in duplicate, and array data analyzed with fold changes +2 to -2 and P < 0.05. RESULTS We utilized the preclinical models to establish that genes derived from the tumor and the tumor-associated bone microenvironment (bTME) are differentially enriched in plasma exosomes upon Radium-223 treatment. The mouse transcriptome analysis revealed changes in bone-related and DNA damage repair-related pathways. Similar findings were observed in plasma-derived exosomes from patients treated with Radium-223 detected changes. In addition, exosomal transcripts detected immune-suppressors (e.g., PD-L1) that were associated with shorter survival to Radium-223. Treatment of the Myc-CaP mouse model with a combination of Radium-223 and immune checkpoint therapy (ICT) resulted in greater efficacy than monotherapy. CONCLUSIONS These clinical and coclinical analyses showed that RNA profiling of plasma exosomes may be used for monitoring the bTME in response to treatment and that ICT may be used to increase the efficacy of Radium-223.
Collapse
Affiliation(s)
- Ioulia Vardaki
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paul Corn
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Emanuela Gentile
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Jian H Song
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Namrata Madan
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Anh Hoang
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Nila Parikh
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Leah Guerra
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Yu-Chen Lee
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Texas
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Texas
| | - Guoyu Yu
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Texas
| | - Elmer Santos
- Department of Nuclear Medicine, MD Anderson Cancer Center, Houston, Texas
| | - Marites P Melancon
- Department of Interventional Radiology, MD Anderson Cancer Center, Houston, Texas
| | - Patricia Troncoso
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Nora Navone
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Gary E Gallick
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Eleni Efstathiou
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Sumit K Subudhi
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Sue-Hwa Lin
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas.,Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Texas
| | | | - Theocharis Panaretakis
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas. .,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
35
|
Muscarella AM, Aguirre S, Hao X, Waldvogel SM, Zhang XHF. Exploiting bone niches: progression of disseminated tumor cells to metastasis. J Clin Invest 2021; 131:143764. [PMID: 33720051 PMCID: PMC7954594 DOI: 10.1172/jci143764] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many solid cancers metastasize to the bone and bone marrow (BM). This process may occur even before the diagnosis of primary tumors, as evidenced by the discovery of disseminated tumor cells (DTCs) in patients without occult malignancies. The cellular fates and metastatic progression of DTCs are determined by complicated interactions between cancer cells and BM niches. Not surprisingly, these niches also play important roles in normal biology, including homeostasis and turnover of skeletal and hematopoiesis systems. In this Review, we summarize recent findings on functions of BM niches in bone metastasis (BoMet), particularly during the early stage of colonization. In light of the rich knowledge of hematopoiesis and osteogenesis, we highlight how DTCs may progress into overt BoMet by taking advantage of niche cells and their activities in tissue turnover, especially those related to immunomodulation and bone repair.
Collapse
Affiliation(s)
- Aaron M. Muscarella
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Sergio Aguirre
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaoxin Hao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Sarah M. Waldvogel
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Xiang H.-F. Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
36
|
Gentile M, Centonza A, Lovero D, Palmirotta R, Porta C, Silvestris F, D'Oronzo S. Application of "omics" sciences to the prediction of bone metastases from breast cancer: State of the art. J Bone Oncol 2021; 26:100337. [PMID: 33240786 PMCID: PMC7672315 DOI: 10.1016/j.jbo.2020.100337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 11/28/2022] Open
Abstract
Breast cancer (BC) is the most frequent malignancy and the first cause of cancer-related death in women. The majority of patients with advanced BC develop skeletal metastases which may ultimately lead to serious complications, termed skeletal-related events, that often dramatically impact on quality of life and survival. Therefore, the identification of biomarkers able to stratify BC patient risk to develop bone metastases (BM) is fundamental to define personalized diagnostic and therapeutic strategies, possibly at the earliest stages of the disease. In this regard, the advent of "omics" sciences boosted the investigation of several putative biomarkers of BC osteotropism, including deregulated genes, proteins and microRNAs. The present review revisits the current knowledge on BM development in BC and the most recent studies exploring potential BM-predicting biomarkers, based on the application of omics sciences to the study of primary breast malignancies.
Collapse
Key Words
- ADAMTS1, a disintegrin-like and metalloproteinase with thrombospondin type 1
- ALP, alkaline phosphatase
- BALP (BSAP), bone-specific alkaline phosphatase
- BC, breast cancer
- BM, bone metastases
- BOLCs, breast osteoblast-like cells
- BTM, bone turnover markers
- Biomarkers
- Bone metastases
- Breast cancer
- CAPG, capping-protein
- CCN3, cellular communication network factor 3
- CDH11, cadherin-11
- CNV, copy number variation
- CTGF, connective tissue-derived growth factor
- CTSK, cathepsin K
- CTX, C-telopeptide
- CXCL, C-X-C-ligand
- CXCR, C–X–C motif chemokine receptor
- DEGs, differentially expressed genes
- DOCK4, dedicator of cytokinesis protein 4
- DPD, deoxypyridoline
- DTC, disseminated tumour cells
- EMT, epithelial-to-mesenchymal transition
- ER, estrogen receptor
- ERRα, estrogen-related receptor alpha
- FAK, focal adhesion kinase
- FGF, fibroblast growth factor
- FST, follistatin
- GIPC1, PDZ domain-containing protein member 1
- HR, hazard ratio
- Her, human epidermal growth factor
- ICAM-1, intercellular adhesion molecule 1
- IGF, insulin-like growth factor
- IHC, immunohistochemistry
- IL, interleukin
- LC/MS/MS, liquid chromatography/mass spectrometry/mass spectrometry
- MAF, v-maf avian muscolo aponeurotic fibro-sarcoma oncogene homolog
- MDA-MB, MD Anderson metastatic BC
- MMP1, matrix metalloproteinase-1
- NTX, N-telopeptide
- OPG, osteoprotegerin
- Omics sciences
- Osteotropism
- P1CP, pro-collagen type I C-terminal
- P1NP, pro-collagen type I N-terminal
- PDGF, platelet-derived growth factor
- PRG1, proteoglycan-1
- PTH-rP, parathyroid hormone-related protein
- PYD, pyridoline
- PgR, progesterone receptor
- PlGF, placental growth factor
- RANK, receptor activator of nuclear factor к-B
- RT-PCR, real time-PCR
- SILAC-MS, stable isotope labelling by amino acids in cell culture-mass spectrometry
- SNPs, single nucleotide polymorphisms
- SPP1, osteopontin
- SREs, skeletal-related events
- TCGA, the cancer genome atlas
- TGF-β, transforming growth factor beta
- TNF-α, tumor necrosis factor-α
- TRACP-5b, tartrate resistant acid phosphatase-5b
- VEGF, vascular endothelial growth factor
- ZNF217, zinc-finger protein 217
- miRNAs, microRNAs
- ncRNAs, noncoding RNA
Collapse
Affiliation(s)
- Marica Gentile
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Antonella Centonza
- “Casa Sollievo della Sofferenza” Onco-hematologic Department, Medical Oncology Unit, Viale Cappuccini 1, 71013 San Giovanni Rotondo, Italy
| | - Domenica Lovero
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Raffaele Palmirotta
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Camillo Porta
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Stella D'Oronzo
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
37
|
Hagaman DE, Damasco JA, Perez JVD, Rojo RD, Melancon MP. Recent Advances in Nanomedicine for the Diagnosis and Treatment of Prostate Cancer Bone Metastasis. Molecules 2021; 26:E384. [PMID: 33450939 PMCID: PMC7828457 DOI: 10.3390/molecules26020384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with advanced prostate cancer can develop painful and debilitating bone metastases. Currently available interventions for prostate cancer bone metastases, including chemotherapy, bisphosphonates, and radiopharmaceuticals, are only palliative. They can relieve pain, reduce complications (e.g., bone fractures), and improve quality of life, but they do not significantly improve survival times. Therefore, additional strategies to enhance the diagnosis and treatment of prostate cancer bone metastases are needed. Nanotechnology is a versatile platform that has been used to increase the specificity and therapeutic efficacy of various treatments for prostate cancer bone metastases. In this review, we summarize preclinical research that utilizes nanotechnology to develop novel diagnostic imaging tools, translational models, and therapies to combat prostate cancer bone metastases.
Collapse
Affiliation(s)
- Daniel E. Hagaman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
| | - Jossana A. Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
| | - Joy Vanessa D. Perez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
- College of Medicine, University of the Philippines, Manila NCR 1000, Philippines
| | - Raniv D. Rojo
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
- College of Medicine, University of the Philippines, Manila NCR 1000, Philippines
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
- UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
38
|
Rojo RD, Perez JVD, Damasco JA, Yu G, Lin SC, Heralde FM, Novone NM, Santos EB, Lin SH, Melancon MP. Combinatorial effect of radium-223 and irreversible electroporation on prostate cancer bone metastasis in mice. Int J Hyperthermia 2021; 38:650-662. [PMID: 33882773 PMCID: PMC8495630 DOI: 10.1080/02656736.2021.1914873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Metastatic prostate cancer in bone is difficult to treat as the tumor cells are relatively resistant to hormonal or chemotherapies when compared to primary prostate cancer. Irreversible electroporation (IRE) is a minimally invasive ablation procedure that has potential applications in the management of prostate cancer in bone. However, a common limitation of IRE is tumor recurrence, which arises from incomplete ablation that allows remaining cancer cells to proliferate. In this study, we combined IRE with radium-223 (Ra-223), a bone-seeking radionuclide that emits short track length alpha particles and thus is associated with reduced damage to the bone marrow and evaluated the impact of the combination treatment on bone-forming prostate cancer tumors. METHODS The antitumor activity of IRE and Ra-223 as single agents and in combination was tested in vitro against three bone morphogenetic protein 4 (BMP4)-expressing prostate cancer cell lines (C4-2B-BMP4, Myc-CaP-BMP4, and TRAMP-C2-BMP4). Similar evaluation was performed in vivo using a bone-forming C4-2B-BMP4 tumor model in nude mice. RESULTS IRE and Ra-223 as monotherapy inhibited prostate cancer cell proliferation in vitro, and their combination resulted in significant reduction in cell viability compared to monotherapy. In vivo evaluation revealed that IRE with single-dose administration of Ra-233, compared to IRE alone, reduced the rate of tumor recurrence by 40% following initial apparent complete ablation and decreased the rate of proliferation of incompletely ablated tumor as quantified in Ki-67 staining (53.58 ± 16.0% for IRE vs. 20.12 ± 1.63%; for IRE plus Ra-223; p = 0.004). Histological analysis qualitatively showed the enhanced killing of tumor cells adjacent to bone by Ra-223 compared to those treated with IRE alone. CONCLUSION IRE in combination with Ra-223, which enhanced the destruction of cancer cells that are adjacent to bone, resulted in reduction of tumor recurrence through improved clearance of proliferative cells in the tumor region.
Collapse
Affiliation(s)
- Raniv D. Rojo
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States of America,College of Medicine, University of the Philippines Manila, Pedro Gil St., Ermita, Manila, National Capital Region 1000, Republic of the Philippines
| | - Joy Vanessa D. Perez
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States of America,College of Medicine, University of the Philippines Manila, Pedro Gil St., Ermita, Manila, National Capital Region 1000, Republic of the Philippines
| | - Jossana A. Damasco
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States of America
| | - Guoyu Yu
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas, 77030, United States of America
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas, 77030, United States of America
| | - Francisco M. Heralde
- College of Medicine, University of the Philippines Manila, Pedro Gil St., Ermita, Manila, National Capital Region 1000, Republic of the Philippines
| | - Nora M. Novone
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas, 77030, United States of America
| | - Elmer B. Santos
- Department of Nuclear Medicine, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas, 77030, United States of America
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas, 77030, United States of America,MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, 6767 Bertner Ave., Houston, Texas, 77030, United States of America
| | - Marites P. Melancon
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States of America,MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, 6767 Bertner Ave., Houston, Texas, 77030, United States of America
| |
Collapse
|
39
|
Clézardin P, Coleman R, Puppo M, Ottewell P, Bonnelye E, Paycha F, Confavreux CB, Holen I. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev 2020; 101:797-855. [PMID: 33356915 DOI: 10.1152/physrev.00012.2019] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Skeletal metastases are frequent complications of many cancers, causing bone complications (fractures, bone pain, disability) that negatively affect the patient's quality of life. Here, we first discuss the burden of skeletal complications in cancer bone metastasis. We then describe the pathophysiology of bone metastasis. Bone metastasis is a multistage process: long before the development of clinically detectable metastases, circulating tumor cells settle and enter a dormant state in normal vascular and endosteal niches present in the bone marrow, which provide immediate attachment and shelter, and only become active years later as they proliferate and alter the functions of bone-resorbing (osteoclasts) and bone-forming (osteoblasts) cells, promoting skeletal destruction. The molecular mechanisms involved in mediating each of these steps are described, and we also explain how tumor cells interact with a myriad of interconnected cell populations in the bone marrow, including a rich vascular network, immune cells, adipocytes, and nerves. We discuss metabolic programs that tumor cells could engage with to specifically grow in bone. We also describe the progress and future directions of existing bone-targeted agents and report emerging therapies that have arisen from recent advances in our understanding of the pathophysiology of bone metastases. Finally, we discuss the value of bone turnover biomarkers in detection and monitoring of progression and therapeutic effects in patients with bone metastasis.
Collapse
Affiliation(s)
- Philippe Clézardin
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France.,Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Rob Coleman
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Margherita Puppo
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Penelope Ottewell
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Edith Bonnelye
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France
| | - Frédéric Paycha
- Service de Médecine Nucléaire, Hôpital Lariboisière, Paris, France
| | - Cyrille B Confavreux
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France.,Service de Rhumatologie Sud, CEMOS-Centre Expert des Métastases Osseuses, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Ingunn Holen
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
40
|
Andueza A, Kumar S, Kim J, Kang DW, Mumme HL, Perez JI, Villa-Roel N, Jo H. Endothelial Reprogramming by Disturbed Flow Revealed by Single-Cell RNA and Chromatin Accessibility Study. Cell Rep 2020; 33:108491. [PMID: 33326796 PMCID: PMC7801938 DOI: 10.1016/j.celrep.2020.108491] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/26/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Disturbed flow (d-flow) induces atherosclerosis by regulating gene expression in endothelial cells (ECs). For further mechanistic understanding, we carried out a single-cell RNA sequencing (scRNA-seq) and scATAC-seq study using endothelial-enriched single cells from the left- and right carotid artery exposed to d-flow (LCA) and stable-flow (s-flow in RCA) using the mouse partial carotid ligation (PCL) model. We find eight EC clusters along with immune cells, fibroblasts, and smooth muscle cells. Analyses of marker genes, pathways, and pseudotime reveal that ECs are highly heterogeneous and plastic. D-flow induces a dramatic transition of ECs from atheroprotective phenotypes to pro-inflammatory cells, mesenchymal (EndMT) cells, hematopoietic stem cells, endothelial stem/progenitor cells, and an unexpected immune cell-like (EndICLT) phenotypes. While confirming KLF4/KLF2 as an s-flow-sensitive transcription factor binding site, we also find those sensitive to d-flow (RELA, AP1, STAT1, and TEAD1). D-flow reprograms ECs from atheroprotective to proatherogenic phenotypes, including EndMT and potentially EndICLT.
Collapse
Affiliation(s)
- Aitor Andueza
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Juyoung Kim
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Dong-Won Kang
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Hope L Mumme
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Julian I Perez
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Nicolas Villa-Roel
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
41
|
Abstract
Bone is the most frequent site for metastasis for many cancers, notably for tumours originating in the breast and the prostate. Tumour cells can escape from the primary tumour site and colonize the bone microenvironment. Within the bone, these disseminated tumour cells, as well as those arising in the context of multiple myeloma, may assume a state of dormancy, remaining quiescent for years before resuming proliferation and causing overt metastasis, which causes bone destruction via activation of osteoclast-mediated osteolysis. This structural damage can lead to considerable morbidity, including pain, fractures and impaired quality of life. Although treatment of bone metastases and myeloma bone disease is rarely curative, disease control is often possible for many years through the use of systemic anticancer treatments on a background of multidisciplinary supportive care. This care should include bone-targeted agents to inhibit tumour-associated osteolysis and prevent skeletal morbidity as well as use of appropriate local treatments such as radiation therapy, orthopaedic surgery and specialist palliative care to minimize the impact of metastatic bone disease on physical functioning. In this Primer, we provide an overview of the clinical features, the pathophysiology and the specific treatment approaches to prevent and treat bone metastases from solid tumours as well as myeloma bone disease.
Collapse
|
42
|
Guerrieri AN, Montesi M, Sprio S, Laranga R, Mercatali L, Tampieri A, Donati DM, Lucarelli E. Innovative Options for Bone Metastasis Treatment: An Extensive Analysis on Biomaterials-Based Strategies for Orthopedic Surgeons. Front Bioeng Biotechnol 2020; 8:589964. [PMID: 33123519 PMCID: PMC7573123 DOI: 10.3389/fbioe.2020.589964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022] Open
Abstract
Bone is the third most frequent site of metastasis, with a particular incidence in breast and prostate cancer patients. For example, almost 70% of breast cancer patients develop several bone metastases in the late stage of the disease. Bone metastases are a challenge for clinicians and a burden for patients because they frequently cause pain and can lead to fractures. Unfortunately, current therapeutic options are in most cases only palliative and, although not curative, surgery remains the gold standard for bone metastasis treatment. Surgical intervention mostly provides the replacement of the affected bone with a bioimplant, which can be made by materials of different origins and designed through several techniques that have evolved throughout the years simultaneously with clinical needs. Several scientists and clinicians have worked to develop biomaterials with potentially successful biological and mechanical features, however, only a few of them have actually reached the scope. In this review, we extensively analyze currently available biomaterials-based strategies focusing on the newest and most innovative ideas while aiming to highlight what should be considered both a reliable choice for orthopedic surgeons and a future definitive and curative option for bone metastasis and cancer patients.
Collapse
Affiliation(s)
- Ania Naila Guerrieri
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Roberta Laranga
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Davide Maria Donati
- Third Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Enrico Lucarelli
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
43
|
Wang H, Zhang W, Bado I, Zhang XHF. Bone Tropism in Cancer Metastases. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036848. [PMID: 31615871 DOI: 10.1101/cshperspect.a036848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bone is a frequent site of metastases in many cancers. Both bone properties and the tumor-intrinsic traits are associated with the metastatic propensity to bone (i.e., the bone tropism). Whereas an increasing body of mechanistic studies expanded our understanding on bone tropism, they also revealed complexity across the bone lesions originated from different cancer types. In this review, we will discuss the physical, chemical, and biological properties of bone microenvironment, identify potential players in every stage of bone metastases, and introduce some of the known mechanisms regulating the bone colonization. Our objectives are to integrate the knowledge established in different biological contexts and highlight the determinants of bone tropism.
Collapse
Affiliation(s)
- Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Igor Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,McNair Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
44
|
Broggini T, Piffko A, Hoffmann CJ, Ghori A, Harms C, Adams RH, Vajkoczy P, Czabanka M. Ephrin-B2-EphB4 communication mediates tumor-endothelial cell interactions during hematogenous spread to spinal bone in a melanoma metastasis model. Oncogene 2020; 39:7063-7075. [PMID: 32989254 DOI: 10.1038/s41388-020-01473-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022]
Abstract
Metastases account for the majority of cancer deaths. Bone represents one of the most common sites of distant metastases, and spinal bone metastasis is the most common source of neurological morbidity in cancer patients. During metastatic seeding of cancer cells, endothelial-tumor cell interactions govern extravasation to the bone and potentially represent one of the first points of action for antimetastatic treatment. The ephrin-B2-EphB4 pathway controls cellular interactions by inducing repulsive or adhesive properties, depending on forward or reverse signaling. Here, we report that in an in vivo metastatic melanoma model, ephrin-B2-mediated activation of EphB4 induces tumor cell repulsion from bone endothelium, translating in reduced spinal bone metastatic loci and improved neurological function. Selective ephrin-B2 depletion in endothelial cells or EphB4 inhibition increases bone metastasis and shortens the time window to hind-limb locomotion deficit from spinal cord compression. EphB4 overexpression in melanoma cells ameliorates the metastatic phenotype and improves neurological outcome. Timely harvesting of bone tissue after tumor cell injection and intravital bone microscopy revealed less tumor cells attached to ephrin-B2-positive endothelial cells. These results suggest that ephrin-B2-EphB4 communication influences bone metastasis formation by altering melanoma cell repulsion/adhesion to bone endothelial cells, and represents a molecular target for therapeutic intervention.
Collapse
Affiliation(s)
- Thomas Broggini
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany.,Department of Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Andras Piffko
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany.,Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Christian J Hoffmann
- Department of Experimental Neurology, Center for Stroke Research Berlin, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Adnan Ghori
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Christoph Harms
- Department of Experimental Neurology, Center for Stroke Research Berlin, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Ralf H Adams
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany.
| |
Collapse
|
45
|
Ponzetti M, Rucci N. Switching Homes: How Cancer Moves to Bone. Int J Mol Sci 2020; 21:E4124. [PMID: 32527062 PMCID: PMC7313057 DOI: 10.3390/ijms21114124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Bone metastases (BM) are a very common complication of the most prevalent human cancers. BM are extremely painful and may be life-threatening when associated with hypercalcaemia. BM can lead to kidney failure and cardiac arrhythmias and arrest, but why and how do cancer cells decide to "switch homes" and move to bone? In this review, we will present what answers science has provided so far, with focus on the molecular mechanisms and cellular aspects of well-established findings, such as the concept of "vicious cycle" and "osteolytic" vs. "osteosclerotic" bone metastases; as well as on novel concepts, such as cellular dormancy and extracellular vesicles. At the molecular level, we will focus on hypoxia-associated factors and angiogenesis, the Wnt pathway, parathyroid hormone-related peptide (PTHrP) and chemokines. At the supramolecular/cellular level, we will discuss tumour dormancy, id est the mechanisms through which a small contingent of tumour cells coming from the primary site may be kept dormant in the endosteal niche for many years. Finally, we will present a potential role for the multimolecular mediators known as extracellular vesicles in determining bone-tropism and establishing a premetastatic niche by influencing the bone microenvironment.
Collapse
Affiliation(s)
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| |
Collapse
|
46
|
Pan T, Martinez M, Hubka KM, Song JH, Lin SC, Yu G, Lee YC, Gallick GE, Tu SM, Harrington DA, Farach-Carson MC, Lin SH, Satcher RL. Cabozantinib Reverses Renal Cell Carcinoma-mediated Osteoblast Inhibition in Three-dimensional Coculture In Vitro and Reduces Bone Osteolysis In Vivo. Mol Cancer Ther 2020; 19:1266-1278. [PMID: 32220969 DOI: 10.1158/1535-7163.mct-19-0174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/16/2019] [Accepted: 03/11/2020] [Indexed: 01/10/2023]
Abstract
Renal cell carcinoma bone metastases (RCCBM) are typically osteolytic. We previously showed that BIGH3 (beta Ig-h3/TGFBI), secreted by 786-O renal cell carcinoma, plays a role in osteolytic bone lesion in RCCBM through inhibition of osteoblast (OSB) differentiation. To study this interaction, we employed three-dimensional (3D) hydrogels to coculture bone-derived 786-O (Bo-786) renal cell carcinoma cells with MC3T3-E1 pre-OSBs. Culturing pre-OSBs in the 3D hydrogels preserved their ability to differentiate into mature OSB; however, this process was decreased when pre-OSBs were cocultured with Bo-786 cells. Knockdown of BIGH3 in Bo-786 cells recovered OSB differentiation. Furthermore, treatment with bone morphogenetic protein 4, which stimulates OSB differentiation, or cabozantinib (CBZ), which inhibits VEGFR1 and MET tyrosine kinase activities, also increased OSB differentiation in the coculture. CBZ also inhibited pre-osteoclast RAW264.7 cell differentiation. Using RCCBM mouse models, we showed that CBZ inhibited Bo-786 tumor growth in bone. CBZ treatment also increased bone volume and OSB number, and decreased osteoclast number and blood vessel density. When tested in SN12PM6 renal cell carcinoma cells that have been transduced to overexpress BIGH3, CBZ also inhibited SN12PM6 tumor growth in bone. These observations suggest that enhancing OSB differentiation could be one of the therapeutic strategies for treating RCCBM that exhibit OSB inhibition characteristics, and that this 3D coculture system is an effective tool for screening osteoanabolic agents for further in vivo studies.
Collapse
Affiliation(s)
- Tianhong Pan
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mariane Martinez
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas.,Department of BioSciences, Rice University, Houston, Texas
| | - Kelsea M Hubka
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas.,Department of Bioengineering, Rice University, Houston, Texas
| | - Jian H Song
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yu-Chen Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gary E Gallick
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shi-Ming Tu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel A Harrington
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas.,Department of BioSciences, Rice University, Houston, Texas
| | - Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas.,Department of BioSciences, Rice University, Houston, Texas.,Department of Bioengineering, Rice University, Houston, Texas
| | - Sue-Hwa Lin
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert L Satcher
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
47
|
Wu L, Xiang S, Hu X, Mo M, Zhao C, Cai Y, Tong S, Jiang H, Chen L, Wang Z, Xiong W, Ou Z. Prostate-specific antigen modulates the osteogenic differentiation of MSCs via the cadherin 11-Akt axis. Clin Transl Med 2020; 10:363-373. [PMID: 32508049 PMCID: PMC7240859 DOI: 10.1002/ctm2.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND A high prevalence of osteoblastic bone metastases is characteristic of prostate cancer. Prostate-specific antigen (PSA) is a serine protease uniquely produced by prostate cancer cells and is an important serological marker for prostate cancer. However, whether PSA modulates the osteogenic process remains largely unknown. In this study, we explored the effect of PSA on modulating the osteoblastic differentiation of mesenchymal stem cells (MSCs). In this study, we used flow cytometry, CCK-8 assay, Alizarin red S (ARS) staining and quantification, alkaline phosphatase (ALP) activity and staining, Western blotting, and quantitative real-time PCR (qRT-PCR) to explore the effect of PSA on osteogenic differentiation of MSCs. RESULTS We first demonstrated that although PSA did not affect the proliferation, morphology, or phenotype of MSCs, it significantly promoted the osteogenic differentiation of MSCs in a concentration-dependent manner. Furthermore, we demonstrated that PSA promoted the osteogenic differentiation of MSCs by elevating the expression of Cadherin 11 in MSCs and, thus, activating the Akt signaling pathway. CONCLUSIONS In conclusion, we demonstrated that PSA could promote the osteogenesis of MSCs through Akt signaling pathway activation by elevating the expression of cadherin-11 in MSCs. These findings imply a possible role of PSA in osteoblastic bone metastases in prostate cancer.
Collapse
Affiliation(s)
- Longxiang Wu
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Shiqi Xiang
- Department of OrthopedicsThe Second Xiangya Hospital of Central South UniversityChangshaP.R. China
| | - Xiheng Hu
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Miao Mo
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Cheng Zhao
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Yi Cai
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Shiyu Tong
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Huichuan Jiang
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Linxiao Chen
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Zhi Wang
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Wei Xiong
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Zhenyu Ou
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| |
Collapse
|
48
|
Quantitative bone SPECT/CT: high specificity for identification of prostate cancer bone metastases. BMC Musculoskelet Disord 2019; 20:619. [PMID: 31878904 PMCID: PMC6933900 DOI: 10.1186/s12891-019-3001-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose Bone scintigraphy with 99mTc-labeled diphosphonates can identify prostate cancer bone metastases with high sensitivity, but relatively low specificity, because benign conditions such as osteoarthritis can also trigger osteoblastic reactions. We aimed to investigate the diagnostic performance of 99mTc-2,3-dicarboxy propane-1,1-diphosphonate (99mTc-DPD) uptake quantification by single-photon emission computed tomography coupled with computed tomography (SPECT/CT) for distinguishing prostate cancer bone metastases from spinal and pelvic osteoarthritic lesions. Methods We retrospectively assessed 26 bone scans from 26 patients with known prostate cancer bone metastases and 13 control patients with benign spinal and pelvic osteoarthritic changes without known neoplastic disease. Quantitative SPECT/CT (xSPECT, Siemens Symbia Intevo, Erlangen, Germany) was performed and standardized uptake values (SUVs) were quantified with measurements of SUVmax and SUVmean (g/mL) in all bone metastases for the prostate cancer group and in spinal and pelvic osteoarthritic changes for the control group. We used receiver operating characteristics (ROC) curves to determine the optimum SUVmax cutoff value to distinguish between bone metastases and benign spinal and pelvic lesions. Results In total, 264 prostate cancer bone metastases were analyzed, showing a mean SUVmax and SUVmean of 34.6 ± 24.6 and 20.8 ± 14.7 g/mL, respectively. In 24 spinal and pelvic osteoarthritic lesions, mean SUVmax and SUVmean were 14.2 ± 3.8 and 8.9 ± 2.2 g/mL, respectively. SUVmax and SUVmean were both significantly different between the bone metastases and osteoarthritic groups (p ≤ 0.0001). Using a SUVmax cutoff of 19.5 g/mL for prostate cancer bone metastases in the spine and pelvis, sensitivity, specificity, positive and negative predictive values were 87, 92, 99 and 49%, respectively. Conclusion This study showed significant differences in quantitative 99mTc-DPD uptake on bone SPECT/CT between prostate cancer bone metastases and spinal and pelvic osteoarthritic changes, with higher SUVmax and SUVmean in metastases. Using a SUVmax cutoff of 19.5 g/mL, high specificity and positive predictive value for metastases identification in the spine and pelvis were found, thus increasing accuracy of bone scintigraphy.
Collapse
|
49
|
Bone secreted factors induce cellular quiescence in prostate cancer cells. Sci Rep 2019; 9:18635. [PMID: 31819067 PMCID: PMC6901558 DOI: 10.1038/s41598-019-54566-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
Disseminated tumor cells (DTCs) undergo a dormant state in the distant metastatic site(s) before becoming overt metastatic diseases. In prostate cancer (PCa), bone metastasis can occur years after prostatectomy, suggesting that bone may provide dormancy-inducing factors. To search for these factors, we prepared conditioned media (CM) from calvariae. Using live-cell imaging, we found that Calvarial-CM treatment increased cellular quiescence in C4-2B4 PCa cells. Mass spectrometry analysis of Calvarial-CM identified 132 secreted factors. Western blot and ELISA analyses confirmed the presence of several factors, including DKK3, BMP1, neogenin and vasorin in the Calvarial-CM. qRT-PCR analysis of total calvariae versus isolated osteoblasts showed that DKK3, BMP1, vasorin and neogenin are mainly expressed by osteoblasts, while MIA, LECT1, NGAL and PEDF are expressed by other calvarial cells. Recombinant human DKK3, BMP1, vasorin, neogenin, MIA and NGAL treatment increased cellular quiescence in both C4-2b and C4-2B4 PCa cells. Mechanistically, DKK3, vasorin and neogenin, but not BMP1, increased dormancy through activating the p38MAPK signaling pathway. Consistently, DKK3, vasorin and neogenin failed to induce dormancy in cells expressing dominant-negative p38αMAPK while BMP1 remained active, suggesting that BMP1 uses an alternative dormancy signaling pathway. Thus, bone secretes multiple dormancy-inducing factors that employ distinct signaling pathways to induce DTC dormancy in bone.
Collapse
|
50
|
Wu B, Sun D, Ma L, Deng Y, Zhang S, Dong L, Chen S. Exosomes isolated from CAPS1‑overexpressing colorectal cancer cells promote cell migration. Oncol Rep 2019; 42:2528-2536. [PMID: 31638236 PMCID: PMC6826328 DOI: 10.3892/or.2019.7361] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Calcium‑dependent activator protein for secretion 1 (CAPS1) has been reported to promote metastasis in colorectal cancer (CRC), however, the underlying mechanisms have not yet been elucidated. The present study revealed that exosomes derived from CAPS1‑overexpressing CRC cells could enhance the migration of normal colonic epithelial FHC cells. GW4869, an inhibitor of exosomes, could attenuate the migration of FHC cells. Furthermore, liquid chromatography‑mass spectrometry (LC‑MS) and bioinformatics analysis demonstrated that overexpression of CAPS1 could alter the expression pattern of exosomal proteins involved in cell migration. Bone morphogenetic protein 4, which may serve vital roles in the process of CAPS1‑induced cell migration, was downregulated in the exosomes. In summary, the present results demonstrated that CAPS1 promotes cell migration by regulating exosomes. Inhibiting the secretion of exosomes may be helpful for the treatment of patients with metastatic CRC.
Collapse
Affiliation(s)
- Bingrui Wu
- Key Laboratory of Glycoconjugate Research (Ministry of Public Health), Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Dalong Sun
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Lijie Ma
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, P.R. China
| | - Yiran Deng
- Key Laboratory of Glycoconjugate Research (Ministry of Public Health), Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Si Zhang
- Key Laboratory of Glycoconjugate Research (Ministry of Public Health), Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - She Chen
- Key Laboratory of Glycoconjugate Research (Ministry of Public Health), Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|