1
|
Zhang Q, Zhang C, Lu Y, Zhan H, Li B, Wei H, Yang Y, Liao L, Lan C, Hu C. JZL-184 Alleviate Neurological Impairment through Regulation of Mitochondrial Transfer and Lipid Droplet Accumulation after Cardiac Arrest. Mol Neurobiol 2025; 62:7093-7109. [PMID: 39718743 DOI: 10.1007/s12035-024-04633-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 11/12/2024] [Indexed: 12/25/2024]
Abstract
Astrocytes are abundant glial cells in the central nervous system (CNS) that play important roles in brain injury following cardiac arrest (CA). Following brain ischemia, astrocytes trigger endogenous neuroprotective mechanisms, such as fatty acid transport. Lipid droplets (LDs) are cellular structures involved in neutral lipid storage and play essential roles in many biological processes. However, whether lipid droplet metabolism is related to the neurological prognosis after CA remains unclear. JZL-184 is a selective irreversible inhibitor of monoacylglycerol lipase (MAGL), and previous investigations revealed that JZL-184 confers neuroprotection in the brain following stroke. However, further investigations are warranted to explore the effect and mechanism of JZL-184 after CA. Here, we reveal that JZL-184 is neuroprotective after cardiac arrest, as it alleviates astroglial activation by upregulating the expression of transforming growth factor beta 1 (TGF-β1), promotes the transfer of mitochondria from astrocytes to neurons in the astrocyte‒neuron coculture system, and reduces lipid droplet accumulation in neurons. Mechanistically, this protective effect depends on the downstream genes DUSP4 and Rab27b. This study provides additional insights into strategies for inhibiting neurological impairment and suggests a potential therapeutic target after cardiac arrest.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan engineering research center for cardiopulmonary and cerebral resuscitation, Zhengzhou, 450052, China
- Key Laboratory of Assisted Circulation, National Health Council, Guangzhou, 510080, China
| | - Chenyu Zhang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Assisted Circulation, National Health Council, Guangzhou, 510080, China
| | - Yuanzheng Lu
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Haohong Zhan
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Assisted Circulation, National Health Council, Guangzhou, 510080, China
| | - Bo Li
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Hongyan Wei
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yilin Yang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Liaoxing Liao
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Chao Lan
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan engineering research center for cardiopulmonary and cerebral resuscitation, Zhengzhou, 450052, China.
| | - Chunlin Hu
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Phadwal K, Haggarty J, Kurian D, Martí JA, Sun J, Houston RD, Betancor MB, MacRae VE, Whitfield PD, Macqueen DJ. Rapamycin induced autophagy enhances lipid breakdown and ameliorates lipotoxicity in Atlantic salmon cells. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159636. [PMID: 40389074 DOI: 10.1016/j.bbalip.2025.159636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/22/2025] [Accepted: 05/15/2025] [Indexed: 05/21/2025]
Abstract
Autophagy is a highly conserved cellular recycling process essential for homeostasis in all eukaryotic cells. Lipid accumulation and its regulation by autophagy are key areas of research for understanding metabolic disorders in human and model mammals. However, the role of autophagy in lipid regulation remains poorly characterized in non-model fish species of importance to food production, which could be important for managing health and welfare in aquaculture. Addressing this knowledge gap, we investigate the role of autophagy in lipid regulation using a macrophage-like cell line (SHK-1) from Atlantic salmon (Salmo salar L.), the world's most commercially valuable farmed finfish. Multiple lines of experimental evidence reveal that the autophagic pathway responsible for lipid droplet breakdown is conserved in Atlantic salmon cells. We employed global lipidomics and proteomics analyses on SHK-1 cells subjected to lipid overload, followed by treatment with rapamycin to induce autophagy. This revealed that activating autophagy via rapamycin enhances storage of unsaturated triacylglycerols and suppresses key lipogenic proteins, including fatty acid elongase 6, fatty acid binding protein 2 and acid sphingomyelinase. Moreover, fatty acid elongase 6 and fatty acid binding protein 2 were identified as possible cargo for autophagosomes, suggesting a critical role for autophagy in lipid metabolism in fish. Together, this study establishes a novel model of lipotoxicity and advances understanding of lipid autophagy in fish cells, with significant implications for addressing fish health issues in aquaculture.
Collapse
Affiliation(s)
- Kanchan Phadwal
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK.
| | - Jennifer Haggarty
- Shared Research Facilities, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Judit Aguilar Martí
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Jianxuan Sun
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | | | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Vicky E MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK; School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, UK
| | - Phillip D Whitfield
- Glasgow Polyomics and Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| |
Collapse
|
3
|
Xu H, Shi J, Yu W, Sun S, Zhou H, Wang L, Ren J, Gu Z, Lu Q, Zhang Y. TBC1D15 protects alcohol-induced liver injury in female mice through PLIN5-mediated mitochondrial and lipid droplet contacting. Metabolism 2025; 169:156290. [PMID: 40334909 DOI: 10.1016/j.metabol.2025.156290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/06/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
OBJECTIVE Alcohol-induced hepatic steatosis and mitochondrial dysfunction are progressive conditions contributing to the development of alcoholic liver disease (ALD), often leading to cirrhosis and hepatocellular carcinoma. TBC1D15, a Rab7 GTPase-activating protein (GAP), has been implicated in mitochondrial homeostasis, however, its role in ALD remains elusive. This study aimed to investigate the functional role of TBC1D15 in ALD and elucidate the underlying mechanisms. METHODS Female TBC1D15flox/flox mice and hepatocyte-specific overexpression of TBC1D15 mice were fed a Lieber-DeCarli ethanol diet, which progressively increasing ethanol dosages over 8 weeks. Liver tissues were assessed using histology, transmission electron microscopy, immunofluorescence, immunoblotting, and real-time PCR techniques. RESULTS TBC1D15 levels were markedly decreased in human ALD samples and primary hepatocytes exposed to ethanol. Hepatocyte-specific TBC1D15 overexpression attenuated alcohol-induced body weight loss, improved survival, and alleviated liver injury, lipid droplet (LD) accumulation, and hepatocyte apoptosis. TBC1D15 overexpression also protected against alcohol-induced mitochondrial dysfunction and enhanced mitochondrial fatty acid β-oxidation (FAO) by promoting interactions between mitochondria and LDs in the face of alcohol exposure. Mechanistically, TBC1D15 was translocated to mitochondrial membranes in hepatocytes in response to alcohol exposure, where it recruited PLIN5 through its 10-180 aa domain. This interaction promoted mitochondria-LD contacts and facilitated PKA-induced nuclear translocation of PLIN5. Furthermore, TBC1D15 upregulated protein levels of PPARα, PGC1α and CPT1α in hepatocytes following alcohol challenge, an effect that was nullified by PKA inhibition. CONCLUSION TBC1D15 plays a promising protective role in ALD injury by enhancing mitochondrial function and FAO, potentially through its interaction with PLIN5 and modulation of mitochondria-LD contacts via PKA-mediated nuclear translocation of PLIN5. These findings identify TBC1D15 as a potential therapeutic target for ALD.
Collapse
Affiliation(s)
- Haixia Xu
- Department of Cardiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Jiayu Shi
- Department of Cardiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Wenjun Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Shiqun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Haoxiong Zhou
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Lu Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an 710032, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Zhifeng Gu
- Department of Cardiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Yingmei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
4
|
Quan J, Zhang C, Chen X, Cai X, Luo X. Lipid droplet - organelle crosstalk and its implication in cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 197:11-20. [PMID: 40381741 DOI: 10.1016/j.pbiomolbio.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/15/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025]
Abstract
Lipid droplets (LDs) store lipids in cells, provide phospholipids for membrane synthesis, and maintain the intracellular balance of energy and lipid metabolism. Undoubtedly, the crosstalk between LDs and other organelles is the foundation for performing functions. Many studies indicate that LDs promote tumor progression. LD accumulation has been observed in a variety of cancers, and high LD content is associated with malignant phenotype and poor prognosis of cancers. In this paper, we summarized the intimate crosstalk between LDs and intracellular organelles, including endoplasmic reticulum (ER), mitochondria, lysosomes and peroxisomes, and addressed the effects of LD-organelle crosstalk on cancer initiation and progression. We also integrated the changes of LD-organelle interactions in cancers to provide an insightful knowledge for cancer therapeutics.
Collapse
Affiliation(s)
- Jing Quan
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Chunhong Zhang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, PR China
| | - Xinfei Cai
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Xiangjian Luo
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan, 410078, PR China.
| |
Collapse
|
5
|
Zhao Q, Jiang C. Dietary fuel or fire: Fatty acids rewire gut ILC3s. Immunity 2025; 58:1175-1177. [PMID: 40367918 DOI: 10.1016/j.immuni.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025]
Abstract
Long-term consumption of diets high in fats has detrimental impacts on the immune system, but the window necessary for initiating these effects is unclear. In this issue of Immunity, Xiong et al.1 demonstrate that even short-term exposure to saturated fats impairs ILC3 function and renders the intestine vulnerable to inflammation and injury.
Collapse
Affiliation(s)
- Qixiang Zhao
- Department of Immunology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Changtao Jiang
- Department of Immunology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China.
| |
Collapse
|
6
|
Li J, Lin Q, Ren C, Li X, Li X, Li H, Li S. The perspective of modern transplant science - transplant arteriosclerosis: inspiration derived from mitochondria associated endoplasmic reticulum membrane dysfunction in arterial diseases. Int J Surg 2025; 111:3430-3440. [PMID: 40146783 DOI: 10.1097/js9.0000000000002362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
The mitochondria-associated endoplasmic reticulum membrane (MAM) is a crucial structure connecting mitochondria and the endoplasmic reticulum (ER), regulating intracellular calcium homeostasis, lipid metabolism, and various signaling pathways essential for arterial health. Recent studies highlight MAM's significant role in modulating vascular endothelial cells (EC) and vascular smooth muscle cells (VSMC), establishing it as a key regulator of arterial health and a contributor to vascular disease pathogenesis. Organ transplantation is the preferred treatment for end-stage organ failure, but transplant arteriosclerosis (TA) can lead to chronic transplant dysfunction, significantly impacting patient survival. TA, like other vascular diseases, features endothelial dysfunction and abnormal proliferation and migration of VSMC. Previous research on TA has focused on immune factors; the pathological and physiological changes in grafts following immune system attacks have garnered insufficient attention. For example, the potential roles of MAM in TA have not been thoroughly investigated. Investigating the relationship between MAM and TA, as well as the mechanisms behind TA progression, is essential. This review aims to outline the fundamental structure and the primary functions of MAM, summarize its key molecular regulators of vascular health, and explore future prospects for MAM in the context of TA research, providing insights for both basic research and clinical management of TA.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Qian Lin
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chao Ren
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xiaodong Li
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xiaowei Li
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Haofeng Li
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Shadan Li
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Cao P, Jaeschke H, Ni HM, Ding WX. The Ways to Die: Cell Death in Liver Pathophysiology. Semin Liver Dis 2025. [PMID: 40199509 DOI: 10.1055/a-2576-4332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Liver diseases are closely associated with various cell death mechanisms, including apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis. Each process contributes uniquely to the pathophysiology of liver injury and repair. Importantly, these mechanisms are not limited to hepatocytes; they also significantly involve nonparenchymal cells. This review examines the molecular pathways and regulatory mechanisms underlying these forms of cell death in hepatocytes, emphasizing their roles in several liver diseases, such as ischemia-reperfusion injury, metabolic dysfunction-associated steatotic liver disease, drug-induced liver injury, and alcohol-associated liver disease. Recent insights into ferroptosis and pyroptosis may reveal novel therapeutic targets for managing liver diseases. This review aims to provide a comprehensive overview of these cell death mechanisms in the context of liver diseases, detailing their molecular signaling pathways and implications for potential treatment strategies.
Collapse
Affiliation(s)
- Peng Cao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
- Division of Gastroenterology, Hepatology and Mobility, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
8
|
Shen D, Zhao Q, Zhang H, Wu C, Jin H, Guo K, Sun R, Guo H, Zhao Q, Feng H, Dong X, Gao Z, Zhang L, Liu Y. A hydrophobic photouncaging reaction to profile the lipid droplet interactome in tissues. Proc Natl Acad Sci U S A 2025; 122:e2420861122. [PMID: 40238459 PMCID: PMC12037041 DOI: 10.1073/pnas.2420861122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Most bioorthogonal photouncaging reactions preferentially occur in polar environments to accommodate biological applications in the aqueous cellular milieu. However, they are not precisely designed to chemically adapt to the diverse microenvironments of the cell. Herein, we report a hydrophobic photouncaging reaction with tailored photolytic kinetics toward solvent polarity. Structural modulations of the aminobenzoquinone-based photocage reveal the impact of cyclic ring size, steric substituent, and electronic substituent on the individual uncaging kinetics (kH2O and kdioxane) and polarity preference (kdioxane/kH2O). Rational incorporation of optimized moieties leads to up to 20.2-fold nonpolar kinetic selectivity (kdioxane/kH2O). Further photochemical spectroscopic characterizations and theoretical calculations together uncover the mechanism underlying the polarity-dependent uncaging kinetics. The uncaged ortho-quinone methide product bears covalent reactivity toward diverse nucleophiles of a protein revealed by tandem mass spectrometry. Finally, we demonstrate the application of such lipophilic photouncaging chemistry toward selective labeling and profiling of proteins in proximity to lipid droplets inside human fatty liver tissues. Together, this work studies the solvent polarity effects of a photouncaging reaction and chemically adapts it toward suborganelle-targeted protein proximity labeling and profiling.
Collapse
Affiliation(s)
- Di Shen
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Qun Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Huaiyue Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Ci Wu
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Hao Jin
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Kun Guo
- The Second Hospital of Dalian Medical University, Dalian116023, China
| | - Rui Sun
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Hengke Guo
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Qi Zhao
- The Second Hospital of Dalian Medical University, Dalian116023, China
| | - Huan Feng
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xuepeng Dong
- The Second Hospital of Dalian Medical University, Dalian116023, China
| | - Zhenming Gao
- The Second Hospital of Dalian Medical University, Dalian116023, China
| | - Lihua Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Yu Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| |
Collapse
|
9
|
Chen B, Lyssiotis CA, Shah YM. Mitochondria-organelle crosstalk in establishing compartmentalized metabolic homeostasis. Mol Cell 2025; 85:1487-1508. [PMID: 40250411 DOI: 10.1016/j.molcel.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 04/20/2025]
Abstract
Mitochondria serve as central hubs in cellular metabolism by sensing, integrating, and responding to metabolic demands. This integrative function is achieved through inter-organellar communication, involving the exchange of metabolites, lipids, and signaling molecules. The functional diversity of metabolite exchange and pathway interactions is enabled by compartmentalization within organelle membranes. Membrane contact sites (MCSs) are critical for facilitating mitochondria-organelle communication, creating specialized microdomains that enhance the efficiency of metabolite and lipid exchange. MCS dynamics, regulated by tethering proteins, adapt to changing cellular conditions. Dysregulation of mitochondrial-organelle interactions at MCSs is increasingly recognized as a contributing factor in the pathogenesis of multiple diseases. Emerging technologies, such as advanced microscopy, biosensors, chemical-biology tools, and functional genomics, are revolutionizing our understanding of inter-organellar communication. These approaches provide novel insights into the role of these interactions in both normal cellular physiology and disease states. This review will highlight the roles of metabolite transporters, lipid-transfer proteins, and mitochondria-organelle interfaces in the coordination of metabolism and transport.
Collapse
Affiliation(s)
- Brandon Chen
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| | - Yatrik M Shah
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Wang T, Duan R, Li Z, Zhang B, Jiang Q, Jiang L, Lv J, Su W, Feng L. Lipid metabolism analysis reveals that DGAT1 regulates Th17 survival by controlling lipid peroxidation in uveitis. JCI Insight 2025; 10:e184072. [PMID: 40197365 PMCID: PMC11981632 DOI: 10.1172/jci.insight.184072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/21/2025] [Indexed: 04/10/2025] Open
Abstract
Lipid metabolism is closely linked with antitumor immunity and autoimmune disorders. However, the precise role of lipid metabolism in uveitis pathogenesis is not clear. In our study, we analyzed the single-cell RNA-Seq (scRNA-Seq) data from cervical draining lymph nodes (CDLNs) of mice with experimental autoimmune uveitis (EAU), revealing an increased abundance of fatty acids in Th17 cells. Subsequent scRNA-Seq analysis identified the upregulation of DGAT1 expression in EAU and its marked reduction under various immunosuppressive agents. Suppression of DGAT1 prevented the conversion of fatty acids into neutral lipid droplets, resulting in the accumulation of lipid peroxidation and subsequent reduction in the proportion of Th17 cells. Inhibiting lipid peroxidation by Ferrostatin-1 effectively restored Th17 cell numbers that were decreased by DGAT1 inhibitor. Moreover, we validated the upregulation of DGAT1 in CD4+ T cells from patients with Vogt-Koyanagi-Harada (VKH) disease, a human uveitis. Inhibiting DGAT1 induced lipid peroxidation in human CD4+ T cells and reduced the proportion of Th17 cells. Collectively, our study focused on elucidating the regulatory mechanisms underlying Th17 cell survival and proposed that targeting DGAT1 may hold promise as a therapeutic approach for uveitis.
Collapse
Affiliation(s)
- Tianfu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Bowen Zhang
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Qi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Loujing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Jianjie Lv
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Lei Feng
- Eye center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Horioka K, Tanaka H, Watanabe S, Yamada S, Takauji S, Hayakawa A, Isozaki S, Okaba K, Ishii N, Motomura A, Inoue H, Addo L, Yajima D, Takahashi Y, Druid H, Pakanen L, Porvari K. FATP1-mediated fatty acid uptake in renal tubular cells as a countermeasure for hypothermia. J Mol Med (Berl) 2025; 103:403-419. [PMID: 40042587 PMCID: PMC12003481 DOI: 10.1007/s00109-025-02525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 04/17/2025]
Abstract
Hypothermia is a condition in which body temperature falls below 35 °C, resulting from exposure to low environmental temperatures or underlying medical conditions. Postmortem examinations have revealed increased levels of fatty acids in blood and lipid droplet formation in renal tubules during hypothermia. However, the causes and implications of these findings are unclear. This study aimed to analyze the biological significance of these phenomena through lipidomics and transcriptomics analyses of specimens from emergency hypothermia patients and mouse hypothermia models. Both human hypothermia patients and murine models exhibited elevated plasma concentrations of fatty acids and their derivatives compared with controls. Hypothermic mouse kidneys displayed lipid droplet formation, with gene expression analysis revealing enhanced fatty acid uptake and β-oxidation in renal tubular cells. In primary cultured mouse renal proximal tubular cells, low temperatures increased the expression levels of Fatty acid transport protein 1 (FATP1), a fatty acid transporter, and boosted oxygen consumption via β-oxidation. Mice treated with FATP1 inhibitors showed a more rapid decrease in body temperature upon exposure to low temperatures compared with untreated mice. In conclusion, increased fatty acid uptake mediated by FATP1 in renal tubular cells plays a protective role during hypothermia. KEY MESSAGES: Low temperatures increase FATP1 expression and fatty acid uptake in renal proximal tubular cells, resulting in enhanced β-oxidation. Renal proximal tubular cells play an important role in the resistance to hypothermia via lipid uptake. Maintaining renal lipid metabolism is essential for cold stress adaptation.
Collapse
Affiliation(s)
- Kie Horioka
- Department of Forensic Medicine, Research Unit of Biomedicine and Internal Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland.
- Department of Legal Medicine, Institute of Medicine, University of Tsukuba, Tsukuba, Japan.
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Legal Medicine, International University of Health and Welfare, Narita, Japan.
| | - Hiroki Tanaka
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | | | - Shinnosuke Yamada
- Department of Anatomy, International University of Health and Welfare, Narita, Japan
| | - Shuhei Takauji
- Department of Emergency Medicine, Hokkaido University, Sapporo, Japan
| | - Akira Hayakawa
- Department of Forensic Sciences, Akita University Graduate School of Medicine, Akita, Japan
| | - Shotaro Isozaki
- Department of Forensic Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Keisuke Okaba
- Department of Legal Medicine, International University of Health and Welfare, Narita, Japan
| | - Namiko Ishii
- Department of Legal Medicine, International University of Health and Welfare, Narita, Japan
| | - Ayumi Motomura
- Department of Legal Medicine, International University of Health and Welfare, Narita, Japan
| | - Hiroyuki Inoue
- Department of Legal Medicine, International University of Health and Welfare, Narita, Japan
| | - Lynda Addo
- Department of Medical Laboratory Technology, Accra Technical University, Accra, Ghana
| | - Daisuke Yajima
- Department of Legal Medicine, International University of Health and Welfare, Narita, Japan
| | - Yoichiro Takahashi
- Department of Legal Medicine, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Henrik Druid
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lasse Pakanen
- Department of Forensic Medicine, Research Unit of Biomedicine and Internal Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare (THL), Oulu, Finland
| | - Katja Porvari
- Department of Forensic Medicine, Research Unit of Biomedicine and Internal Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
12
|
Chen J, Chen J, Yu C, Xia K, Yang B, Wang R, Li Y, Shi K, Zhang Y, Xu H, Zhang X, Wang J, Chen Q, Liang C. Metabolic reprogramming: a new option for the treatment of spinal cord injury. Neural Regen Res 2025; 20:1042-1057. [PMID: 38989936 PMCID: PMC11438339 DOI: 10.4103/nrr.nrr-d-23-01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/27/2024] [Indexed: 07/12/2024] Open
Abstract
Spinal cord injuries impose a notably economic burden on society, mainly because of the severe after-effects they cause. Despite the ongoing development of various therapies for spinal cord injuries, their effectiveness remains unsatisfactory. However, a deeper understanding of metabolism has opened up a new therapeutic opportunity in the form of metabolic reprogramming. In this review, we explore the metabolic changes that occur during spinal cord injuries, their consequences, and the therapeutic tools available for metabolic reprogramming. Normal spinal cord metabolism is characterized by independent cellular metabolism and intercellular metabolic coupling. However, spinal cord injury results in metabolic disorders that include disturbances in glucose metabolism, lipid metabolism, and mitochondrial dysfunction. These metabolic disturbances lead to corresponding pathological changes, including the failure of axonal regeneration, the accumulation of scarring, and the activation of microglia. To rescue spinal cord injury at the metabolic level, potential metabolic reprogramming approaches have emerged, including replenishing metabolic substrates, reconstituting metabolic couplings, and targeting mitochondrial therapies to alter cell fate. The available evidence suggests that metabolic reprogramming holds great promise as a next-generation approach for the treatment of spinal cord injury. To further advance the metabolic treatment of the spinal cord injury, future efforts should focus on a deeper understanding of neurometabolism, the development of more advanced metabolomics technologies, and the design of highly effective metabolic interventions.
Collapse
Affiliation(s)
- Jiangjie Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jinyang Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Chao Yu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Kaishun Xia
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Biao Yang
- Qiandongnan Prefecture People's Hospital, Kaili, Guizhou Province, China
| | - Ronghao Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yi Li
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Kesi Shi
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yuang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Haibin Xu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Xuesong Zhang
- Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jingkai Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Qixin Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Chengzhen Liang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| |
Collapse
|
13
|
Ge Y, Cao Y, Li F, Wang J, Liu Y, Guo W, Liu J, Fu S. Growth, fusion and degradation of lipid droplets: advances in lipid droplet regulatory protein. Arch Physiol Biochem 2025; 131:109-118. [PMID: 39115279 DOI: 10.1080/13813455.2024.2388779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 07/28/2024] [Indexed: 03/28/2025]
Abstract
Context: An adequate supply of energy is essential for the proper functioning of all life activities in living organisms. As organelles that store neutral lipids, lipid droplets (LDs) are involved in the synthesis and metabolism of lipids in cells and are also an important source of energy supply. Methods and mechanisms: A comprehensive summary of the literature was first carried out to screen for relevant proteins affecting the morphological size of LDs. The size of milk fat globules (MFGs) is directly influenced by the morphological size of LDs, which also controls the energy storage capacity of LDs. In this review, we detail the progress of research into the role of some protein in regulating the morphological size of LDs. Conclusion: It has been discovered that the number of protein are involved in the control of LD growth and degradation, such as Rab18-mediated local synthesis of triacylglycerol (TAG), cell death-inducing DFF45-like effector family proteins (CIDEs)-mediated atypical fusion between LDs, Stomatin protein-mediated LD fusion and autophagy-related proteins (ATGs)-mediated autophagic degradation of LDs. However, more studies are needed in the future to enrich the network of mechanisms that regulate the morphological size of LDs.
Collapse
Affiliation(s)
- Yusong Ge
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yu Cao
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Feng Li
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Jiaxin Wang
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yuhao Liu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Wenjin Guo
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Juxiong Liu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shoupeng Fu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
14
|
Behera P, Mishra M. Lipid Droplet in Lipodystrophy and Neurodegeneration. Biol Cell 2025; 117:e70009. [PMID: 40249069 DOI: 10.1111/boc.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 02/22/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025]
Abstract
Lipid droplets are ubiquitous yet distinct intracellular organelles that are gaining attention for their uses outside of energy storage. Their formation, role in the physiological function, and the onset of the pathology have been gaining attention recently. Their structure, synthesis, and turnover play dynamic roles in both lipodystrophy and neurodegeneration. Factors like development, aging, inflammation, and cellular stress regulate the synthesis of lipid droplets. The biogenesis of lipid droplets has a critical role in reducing cellular stress. Lipid droplets, in response to stress, sequester hazardous lipids into their neutral lipid core, preserving energy and redox balance while guarding against lipotoxicity. Thus, the maintenance of lipid droplet homeostasis in adipose tissue, CNS, and other body tissues is essential for maintaining organismal health. Insulin resistance, hypertriglyceridemia, and lipid droplet accumulation are the severe metabolic abnormalities that accompany lipodystrophy-related fat deficit. Accumulation of lipid droplets is detected in almost all neurodegenerative diseases like Alzheimer's, Parkinson's, Huntington's, and Hereditary spastic paraplegia. Hence, the regulation of lipid droplets can be used as an alternative approach to the treatment of several diseases. The current review summarizes the structure, composition, biogenesis, and turnover of lipid droplets, with an emphasis on the factors responsible for the accumulation and importance of lipid droplets in lipodystrophy and neurodegenerative disease.
Collapse
Affiliation(s)
- Priyatama Behera
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India
| |
Collapse
|
15
|
Liu J, Aye Y. Tools to Dissect Lipid Droplet Regulation, Players, and Mechanisms. ACS Chem Biol 2025; 20:539-552. [PMID: 40035358 PMCID: PMC11934092 DOI: 10.1021/acschembio.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 03/05/2025]
Abstract
Spurred by the authors' own recent discovery of reactive metabolite-regulated nexuses involving lipid droplets (LDs), this perspective discusses the latest knowledge and multifaceted approaches toward deconstructing the function of these dynamic organelles, LD-associated localized signaling networks, and protein players. Despite accumulating knowledge surrounding protein families and pathways of conserved importance for LD homeostasis surveillance and maintenance across taxa, much remains to be understood at the molecular level. In particular, metabolic stress-triggered contextual changes in LD-proteins' localized functions, crosstalk with other organelles, and feedback signaling loops and how these are specifically rewired in disease states remain to be illuminated with spatiotemporal precision. We hope this perspective promotes an increased interest in these essential organelles and innovations of new tools and strategies to better understand context-specific LD regulation critical for organismal health.
Collapse
Affiliation(s)
- Jinmin Liu
- University
of Oxford, Oxford OX1 3TA, United
Kingdom
| | - Yimon Aye
- University
of Oxford, Oxford OX1 3TA, United
Kingdom
| |
Collapse
|
16
|
Wang J, Han X, Wei C, Guo Y, Wang R, Qu L, Song RB, Li Z. Acid-Controlled Fabrication of Multicolor Carbon Dots with Switchable Organelle-Targeting Capability for Visualizing Organelle Interactions. Anal Chem 2025; 97:5668-5677. [PMID: 40051217 DOI: 10.1021/acs.analchem.4c06609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Synchronous regulation of the photoluminescence and physicochemical characteristics of multicolor carbon dots (CDs) can fully realize their application potential in multicomponent imaging. Herein, by utilizing an acid-regulated synthetic strategy, green-emissive and orange-emissive CDs that target lipid droplets (LDs) and mitochondria (Mito) have been developed for fluorescence visualization of LD-Mito interactions. The finding of different molecular fluorophores reveals that the precursor undergoes different reaction pathways in neutral and acidic conditions, which alters the size of sp2-conjugated domain and surface properties for the successful regulation of photoluminescence properties and organelle-targeting ability. Moreover, the one-step fabrication of these two CDs was also realized by lowering the dosage of acid. Therefore, the multicolor imaging of LDs and Mito has been achieved with one-step staining, disclosing that their interaction frequency decreases during the lipotoxicity process. This work successfully demonstrates the high coupling potential between multicolor CDs and organelle-interaction visualization, which would provide guidance on the correlation between photoluminescence features and other properties of multicolor CDs for extending application space.
Collapse
Affiliation(s)
- Junli Wang
- Zhengzhou Key Laboratory of Functional Nanomaterials and Medical Theranostic, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Xue Han
- Zhengzhou Key Laboratory of Functional Nanomaterials and Medical Theranostic, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Chiyuan Wei
- Zhengzhou Key Laboratory of Functional Nanomaterials and Medical Theranostic, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Yifei Guo
- Zhengzhou Key Laboratory of Functional Nanomaterials and Medical Theranostic, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Rong Wang
- Zhengzhou Key Laboratory of Functional Nanomaterials and Medical Theranostic, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- Zhengzhou Key Laboratory of Functional Nanomaterials and Medical Theranostic, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Rong-Bin Song
- Zhengzhou Key Laboratory of Functional Nanomaterials and Medical Theranostic, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohui Li
- Zhengzhou Key Laboratory of Functional Nanomaterials and Medical Theranostic, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
17
|
Lu L, Zhang Y, Yang Y, Jin M, Ma A, Wang X, Zhao Q, Zhang X, Zheng J, Zheng X. Lipid metabolism: the potential therapeutic targets in glioblastoma. Cell Death Discov 2025; 11:107. [PMID: 40097417 PMCID: PMC11914282 DOI: 10.1038/s41420-025-02390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/19/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Glioblastoma is a highly malignant tumor of the central nervous system with a high mortality rate. The mechanisms driving glioblastoma onset and progression are complex, posing substantial challenges for developing precise therapeutic interventions to improve patient survival. Over a century ago, the discovery of the Warburg effect underscored the importance of abnormal glycolysis in tumors, marking a pivotal moment in cancer research. Subsequent studies have identified mitochondrial energy conversion as a fundamental driver of tumor growth. Recently, lipid metabolism has emerged as a critical factor in cancer cell survival, providing an alternative energy source. Research has shown that lipid metabolism is reprogrammed in glioblastoma, playing a vital role in shaping the biological behavior of tumor cells. In this review, we aim to elucidate the impact of lipid metabolism on glioblastoma tumorigenesis and explore potential therapeutic targets. Additionally, we provide insights into the regulatory mechanisms that govern lipid metabolism, emphasizing the critical roles of key genes and regulators involved in this essential metabolic process.
Collapse
Affiliation(s)
- Lu Lu
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yan Zhang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yuzhong Yang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Meihua Jin
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Aiyu Ma
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xu Wang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Qiuyu Zhao
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xuemei Zhang
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Jinhua Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| | - Xiang Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
18
|
Lin Y, Liang Z, Weng Z, Liu X, Zhang F, Chong Y. CRSP8-driven fatty acid metabolism reprogramming enhances hepatocellular carcinoma progression by inhibiting RAN-mediated PPARα nucleus-cytoplasm shuttling. J Exp Clin Cancer Res 2025; 44:93. [PMID: 40069732 PMCID: PMC11895297 DOI: 10.1186/s13046-025-03329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/14/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND In-depth exploration into the dysregulation of lipid metabolism in hepatocellular carcinoma (HCC) has contributed to the development of advanced antitumor strategies. CRSP8 is a critical component of mediator multiprotein complex involved in transcriptional recruiting. However, the regulatory mechanisms of CRSP8 on fatty acid metabolism reprogramming and HCC progression remain unclear. METHODS In-silico/house dataset analysis, lipid droplets (LDs) formation, HCC mouse models and targeted lipidomic analysis were performed to determine the function of CRSP8 on regulating lipid metabolism in HCC. The subcellular colocalization and live cell imaging of LDs, transmission electron microscopy, co-immunoprecipitation and luciferase reporter assay were employed to investigate their potential mechanism. RESULTS CRSP8 was identified as a highly expressed oncogene essential for the proliferation and aggressiveness of HCC in vitro and in vivo. The tumor promotion of CRSP8 was accompanied by LDs accumulation and increased de novo fatty acids (FAs) synthesis. Moreover, CRSP8 diminished the colocalization between LC3 and LDs to impair lipophagy in a nuclear-localized PPARα-dependent manner, which decreased the mobilization of FAs from LDs degradation and hindered mitochondrial fatty acid oxidation. Mechanistically, the small ras family GTPase RAN was transcriptionally activated by CRSP8, leading to the reinforcement of RAN/CRM1-mediated nuclear export. CRSP8-induced enhanced formation of RAN/CRM1/PPARα nucleus-cytoplasm shuttling heterotrimer orchestrated cytoplasmic translocation of PPARα, attenuated nPPARα-mediated lipophagy and fatty acid catabolism, subsequently exacerbated HCC progression. In CRSP8-enriched HCC, lipid synthesis inhibitor Orlistat effectively reshaped the immunosuppressive tumor microenvironment (TME) and improved the efficacy of anti-PD-L1 therapy in vivo. CONCLUSION Our study establishes that CRSP8-driven fatty acid metabolism reprogramming facilitates HCC progression via the RAN/CRM1/PPARα nucleus-cytoplasm shuttling heterotrimer and impaired lipophagy-derived catabolism. Targeting the energy supply sourced from lipids could represent a promising therapeutic strategy for treating CRSP8-sufficient HCC.
Collapse
Affiliation(s)
- Yuxi Lin
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhixing Liang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhiyan Weng
- Department of Endocrinology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xiaofang Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Feng Zhang
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Yutian Chong
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
19
|
Yang Y, Chen D, Zhu Y, Zhang M, Zhao H. Kinsenoside Suppresses DGAT1-Mediated Lipid Droplet Formation to Trigger Ferroptosis in Triple-Negative Breast Cancer. Int J Mol Sci 2025; 26:2322. [PMID: 40076939 PMCID: PMC11900917 DOI: 10.3390/ijms26052322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Triple-negative breast cancer (TNBC) presents limited therapeutic options and is characterized by a poor prognosis. Although Kinsenoside (KIN) possesses a wide range of pharmacological activities, its effect and mechanism in TNBC remain unclear. The objective of this research was to explore the therapeutic effectiveness and the molecular mechanisms of KIN on TNBC. Xenograft experiment was carried out to assess the impact of KIN on TNBC in vivo. The effect of KIN on TNBC in vitro was evaluated through the analysis of cell cytotoxicity and colony formation assays. Oil Red O staining and BODIPY 493/503 fluorescence staining were employed to detect the effect of KIN on lipid droplet (LD) formation. Transcriptomics and inhibitor-rescue experiments were conducted to investigate the role of KIN on TNBC. Mechanistic experiments, including quantitative real-time polymerase chain reaction (RT-qPCR), Western blotting, diacylglycerol acyltransferase 1 (DGAT1) overexpression assay, and flow cytometric assay, were employed to uncover the regulatory mechanisms of KIN on TNBC. KIN inhibited tumor growth without causing obvious toxicity to the liver and kidneys. In vitro experiments demonstrated that KIN significantly inhibited the viability and proliferation of TNBC cells, accompanied by decreased LD formation and lipid content. Polyunsaturated fatty acids (PUFAs) levels were significantly increased by KIN. Furthermore, transcriptomics and inhibitor-rescue experiments revealed that KIN induced ferroptosis in TNBC cells. KIN could significantly regulate ferroptosis-related proteins. Lipid peroxidation, iron accumulation, and GSH depletion also confirmed this. The LD inducer mitigated the KIN-induced ferroptosis in TNBC. The overexpression of DGAT1 attenuated the effects of KIN on cell viability and proliferation. Furthermore, the overexpression of DGAT1 inhibited the effect of KIN to trigger ferroptosis in TNBC cells. Our findings confirmed that KIN could trigger ferroptosis by suppressing DGAT1-mediated LD formation, thereby demonstrating a promising therapeutic effect of KIN in TNBC.
Collapse
Affiliation(s)
- Yaqin Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China; (Y.Y.); (D.C.); (Y.Z.); (M.Z.)
| | - Dandan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China; (Y.Y.); (D.C.); (Y.Z.); (M.Z.)
| | - Yuru Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China; (Y.Y.); (D.C.); (Y.Z.); (M.Z.)
| | - Min Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China; (Y.Y.); (D.C.); (Y.Z.); (M.Z.)
| | - Huajun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China; (Y.Y.); (D.C.); (Y.Z.); (M.Z.)
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
20
|
Bezawork-Geleta A, Devereux CJ, Keenan SN, Lou J, Cho E, Nie S, De Souza DP, Narayana VK, Siddall NA, Rodrigues CHM, Portelli S, Zheng T, Nim HT, Ramialison M, Hime GR, Dodd GT, Hinde E, Ascher DB, Stroud DA, Watt MJ. Proximity proteomics reveals a mechanism of fatty acid transfer at lipid droplet-mitochondria- endoplasmic reticulum contact sites. Nat Commun 2025; 16:2135. [PMID: 40032835 PMCID: PMC11876333 DOI: 10.1038/s41467-025-57405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
Membrane contact sites between organelles are critical for the transfer of biomolecules. Lipid droplets store fatty acids and form contacts with mitochondria, which regulate fatty acid oxidation and adenosine triphosphate production. Protein compartmentalization at lipid droplet-mitochondria contact sites and their effects on biological processes are poorly described. Using proximity-dependent biotinylation methods, we identify 71 proteins at lipid droplet-mitochondria contact sites, including a multimeric complex containing extended synaptotagmin (ESYT) 1, ESYT2, and VAMP Associated Protein B and C (VAPB). High resolution imaging confirms localization of this complex at the interface of lipid droplet-mitochondria-endoplasmic reticulum where it likely transfers fatty acids to enable β-oxidation. Deletion of ESYT1, ESYT2 or VAPB limits lipid droplet-derived fatty acid oxidation, resulting in depletion of tricarboxylic acid cycle metabolites, remodeling of the cellular lipidome, and induction of lipotoxic stress. These findings were recapitulated in Esyt1 and Esyt2 deficient mice. Our study uncovers a fundamental mechanism that is required for lipid droplet-derived fatty acid oxidation and cellular lipid homeostasis, with implications for metabolic diseases and survival.
Collapse
Affiliation(s)
| | - Camille J Devereux
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Stacey N Keenan
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jieqiong Lou
- School of Physics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ellie Cho
- Biological Optical Microscopy Platform (BOMP), The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility (MMSPF), Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia
| | - David P De Souza
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Vinod K Narayana
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Nicole A Siddall
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Carlos H M Rodrigues
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Stephanie Portelli
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Tenghao Zheng
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Hieu T Nim
- Murdoch Children's Research Institute, reNEW Novo Nordisk Foundation for Stem Cell Medicine, Melbourne, VIC, 3052, Australia
| | - Mirana Ramialison
- Murdoch Children's Research Institute, reNEW Novo Nordisk Foundation for Stem Cell Medicine, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Gary R Hime
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Garron T Dodd
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Elizabeth Hinde
- School of Physics, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - David B Ascher
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - David A Stroud
- Murdoch Children's Research Institute, reNEW Novo Nordisk Foundation for Stem Cell Medicine, Melbourne, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3052, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
21
|
Zhang J, Xu S, Fang H, Wu D, Ouyang C, Shi Y, Hu Z, Zhang M, Zhong Y, Zhao J, Gan Y, Zhang S, Liu X, Yin J, Li Y, Tang M, Wang Y, Li L, Chan WC, Horne D, Feng M, Huang W, Gu Y. CAMKIIδ Reinforces Lipid Metabolism and Promotes the Development of B Cell Lymphoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409513. [PMID: 39840457 PMCID: PMC11905072 DOI: 10.1002/advs.202409513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/14/2024] [Indexed: 01/23/2025]
Abstract
The most prevalent types of lymphomas are B cell lymphomas (BCL). Newer therapies for BCL have improved the prognosis for many patients. However, approximately 30% with aggressive BCL either remain refractory or ultimately relapse. These patients urgently need other options. This study shows how calcium/calmodulin-dependent protein kinase II delta (CAMKIIδ) is pivotal for BCL development. In BCL cells, ablation of CAMKIIδ inhibits both lipolysis from lipid droplets and oxidative phosphorylation (OXPHOS). With lipolysis blocked, BCL progression is markedly suppressed in two distinct BCL mouse models: MYC-driven EµMyc mice and Myc/Bcl2 double-expressed mice. When CAMKIIδ is present, it destabilizes transcription factor Forkhead Box O3A (FOXO3A) by phosphorylating it at Ser7 and Ser12. This then permits transcription of downstream gene IRF4 - a master transcription factor of lipid metabolism. The CAMKIIδ/FOXO3A axis bolsters lipid metabolism, mitochondrial respiration, and tumor fitness in BCL under metabolic stress. This study also evaluates Tetrandrine (TET), a small molecule compound, as a potent CAMKIIδ inhibitor. TET attenuates metabolic fitness and elicits therapeutic responses both in vitro and in vivo. Collectively, this study highlights how CAMKIIδ is critical in BCL progression. The results also pave the way for innovative therapeutic strategies for treating aggressive BCL.
Collapse
|
22
|
Zhang Y, Chen Y, Zhuang C, Qi J, Zhao RC, Wang J. Lipid droplets in the nervous system: involvement in cell metabolic homeostasis. Neural Regen Res 2025; 20:740-750. [PMID: 38886939 PMCID: PMC11433920 DOI: 10.4103/nrr.nrr-d-23-01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/05/2023] [Accepted: 01/20/2024] [Indexed: 06/20/2024] Open
Abstract
Lipid droplets serve as primary storage organelles for neutral lipids in neurons, glial cells, and other cells in the nervous system. Lipid droplet formation begins with the synthesis of neutral lipids in the endoplasmic reticulum. Previously, lipid droplets were recognized for their role in maintaining lipid metabolism and energy homeostasis; however, recent research has shown that lipid droplets are highly adaptive organelles with diverse functions in the nervous system. In addition to their role in regulating cell metabolism, lipid droplets play a protective role in various cellular stress responses. Furthermore, lipid droplets exhibit specific functions in neurons and glial cells. Dysregulation of lipid droplet formation leads to cellular dysfunction, metabolic abnormalities, and nervous system diseases. This review aims to provide an overview of the role of lipid droplets in the nervous system, covering topics such as biogenesis, cellular specificity, and functions. Additionally, it will explore the association between lipid droplets and neurodegenerative disorders. Understanding the involvement of lipid droplets in cell metabolic homeostasis related to the nervous system is crucial to determine the underlying causes and in exploring potential therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Yuchen Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Yiqing Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Cheng Zhuang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingxuan Qi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, China
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
23
|
Steinberg GR, Valvano CM, De Nardo W, Watt MJ. Integrative metabolism in MASLD and MASH: Pathophysiology and emerging mechanisms. J Hepatol 2025:S0168-8278(25)00142-4. [PMID: 40032040 DOI: 10.1016/j.jhep.2025.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/09/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
The liver acts as a central metabolic hub, integrating signals from the gastrointestinal tract and adipose tissue to regulate carbohydrate, lipid, and amino acid metabolism. Gut-derived metabolites, such as acetate and ethanol and non-esterified fatty acids from white adipose tissue, influence hepatic processes, which rely on mitochondrial function to maintain systemic energy balance. Metabolic dysregulation caused by obesity, insulin resistance, and type 2 diabetes disrupts these pathways, leading to metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (MASH). In this review, we explore the metabolic fluxes within the gut-adipose tissue-liver axis, focusing on the pivotal role of de novo lipogenesis, dietary substrates like glucose and fructose, and changes in mitochondrial function during MASLD progression. We also highlight the contributions of white adipose tissue insulin resistance and impaired mitochondrial dynamics to hepatic lipid accumulation. Further understanding how the interplay between substrate flux from the gastro-intestinal tract integrates with adipose tissue and intersects with structural and functional alterations to liver mitochondria will be important to identify novel therapeutic targets and advance the treatment of MASLD and MASH.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - Celina M Valvano
- Centre for Metabolism, Obesity and Diabetes Research, Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - William De Nardo
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Battle D, Qiu X, Alex M, Rivers L, Hamilton JAG, Takayama S, Zhao X. Caki-1 Spheroids as a Renal Model for Studying Free Fatty Acid-Induced Lipotoxicity. Cells 2025; 14:349. [PMID: 40072078 PMCID: PMC11899473 DOI: 10.3390/cells14050349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/15/2025] Open
Abstract
Lipotoxicity, resulting from the buildup of excess lipids in non-adipose tissues, is increasingly recognized as a major contributor to the progression of kidney disease, highlighting the need for alternative models to assess its effects on renal cells. The main aim of this study was to investigate the usefulness of Caki-1, a human proximal tubule (PT) and renal cell carcinoma (RCC) representative cell line, as a 3D model system for studying free fatty acid-induced PT lipotoxicity. Caki-1 spheroids were generated and maintained on ultra-low attachment plates and characterized regarding time-dependent morphology changes. In optimal 3D culture conditions, Caki-1 cells formed well-defined large compact spheroids with uniform morphology, good circularity, and increased diameter from days 4-12. Chronic exposure to saturated palmitate resulted in dose- and time-dependent spheroid disintegration and cell death, including dispersed and flattened spheroid morphology, with increased dead cells in the peripheral layers and decreased spheroid core. Moreover, palmitate-treated spheroids showed a significant increase in cleaved poly(ADP-ribose) polymerase (PARP) and active caspase-3. Palmitate-induced PARP cleavage, as well as endoplasmic reticulum (ER) stress and autophagy dysfunction, were blunted by triacsin C, an inhibitor of long-chain acyl-CoA synthetases. In addition, co-incubation with unsaturated oleate prevented palmitate-induced spheroid disintegration and apoptotic cell death in Caki-1 3D culture. While fatty acid overload upregulated lipid droplet protein perilipin 2 in Caki-1 cells, knockdown of perilipin 2 by siRNAs resulted in an exacerbation of palmitate-induced cell death. Together, these results indicate that the 3D Caki-1 spheroid model is a simple and reproducible in vitro system for studying renal lipotoxicity and lipid metabolism that gives useful readouts at the molecular, cellular, and multicellular levels.
Collapse
MESH Headings
- Humans
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Fatty Acids, Nonesterified/toxicity
- Models, Biological
- Apoptosis/drug effects
- Endoplasmic Reticulum Stress/drug effects
- Autophagy/drug effects
- Perilipin-2/metabolism
- Kidney Tubules, Proximal/pathology
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/drug effects
- Palmitates
- Cell Line, Tumor
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/metabolism
- Kidney/pathology
- Kidney/drug effects
- Kidney/metabolism
Collapse
Affiliation(s)
- Dana Battle
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (D.B.); (X.Q.); (M.A.); (L.R.)
| | - Xiangzhe Qiu
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (D.B.); (X.Q.); (M.A.); (L.R.)
| | - Marilyn Alex
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (D.B.); (X.Q.); (M.A.); (L.R.)
| | - London Rivers
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (D.B.); (X.Q.); (M.A.); (L.R.)
| | - Jamie A. G. Hamilton
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA; (J.A.G.H.); (S.T.)
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA; (J.A.G.H.); (S.T.)
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Xueying Zhao
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (D.B.); (X.Q.); (M.A.); (L.R.)
| |
Collapse
|
25
|
Peng W, Chen S, Ma J, Wei W, Lin N, Xing J, Guo W, Li H, Zhang L, Chan K, Yen A, Zhu G, Yue J. Endosomal trafficking participates in lipid droplet catabolism to maintain lipid homeostasis. Nat Commun 2025; 16:1917. [PMID: 39994216 PMCID: PMC11850777 DOI: 10.1038/s41467-025-57038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
The interplay between lipid droplets (LDs) and endosomes remains unknown. Here, we screen and synthesize AP1-coumarin, an LD-specific probe, by conjugating a fluorescent dye coumarin to a triazine compound AP1. AP1-coumarin labels all stages of LDs in live cells and markedly induces the accumulation of enlarged RAB5-RAB7 double-positive intermediate endosomes. The AP1-coumarin-labeled LDs contact these intermediate endosomes, with some LDs even being engulfed in them. When LD biogenesis is inhibited, the ability of AP1-coumarin to label LDs is markedly reduced, and the accumulation of enlarged intermediate endosomes is abolished. Moreover, blocking the biogenesis of LDs decreases the number of late endosomes while increasing the number of early endosomes and inhibits the endosomal trafficking of low-density lipoprotein (LDL) and transferrin. Correspondingly, interference with RAB5 or RAB7, either through knockdown or using dominant-negative mutants, inhibits LD catabolism, whereas the expression of a RAB7 constitutively active mutant accelerates LD catabolism. Additionally, CCZ1 knockdown not only induces the accumulation of intermediate endosomes but also inhibits LD catabolism. These results collectively suggest that LDs and endosomes interact and influence each other's functions, and endosomal trafficking participates in the catabolic process of LDs to maintain lipid homeostasis.
Collapse
Affiliation(s)
- Wang Peng
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
- Division of Natural and Applied Sciences, Synear Molecular Biology Lab, Jiangsu Provincial University Key (Construction) Laboratory for Smart Diagnosis and Treatment of Lung Cancer, Duke Kunshan University, Kunshan, China
| | - Shu Chen
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jingyu Ma
- Division of Natural and Applied Sciences, Synear Molecular Biology Lab, Jiangsu Provincial University Key (Construction) Laboratory for Smart Diagnosis and Treatment of Lung Cancer, Duke Kunshan University, Kunshan, China
| | - Wenjie Wei
- Core Research Facilities, Southern University of Science and Technology, Shenzhen, China
| | - Naixin Lin
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jinchao Xing
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Wenjing Guo
- Analysis and Testing Center, Guangzhou Institute of Biomedicine and Health (GIBH) Chinese Academy of Sciences, Guangzhou, China
| | - Heying Li
- Analysis and Testing Center, Guangzhou Institute of Biomedicine and Health (GIBH) Chinese Academy of Sciences, Guangzhou, China
| | - Liang Zhang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Kuiming Chan
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Guangyu Zhu
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
- Division of Natural and Applied Sciences, Synear Molecular Biology Lab, Jiangsu Provincial University Key (Construction) Laboratory for Smart Diagnosis and Treatment of Lung Cancer, Duke Kunshan University, Kunshan, China.
- College of Life Sciences, Wuhan University, Wuhan, China.
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China.
| |
Collapse
|
26
|
Talari NK, Mattam U, Rahman AP, Hemmelgarn BK, Wyder MA, Sylvestre PB, Greis KD, Chella Krishnan K. Functional compartmentalization of hepatic mitochondrial subpopulations during MASH progression. Commun Biol 2025; 8:258. [PMID: 39966593 PMCID: PMC11836293 DOI: 10.1038/s42003-025-07713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
The role of peridroplet mitochondria (PDM) in diseased liver, such as during the progression of metabolic dysfunction-associated steatohepatitis (MASH), remains unknown. We isolated hepatic cytoplasmic mitochondria (CM) and PDM from a mouse model of diet-induced MASLD/MASH to characterize their functions from simple steatosis to advanced MASH, using chow-fed mice as controls. Our findings show an inverse relationship between hepatic CM and PDM levels from healthy to steatosis to advanced MASH. Proteomics analysis revealed these two mitochondrial populations are compositionally and functionally distinct. We found that hepatic PDM are more bioenergetically active than CM, with higher pyruvate oxidation capacity in both healthy and diseased liver. Higher respiration capacity of PDM was associated with elevated OXPHOS protein complexes and increased TCA cycle flux. In contrast, CM showed higher fatty acid oxidation capacity with MASH progression. Transmission electron microscopy revealed larger and elongated mitochondria during healthy and early steatosis, which appeared small and fragmented during MASH progression. These changes coincided with higher MFN2 protein levels in hepatic PDM and higher DRP1 protein levels in hepatic CM. These findings highlight the distinct roles of hepatic CM and PDM in MASLD progression towards MASH.
Collapse
Affiliation(s)
- Noble Kumar Talari
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ushodaya Mattam
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Afra P Rahman
- Medical Sciences Baccalaureate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brook K Hemmelgarn
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael A Wyder
- Department of Cancer Biology, Proteomics Laboratory, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Pamela B Sylvestre
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kenneth D Greis
- Department of Cancer Biology, Proteomics Laboratory, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Karthickeyan Chella Krishnan
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
27
|
Wang J, Wang M, Zeng X, Li Y, Lei L, Chen C, Lin X, Fang P, Guo Y, Jiang X, Wang Y, Chen L, Long J. Targeting membrane contact sites to mediate lipid dynamics: innovative cancer therapies. Cell Commun Signal 2025; 23:89. [PMID: 39955542 PMCID: PMC11830217 DOI: 10.1186/s12964-025-02089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
Membrane contact sites (MCS) are specialized regions where organelles are closely interconnected through membrane structures, facilitating the transfer and exchange of ions, lipids, and other molecules. This proximity enables a synergistic regulation of cellular homeostasis and functions. The formation and maintenance of these contact sites are governed by specific proteins that bring organelle membranes into close apposition, thereby enabling functional crosstalk between cellular compartments. In eukaryotic cells, lipids are primarily synthesized and metabolized within distinct organelles and must be transported through MCS to ensure proper cellular function. Consequently, MCS act as pivotal platforms for lipid synthesis and trafficking, particularly in cancer cells and immune cells within the tumor microenvironment, where dynamic alterations are critical for maintaining lipid homeostasis. This article provides a comprehensive analysis of how these cells exploit membrane contact sites to modulate lipid synthesis, metabolism, and transport, with a specific focus on how MCS-mediated lipid dynamics influence tumor progression. We also examine the differences in MCS and associated molecules across various cancer types, exploring novel therapeutic strategies targeting MCS-related lipid metabolism for the development of anticancer drugs, while also addressing the challenges involved.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China.
| | - Meifeng Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Xueni Zeng
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Yanhan Li
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Lingzhi Lei
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Changan Chen
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Xi Lin
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Peiyuan Fang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Yuxuan Guo
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, School of Medicine, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, 410013, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yian Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, School of Medicine, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, 410013, China
| | - Lihong Chen
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China.
- Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China.
| | - Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
28
|
Tian LJ, Zheng YT, Dang Z, Xu S, Gong SL, Wang YT, Guan Y, Wu Z, Liu G, Tian YC. Near-Native Imaging of Metal Ion-Initiated Cell State Transition. ACS NANO 2025; 19:5279-5294. [PMID: 39874599 DOI: 10.1021/acsnano.4c12101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Metal ions are indispensable to life, as they can serve as essential enzyme cofactors to drive fundamental biochemical reactions, yet paradoxically, excess is highly toxic. Higher-order cells have evolved functionally distinct organelles that separate and coordinate sophisticated biochemical processes to maintain cellular homeostasis upon metal ion stimuli. Here, we uncover the remodeling of subcellular architecture and organellar interactome in yeast initiated by several metal ion stimulations, relying on near-native three-dimensional imaging, cryo-soft X-ray tomography. The three-dimensional architecture of intact yeast directly shows that iron or manganese triggers a hormesis-like effect that promotes cell proliferation. This process leads to the reorganization of organelles in the preparation for division, characterized by the polar distribution of mitochondria, an increased number of lipid droplets (LDs), volume shrinkage, and the formation of a hollow structure. Additionally, vesicle-like structures that detach from the vacuole are observed. Oppositely, cadmium or mercury causes stress-associated phenotypes, including mitochondrial fragmentation, LD swelling, and autophagosome formation. Notably, the organellar interactome, encompassing the interactions between mitochondria and LDs and those between the nuclear envelope and LDs, is quantified and exhibits alteration with multifaceted features in response to different metal ions. More importantly, the dynamics of organellar architecture render them more sensitive biomarkers than traditional approaches for assessing the cell state. Strikingly, yeast has a powerful depuration capacity to isolate and transform the overaccumulated cadmium in the vacuole, mitochondria, and cytoplasm as a high-value product, quantum dots. This work presents the possibility of discovering fundamental links between organellar morphological characteristics and the cell state.
Collapse
Affiliation(s)
- Li-Jiao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Tong Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Zheng Dang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Shuai Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Sheng-Lan Gong
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Ting Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Zhao Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Gang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yang-Chao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
29
|
Smolková K, Gotvaldová K. Fatty Acid Trafficking Between Lipid Droplets and Mitochondria: An Emerging Perspective. Int J Biol Sci 2025; 21:1863-1873. [PMID: 40083687 PMCID: PMC11900811 DOI: 10.7150/ijbs.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/28/2025] [Indexed: 03/16/2025] Open
Abstract
The current understanding of lipid droplets (LDs) in cell biology has evolved from being viewed merely as storage compartments. LDs are now recognized as metabolic hubs that act as cytosolic buffers against the detrimental effects of free fatty acids (FAs). Upon activation, FAs traverse various cellular pathways, including oxidation in mitochondria, integration into complex lipids, or storage in triacylglycerols (TGs). Maintaining a balance among these processes is crucial in cellular FA trafficking, and under metabolically challenging circumstances the routes of FA metabolism adapt to meet the current cellular needs. This typically involves an increased demand for anabolic intermediates or energy and the prevention of redox stress. Surprisingly, LDs accumulate under certain conditions such as amino acid starvation. This review explores the biochemical aspects of FA utilization in both physiological contexts and within cancer cells, focusing on the metabolism of TGs, cholesteryl esters (CEs), and mitochondrial FA oxidation. Emphasis is placed on the potential toxicity associated with non-esterified FAs in cytosolic and mitochondrial compartments. Additionally, we discuss mechanisms that lead to increased LD biogenesis due to an inhibited mitochondrial import of FAs.
Collapse
Affiliation(s)
- Katarína Smolková
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences
| | | |
Collapse
|
30
|
Wang S, Guo Y, Cao RQ, Zhu YM, Qiao SG, Du HP, Liu Y, Xu Y, Zhou XY, Sun L, Lu QX, Schoen I, Zhang HL. VEGFD/VEGFR3 signaling contributes to the dysfunction of the astrocyte IL-3/microglia IL-3Rα cross-talk and drives neuroinflammation in mouse ischemic stroke. Acta Pharmacol Sin 2025; 46:292-307. [PMID: 39478160 PMCID: PMC11747567 DOI: 10.1038/s41401-024-01405-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/01/2024] [Indexed: 01/22/2025]
Abstract
Astrocyte-derived IL-3 activates the corresponding receptor IL-3Rα in microglia. This cross-talk between astrocytes and microglia ameliorates the pathology of Alzheimer's disease in mice. In this study we investigated the role of IL-3/IL-3Rα cross-talk and its regulatory mechanisms in ischemic stroke. Ischemic stroke was induced in mice by intraluminal occlusion of the right middle cerebral artery (MCA) for 60 min followed by reperfusion (I/R). Human astrocytes or microglia subjected to oxygen-glucose deprivation and reoxygenation (OGD/Re) were used as in vitro models of brain ischemia. We showed that both I/R and OGD/Re significantly induced decreases in astrocytic IL-3 and microglial IL-3Rα protein levels, accompanied by pro-inflammatory activation of A1-type astrocytes and M1-type microglia. Importantly, astrocyte-derived VEGFD acting on VEGFR3 of astrocytes and microglia contributed to the cross-talk dysfunction and pro-inflammatory activation of the two glial cells, thereby mediating neuronal cell damage. By using metabolomics and multiple biochemical approaches, we demonstrated that IL-3 supplementation to microglia reversed OGD/Re-induced lipid metabolic reprogramming evidenced by upregulated expression of CPT1A, a rate-limiting enzyme for the mitochondrial β-oxidation, and increased levels of glycerophospholipids, the major components of cellular membranes, causing reduced accumulation of lipid droplets, thus reduced pro-inflammatory activation and necrosis, as well as increased phagocytosis of microglia. Notably, exogenous IL-3 and the VEGFR antagonist axitinib reestablished the cross-talk of IL-3/IL-3Rα, improving microglial lipid metabolic levels via upregulation of CPT1A, restoring microglial phagocytotic function and attenuating microglial pro-inflammatory activation, ultimately contributing to brain recovery from I/R insult. Our results demonstrate that VEGFD/VEGFR3 signaling contributes to the dysfunction of the astrocyte IL-3/microglia IL-3Rα cross-talk and drives pro-inflammatory activation, causing lipid metabolic reprogramming of microglia. These insights suggest VEGFR3 antagonism or restoring IL-3 levels as a potential therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Shuai Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Yi Guo
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Rui-Qi Cao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Yong-Ming Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Shi-Gang Qiao
- Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, 215000, China
| | - Hua-Ping Du
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Soochow University, Suzhou, 215200, China
| | - Yuan Liu
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Soochow University, Suzhou, 215200, China
| | - Yuan Xu
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Soochow University, Suzhou, 215200, China
| | - Xian-Yong Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Lei Sun
- Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, 215000, China
| | - Qi-Xia Lu
- Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, 215000, China
| | - Ingmar Schoen
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Hui-Ling Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
31
|
Oleszycka E, Kwiecień K, Grygier B, Cichy J, Kwiecińska P. The many faces of DGAT1. Life Sci 2025; 362:123322. [PMID: 39709166 DOI: 10.1016/j.lfs.2024.123322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is a multifaced enzyme with a wide spectrum of substrates, from lipids through waxes to retinoids, which makes it an interesting therapeutic target. DGAT1 inhibitors are currently at various stages of preclinical and clinical trials, mostly related to metabolic diseases. Interestingly, in recent years, a growing amount of research has shown the influence of DGAT1 on immune cell metabolism and functions, highlighting its important role during infections and tumorigenesis. In this review, we aim to elucidate the potential immunomodulatory effect of DGAT1 in physiological and pathological conditions.
Collapse
Affiliation(s)
- Ewa Oleszycka
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Kamila Kwiecień
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Beata Grygier
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Science, Cracow, Poland
| | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Patrycja Kwiecińska
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland; Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland.
| |
Collapse
|
32
|
Chourasia S, Petucci C, Shoffler C, Abbasian D, Wang H, Han X, Sivan E, Brandis A, Mehlman T, Malitsky S, Itkin M, Sharp A, Rotkopf R, Dassa B, Regev L, Zaltsman Y, Gross A. MTCH2 controls energy demand and expenditure to fuel anabolism during adipogenesis. EMBO J 2025; 44:1007-1038. [PMID: 39753955 PMCID: PMC11832942 DOI: 10.1038/s44318-024-00335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 02/19/2025] Open
Abstract
Mitochondrial carrier homolog 2 (MTCH2) is a regulator of apoptosis, mitochondrial dynamics, and metabolism. Loss of MTCH2 results in mitochondrial fragmentation, an increase in whole-body energy utilization, and protection against diet-induced obesity. In this study, we used temporal metabolomics on HeLa cells to show that MTCH2 deletion results in a high ATP demand, an oxidized cellular environment, and elevated utilization of lipids, amino acids, and carbohydrates, accompanied by a decrease in several metabolites. Lipidomics analysis revealed a strategic adaptive reduction in membrane lipids and an increase in storage lipids in MTCH2 knockout cells. Importantly, MTCH2 knockout cells showed an increase in mitochondrial oxidative function, which may explain the higher energy demand. Interestingly, this imbalance in energy metabolism and reductive potential triggered by MTCH2-deletion prevents NIH3T3L1 preadipocytes from differentiating into mature adipocytes, an energy consuming reductive biosynthetic process. In summary, the loss of MTCH2 leads to increased mitochondrial oxidative activity and energy demand, creating a catabolic and oxidative environment that fails to fuel the anabolic processes required for lipid accumulation and adipocyte differentiation.
Collapse
Affiliation(s)
- Sabita Chourasia
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
| | - Christopher Petucci
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Clarissa Shoffler
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dina Abbasian
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hu Wang
- Barshop Institute for Longevity and Aging Studies, and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ehud Sivan
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Alexander Brandis
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Tevie Mehlman
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Ayala Sharp
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Ron Rotkopf
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Bareket Dassa
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Limor Regev
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Yehudit Zaltsman
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Atan Gross
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
33
|
Zhang JL, Wang XF, Li JL, Duan C, Wang JF. The cholesterol metabolite 25-hydroxycholesterol suppresses porcine deltacoronavirus via lipophagy inhibition and mTORC1 modulation. Vet Res 2025; 56:23. [PMID: 39891192 PMCID: PMC11786589 DOI: 10.1186/s13567-025-01452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/29/2024] [Indexed: 02/03/2025] Open
Abstract
25-Hydroxycholesterol (25HC) is a hydroxylated cholesterol with multiple antiviral activities, however, little is known about the mechanisms by which 25HC correlates antiviral ability with lipid droplet (LD) dynamic balance to ensure cholesterol homeostasis. In the present study, 25HC was applied to porcine deltacoronavirus (PDCoV)-infected LLC-PK1 (Lilly Laboratories Culture-Porcine Kidney 1) cells and piglets to explore its antiviral capacity and underlying mechanism. The results revealed that 25HC decreased free cholesterol (FC) levels but increased triglyceride (TG) levels in PDCoV-infected cells and piglets. The accumulation of LDs induced by oleic acid (OA) impedes PDCoV replication. In addition, 25HC administration increases LD accumulation and declines protein expression associated with lipophagy and lysosomes to facilitate LD accumulation. Moreover, 25HC inhibited TFEB (transcription factor-EB) expression, blocked its translocation into the nucleus and reversed Mechanistic Target of Rapamycin Complex 1 (mTORC1) activity, which in turn hindered lipophagy and PDCoV replication. Additionally, 25HC treatment ameliorated the clinical symptoms and intestinal injury of PDCoV-infected piglets. These findings reveal the beneficial effect of lipophagy on PDCoV infection and uncover the antiviral mechanism of 25HC, by which lipophagy and mTOR activity are tightly controlled by 25HC.
Collapse
Affiliation(s)
- Jia-Lu Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Xue-Fei Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jia-Lin Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Cong Duan
- China Institute of Veterinary Drug Control, Beijing, 100081, China.
| | - Jiu-Feng Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
34
|
Liu X, Sun X, Mu W, Li Y, Bu W, Yang T, Zhang J, Liu R, Ren J, Zhou J, Li P, Shi Y, Shao C. Autophagic flux-lipid droplet biogenesis cascade sustains mitochondrial fitness in colorectal cancer cells adapted to acidosis. Cell Death Discov 2025; 11:21. [PMID: 39856069 PMCID: PMC11761495 DOI: 10.1038/s41420-025-02301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Cancer development is associated with adaptation to various stressful conditions, such as extracellular acidosis. The adverse tumor microenvironment also selects for increased malignancy. Mitochondria are integral in stress sensing to allow for tumor cells to adapt to stressful conditions. Here, we show that colorectal cancer cells adapted to acidic microenvironment (CRC-AA) are more reliant on oxidative phosphorylation than their parental cells, and the acetyl-CoA in CRC-AA cells are generated from fatty acids and glutamine, but not from glucose. Consistently, CRC-AA cells exhibit increased mitochondrial mass and fitness that depends on an upregulated autophagic flux-lipid droplet axis. Lipid droplets (LDs) function as a buffering system to store the fatty acids derived from autophagy and to protect mitochondria from lipotoxicity in CRC-AA cells. Blockade of LD biogenesis causes mitochondrial dysfunction that can be rescued by inhibiting carnitine palmitoyltransferase 1 α (CPT1α). High level of mitochondrial superoxide is essential for the AMPK activation, resistance to apoptosis, high autophagic flux and mitochondrial function in CRC-AA cells. Thus, our results demonstrate that the cascade of autophagic flux and LD formation plays an essential role in sustaining mitochondrial fitness to promote cancer cell survival under chronic acidosis. Our findings provide insight into the pro-survival metabolic plasticity in cancer cells under microenvironmental or therapeutic stress and imply that this pro-survival cascade may potentially be targeted in cancer therapy.
Collapse
Affiliation(s)
- Xiaojie Liu
- The Third Affiliated of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, China
- Biochip Laboratory, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, China
| | - Xue Sun
- The Third Affiliated of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Wenqing Mu
- The Third Affiliated of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Yanan Li
- The Third Affiliated of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Wenqing Bu
- The Third Affiliated of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Tingting Yang
- The Third Affiliated of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Jia Zhang
- The Third Affiliated of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Rui Liu
- The Third Affiliated of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Jiayu Ren
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jin Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Peishan Li
- The Third Affiliated of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Yufang Shi
- The Third Affiliated of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Changshun Shao
- The Third Affiliated of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, China.
| |
Collapse
|
35
|
Kolapalli SP, Beese CJ, Reid SE, Brynjólfsdóttir SH, Jørgensen MH, Jain A, Cuenco J, Lewinska M, Abdul-Al A, López AR, Jäättelä M, Sakamoto K, Andersen JB, Maeda K, Rusten TE, Lund AH, Frankel LB. Pellino 3 E3 ligase promotes starvation-induced autophagy to prevent hepatic steatosis. SCIENCE ADVANCES 2025; 11:eadr2450. [PMID: 39823344 PMCID: PMC11740972 DOI: 10.1126/sciadv.adr2450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025]
Abstract
Nutrient deprivation is a major trigger of autophagy, a conserved quality control and recycling process essential for cellular and tissue homeostasis. In a high-content image-based screen of the human ubiquitome, we here identify the E3 ligase Pellino 3 (PELI3) as a crucial regulator of starvation-induced autophagy. Mechanistically, PELI3 localizes to autophagic membranes, where it interacts with the ATG8 proteins through an LC3-interacting region (LIR). This facilitates PELI3-mediated ubiquitination of ULK1, driving ULK1's subsequent proteasomal degradation. PELI3 depletion leads to an aberrant accumulation and mislocalization of ULK1 and disrupts the early steps of autophagosome formation. Genetic deletion of Peli3 in mice impairs fasting-induced autophagy in the liver and enhances starvation-induced hepatic steatosis by reducing autophagy-mediated clearance of lipid droplets. Notably, PELI3 expression is decreased in the livers of patients with metabolic dysfunction-associated steatotic liver disease (MASLD), suggesting its role in hepatic steatosis development in humans. The findings suggest that PELI3-mediated control of autophagy plays a protective role in liver health.
Collapse
Affiliation(s)
- Srinivasa P. Kolapalli
- Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
| | - Carsten J. Beese
- Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Steven E. Reid
- Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
| | | | - Maria H. Jørgensen
- Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
| | - Ashish Jain
- Center for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Joyceline Cuenco
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Monika Lewinska
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Gubra, DK-2970 Hørsholm, Denmark
| | - Ahmad Abdul-Al
- Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
| | - Aida R. López
- Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jesper B. Andersen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kenji Maeda
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
| | - Tor E. Rusten
- Center for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anders H. Lund
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lisa B. Frankel
- Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
36
|
Zhang L, Zhou Y, Yang Z, Jiang L, Yan X, Zhu W, Shen Y, Wang B, Li J, Song J. Lipid droplets in central nervous system and functional profiles of brain cells containing lipid droplets in various diseases. J Neuroinflammation 2025; 22:7. [PMID: 39806503 PMCID: PMC11730833 DOI: 10.1186/s12974-025-03334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders. Additionally, we also emphasize the paradoxical role of LDs in post-cerebral ischemia inflammation and explore potential underlying mechanisms, aiming to identify novel therapeutic targets for this disease.
Collapse
Affiliation(s)
- Longxiao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yunfei Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Zhongbo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Liangchao Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xinyang Yan
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wenkai Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yi Shen
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Bolong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jiaxi Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Jinning Song
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
37
|
Gianazza E, Papaianni GG, Brocca L, Banfi C, Mallia A. Omics Approaches to Study Perilipins and Their Significant Biological Role in Cardiometabolic Disorders. Int J Mol Sci 2025; 26:557. [PMID: 39859272 PMCID: PMC11765208 DOI: 10.3390/ijms26020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Lipid droplets (LDs), highly dynamic cellular organelles specialized in lipid storage and maintenance of lipid homeostasis, contain several proteins on their surface, among which the perilipin (Plin) family stands out as the most abundant group of LD-binding proteins. They play a pivotal role in influencing the behavior and functionality of LDs, regulating lipase activity, and preserving a balance between lipid synthesis and degradation, which is crucial in the development of obesity and abnormal accumulation of fat in non-adipose tissues, causing negative adverse biological effects, such as insulin resistance, mitochondrial dysfunction, and inflammation. The expression levels of Plins are often associated with various diseases, such as hepatic steatosis and atherosclerotic plaque formation. Thus, it becomes of interest to investigate the Plin roles by using appropriate "omics" approaches that may provide additional insight into the mechanisms through which these proteins contribute to cellular and tissue homeostasis. This review is intended to give an overview of the most significant omics studies focused on the characterization of Plin proteins and the identification of their potential targets involved in the development and progression of cardiovascular and cardiometabolic complications, as well as their interactors that could be useful for more efficient therapeutic and preventive approaches for patients.
Collapse
Affiliation(s)
| | | | | | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (E.G.); (G.G.P.); (L.B.); (A.M.)
| | | |
Collapse
|
38
|
Duan L, Togou A, Ohta K, Okamoto K. Mitochondria-giant lipid droplet proximity and autophagy suppression in nitrogen-depleted oleaginous yeast Lipomyces starkeyi cells. J Biochem 2025; 177:15-25. [PMID: 39404033 DOI: 10.1093/jb/mvae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 01/03/2025] Open
Abstract
Balancing energy production and storage is a fundamental process critical for cellular homeostasis in most eukaryotes that relies on the intimate interplay between mitochondria and lipid droplets (LDs). In the oleaginous yeast Lipomyces starkeyi under nitrogen starvation, LD forms a single giant spherical structure that is easily visible under a light microscope. Currently, how mitochondria behave in L. starkeyi cells undergoing giant LD formation remains unknown. Here we show that mitochondria transition from fragments to elongated tubules and sheet-like structures that are in close proximity to a giant LD in nitrogen-depleted L. starkeyi cells. Under the same conditions, mitochondrial degradation and autophagy are strongly suppressed, suggesting that these catabolic events are not required for giant LD formation. Conversely, carbon-depleted cells suppress mitochondrial elongation and LD expansion, whereas they promote mitochondrial degradation and autophagy. We propose a potential link of mitochondrial proximity and autophagic suppression to giant LD formation.
Collapse
Affiliation(s)
- Lan Duan
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akinobu Togou
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Keisuke Ohta
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
39
|
Lange M, Wölk M, Doubravsky CE, Hendricks JM, Kato S, Otoki Y, Styler B, Nakagawa K, Fedorova M, Olzmann JA. FSP1-mediated lipid droplet quality control prevents neutral lipid peroxidation and ferroptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631537. [PMID: 39829838 PMCID: PMC11741373 DOI: 10.1101/2025.01.06.631537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Lipid droplets (LDs) are organelles that store and supply lipids based on cellular needs. While mechanisms preventing oxidative damage to membrane phospholipids are established, the vulnerability of LD neutral lipids to peroxidation and protective mechanisms are unknown. Here, we identify LD-localized Ferroptosis Suppressor Protein 1 (FSP1) as a critical regulator that prevents neutral lipid peroxidation by recycling coenzyme Q10 (CoQ10) to its lipophilic antioxidant form. Lipidomics reveal that FSP1 loss leads to the accumulation of oxidized triacylglycerols and cholesteryl esters, and biochemical reconstitution of FSP1 with CoQ10 and NADH suppresses triacylglycerol peroxidation in vitro. Notably, polyunsaturated fatty acid (PUFA)-rich triacylglycerols enhance cancer cell sensitivity to FSP1 loss and inducing PUFA-rich LDs triggers triacylglycerol peroxidation and LD-initiated ferroptosis when FSP1 activity is impaired. These findings uncover the first LD lipid quality control pathway, wherein LD-localized FSP1 maintains neutral lipid integrity to prevent the buildup of oxidized lipids and induction of ferroptosis.
Collapse
Affiliation(s)
- Mike Lange
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden Dresden, Germany
| | - Cody E. Doubravsky
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joseph M. Hendricks
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shunji Kato
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yurika Otoki
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Benjamin Styler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kiyotaka Nakagawa
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden Dresden, Germany
| | - James A. Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
40
|
Ismail VA, Schuetz M, Baker ZN, Castillo-Badillo JA, Naismith TV, Pagliarini DJ, Kast DJ. DFCP1 is a regulator of starvation-driven ATGL-mediated lipid droplet lipolysis. J Lipid Res 2025; 66:100700. [PMID: 39566849 PMCID: PMC11721518 DOI: 10.1016/j.jlr.2024.100700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Lipid droplets (LDs) are transient lipid storage organelles that can be readily tapped to resupply cells with energy or lipid building blocks, and therefore play a central role in cellular metabolism. Double FYVE Domain Containing Protein 1 (DFCP1/ZFYVE1) has emerged as a key regulator of LD metabolism, where the nucleotide-dependent accumulation of DFCP1 on LDs influences their size, number, and dynamics. Here we show that DFCP1 regulates lipid metabolism by directly modulating the activity of Adipose Triglyceride Lipase (ATGL/PNPLA2), the rate-limiting lipase driving the catabolism of LDs. We show through pharmacological inhibition of key enzymes associated with LD metabolism that DFCP1 specifically regulates lipolysis and, to a lesser extent, lipophagy. Consistent with this observation, DFCP1 interacts with and recruits ATGL to LDs in starved cells, irrespective of other known regulatory factors of ATGL. We further establish that this interaction prevents dynamic disassociation of ATGL from LDs and thereby impedes the rate of LD lipolysis. Collectively, our findings indicate that DFCP1 is a nutrient-sensitive regulator of LD catabolism.
Collapse
Affiliation(s)
- Victoria A Ismail
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meg Schuetz
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zak N Baker
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jean A Castillo-Badillo
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Teri V Naismith
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David J Pagliarini
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David J Kast
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
41
|
Ju Y, Li S, Kong X, Zhao Q. Exploring fatty acid metabolism in Alzheimer's disease: the key role of CPT1A. Sci Rep 2024; 14:31483. [PMID: 39733087 PMCID: PMC11682225 DOI: 10.1038/s41598-024-82999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disease, and the most common type of dementia, with symptoms of progressive cognitive dysfunction and behavioral impairment. Studying the pathogenesis of AD and exploring new targets for the prevention and treatment of AD is a very worthwhile challenge. Accumulating evidence has highlighted the effects of fatty acid metabolism on AD. In this study, fatty acid metabolism was used as an entry point to understand the pathogenesis of AD and identify new targets. After identifying differentially expressed genes, multiple machine learning algorithms, carnitine palmitoyltransferase 1 A (CPT1A) was identified as the key gene for fatty acid metabolism in AD. Further single nucleus RNA sequencing analysis were performed, and the GSEA results showed that the fatty acid β-oxidation pathway was enriched only in astrocytes, and the fatty acid β-oxidation pathway was down-regulated in the AD astrocytes compared to the CN astrocytes, while CPT1A was specifically downregulated in astrocytes of AD, which was confirmed in vitro experiment subsequently, and decreased expression level of CPT1A would lead to abnormal lipid metabolism, which shapes astrocyte reactivity and injury, neuroinflammatory, and thus affects AD pathogenesis. Our findings report the involvement of CPT1A in AD. We confirm that the primary role of astrocytes for fatty acid β-oxidation, and CPT1A is localized in astrocytes. Downregulated CPT1A could be a novel potential target for the prevention and treatment of AD. Our study provides strong evidence for the involvement of fatty acid metabolism in the pathogenesis of AD.
Collapse
Affiliation(s)
- Yanxiu Ju
- Department of Neurology, Union Hospital of Jilin University, Changchun, 130000, China
- Engineering Laboratory of Memory and Cognitive Impairment Disease of Jilin Province, Union Hospital of Jilin University, Changchun, 130000, China
| | - Songtao Li
- Department of Neurology, Union Hospital of Jilin University, Changchun, 130000, China
- Engineering Laboratory of Memory and Cognitive Impairment Disease of Jilin Province, Union Hospital of Jilin University, Changchun, 130000, China
| | - Xiangyi Kong
- Key Laboratory of Lymphatic Surgery of Jilin Province, Union Hospital of Jilin University, Changchun, 130000, China
| | - Qing Zhao
- Department of Neurology, Union Hospital of Jilin University, Changchun, 130000, China.
- Engineering Laboratory of Memory and Cognitive Impairment Disease of Jilin Province, Union Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
42
|
Hussain Y, Dar MI, Pan X. Circadian Influences on Brain Lipid Metabolism and Neurodegenerative Diseases. Metabolites 2024; 14:723. [PMID: 39728504 DOI: 10.3390/metabo14120723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Circadian rhythms are intrinsic, 24 h cycles that regulate key physiological, mental, and behavioral processes, including sleep-wake cycles, hormone secretion, and metabolism. These rhythms are controlled by the brain's suprachiasmatic nucleus, which synchronizes with environmental signals, such as light and temperature, and consequently maintains alignment with the day-night cycle. Molecular feedback loops, driven by core circadian "clock genes", such as Clock, Bmal1, Per, and Cry, are essential for rhythmic gene expression; disruptions in these feedback loops are associated with various health issues. Dysregulated lipid metabolism in the brain has been implicated in the pathogenesis of neurological disorders by contributing to oxidative stress, neuroinflammation, and synaptic dysfunction, as observed in conditions such as Alzheimer's and Parkinson's diseases. Disruptions in circadian gene expression have been shown to perturb lipid regulatory mechanisms in the brain, thereby triggering neuroinflammatory responses and oxidative damage. This review synthesizes current insights into the interconnections between circadian rhythms and lipid metabolism, with a focus on their roles in neurological health and disease. It further examines how the desynchronization of circadian genes affects lipid metabolism and explores the potential mechanisms through which disrupted circadian signaling might contribute to the pathophysiology of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yusuf Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| | - Mohammad Irfan Dar
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| |
Collapse
|
43
|
Fu M, Li Y, Liu J, Liu J, Wei J, Qiao Y, Zhong H, Han D, Lu H, Yao L. Zhishi Xiebai Guizhi Decoction modulates hypoxia and lipid toxicity to alleviate pulmonary vascular remodeling of pulmonary hypertension in rats. Chin Med 2024; 19:173. [PMID: 39696593 DOI: 10.1186/s13020-024-01039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a severe cardio-pulmonary vascular disease, involves complex molecular mechanism especially during the pathological process of pulmonary vascular remodeling, brings a significant challenge to clinical treatment and thus resulting in high mortality rates. Classic Traditional Chinese medicine formula, Zhishi Xiebai Guizhi Decoction (ZXGD), holds therapeutic potential for PH. In present study, we sought to explore therapeutic potential of ZXGD against PH in rats. METHODS We employed a combination methods of chemical profiling, echocardiographic, morphologic measurements, molecular biology, rats models and cultured pulmonary artery smooth muscle cells (PASMCs) to achieve this. RESULTS Eighteen compounds were precisely identified in ZXGD using UHPLC-QTOF-MS/MS. Our data demonstrated ZXGD could alleviate PH by reducing pulmonary artery pressure and alleviating pulmonary vascular remodeling in rats. Specifically, ZXGD was found to intervene in abnormal expansion of PASMCs, thereby attenuating pulmonary vascular remodeling. ZXGD was also observed to modulate expressions of HIF-1α, ROS, and Nrf2 to alleviate hypoxia and oxidative stress. Additionally, ZXGD significantly regulated disorders in pro-inflammatory cytokines, thus mitigating inflammation. Furthermore, ZXGD decreased levels of decadienyl-L-carnitine and LDL-C, while elevating HDL-C and lipid droplet counts, thereby reducing cholesterol and lipid toxicity and preserving mitochondrial function. Importantly, inhibition of HIF-1α reversed expression of key pathological triggers for pulmonary vascular remodeling. Neohesperidin and naringin in ZXGD extract were identified as the primary contributors to its pharmacological effects against PH. CONCLUSION Altogether, our study empirically explored therapeutic potential and pharmacological mechanisms of ZXGD in treating PH, offering a groundwork for the development of novel anti-PH drugs.
Collapse
Affiliation(s)
- Min Fu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuan Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jingjing Liu
- School of Chinese Medicine, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Traditional Chinese Medicine Phenome Research Center, Hong Kong Baptist University, Hong Kong, 999077, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junjie Liu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jiaoxia Wei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuxin Qiao
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hanxin Zhong
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Dongyang Han
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Haitao Lu
- School of Chinese Medicine, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Traditional Chinese Medicine Phenome Research Center, Hong Kong Baptist University, Hong Kong, 999077, China.
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Li Yao
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
44
|
Nakamura J, Yamamoto T, Takabatake Y, Namba-Hamano T, Takahashi A, Matsuda J, Minami S, Sakai S, Yonishi H, Maeda S, Matsui S, Kawai H, Matsui I, Yamamuro T, Edahiro R, Takashima S, Takasawa A, Okada Y, Yoshimori T, Ballabio A, Isaka Y. Age-related TFEB downregulation in proximal tubules causes systemic metabolic disorders and occasional apolipoprotein A4-related amyloidosis. JCI Insight 2024; 10:e184451. [PMID: 39699959 PMCID: PMC11948592 DOI: 10.1172/jci.insight.184451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
With the aging of society, the incidence of chronic kidney disease (CKD), a common cause of death, has been increasing. Transcription factor EB (TFEB), the master transcriptional regulator of the autophagy/lysosomal pathway, is regarded as a promising candidate for preventing various age-related diseases. However, whether TFEB in the proximal tubules plays a significant role in elderly patients with CKD remains unknown. First, we found that nuclear TFEB localization in proximal tubular epithelial cells (PTECs) declined with age in both mice and humans. Next, we generated PTEC-specific Tfeb-deficient mice and bred them for up to 24 months. We found that TFEB deficiency in the proximal tubules caused metabolic disorders and occasionally led to apolipoprotein A4 (APOA4) amyloidosis. Supporting this result, we identified markedly decreased nuclear TFEB localization in the proximal tubules of elderly patients with APOA4 amyloidosis. The metabolic disturbances were accompanied by mitochondrial dysfunction due to transcriptional changes involved in fatty acid oxidation and oxidative phosphorylation pathways, as well as decreased mitochondrial clearance. This decreased clearance was reflected by the accumulation of mitochondria-lysosome-related organelles, which depended on lysosomal function. These results shed light on the presumptive mechanisms of APOA4 amyloidosis pathogenesis and provide a therapeutic strategy for CKD-related metabolic disorders and APOA4 amyloidosis.
Collapse
Affiliation(s)
- Jun Nakamura
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitsugu Takabatake
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Takahashi
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Matsuda
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Minami
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinsuke Sakai
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Yonishi
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shihomi Maeda
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sho Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideaki Kawai
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tadashi Yamamuro
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Ryuya Edahiro
- Department of Statistical Genetics and
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Akira Takasawa
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yukinori Okada
- Department of Statistical Genetics and
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe) and
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Tamotsu Yoshimori
- Health Promotion System Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli, Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Via Pansini 5, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
45
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Pathology and Treatments of Alzheimer's Disease Based on Considering Changes in Brain Energy Metabolism Due to Type 2 Diabetes. Molecules 2024; 29:5936. [PMID: 39770025 PMCID: PMC11677283 DOI: 10.3390/molecules29245936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with cognitive dysfunction, memory decline, and behavioral disturbance, and it is pathologically characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. Although various hypotheses have been proposed to explain the pathogenesis of AD, including the amyloid beta hypothesis, oxidative stress hypothesis, and abnormal phosphorylation of tau proteins, the exact pathogenic mechanisms underlying AD remain largely undefined. Furthermore, effective curative treatments are very limited. Epidemiologic studies provide convincing evidence for a significant association between type 2 diabetes and AD. Here, we showed energy metabolism using glucose, lactate, ketone bodies, and lipids as energy substrates in a normal brain, and changes in such energy metabolism due to type 2 diabetes. We also showed the influences of such altered energy metabolism due to type 2 diabetes on the pathology of AD. Furthermore, we comprehensively searched for risk factors related with type 2 diabetes for AD and showed possible therapeutic interventions based on considering risk factors and altered brain energy metabolism due to type 2 diabetes for the development of AD.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | | | | | | |
Collapse
|
46
|
Qiu Y, Lu G, Zhang S, Minping L, Xue X, Junyu W, Zheng Z, Qi W, Guo J, Zhou D, Huang H, Deng Z. Mitochondrial dysfunction of Astrocyte induces cell activation under high salt condition. Heliyon 2024; 10:e40621. [PMID: 39660210 PMCID: PMC11629238 DOI: 10.1016/j.heliyon.2024.e40621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Excess dietary sodium can accumulate in brain and adversely affect human health. We have confirmed in previous studies that high salt can induce activation of astrocyte manifested by the secretion of various inflammatory factors. In order to further explore the effect of high salt on the internal cell metabolism of astrocytes, RNA sequencing was performed on astrocytes under high salt environment, which indicated the oxidative phosphorylation and glycolysis pathways of astrocytes were downregulated. Next, we found that high salt concentrations elicited astrocyte mitochondrial morphology change, as evidenced by swelling from a short rod to a round shape through a High Intelligent and Sensitive Structured Illumination Microscope (HIS-SIM). Furthermore, we found that high salt concentrations reduced astrocyte mitochondrial oxygen consumption and membrane potential. Treatment with 18-kDa translocator protein (TSPO) ligands FGIN-1-27 improved mitochondrial networks and reversed astrocyte activation under high-salt circumstances. Our study shows that high salt can directly disrupt astrocytic mitochondrial homeostasis and function. Targeting translocator protein signaling may have therapeutic potential against high-salt neurotoxicity.
Collapse
Affiliation(s)
- Yuemin Qiu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- Department of Neurology, Shenzhen Bao'an District Songgang People's Hospital, No.2 Shajiang Road, Shenzhen, 518100, China
| | - Gengxin Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Shifeng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Li Minping
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xu Xue
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Wu Junyu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Zhihui Zheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Weiwei Qi
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Junjie Guo
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Dongxiao Zhou
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Haiwei Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Zhezhi Deng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| |
Collapse
|
47
|
Lu J, Lee J, Yuan E, Wakefield DL, Kanke M, Pruitt D, Barreda J, Rulifson IC, Xie J, Ferbas J, Long J, Meade B, Homann O, Guo W, Gomes T, Zhou H, Wu B, Cui J, Wang S. RAB18 regulates extrahepatic siRNA-mediated gene silencing efficacy. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102335. [PMID: 39380712 PMCID: PMC11458997 DOI: 10.1016/j.omtn.2024.102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Small interfering RNAs (siRNAs) hold considerable therapeutic potential to selectively silence previously "undruggable" disease-associated targets, offering new opportunities to fight human diseases. This therapeutic strategy, however, is limited by the inability of naked siRNAs to passively diffuse across cellular membranes due to their large molecular size and negative charge. Delivery of siRNAs to liver through conjugation of siRNA to N-acetylgalactosamine (GalNAc) has been a success, providing robust and durable gene knockdown, specifically in hepatocytes. However, the poor delivery and silencing efficacy of siRNAs in other cell types has hindered their applications outside the liver. We previously reported that a genome-wide pooled knockout screen identified RAB18 as a major modulator of GalNAc-siRNA conjugates. Herein, we demonstrate RAB18 knockout/knockdown efficaciously enhances siRNA-mediated gene silencing in hepatic and extrahepatic cell lines and in vivo. Our results reveal a mechanism by which retrograde Golgi-endoplasmic reticulum (ER) transport and the intracellular lipid droplets (LDs) positively regulate siRNA-mediated gene silencing.
Collapse
Affiliation(s)
- Jiamiao Lu
- Precision Biology, Amgen Inc., South San Francisco, CA 94080, USA
| | - Jasper Lee
- Precision Biology, Amgen Inc., South San Francisco, CA 94080, USA
| | - Eric Yuan
- Precision Biology, Amgen Inc., South San Francisco, CA 94080, USA
| | | | - Matt Kanke
- Precision Biology, Amgen Inc., South San Francisco, CA 94080, USA
| | - Danielle Pruitt
- Cardiometabolic Disorders, Amgen Inc., South San Francisco, CA 94080, USA
| | - Jose Barreda
- Cardiometabolic Disorders, Amgen Inc., South San Francisco, CA 94080, USA
| | - Ingrid C. Rulifson
- Cardiometabolic Disorders, Amgen Inc., South San Francisco, CA 94080, USA
| | - Jiansong Xie
- Precision Biology, Amgen Inc., South San Francisco, CA 94080, USA
| | - John Ferbas
- Precision Biology, Amgen Inc., South San Francisco, CA 94080, USA
| | - Jason Long
- RNA Therapeutics, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Bryan Meade
- RNA Therapeutics, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Oliver Homann
- CRADI Computational Biology, Amgen Inc., South San Francisco, CA 94080, USA
| | - Wei Guo
- Cardiometabolic Disorders, Amgen Inc., South San Francisco, CA 94080, USA
| | - Tina Gomes
- Precision Biology, Amgen Inc., South San Francisco, CA 94080, USA
| | - Hong Zhou
- Precision Biology, Amgen Inc., South San Francisco, CA 94080, USA
| | - Bin Wu
- Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Jixin Cui
- Cardiometabolic Disorders, Amgen Inc., South San Francisco, CA 94080, USA
| | - Songli Wang
- Precision Biology, Amgen Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
48
|
Zuo X, Zeng H, Yang X, He D, Wang B, Yuan J. Atg5-Mediated Lipophagy Induces Ferroptosis in Corneal Epithelial Cells in Dry Eye Disease. Invest Ophthalmol Vis Sci 2024; 65:12. [PMID: 39636725 PMCID: PMC11622160 DOI: 10.1167/iovs.65.14.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Purpose Ferroptosis occurred in corneal epithelial cells has been implicated in the inflammation in dry eye disease (DED). Given the proposed link between ferroptosis and autophagy, this study aims to investigate the role of autophagy in driving ferroptosis in corneal epithelial cell and enrich the pathogenesis underlying DED. Methods DED models were established in C57BL/6 mice via scopolamine injection and in human corneal epithelial cell line (HCEC) using hyperosmotic medium. Lipidomic and transcriptomic analysis were conducted to assess lipid metabolism and regulatory pathways. Atg5 expression was manipulated in vivo using cholesterol-modified small interfering RNA. Lipid droplets (LDs) and lysosomes were labeled with BODIPY 493/503 and Lysotracker Red DND-99, respectively. Western blot, immunofluorescence (IF) staining, co-immunoprecipitation (CO-IP), transmission electron microscopy and microplate reader were used to explore protein expressions and interactions, cellular structures, and free fatty acid (FFA) content. Results Our results revealed that autophagy was activated in DED, as evidenced by lipidomic and transcriptomic analyses. Enhanced lipophagy was observed in HCECs exposed to hyperosmolarity, manifested by lysosome-LD co-localization and autophagic vacuoles containing LDs. Upregulation of Atg5 promoted lipophagy, leading to elevated cellular FFA levels, lipid peroxidation, and expression of ferroptosis markers. Interaction between Atg5 and perilipin3 was confirmed through CO-IP and IF. In the DED mouse model, Atg5 inhibition effectively ameliorated corneal damage, suppressed ferroptosis and ocular surface inflammation. Conclusions Our findings highlight the pivotal role of Atg5-mediated lipophagy in driving ferroptosis in corneal epithelial cells in DED, proposing Atg5 as a promising therapeutic target for mitigating ferroptosis-induced cell damage and inflammation in DED.
Collapse
Affiliation(s)
- Xin Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Hao Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xue Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dalian He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Bowen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
49
|
Ortiz N, Díaz C. Preclinical evaluation of fenretinide against primary and metastatic intestinal type‑gastric cancer. Oncol Lett 2024; 28:561. [PMID: 39372665 PMCID: PMC11450695 DOI: 10.3892/ol.2024.14694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/20/2024] [Indexed: 10/08/2024] Open
Abstract
In recent years there has been a decline in the incidence of gastric cancer, however the high mortality rate has remained constant. The present study evaluated the potential effects of the retinoid fenretinide on the viability and migration of two cell lines, AGS and NCI-N87, that represented primary and metastatic intestinal gastric cancer subtypes, respectively. It was determined that a similar2 dose of fenretinide reduced the viability of both the primary and metastatic cell lines. In addition, it was demonstrated that combined treatment with fenretinide and cisplatin may affect the viability of both primary and metastatic gastric cancer cells. Furthermore, a wound healing assay demonstrated an inhibitory effect for fenretinide on cell migration. As part of the characterization of the mechanism of action, the effect of fenretinide on reactive oxygen species production and lipid droplet content was evaluated, with the latter as an indirect means of assessing autophagy. These results support the hypothesis of combining using fenretinide with conventional therapies to improve survival rates in advanced or metastatic gastric cancer.
Collapse
Affiliation(s)
- Natalia Ortiz
- Department of Biochemistry, School of Medicine, University of Costa Rica, San Pedro de Montes de Oca, San José 11501-2060, Costa Rica
| | - Cecilia Díaz
- Department of Biochemistry, School of Medicine, University of Costa Rica, San Pedro de Montes de Oca, San José 11501-2060, Costa Rica
- Institute Clodomiro Picado, Faculty of Microbiology, University of Costa Rica, San Pedro de Montes de Oca, San José 11501-2060, Costa Rica
| |
Collapse
|
50
|
Chen J, Markworth JF, Ferreira C, Zhang C, Kuang S. Lipid droplets as cell fate determinants in skeletal muscle. Trends Endocrinol Metab 2024:S1043-2760(24)00274-1. [PMID: 39613547 DOI: 10.1016/j.tem.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 12/01/2024]
Abstract
Lipid droplets (LDs) are dynamic organelles that communicate with other cellular components to orchestrate energetic homeostasis and signal transduction. In skeletal muscle, the presence and importance of LDs have been widely studied in myofibers of both rodents and humans under physiological conditions and in metabolic disorders. However, the role of LDs in myogenic stem cells has only recently begun to be unveiled. In this review we briefly summarize the process of LD biogenesis and degradation in the most prevalent model. We then review recent knowledge on LDs in skeletal muscle and muscle stem cells. We further introduce advanced methodologies for LD imaging and mass spectrometry that have propelled our understanding of the dynamics and heterogeneity of LDs.
Collapse
Affiliation(s)
- Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA
| | - James F Markworth
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Christina Ferreira
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Chi Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA; Purdue University Institute for Cancer Research, West Lafayette, IN 47907, USA.
| |
Collapse
|