1
|
Górka J, Miękus K. Molecular landscape of clear cell renal cell carcinoma: targeting the Wnt/β-catenin signaling pathway. Discov Oncol 2025; 16:524. [PMID: 40227498 PMCID: PMC11996749 DOI: 10.1007/s12672-025-02228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 03/25/2025] [Indexed: 04/15/2025] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma and is characterized by a complex molecular landscape driven by genetic and epigenetic alternations. Among the crucial signaling pathways implicated in ccRCC, the Wnt/β-catenin pathway plays a significant role in tumor progression and prognosis. This review delves into the molecular basis of ccRCC, highlighting the genetic and epigenetic modifications that contribute to its pathogenesis. We explore the significance of the Wnt/β-catenin pathway, focusing on its role in disease development, particularly the nuclear transport of β-catenin and its activation and downstream effects. Furthermore, we examine the role of antagonist genes in regulating this pathway within the context of ccRCC, providing insights into potential therapeutic targets. Dysregulation of this pathway, which is characterized by abnormal activation and nuclear translocation of β-catenin, plays a significant role in promoting tumor growth and metastasis. We explore the intricate molecular aspects of ccRCC, with a particular emphasis on this topic, underscoring the role of the pathway and emphasizing the importance and relevance of antagonist genes. Understanding the intricate interplay between these molecular mechanisms is crucial for developing innovative strategies to improve ccRCC treatment and patient outcomes.
Collapse
Affiliation(s)
- Judyta Górka
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Katarzyna Miękus
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
2
|
Tufail M, Jiang CH, Li N. Wnt signaling in cancer: from biomarkers to targeted therapies and clinical translation. Mol Cancer 2025; 24:107. [PMID: 40170063 PMCID: PMC11963613 DOI: 10.1186/s12943-025-02306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/15/2025] [Indexed: 04/03/2025] Open
Abstract
The Wnt signaling pathway plays a crucial role in development and tissue homeostasis, regulating key cellular processes such as proliferation, differentiation, and apoptosis. However, its abnormal activation is strongly associated with tumorigenesis, metastasis, and resistance to therapy, making it a vital target for cancer treatment. This review provides a comprehensive insight into the role of Wnt signaling in cancer, examining its normal physiological functions, dysregulation in malignancies, and therapeutic potential. We emphasize the importance of predicting Wnt signaling sensitivity and identify key biomarkers across various cancer types. Additionally, we address the challenges and future prospects of Wnt-targeted therapies, including biomarker discovery, advancements in emerging technologies, and their application in clinical practice.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Duan Y, Zhang S, Xia Y, Li H, Liu D, Du Y. Identification of novel target genes in exaggerated cardiac remodeling following myocardial infarction in diabetes. Front Endocrinol (Lausanne) 2025; 16:1536639. [PMID: 40162308 PMCID: PMC11949792 DOI: 10.3389/fendo.2025.1536639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Diabetes mellitus is a major risk factor for myocardial infarction (MI), yet its molecular mechanisms exacerbating post-MI cardiac remodeling remain unclear. Methods Type 2 diabetes mellitus mouse model was developed through a high-sugar and high-fat diet (HFD), followed by MI surgery. Four weeks post-surgery, cardiac function was evaluated via echocardiography, and cardiac pathology was examined using Masson's trichrome and wheat germ agglutinin staining. High-throughput sequencing identified differentially expressed mRNAs and long non-coding RNAs (LncRNAs) in diabetic mice with MI. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, along with LncRNA-target-gene analysis, were performed. Validation in human samples of diabetic patients with STEMI confirmed the influence of HFD on the expression of specific genes. Results The results demonstrate that diabetes significantly impairs cardiac function, exacerbates cardiac fibrosis and hypertrophy. In addition, our extensive examination of human samples has conclusively demonstrated that diabetes significantly modulates the expression of genes (Rapgef5 and Ing1) within the cardiac tissue of individuals afflicted with STEMI, underscoring the intricate interplay between these conditions. In addition, we have found that Rapgef5 and Ing1 are involved in diabetes-mediated cardiomyocyte apoptosis and proliferation following myocardial infarction. Discussion Diabetes aggravates post-MI remodeling via Rapgef5/Ing1-mediated apoptosis and proliferation, these findings highlight novel therapeutic targets for diabetic cardiovascular complications.
Collapse
Affiliation(s)
- Yanru Duan
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Shihan Zhang
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Clinical Discipline of Pediatric Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Yihua Xia
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Huili Li
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Emergency Department, The State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Demin Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yunhui Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
4
|
Mbogo I, Kawano C, Nakamura R, Tsuchiya Y, Villar-Briones A, Hirao Y, Yasuoka Y, Hayakawa E, Tomii K, Watanabe H. A transphyletic study of metazoan β-catenin protein complexes. ZOOLOGICAL LETTERS 2024; 10:20. [PMID: 39623505 PMCID: PMC11613877 DOI: 10.1186/s40851-024-00243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/22/2024] [Indexed: 12/06/2024]
Abstract
Beta-catenin is essential for diverse biological processes, such as body axis determination and cell differentiation, during metazoan embryonic development. Beta-catenin is thought to exert such functions through complexes formed with various proteins. Although β-catenin complex proteins have been identified in several bilaterians, little is known about the structural and functional properties of β-catenin complexes in early metazoan evolution. In the present study, we performed a comparative analysis of β-catenin sequences in nonbilaterian lineages that diverged early in metazoan evolution. We also carried out transphyletic function experiments with β-catenin from nonbilaterian metazoans using developing Xenopus embryos, including secondary axis induction in embryos and proteomic analysis of β-catenin protein complexes. Comparative functional analysis of nonbilaterian β-catenins demonstrated sequence characteristics important for β-catenin functions, and the deep origin and evolutionary conservation of the cadherin-catenin complex. Proteins that co-immunoprecipitated with β-catenin included several proteins conserved among metazoans. These data provide new insights into the conserved repertoire of β-catenin complexes.
Collapse
Affiliation(s)
- Ivan Mbogo
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Sysmex Corporation, Ltd. 1-5-1, Chuo-ku, Kobe, 651-0073, Japan
| | - Chihiro Kawano
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ryotaro Nakamura
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yuko Tsuchiya
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Alejandro Villar-Briones
- Instrumental Analysis Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Project Planning and Implementation Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yoshitoshi Hirao
- Instrumental Analysis Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yuuri Yasuoka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Eisuke Hayakawa
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4, Kawazu, Iizuka, 820-8502, Fukuoka, Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
5
|
Saito S, Nakamura Y, Miyashita S, Sato T, Hoshina K, Okada M, Hasegawa H, Oishi M, Fujii Y, Körbelin J, Kubota Y, Tainaka K, Natsumeda M, Ueno M. CRISPR/CasRx suppresses KRAS-induced brain arteriovenous malformation developed in postnatal brain endothelial cells in mice. JCI Insight 2024; 9:e179729. [PMID: 39576014 PMCID: PMC11601911 DOI: 10.1172/jci.insight.179729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/02/2024] [Indexed: 11/29/2024] Open
Abstract
Brain arteriovenous malformations (bAVMs) are anomalies forming vascular tangles connecting the arteries and veins, which cause hemorrhagic stroke in young adults. Current surgical approaches are highly invasive, and alternative therapeutic methods are warranted. Recent genetic studies identified KRAS mutations in endothelial cells of bAVMs; however, the underlying process leading to malformation in the postnatal stage remains unknown. Here we established a mouse model of bAVM developing during the early postnatal stage. Among 4 methods tested, mutant KRAS specifically introduced in brain endothelial cells by brain endothelial cell-directed adeno-associated virus (AAV) and endothelial cell-specific Cdh5-CreERT2 mice successfully induced bAVMs in the postnatal period. Mutant KRAS led to the development of multiple vascular tangles and hemorrhage in the brain with increased MAPK/ERK signaling and growth in endothelial cells. Three-dimensional analyses in cleared tissue revealed dilated vascular networks connecting arteries and veins, similar to human bAVMs. Single-cell RNA-Seq revealed dysregulated gene expressions in endothelial cells and multiple cell types involved in the pathological process. Finally, we employed CRISPR/CasRx to knock down mutant KRAS expression, which efficiently suppressed bAVM development. The present model reveals pathological processes that lead to postnatal bAVMs and demonstrates the efficacy of therapeutic strategies with CRISPR/CasRx.
Collapse
Affiliation(s)
- Shoji Saito
- Department of Neurosurgery and
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuka Nakamura
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Satoshi Miyashita
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tokiharu Sato
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kana Hoshina
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | | | | | | | | | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | | | - Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
6
|
Cayabyab DD, Belanger JM, Xu C, Maga EA, Oberbauer AM. Cellular localization of a variant RAPGEF5 protein associated with idiopathic epilepsy risk in the Belgian shepherd. Canine Med Genet 2024; 11:4. [PMID: 39342265 PMCID: PMC11439299 DOI: 10.1186/s40575-024-00138-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
The Wnt signaling pathway is critical for normal embryonic development. Disruptions in the Wnt signaling pathway have been linked to neurological disorders. The RAPGEF5 protein is a partner in Wnt signaling and a RAPGEF5 3-bp insertion is associated with increased risk for idiopathic epilepsy in the Belgian shepherd dog. The 3-bp insertion risk variant introduces an alanine residue predicted to disrupt the protein. Wildtype and the risk variant RAPGEF5 cDNAs were cloned into green fluorescent protein (GFP) expression vectors and transfected into canine kidney cells. The cellular localization of each GFP-labeled RAPGEF5 protein was assessed. Variant RAPGEF5 protein was altered in its localization from that of the wildtype protein and rather than localized to the nucleus and cytoplasm as seen for the wildtype, it was predominantly found in the cytoplasm. Belgian shepherds with the risk variant for RAPGEF5 may have altered Wnt signaling due to modified intracellular localization which in turn could thereby contribute to the expression of idiopathic epilepsy.
Collapse
Affiliation(s)
- Dawn D Cayabyab
- Department of Animal Science, University of California, One Shields Ave, Davis, CA, 95616, USA
| | - Janelle M Belanger
- Department of Animal Science, University of California, One Shields Ave, Davis, CA, 95616, USA
| | - Claudia Xu
- Department of Animal Science, University of California, One Shields Ave, Davis, CA, 95616, USA
| | - Elizabeth A Maga
- Department of Animal Science, University of California, One Shields Ave, Davis, CA, 95616, USA
| | - Anita M Oberbauer
- Department of Animal Science, University of California, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Kim JH, Lee BD, Park JM, Lee YM, Moon E, Suh H, Kim K, Kim YJ, Lee HJ, Oh HY. Family-based genome-wide association analysis of novelty seeking in a Korean schizophrenic population: A pilot study. Medicine (Baltimore) 2024; 103:e38694. [PMID: 38941432 PMCID: PMC11466168 DOI: 10.1097/md.0000000000038694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 06/03/2024] [Indexed: 06/30/2024] Open
Abstract
Schizophrenia (SPR) is the most devastating mental illness that causes severe deterioration in social and occupational functioning, but, the etiology remains unknown. The objective of this study is to explore the genetic underpinnings of novelty seeking behavior in schizophrenic family within the Korean population. By conducting a family-based genome-wide association study, we aim to identify potential genetic markers and variations associated with novelty seeking traits in the context of SPR. We have recruited 27 probands (with SPR) with their parents and siblings whenever possible. DNA was extracted from blood sampling of 58 individuals in 27 families and analyzed in an Illumina core exome single nucleotide polymorphism (SNP) array. A family-based association test (qFAM) was used to derive SNP association values across all chromosomes. Although none of the final 800,000 SNPs reached the genome-wide significant threshold of 8.45 × 10-7, the most significant 4 SNPs were within the 10-5 to 10-7. This study identifies genetic associations between novelty seeking behavior and SPR within families. RAPGEF5 emerges as a significant gene, along with other neuropsychiatric-related genes. Noteworthy genes like DRD4 and COMT did not show associations, possibly due to the focus on schizophrenic family. While shedding light on this complex relationship, larger studies are needed for robust conclusions and deeper mechanistic insights.
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Psychiatry, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Byung Dae Lee
- Department of Psychiatry, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
- Department of Psychiatry, Pusan National University College of Medicine, Kyungnam, South Korea
| | - Je Min Park
- Department of Psychiatry, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
- Department of Psychiatry, Pusan National University College of Medicine, Kyungnam, South Korea
| | - Young Min Lee
- Department of Psychiatry, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
- Department of Psychiatry, Pusan National University College of Medicine, Kyungnam, South Korea
| | - Eunsoo Moon
- Department of Psychiatry, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
- Department of Psychiatry, Pusan National University College of Medicine, Kyungnam, South Korea
| | - Hwagyu Suh
- Department of Psychiatry, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Kyungwon Kim
- Department of Psychiatry, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Yoo Jun Kim
- Department of Psychiatry, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Hyun Ji Lee
- Department of Psychiatry, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Ha Young Oh
- Department of Psychiatry, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| |
Collapse
|
8
|
Zou M, Song Q, Yin T, Xu H, Nie G. Vitamin D improves autoimmune diseases by inhibiting Wnt signaling pathway. Immun Inflamm Dis 2024; 12:e1192. [PMID: 38414312 PMCID: PMC10899798 DOI: 10.1002/iid3.1192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/09/2023] [Accepted: 02/02/2024] [Indexed: 02/29/2024] Open
Abstract
OBJECTIVE In this study, we investigated the development of the Wnt signaling pathway in vitamin D (VitD) to improve systemic lupus erythematosus in mice to breakthrough clinical treatment approaches. METHODS Body weight changes were recorded during rearing. Antinuclear antibodies (ANA), anti-dsDNA, and anti-snRNP were detected in the mouse serum using an enzyme-linked immunosorbent assay. Apoptosis of Th1 and Th2 immune cells in mice was detected using flow cytometry. Reverse transcription polymerase chain reaction was used to detect the expression of T-bet, GATA3, and Wnt3a mRNA in the spleens of each group. Western blot analysis was performed to detect the expression of Wnt1, p-β-catenin, β-catenin, glycogen synthase kinsase3β (GSK-3β), Wnt3a, c-myc, and cyclin D1 protein in mice spleens. β-catenin in mice spleen was visualized using immunohistochemistry. RESULTS VitD did not substantial reduce the body weight of MRL/LPR mice, whereas the inhibitor did. VitD notably decreased the concentrations of ANA, anti-double-stranded DNA, and anti-snRNP in the serum of MRL/LPR mice and alleviated apoptosis of Th1 and Th2 cells. VitD markedly increased the expression of T-bet and GATA mRNA in the spleen of MRL/LPR mice and consequently increased the levels of Wnt3a and β-catenin. Western blot analysis revealed that the levels of GSK-3β, p-β-catenin, Wnt1, Wnt3a, c-myc, and cyclin D1 could be reduced by VitD, compared with MRL/LPR. Immunohistochemistry demonstrated that the expression of β-catenin was the most pronounced in the spleen of MRL/LPR mice, and the expression level of β-catenin decreased substantially after VitD intervention. CONCLUSIONS VitD can further inhibit the nuclear translocation of β-catenin by downregulating the expression of Wnt ligands (Wnt1 and Wnt3a), which reduces the expression of the downstream target gene cyclin D1. Systemic lupus erythematosus in mice was improved by inhibiting the activation of Wnt/β-catenin signal pathway.
Collapse
Affiliation(s)
- Minshu Zou
- Department of PediatricsGeneral Hospital of Central Theater CommandWuhanChina
| | - Qiuju Song
- Department of Obstetrics and GynecologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Taiyong Yin
- Department of PediatricsGeneral Hospital of Central Theater CommandWuhanChina
| | - Hongtao Xu
- Department of PediatricsGeneral Hospital of Central Theater CommandWuhanChina
| | - Guoming Nie
- Department of PediatricsGeneral Hospital of Central Theater CommandWuhanChina
| |
Collapse
|
9
|
Zhang D, Ni QQ, Wang SY, He WF, Hong ZX, Liu HY, Chen XH, Chen LJ, Han FY, Zhang LJ, Li XM, Ding YQ, Jiao HL, Ye YP. APC mutations disrupt β-catenin destruction complex condensates organized by Axin phase separation. Cell Mol Life Sci 2024; 81:57. [PMID: 38279052 PMCID: PMC10817841 DOI: 10.1007/s00018-023-05068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 01/28/2024]
Abstract
The Wnt/β-catenin pathway is critical to maintaining cell fate decisions. Recent study showed that liquid-liquid-phase separation (LLPS) of Axin organized the β-catenin destruction complex condensates in a normal cellular state. Mutations inactivating the APC gene are found in approximately 80% of all human colorectal cancer (CRC). However, the molecular mechanism of the formation of β-catenin destruction complex condensates organized by Axin phase separation and how APC mutations impact the condensates are still unclear. Here, we report that the β-catenin destruction complex, which is constructed by Axin, was assembled condensates via a phase separation process in CRC cells. The key role of wild-type APC is to stabilize destruction complex condensates. Surprisingly, truncated APC did not affect the formation of condensates, and GSK 3β and CK1α were unsuccessfully recruited, preventing β-catenin phosphorylation and resulting in accumulation in the cytoplasm of CRCs. Besides, we propose that the phase separation ability of Axin participates in the nucleus translocation of β-catenin and be incorporated and concentrated into transcriptional condensates, affecting the transcriptional activity of Wnt signaling pathway.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Qi-Qi Ni
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Shu-Yang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Wen-Feng He
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Ze-Xuan Hong
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Hui-Ye Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Xiao-Hong Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Li-Jie Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Fang-Yi Han
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Ling-Jie Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Xiao-Ming Li
- Department of Pathology, The People's Hospital of Baoan Shenzhen, Shenzhen, Guangdong, China.
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China.
- Jinfeng Laboratory, Chongqing, China.
| | - Hong-Li Jiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China.
| | - Ya-Ping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Zhao B, Li Z, Yu S, Li T, Wang W, Liu R, Zhang B, Fang X, Shen Y, Han Q, Xu X, Wang K, Gong W, Li T, Li A, Zhou T, Li W, Li T. LEF1 enhances β-catenin transactivation through IDR-dependent liquid-liquid phase separation. Life Sci Alliance 2023; 6:e202302118. [PMID: 37657935 PMCID: PMC10474303 DOI: 10.26508/lsa.202302118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
Wnt/β-catenin signaling plays a crucial role in cancer development, primarily activated by β-catenin forming a transcription complex with LEF/TCF in the nucleus and initiating the transcription of Wnt target genes. Here, we report that LEF1, a member of the LEF/TCF family, can form intrinsically disordered region (IDR)-dependent condensates with β-catenin both in vivo and in vitro, which is required for β-catenin-dependent transcription. Notably, LEF1 with disrupted IDR lost its promoting activity on tumor proliferation and metastasis, which can be restored by substituting with FUS IDR. Our findings provide new insight into the essential role of liquid-liquid phase separation in Wnt/β-catenin signaling and present a potential new target for cancer therapy.
Collapse
Affiliation(s)
- Bing Zhao
- National Center of Biomedical Analysis, Beijing, China
| | - Zhuoxin Li
- National Center of Biomedical Analysis, Beijing, China
| | - Shaoqing Yu
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Tingting Li
- National Center of Biomedical Analysis, Beijing, China
- Nanhu Laboratory, Jiaxing, China
| | - Wen Wang
- National Center of Biomedical Analysis, Beijing, China
| | - Ran Liu
- National Center of Biomedical Analysis, Beijing, China
| | - Biyu Zhang
- National Center of Biomedical Analysis, Beijing, China
| | - Xiya Fang
- National Center of Biomedical Analysis, Beijing, China
| | - Yezhuang Shen
- National Center of Biomedical Analysis, Beijing, China
| | - Qiuying Han
- National Center of Biomedical Analysis, Beijing, China
- Nanhu Laboratory, Jiaxing, China
| | - Xin Xu
- National Center of Biomedical Analysis, Beijing, China
- Nanhu Laboratory, Jiaxing, China
| | - Kai Wang
- National Center of Biomedical Analysis, Beijing, China
- Nanhu Laboratory, Jiaxing, China
| | - Weili Gong
- National Center of Biomedical Analysis, Beijing, China
| | - Tao Li
- National Center of Biomedical Analysis, Beijing, China
- Nanhu Laboratory, Jiaxing, China
| | - Ailing Li
- National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhou
- National Center of Biomedical Analysis, Beijing, China
- Nanhu Laboratory, Jiaxing, China
| | - Weihua Li
- National Center of Biomedical Analysis, Beijing, China
| | - Teng Li
- National Center of Biomedical Analysis, Beijing, China
- Nanhu Laboratory, Jiaxing, China
| |
Collapse
|
11
|
Colleluori V, Khokha MK. Mink1 regulates spemann organizer cell fate in the xenopus gastrula via Hmga2. Dev Biol 2023; 495:42-53. [PMID: 36572140 PMCID: PMC10116378 DOI: 10.1016/j.ydbio.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Congenital Heart Disease (CHD) is the most common birth defect and leading cause of infant mortality, yet molecular mechanisms explaining CHD remain mostly unknown. Sequencing studies are identifying CHD candidate genes at a brisk rate including MINK1, a serine/threonine kinase. However, a plausible molecular mechanism connecting CHD and MINK1 is unknown. Here, we reveal that mink1 is required for proper heart development due to its role in left-right patterning. Mink1 regulates canonical Wnt signaling to define the cell fates of the Spemann Organizer and the Left-Right Organizer, a ciliated structure that breaks bilateral symmetry in the vertebrate embryo. To identify Mink1 targets, we applied an unbiased proteomics approach and identified the high mobility group architectural transcription factor, Hmga2. We report that Hmga2 is necessary and sufficient for regulating Spemann's Organizer. Indeed, we demonstrate that Hmga2 can induce Spemann Organizer cell fates even when β-catenin, a critical effector of the Wnt signaling pathway, is depleted. In summary, we discover a transcription factor, Hmga2, downstream of Mink1 that is critical for the regulation of Spemann's Organizer, as well as the LRO, defining a plausible mechanism for CHD.
Collapse
Affiliation(s)
- Vaughn Colleluori
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, United States.
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
12
|
Zuo Y, Zhan L, Wen H, Xue J, Tan Y, Sun W, Xu E. Stabilization of nuclear β-catenin by inhibiting KDM2A mediates cerebral ischemic tolerance. FASEB J 2023; 37:e22796. [PMID: 36723950 DOI: 10.1096/fj.202201657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/18/2023] [Indexed: 02/02/2023]
Abstract
Hypoxic postconditioning (HPC) with 8% oxygen increases nuclear accumulation of β-catenin through activating the classical Wnt pathway, thereby alleviating transient global cerebral ischemia (tGCI)-induced neuronal damage in the hippocampal CA1 subregion of adult rats. However, little is understood about the regulatory mechanism of nuclear β-catenin in HPC-mediated cerebral ischemic tolerance. Although lysine(K)-specific demethylase 2A (KDM2A) has been known as a crucial regulator of nuclear β-catenin destabilization, whether it plays an important role through modulating nuclear β-catenin in cerebral ischemic tolerance induced by HPC remains unknown. In this study, we explored the molecular mechanism of stabilizing nuclear β-catenin by inhibiting KDM2A-mediated demethylation in the HPC-offered neuroprotection against tGCI. In addition, we confirmed that nuclear methylated-β-catenin in CA1 decreased and nuclear β-catenin turnover increased after tGCI, which were reversed by HPC. The administration with methyltransferase inhibitor AdOx abrogated HPC-induced methylation and stabilization of nuclear β-catenin in CA1, as well as the neuroprotection against tGCI. Notably, HPC downregulated the expression of KDM2A in CA1 and reduced the interaction between KDM2A and β-catenin in the nucleus after tGCI. The knockdown of KDM2A with small-interfering RNA could upregulate nuclear methylated-β-catenin and stabilize β-catenin, thereby increasing survivin in CA1 and improving the cognitive function of rats after tGCI. Opposite results were observed by the administration of KDM2A-carried adenovirus vector. Furthermore, we demonstrated that KDM2A mediates the demethylation of nuclear β-catenin through jumonji C (JmjC) domain of KDM2A in HEK-293T and SH-SY5Y cells. Our data support that the inhibition of KDM2A-mediated demethylation of nuclear β-catenin contributes to HPC-induced neuroprotection against tGCI.
Collapse
Affiliation(s)
- Yunyan Zuo
- Department of Neurology, Institute of Neurosciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lixuan Zhan
- Department of Neurology, Institute of Neurosciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haixia Wen
- Department of Neurology, Institute of Neurosciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiahui Xue
- Department of Neurology, Institute of Neurosciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yafu Tan
- Department of Neurology, Institute of Neurosciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiwen Sun
- Department of Neurology, Institute of Neurosciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - En Xu
- Department of Neurology, Institute of Neurosciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Nie S. Use of Frogs as a Model to Study the Etiology of HLHS. J Cardiovasc Dev Dis 2023; 10:51. [PMID: 36826547 PMCID: PMC9965361 DOI: 10.3390/jcdd10020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
A frog is a classical model organism used to uncover processes and regulations of early vertebrate development, including heart development. Recently, we showed that a frog also represents a useful model to study a rare human congenital heart disease, hypoplastic left heart syndrome. In this review, we first summarized the cellular events and molecular regulations of vertebrate heart development, and the benefit of using a frog model to study congenital heart diseases. Next, we described the challenges in elucidating the etiology of hypoplastic left heart syndrome and discussed how a frog model may contribute to our understanding of the molecular and cellular bases of the disease. We concluded that a frog model offers its unique advantage in uncovering the cellular mechanisms of hypoplastic left heart syndrome; however, combining multiple model organisms, including frogs, is needed to gain a comprehensive understanding of the disease.
Collapse
Affiliation(s)
- Shuyi Nie
- School of Biological Sciences, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
14
|
Fan M, Dong L, Meng Y, Wang Y, Zhen J, Qiu J. Leptin Promotes HTR-8/SVneo Cell Invasion via the Crosstalk between MTA1/WNT and PI3K/AKT Pathways. DISEASE MARKERS 2022; 2022:7052176. [PMID: 36457544 PMCID: PMC9708374 DOI: 10.1155/2022/7052176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/16/2022] [Accepted: 11/08/2022] [Indexed: 08/31/2023]
Abstract
The process of placental invasion is essential for a successful pregnancy. Leptin is involved in trophoblast invasiveness, and its dysregulation is connected with a series of diseases, including preeclampsia. However, the knowledge of the precise mechanisms in leptin-induced trophoblast invasiveness is still limited. According to the present research, transwell assay suggested that leptin is a dose- and time-dependent regulator in inducing HTR-8/SVneo cell invasion. Western blot analysis and immunofluorescence staining revealed that leptin-induced MMP9 expression is essential in the invasion process of HTR-8/SVneo cells. Mechanistically, we demonstrated that leptin activated β-catenin via the crosstalk between the MTA1/WNT and PI3K/AKT pathways. Besides, we showed that downregulating the key molecules in the signaling pathways by siRNA can inhibit leptin-induced MMP9 expression and further suppress invasion of HTR-8/SVneo cells. In conclusion, our study revealed a new regulatory mechanism of leptin-induced HTR-8/SVneo cell invasiveness and will provide novel insights into the causes and potential therapeutic targets for diseases related to dysregulation of trophoblast invasion in the future.
Collapse
Affiliation(s)
- Minghua Fan
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Lihua Dong
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanping Meng
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Yao Wang
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Junhui Zhen
- Department of Pathology, School of Medicine, Shandong University, Jinan, 250021 Shandong, China
| | - Jianqing Qiu
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| |
Collapse
|
15
|
Hwang WY, Kostiuk V, González DP, Lusk CP, Khokha MK. Kap-β2/Transportin mediates β-catenin nuclear transport in Wnt signaling. eLife 2022; 11:e70495. [PMID: 36300792 PMCID: PMC9665845 DOI: 10.7554/elife.70495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Wnt signaling is essential for many aspects of embryonic development including the formation of the primary embryonic axis. In addition, excessive Wnt signaling drives multiple diseases including cancer, highlighting its importance for disease pathogenesis. β-catenin is a key effector in this pathway that translocates into the nucleus and activates Wnt responsive genes. However, due to our lack of understanding of β-catenin nuclear transport, therapeutic modulation of Wnt signaling has been challenging. Here, we took an unconventional approach to address this long-standing question by exploiting a heterologous model system, the budding yeast Saccharomyces cerevisiae, which contains a conserved nuclear transport machinery. In contrast to prior work, we demonstrate that β-catenin accumulates in the nucleus in a Ran-dependent manner, suggesting the use of a nuclear transport receptor (NTR). Indeed, a systematic and conditional inhibition of NTRs revealed that only Kap104, the ortholog of Kap-β2/Transportin-1 (TNPO1), was required for β-catenin nuclear import. We further demonstrate direct binding between TNPO1 and β-catenin that is mediated by a conserved PY-NLS. Finally, using Xenopus secondary axis and TCF/LEF (T Cell factor/lymphoid enhancer factor family) reporter assays, we demonstrate that our results in yeast can be directly translated to vertebrates. By elucidating the nuclear localization signal in β-catenin and its cognate NTR, our study suggests new therapeutic targets for a host of human diseases caused by excessive Wnt signaling. Indeed, we demonstrate that a small chimeric peptide designed to target TNPO1 can reduce Wnt signaling as a first step toward therapeutics.
Collapse
Affiliation(s)
- Woong Y Hwang
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale School of MedicineNew HavenUnited States
| | - Valentyna Kostiuk
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale School of MedicineNew HavenUnited States
| | - Delfina P González
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale School of MedicineNew HavenUnited States
| | - C Patrick Lusk
- Department of Cell Biology, Yale School of MedicineNew HavenUnited States
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale School of MedicineNew HavenUnited States
| |
Collapse
|
16
|
Al-Ali S, Jeffries L, Faustino EVS, Ji W, Mis E, Konstantino M, Zerillo C, Jiang YH, Spencer-Manzon M, Bale A, Zhang H, McGlynn J, McGrath JM, Tremblay T, Brodsky NN, Lucas CL, Pierce R, Deniz E, Khokha MK, Lakhani SA. A retrospective cohort analysis of the Yale pediatric genomics discovery program. Am J Med Genet A 2022; 188:2869-2878. [PMID: 35899841 PMCID: PMC9474639 DOI: 10.1002/ajmg.a.62918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/29/2022] [Accepted: 07/10/2022] [Indexed: 01/31/2023]
Abstract
The Pediatric Genomics Discovery Program (PGDP) at Yale uses next-generation sequencing (NGS) and translational research to evaluate complex patients with a wide range of phenotypes suspected to have rare genetic diseases. We conducted a retrospective cohort analysis of 356 PGDP probands evaluated between June 2015 and July 2020, querying our database for participant demographics, clinical characteristics, NGS results, and diagnostic and research findings. The three most common phenotypes among the entire studied cohort (n = 356) were immune system abnormalities (n = 105, 29%), syndromic or multisystem disease (n = 103, 29%), and cardiovascular system abnormalities (n = 62, 17%). Of 216 patients with final classifications, 77 (36%) received new diagnoses and 139 (64%) were undiagnosed; the remaining 140 patients were still actively being investigated. Monogenetic diagnoses were found in 67 (89%); the largest group had variants in known disease genes but with new contributions such as novel variants (n = 31, 40%) or expanded phenotypes (n = 14, 18%). Finally, five PGDP diagnoses (8%) were suggestive of novel gene-to-phenotype relationships. A broad range of patients can benefit from single subject studies combining NGS and functional molecular analyses. All pediatric providers should consider further genetics evaluations for patients lacking precise molecular diagnoses.
Collapse
Affiliation(s)
- Samir Al-Ali
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lauren Jeffries
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - E. Vincent S. Faustino
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emily Mis
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Monica Konstantino
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Cynthia Zerillo
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yong-hui Jiang
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, US
| | - Michele Spencer-Manzon
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, US
| | - Allen Bale
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, US
| | - Hui Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, US
| | - Julie McGlynn
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, US
| | - James M. McGrath
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, US
| | | | - Nina N. Brodsky
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Carrie L. Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Richard Pierce
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Engin Deniz
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mustafa K. Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, US
| | - Saquib A. Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
17
|
Yadav S, Garrido A, Hernández MC, Oliveros JC, Pérez-García V, Fraga MF, Carrera AC. PI3Kβ-regulated β-catenin mediates EZH2 removal from promoters controlling primed human ESC stemness and primitive streak gene expression. Stem Cell Reports 2022; 17:2239-2255. [PMID: 36179694 PMCID: PMC9561645 DOI: 10.1016/j.stemcr.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
The mechanism governing the transition of human embryonic stem cells (hESCs) toward differentiated cells is only partially understood. To explore this transition, the activity and expression of the ubiquitous phosphatidylinositol 3-kinase (PI3Kα and PI3Kβ) were modulated in primed hESCs. The study reports a pathway that dismantles the restraint imposed by the EZH2 polycomb repressor on an essential stemness gene, NODAL, and on transcription factors required to trigger primitive streak formation. The primitive streak is the site where gastrulation begins to give rise to the three embryonic cell layers from which all human tissues derive. The pathway involves a PI3Kβ non-catalytic action that controls nuclear/active RAC1 levels, activation of JNK (Jun N-terminal kinase) and nuclear β-catenin accumulation. β-Catenin deposition at promoters triggers release of the EZH2 repressor, permitting stemness maintenance (through control of NODAL) and correct differentiation by allowing primitive streak master gene expression. PI3Kβ epigenetic control of EZH2/β-catenin might be modulated to direct stem cell differentiation. PI3Kβ directs epigenetic control of stemness and primitive streak (PS) essential genes PI3Kβ directs RAC1/JNK/β-catenin activation and induces EZH2 promoter displacement β-Catenin/EZH2 control NODAL, a gene essential for stemness and the master PS genes PI3Kβ/PI3K activities cooperate at stemness; PI3Kβ directs PS gene expression
Collapse
Affiliation(s)
- Sudhanshu Yadav
- Department of Immunology and Oncology, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Antonio Garrido
- Department of Immunology and Oncology, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - M Carmen Hernández
- Department of Immunology and Oncology, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Juan C Oliveros
- Department of Systems Biology, Bioinformatics, Centro Nacional de Biotecnología/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Vicente Pérez-García
- Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera, 46013 Valencia, Spain
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center/CSIC, Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Research Center for Rare Diseases (CIBERER), 33011 Oviedo, Asturias, Spain
| | - Ana C Carrera
- Department of Immunology and Oncology, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
18
|
Shen J, Li Y, Jiao Y, Wang J, Hou X, Su Y, Liu B, Liu H, Sun Z, Xi Q, Fu Z. Wnt 3a Protects Myocardial Injury in Elderly Acute Myocardial Infarction by Inhibiting Serum Cystatin C/ROS-Induced Mitochondrial Damage. Front Physiol 2022; 13:950960. [PMID: 35936906 PMCID: PMC9355253 DOI: 10.3389/fphys.2022.950960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Aging represents an independent risk factor affecting the poor prognosis of patients with acute myocardial infarction (AMI). This present research aimed to explore the molecular mechanism of myocardial injury in elderly AMI by animals and cells experiment. Our previous clinical study found the serum Cystatin C (Cys-C) increased in the elderly AMI population, while the mechanism underlying high Cys-C induced myocardial injury of AMI remains unclear. In the in-vitro study, we confirmed that Wnt/β-catenin could significantly reduce the expression of cytoplasmic Cys-C through transnuclear action, and highly attenuate the occurrence of mitochondrial oxidative stress injury induced via Cys-C/reactive oxygen species (ROS). Furthermore, the addition of exogenous Wnt3a and inhibition of Cys-C expression could effectively inhibit mitochondrial oxidative stress injury and relieve the acute myocardial hypoxia injury. These results indicate that Cys-C exerted damaging effects on the hypoxic aging cardiomyocyte through the ROS/mitochondrial signaling pathway. Inhibition of this pathway effectively reduced the apoptosis of aging cardiomyocytes. In the in-vivo study, we also explored the function of the Wnt/Cys-C pathway on the ischemic infarction heart. We confirmed that Wnt/β-catenin served as the upstream protective protein of this pathway, and the promotion of this pathway improved the cardiac structure and function of the elderly AMI mice effectively.
Collapse
Affiliation(s)
- Jian Shen
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital and Chinese PLA Medical School, Beijing, China
- Outpatient Department of Tongzhou Retired Cadres Rest Center, Beijing, China
| | - Ying Li
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital and Chinese PLA Medical School, Beijing, China
| | - Yang Jiao
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital and Chinese PLA Medical School, Beijing, China
| | - Jihang Wang
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital and Chinese PLA Medical School, Beijing, China
| | - Xiaoling Hou
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital and Chinese PLA Medical School, Beijing, China
| | - Yongkang Su
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital and Chinese PLA Medical School, Beijing, China
| | - Bing Liu
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital and Chinese PLA Medical School, Beijing, China
| | - Henan Liu
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital and Chinese PLA Medical School, Beijing, China
| | - Zhijun Sun
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital and Chinese PLA Medical School, Beijing, China
| | - Qing Xi
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Qing Xi, ; Zhenhong Fu,
| | - Zhenhong Fu
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital and Chinese PLA Medical School, Beijing, China
- *Correspondence: Qing Xi, ; Zhenhong Fu,
| |
Collapse
|
19
|
Belanger JM, Heinonen T, Famula TR, Mandigers PJJ, Leegwater PA, Hytönen MK, Lohi H, Oberbauer AM. Validation of a Chromosome 14 Risk Haplotype for Idiopathic Epilepsy in the Belgian Shepherd Dog Found to Be Associated with an Insertion in the RAPGEF5 Gene. Genes (Basel) 2022; 13:genes13071124. [PMID: 35885906 PMCID: PMC9323784 DOI: 10.3390/genes13071124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
An idiopathic epilepsy (IE) risk haplotype on canine chromosome (CFA) 14 has been reported to interact with the CFA37 common risk haplotype in the Belgian shepherd (BS). Additional IE cases and control dogs were genotyped for the risk haplotypes to validate these previous findings. In the new cohort, the interaction between the two regions significantly elevated IE risk. When the haplotypes were analyzed individually, particular haplotypes on both CFA14 (ACTG) and 37 (GG) were associated with elevated IE risk, though only the CFA37 AA was significantly associated (p < 0.003) with reduced risk in the new cohort. However, the CFA14 ACTG risk was statistically significant when the new and previous cohort data were combined. The frequency of the ACTG haplotype was four-fold higher in BS dogs than in other breeds. Whole genome sequence analysis revealed that a 3-base pair predicted disruptive insertion in the RAPGEF5 gene, which is adjacent to the CFA14 risk haplotype. RAPGEF5 is involved in the Wnt-β-catenin signaling pathway that is crucial for normal brain function. Although this risk variant does not fully predict the likelihood of a BS developing IE, the association with a variant in a candidate gene may provide insight into the genetic control of canine IE.
Collapse
Affiliation(s)
- Janelle M. Belanger
- Department of Animal Science, University of California, Davis, CA 95616, USA; (J.M.B.); (T.R.F.)
| | - Tiina Heinonen
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland; (T.H.); (M.K.H.); (H.L.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Thomas R. Famula
- Department of Animal Science, University of California, Davis, CA 95616, USA; (J.M.B.); (T.R.F.)
| | - Paul J. J. Mandigers
- Department of Clinical Sciences, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands; (P.J.J.M.); (P.A.L.)
| | - Peter A. Leegwater
- Department of Clinical Sciences, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands; (P.J.J.M.); (P.A.L.)
| | - Marjo K. Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland; (T.H.); (M.K.H.); (H.L.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland; (T.H.); (M.K.H.); (H.L.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Anita M. Oberbauer
- Department of Animal Science, University of California, Davis, CA 95616, USA; (J.M.B.); (T.R.F.)
- Correspondence: ; Tel.: +1-530-752-5484
| |
Collapse
|
20
|
Min JK, Park HS, Lee YB, Kim JG, Kim JI, Park JB. Cross-Talk between Wnt Signaling and Src Tyrosine Kinase. Biomedicines 2022; 10:biomedicines10051112. [PMID: 35625853 PMCID: PMC9138253 DOI: 10.3390/biomedicines10051112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
Src, a non-receptor tyrosine kinase, was first discovered as a prototype oncogene and has been shown to critical for cancer progression for a variety of tissues. Src activity is regulated by a number of post-translational modifications in response to various stimuli. Phosphorylations of Src Tyr419 (human; 416 in chicken) and Src Tyr530 (human; 527 in chicken) have been known to be critical for activation and inactivation of Src, respectively. Wnt signaling regulates a variety of cellular functions including for development and cell proliferation, and has a role in certain diseases such as cancer. Wnt signaling is carried out through two pathways: β-catenin-dependent canonical and β-catenin-independent non-canonical pathways as Wnt ligands bind to their receptors, Frizzled, LRP5/6, and ROR1/2. In addition, many signaling components including Axin, APC, Damm, Dishevelled, JNK kinase and Rho GTPases contribute to these canonical and non-canonical Wnt pathways. However, the communication between Wnt signaling and Src tyrosine kinase has not been well reviewed as Src regulates Wnt signaling through LRP6 tyrosine phosphorylation. GSK-3β phosphorylated by Wnt also regulates Src activity. As Wnt signaling and Src mutually regulate each other, it is noted that aberrant regulation of these components give rise to various diseases including typically cancer, and as such, merit a closer look.
Collapse
Affiliation(s)
- Jung Ki Min
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Hwee-Seon Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-S.P.); (J.-I.K.)
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yoon-Beom Lee
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Jae-Gyu Kim
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-S.P.); (J.-I.K.)
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
- Correspondence: ; Tel.: +82-33-248-2542; Fax: +82-33-244-8425
| |
Collapse
|
21
|
Lasser M, Bolduc J, Murphy L, O'Brien C, Lee S, Girirajan S, Lowery LA. 16p12.1 Deletion Orthologs are Expressed in Motile Neural Crest Cells and are Important for Regulating Craniofacial Development in Xenopus laevis. Front Genet 2022; 13:833083. [PMID: 35401697 PMCID: PMC8987115 DOI: 10.3389/fgene.2022.833083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/09/2022] [Indexed: 12/03/2022] Open
Abstract
Copy number variants (CNVs) associated with neurodevelopmental disorders are characterized by extensive phenotypic heterogeneity. In particular, one CNV was identified in a subset of children clinically diagnosed with intellectual disabilities (ID) that results in a hemizygous deletion of multiple genes at chromosome 16p12.1. In addition to ID, individuals with this deletion display a variety of symptoms including microcephaly, seizures, cardiac defects, and growth retardation. Moreover, patients also manifest severe craniofacial abnormalities, such as micrognathia, cartilage malformation of the ears and nose, and facial asymmetries; however, the function of the genes within the 16p12.1 region have not been studied in the context of vertebrate craniofacial development. The craniofacial tissues affected in patients with this deletion all derive from the same embryonic precursor, the cranial neural crest, leading to the hypothesis that one or more of the 16p12.1 genes may be involved in regulating neural crest cell (NCC)-related processes. To examine this, we characterized the developmental role of the 16p12.1-affected gene orthologs, polr3e, mosmo, uqcrc2, and cdr2, during craniofacial morphogenesis in the vertebrate model system, Xenopus laevis. While the currently-known cellular functions of these genes are diverse, we find that they share similar expression patterns along the neural tube, pharyngeal arches, and later craniofacial structures. As these genes show co-expression in the pharyngeal arches where NCCs reside, we sought to elucidate the effect of individual gene depletion on craniofacial development and NCC migration. We find that reduction of several 16p12.1 genes significantly disrupts craniofacial and cartilage formation, pharyngeal arch migration, as well as NCC specification and motility. Thus, we have determined that some of these genes play an essential role during vertebrate craniofacial patterning by regulating specific processes during NCC development, which may be an underlying mechanism contributing to the craniofacial defects associated with the 16p12.1 deletion.
Collapse
Affiliation(s)
- Micaela Lasser
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Jessica Bolduc
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Luke Murphy
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Caroline O'Brien
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Sangmook Lee
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA, United States
| | - Laura Anne Lowery
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
- *Correspondence: Laura Anne Lowery,
| |
Collapse
|
22
|
Liu Y, Ruan X, Li J, Wang B, Chen J, Wang X, Wang P, Tu X. The Osteocyte Stimulated by Wnt Agonist SKL2001 Is a Safe Osteogenic Niche Improving Bioactivities in a Polycaprolactone and Cell Integrated 3D Module. Cells 2022; 11:cells11050831. [PMID: 35269452 PMCID: PMC8909416 DOI: 10.3390/cells11050831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Finding and constructing an osteogenic microenvironment similar to natural bone tissue has always been a frontier topic in orthopedics. We found that osteocytes are targeting cells controlling bone anabolism produced by PTH (JBMR 2017, PMID: 27704638), and osteocytes with activated Wnt signaling orchestrate bone formation and resorption (PNAS 2015, PMID: 25605937). However, methods for taking advantage of the leading role of osteocytes in bone regeneration remain unexplored. Herein, we found that the osteocytes with SKL2001-activated Wnt signaling could be an osteogenic microenvironment (SOOME) which upregulates the expression of bone transcription factor Runx2 and Bglap and promotes the differentiation of bone marrow stromal cell ST2 into osteoblasts. Interestingly, 60 μM SKL2001 treatment of osteocytic MLO-Y4 for 24 h maintained Wnt signaling activation for three days after removal, which was sufficient to induce osteoblast differentiation. Triptonide, a Wnt inhibitor, could eliminate this differentiation. Moreover, on day 5, the Wnt signaling naturally decreased to the level of the control group, indicating that this method of Wnt-signaling induction is safe to use. We quickly verified in vivo function of SOOME to a good proximation in 3D bioprinted modules composed of reciprocally printed polycaprolactone bundles (for support) and cell bundles (for bioactivity). In the cell bundles, SOOME stably supported the growth and development of ST2 cells, the 7-day survival rate was as high as 91.6%, and proliferation ability increased linearly. Similarly, SOOME greatly promoted ST2 differentiation and mineralization for 28 days. In addition, SOOME upregulated the expression of angiopoietin 1, promoted endothelial cell migration and angiogenesis, and increased node number and total length of tubes and branches. Finally, we found that the function of SOOME could be realized through the paracrine pathway. This study reveals that osteocytes with Wnt signaling activated by SKL2001 are a safe osteogenic microenvironment. Both SOOME itself and its cell-free culture supernatant can improve bioactivity for osteoblast differentiation, with composite scaffolds especially bearing application value.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaolin Tu
- Correspondence: ; Tel.: +86-185-2382-0685
| |
Collapse
|
23
|
Abstract
The Wnt pathway is central to a host of developmental and disease-related processes. The remarkable conservation of this intercellular signaling cascade throughout metazoan lineages indicates that it coevolved with multicellularity to regulate the generation and spatial arrangement of distinct cell types. By regulating cell fate specification, mitotic activity, and cell polarity, Wnt signaling orchestrates development and tissue homeostasis, and its dysregulation is implicated in developmental defects, cancer, and degenerative disorders. We review advances in our understanding of this key pathway, from Wnt protein production and secretion to relay of the signal in the cytoplasm of the receiving cell. We discuss the evolutionary history of this pathway as well as endogenous and synthetic modulators of its activity. Finally, we highlight remaining gaps in our knowledge of Wnt signal transduction and avenues for future research. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ellen Youngsoo Rim
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| | - Hans Clevers
- Hubrecht Institute and Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| |
Collapse
|
24
|
Brown MA, Ried T. Shifting the Focus of Signaling Abnormalities in Colon Cancer. Cancers (Basel) 2022; 14:784. [PMID: 35159051 PMCID: PMC8834070 DOI: 10.3390/cancers14030784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022] Open
Abstract
Colon cancer tumorigenesis occurs incrementally. The process involves the acquisition of mutations which typically follow an established pattern: activation of WNT signaling, activation of RAS signaling, and inhibition of TGF-β signaling. This arrangement recapitulates, to some degree, the stem cell niche of the intestinal epithelium, which maintains WNT and EGF activity while suppressing TGF-β. The resemblance between the intestinal stem cell environment and colon cancer suggests that the concerted activity of these pathways generates and maintains a potent growth-inducing stimulus. However, each pathway has a myriad of downstream targets, making it difficult to identify which aspects of these pathways are drivers. To address this, we utilize the cell cycle, the ultimate regulator of cell proliferation, as a foundation for cross-pathway integration. We attempt to generate an overview of colon cancer signaling patterns by integrating the major colon cancer signaling pathways in the context of cell replication, specifically, the entrance from G1 into S-phase.
Collapse
Affiliation(s)
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA;
| |
Collapse
|
25
|
Zhou Y, Bai K, Wang Y, Meng Z, Zhou S, Jiang S, Wang H, Wang J, Yang M, Wang Q, Sun K, Chen S. Identification of Rare Variants in Right Ventricular Outflow Tract Obstruction Congenital Heart Disease by Whole-Exome Sequencing. Front Cardiovasc Med 2022; 8:811156. [PMID: 35141295 PMCID: PMC8818757 DOI: 10.3389/fcvm.2021.811156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/30/2021] [Indexed: 11/18/2022] Open
Abstract
Background Pulmonary atresia (PA) is a kind of congenital heart disease characterized by right ventricular outflow tract obstruction. It is divided into PA with intact ventricular septum (PA/IVS) whose favorable form is pulmonary valvular stenosis (PS), and PA with ventricular septal defect (PA/VSD) whose favorable form is tetralogy of Fallot (TOF). Due to limitations in genetics etiology, whole-exome sequencing (WES) was utilized to identify new variants associated with the diseases. Methods The data from PS-PA/IVS (n = 74), TOF-PA/VSD (n = 100), and 100 controls were obtained. The common sites between PS and PA/IVS, PA/VSD and TOF, were compared. The novel rare damage variants, and candidate genes were identified by gene-based burden analysis. Finally, the enrichment analysis of differential genes was conducted between case and control groups. Results Seventeen rare damage variants located in seven genes were predicted to be associated with the PS through burden analysis. Enrichment analysis identified that the Wnt and cadherin signaling pathways were relevant to PS-PA/IVS. Conclusion This study put forth seven candidate genes (APC, PPP1R12A, PCK2, SOS2, TNR, MED13, and TIAM1), resulting in PS-PA/IVS. The Wnt and cadherin signaling pathways were identified to be related to PS-PA/IVS by enrichment analysis. This study provides new evidence for exploring the genetic mechanism of PS-PA/IVS.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Bai
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pediatric Cardiology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuo Meng
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuang Zhou
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiwei Jiang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hualin Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mei Yang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingjie Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Qingjie Wang
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Kun Sun
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Sun Chen
| |
Collapse
|
26
|
β-catenin links cell seeding density to global gene expression during mouse embryonic stem cell differentiation. iScience 2022; 25:103541. [PMID: 34977504 PMCID: PMC8689156 DOI: 10.1016/j.isci.2021.103541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
Although cell density is known to affect numerous biological processes including gene expression and cell fate specification, mechanistic understanding of what factors link cell density to global gene regulation is lacking. Here, we reveal that the expression of thousands of genes in mouse embryonic stem cells (mESCs) is affected by cell seeding density and that low cell density enhances the efficiency of differentiation. Mechanistically, β-catenin is localized primarily to adherens junctions during both self-renewal and differentiation at high density. However, when mESCs differentiate at low density, β-catenin translocates to the nucleus and associates with Tcf7l1, inducing co-occupied lineage markers. Meanwhile, Esrrb sustains the expression of pluripotency-associated genes while repressing lineage markers at high density, and its association with DNA decreases at low density. Our results provide new insights into the previously neglected but pervasive phenomenon of density-dependent gene regulation.
Collapse
|
27
|
Hou Q, Le W, Kan S, Shi J, Lang Y, Liu Z, Chen Z. Nuclear Receptor Interacting Protein-2 Mediates the Stabilization and Activation of β-Catenin During Podocyte Injury. Front Cell Dev Biol 2022; 9:781792. [PMID: 35004680 PMCID: PMC8740220 DOI: 10.3389/fcell.2021.781792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022] Open
Abstract
Objective: Activation of β-catenin causes podocyte injury and proteinuria, but how β-catenin signalling is regulated during podocyte injury remains elusive. Nuclear receptor interacting protein 2 (NRIP2) modulates the Wnt pathway in colorectal cancer-initiating cells, but the role of NRIP2 in podocyte injury has not yet been investigated. We aimed to examine the interaction between NRIP2 and β-catenin signalling. Materials and Methods: Knockdown or overexpression of NRIP2 and β-catenin and chemical treatments were performed in cultured human podocytes. Immunoprecipitation, immunoblotting and immunofluorescence assays were used to assess protein interactions and expression. Data from the GEO dataset and kidney tissues from patients with focal segmental glomerulosclerosis (FSGS) and surgical nephrectomy were examined. An adriamycin (ADR) nephropathy model was established in NRIP2 knockout mice. Results: NRIP2 knockdown accelerated β-catenin degradation, which was reversed by MG132; specifically, NRIP2 bound β-catenin and stabilized it to prevent its degradation through the ubiquitin proteasomal pathway. Overexpression of NRIP2 led to β-catenin activation and Snail1 induction, and these effects were attenuated by β-catenin knockdown. NRIP2 knockdown blocked ADR-stimulated β-catenin activation. In ADR mice, genetic knockout of Nrip2 ameliorated podocyte injury and loss, glomerulosclerosis, and proteinuria by inhibiting β-catenin activation. Moreover, NRIP2 was significantly upregulated in podocytes of FSGS patients and colocalized with nuclear β-catenin. Conclusion: These results established NRIP2 as a stabilizer of β-catenin activation through the ubiquitin proteasomal pathway in podocyte injury.
Collapse
Affiliation(s)
- Qing Hou
- National Clinical Research Center of Kidney Disease, Jinling Clinical College, Southeast University School of Medicine, Nanjing, China.,National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Weibo Le
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shuyan Kan
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jinsong Shi
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yue Lang
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Disease, Jinling Clinical College, Southeast University School of Medicine, Nanjing, China.,National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhaohong Chen
- National Clinical Research Center of Kidney Disease, Jinling Clinical College, Southeast University School of Medicine, Nanjing, China.,National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
28
|
Wang B, Khan S, Wang P, Wang X, Liu Y, Chen J, Tu X. A Highly Selective GSK-3β Inhibitor CHIR99021 Promotes Osteogenesis by Activating Canonical and Autophagy-Mediated Wnt Signaling. Front Endocrinol (Lausanne) 2022; 13:926622. [PMID: 35923616 PMCID: PMC9339598 DOI: 10.3389/fendo.2022.926622] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022] Open
Abstract
The discovery and application of small molecules is one of the practical strategies of safe osteogenic drugs. The small molecule CHIR99021 (C91) is a highly specific, safe, and most effective GSK-3β Inhibitor. This study found that it efficiently activates the canonical Wnt signaling of bone marrow stromal cell ST2 and promotes osteoblast differentiation and mineralization. C91 increases the production and biochemical activity of osteoblast marker alkaline phosphatase, the expression of osteoblast marker genes Alpl, Bglap, Runx2, and Sp7, and the formation of bone nodules. Triptonide is a transcription inhibitor of Wnt target gene, which diminishes C91-induced osteoblast differentiation in a dose-dependent manner. Meanwhile, C91 also induces autophagy through autophagosome formation and conversion of autophagy biomarker LC-3I into LC-3II. Autophagy inhibitor 3MA partially reduces C91-induced osteoblast differentiation and mineralization; autophagy inducer Rapamycin increases the expression of β-catenin to promote osteogenic differentiation, but cannot alleviate the inhibition of Triptonide on C91-induced osteogenic differentiation, indicating the crosstalk of canonical Wnt signaling and autophagy regulates C91-induced osteoblast differentiation. Furthermore, in order to simulate the in vivo detection of C91 in osteogenesis process, we made a C91 slow-release hydrogel with our newly established polycaprolactone and cell-integrated 3D printing system (PCCI3D module). The sustained release C91 promotes the differentiation and mineralization of ST2 cells. C91 can also enhance the proliferative activity of ST2 cells. The release rate of C91 from hydrogel gradually decreases within 7 days. During this period, the C91 is released by 83.0% and the cell viability maintained at 96.4%. Therefore, the small molecule Wnt agonist C91 promotes osteogenesis through caonical and autophagy-mediated Wnt signaling pathway with an option for translational application.
Collapse
|
29
|
Disoma C, Zhou Y, Li S, Peng J, Xia Z. Wnt/β-catenin signaling in colorectal cancer: Is therapeutic targeting even possible? Biochimie 2022; 195:39-53. [DOI: 10.1016/j.biochi.2022.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/03/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
30
|
Chatterjee A, Paul S, Bisht B, Bhattacharya S, Sivasubramaniam S, Paul MK. Advances in targeting the WNT/β-catenin signaling pathway in cancer. Drug Discov Today 2022; 27:82-101. [PMID: 34252612 DOI: 10.1016/j.drudis.2021.07.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/27/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023]
Abstract
WNT/β-catenin signaling orchestrates various physiological processes, including embryonic development, growth, tissue homeostasis, and regeneration. Abnormal WNT/β-catenin signaling is associated with various cancers and its inhibition has shown effective antitumor responses. In this review, we discuss the pathway, potential targets for the development of WNT/β-catenin inhibitors, available inhibitors, and their specific molecular interactions with the target proteins. We also discuss inhibitors that are in clinical trials and describe potential new avenues for therapeutically targeting the WNT/β-catenin pathway. Furthermore, we introduce emerging strategies, including artificial intelligence (AI)-assisted tools and technology-based actionable approaches, to translate WNT/β-catenin inhibitors to the clinic for cancer therapy.
Collapse
Affiliation(s)
- Avradip Chatterjee
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sayan Paul
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012, India; Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore 560065, India
| | - Bharti Bisht
- Department of Thoracic Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Shelley Bhattacharya
- Environmental Toxicology Laboratory, Department of Zoology (Centre for Advanced Studies), Visva Bharati (A Central University), Santiniketan 731235, India
| | - Sudhakar Sivasubramaniam
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012, India
| | - Manash K Paul
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
31
|
Parsons MJ, Tammela T, Dow LE. WNT as a Driver and Dependency in Cancer. Cancer Discov 2021; 11:2413-2429. [PMID: 34518209 DOI: 10.1158/2159-8290.cd-21-0190] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
The WNT signaling pathway is a critical regulator of development and adult tissue homeostasis and becomes dysregulated in many cancer types. Although hyperactivation of WNT signaling is common, the type and frequency of genetic WNT pathway alterations can vary dramatically between different cancers, highlighting possible cancer-specific mechanisms for WNT-driven disease. In this review, we discuss how WNT pathway disruption contributes to tumorigenesis in different organs and how WNT affects the tumor cell and immune microenvironment. Finally, we describe recent and ongoing efforts to target oncogenic WNT signaling as a therapeutic strategy. SIGNIFICANCE: WNT signaling is a fundamental regulator of tissue homeostasis and oncogenic driver in many cancer types. In this review, we highlight recent advances in our understanding of WNT signaling in cancer, particularly the complexities of WNT activation in distinct cancer types, its role in immune evasion, and the challenge of targeting the WNT pathway as a therapeutic strategy.
Collapse
Affiliation(s)
- Marie J Parsons
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York. .,Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
32
|
Jankowski M, Kaczmarek M, Wąsiatycz G, Dompe C, Mozdziak P, Jaśkowski JM, Piotrowska-Kempisty H, Kempisty B. Expression Profile of New Marker Genes Involved in Differentiation of Canine Adipose-Derived Stem Cells into Osteoblasts. Int J Mol Sci 2021; 22:6663. [PMID: 34206369 PMCID: PMC8269079 DOI: 10.3390/ijms22136663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/20/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Next-generation sequencing (RNAseq) analysis of gene expression changes during the long-term in vitro culture and osteogenic differentiation of ASCs remains to be important, as the analysis provides important clues toward employing stem cells as a therapeutic intervention. In this study, the cells were isolated from adipose tissue obtained during routine surgical procedures and subjected to 14-day in vitro culture and differentiation. The mRNA transcript levels were evaluated using the Illumina platform, resulting in the detection of 19,856 gene transcripts. The most differentially expressed genes (fold change >|2|, adjusted p value < 0.05), between day 1, day 14 and differentiated cell cultures were extracted and subjected to bioinformatical analysis based on the R programming language. The results of this study provide molecular insight into the processes that occur during long-term in vitro culture and osteogenic differentiation of ASCs, allowing the re-evaluation of the roles of some genes in MSC progression towards a range of lineages. The results improve the knowledge of the molecular mechanisms associated with long-term in vitro culture and differentiation of ASCs, as well as providing a point of reference for potential in vivo and clinical studies regarding these cells' application in regenerative medicine.
Collapse
Affiliation(s)
- Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland;
- Gene Therapy Laboratory, Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Grzegorz Wąsiatycz
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Claudia Dompe
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-701 Poznan, Poland;
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Torun, Poland
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| |
Collapse
|
33
|
Brandt AC, Koehn OJ, Williams CL. SmgGDS: An Emerging Master Regulator of Prenylation and Trafficking by Small GTPases in the Ras and Rho Families. Front Mol Biosci 2021; 8:685135. [PMID: 34222337 PMCID: PMC8242357 DOI: 10.3389/fmolb.2021.685135] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Newly synthesized small GTPases in the Ras and Rho families are prenylated by cytosolic prenyltransferases and then escorted by chaperones to membranes, the nucleus, and other sites where the GTPases participate in a variety of signaling cascades. Understanding how prenylation and trafficking are regulated will help define new therapeutic strategies for cancer and other disorders involving abnormal signaling by these small GTPases. A growing body of evidence indicates that splice variants of SmgGDS (gene name RAP1GDS1) are major regulators of the prenylation, post-prenylation processing, and trafficking of Ras and Rho family members. SmgGDS-607 binds pre-prenylated small GTPases, while SmgGDS-558 binds prenylated small GTPases. This review discusses the history of SmgGDS research and explains our current understanding of how SmgGDS splice variants regulate the prenylation and trafficking of small GTPases. We discuss recent evidence that mutant forms of RabL3 and Rab22a control the release of small GTPases from SmgGDS, and review the inhibitory actions of DiRas1, which competitively blocks the binding of other small GTPases to SmgGDS. We conclude with a discussion of current strategies for therapeutic targeting of SmgGDS in cancer involving splice-switching oligonucleotides and peptide inhibitors.
Collapse
Affiliation(s)
- Anthony C Brandt
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Olivia J Koehn
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Carol L Williams
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
34
|
Uthman YA, Ibrahim KG, Abubakar B, Bello MB, Malami I, Imam MU, Qusty N, Cruz-Martins N, Batiha GES, Abubakar MB. MALAT1: A Promising Therapeutic Target for the Treatment of Metastatic Colorectal Cancer. Biochem Pharmacol 2021; 190:114657. [PMID: 34144008 DOI: 10.1016/j.bcp.2021.114657] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/24/2022]
Abstract
Cancer metastasis research has emerged in recent years as one of the most important topics of debate in the discovery and development of novel anticancer therapies. Colorectal cancer (CRC), the third most common cancer worldwide, has a high mortality rate due to recurrence and distant metastasis to the liver. Several non-coding RNAs (ncRNAs) have been linked to metastatic CRC (mCRC), including the long non-coding RNA (lncRNA) Metastasis-Associated Lung-Adenocarcinoma Transcript 1 (MALAT1). MALAT1 is an RNA that has been linked to tumor cell proliferation, progression, epithelial-mesenchymal transition (EMT), cell migration and invasion, metastasis, and survival in mammalian species. Previously, there was no convincing evidence linking MALAT1 to mCRC. Studies have shown that MALAT1 functions as a competitive endogenous RNA (ceRNA) with microRNAs (miRNAs) and interacts directly with oncogenes and proteins. This RNA also activates several signaling pathways, including Wnt/β-catenin, PI3K/Akt/mTOR, and EMT. Meanwhile, standard chemotherapy and immunotherapy are the current treatment options for mCRC patients. However, evidence-based studies have recently demonstrated that inhibiting the MALAT1 RNA transcript can be considered as a treatment option for mCRC, highlighting the need to investigate its roles as a therapeutic target in mCRC. Thus, in this review, we looked at studies that linked MALAT1 to multiple signaling pathways implicated in mCRC, as well as its potential as a therapeutic target for the treatment of mCRC.
Collapse
Affiliation(s)
- Yaaqub Abiodun Uthman
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Kasimu Ghandi Ibrahim
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Bilyaminu Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Ibrahim Malami
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Naeem Qusty
- Medical Laboratories Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca, Portugal.
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal; Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria.
| |
Collapse
|
35
|
Duan LY, Liang Y, Gong WP, Xue Y, Mi J, Wang J, Wang L, Jia ZX, Lei H, Liang YM, Liu J, Zheng Y, Wu XQ. Comparative study on the antituberculous effect and mechanism of the traditional Chinese medicines NiuBeiXiaoHe extract and JieHeWan. Mil Med Res 2021; 8:34. [PMID: 34074345 PMCID: PMC8170785 DOI: 10.1186/s40779-021-00324-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 04/26/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The traditional Chinese medicine NiuBeiXiaoHe (NBXH) extract and Chinese medicine preparation JieHeWan (JHW) exhibit anti-tuberculosis effects. The anti- tuberculosis effect of NBXH was compared with that of JHW to elucidate the mechanism of action of NBXH. METHODS BALB/c mice aged 6-8 weeks were randomly divided into a normal control group, Tuberculosis (TB) model group, JHW treatment group, and NBXH treatment group. After 3 and 13 weeks of treatment, the therapeutic effect in each group was evaluated by comparing lung histopathology, lung and liver colony counts, the number of spots representing effector T cells secreting IFN-γ in an ELISPOT, and the levels of Th1, Th2, and Th17 cytokines, which were measured by a cytometric bead array (CBA). Mouse RNA samples were subjected to transcriptome sequencing. RESULTS After 13 weeks of treatment, the mean histopathological lesion area of the NBXH group was significantly smaller than that of the TB model group (P < 0.05). Compared with those in the TB model group, the lung colony counts in the JHW and NBXH groups were significantly decreased (P < 0.05), and the IL-2 and IL-4 levels in the NBXH group were significantly increased (P < 0.05). NBXH partly restored significant changes in gene expression caused by Mycobacterium tuberculosis (M. tuberculosis) infection. According to GO and KEGG analyses, the changes in biological process (BP), cell composition (CC) and molecular function (MF) terms and in signaling pathways caused by NBXH and JHW treatment were not completely consistent, but they were mainly related to the immune response and inflammatory response in the mouse TB model. CONCLUSIONS NBXH had therapeutic effects similar to those of JHW in improving lung histopathology, reducing lung colony counts, and regulating the levels of cytokines. NBXH restored significant changes in gene expression and repaired cell damage caused by M. tuberculosis infection by regulating immune-related pathways, which clarified the mechanism of action of NBXH.
Collapse
Affiliation(s)
- Li-Yao Duan
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Tuberculosis Research Institute, the 8th Medical Center, Chinese PLA General Hospital, Beijing, 100091 China
- HeBei North University, Zhangjiakou, 075000 China
| | - Yan Liang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Tuberculosis Research Institute, the 8th Medical Center, Chinese PLA General Hospital, Beijing, 100091 China
| | - Wen-Ping Gong
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Tuberculosis Research Institute, the 8th Medical Center, Chinese PLA General Hospital, Beijing, 100091 China
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Tuberculosis Research Institute, the 8th Medical Center, Chinese PLA General Hospital, Beijing, 100091 China
| | - Jie Mi
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Tuberculosis Research Institute, the 8th Medical Center, Chinese PLA General Hospital, Beijing, 100091 China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Tuberculosis Research Institute, the 8th Medical Center, Chinese PLA General Hospital, Beijing, 100091 China
| | - Lan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Tuberculosis Research Institute, the 8th Medical Center, Chinese PLA General Hospital, Beijing, 100091 China
| | - Zai-Xing Jia
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Tuberculosis Research Institute, the 8th Medical Center, Chinese PLA General Hospital, Beijing, 100091 China
- HeBei North University, Zhangjiakou, 075000 China
| | - Hong Lei
- Clinical Laboratory, the 8th Medical Center, Chinese PLA General Hospital, Beijing, 100091 China
| | - Yu-Mei Liang
- Pathology Department, the 8th Medical Center, Chinese PLA General Hospital, Beijing, 100091 China
| | - Jun Liu
- Guangdong Qifang Pharmaceutical Co., Ltd, Guangzhou, 510075 China
| | - Yue Zheng
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Tuberculosis Research Institute, the 8th Medical Center, Chinese PLA General Hospital, Beijing, 100091 China
- HeBei North University, Zhangjiakou, 075000 China
| | - Xue-Qiong Wu
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Tuberculosis Research Institute, the 8th Medical Center, Chinese PLA General Hospital, Beijing, 100091 China
| |
Collapse
|
36
|
Kim YM, Krantz S, Jambusaria A, Toth PT, Moon HG, Gunarathna I, Park GY, Rehman J. Mitofusin-2 stabilizes adherens junctions and suppresses endothelial inflammation via modulation of β-catenin signaling. Nat Commun 2021; 12:2736. [PMID: 33980844 PMCID: PMC8115264 DOI: 10.1038/s41467-021-23047-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/13/2021] [Indexed: 01/19/2023] Open
Abstract
Endothelial barrier integrity is ensured by the stability of the adherens junction (AJ) complexes comprised of vascular endothelial (VE)-cadherin as well as accessory proteins such as β-catenin and p120-catenin. Disruption of the endothelial barrier due to disassembly of AJs results in tissue edema and the influx of inflammatory cells. Using three-dimensional structured illumination microscopy, we observe that the mitochondrial protein Mitofusin-2 (Mfn2) co-localizes at the plasma membrane with VE-cadherin and β-catenin in endothelial cells during homeostasis. Upon inflammatory stimulation, Mfn2 is sulfenylated, the Mfn2/β-catenin complex disassociates from the AJs and Mfn2 accumulates in the nucleus where Mfn2 negatively regulates the transcriptional activity of β-catenin. Endothelial-specific deletion of Mfn2 results in inflammatory activation, indicating an anti-inflammatory role of Mfn2 in vivo. Our results suggest that Mfn2 acts in a non-canonical manner to suppress the inflammatory response by stabilizing cell-cell adherens junctions and by binding to the transcriptional activator β-catenin.
Collapse
Affiliation(s)
- Young-Mee Kim
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA.
| | - Sarah Krantz
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ankit Jambusaria
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Peter T Toth
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Hyung-Geun Moon
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Isuru Gunarathna
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Gye Young Park
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jalees Rehman
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
37
|
Abstract
Congenital birth defects result from an abnormal development of an embryo and have detrimental effects on children's health. Specifically, congenital heart malformations are a leading cause of death among pediatric patients and often require surgical interventions within the first year of life. Increased efforts to navigate the human genome provide an opportunity to discover multiple candidate genes in patients suffering from birth defects. These efforts, however, fail to provide an explanation regarding the mechanisms of disease pathogenesis and emphasize the need for an efficient platform to screen candidate genes. Xenopus is a rapid, cost effective, high-throughput vertebrate organism to model the mechanisms behind human disease. This review provides numerous examples describing the successful use of Xenopus to investigate the contribution of patient mutations to complex phenotypes including congenital heart disease and heterotaxy. Moreover, we describe a variety of unique methods that allow us to rapidly recapitulate patients' phenotypes in frogs: gene knockout and knockdown strategies, the use of fate maps for targeted manipulations, and novel imaging modalities. The combination of patient genomics data and the functional studies in Xenopus will provide necessary answers to the patients suffering from birth defects. Furthermore, it will allow for the development of better diagnostic methods to ensure early detection and intervention. Finally, with better understanding of disease pathogenesis, new treatment methods can be tailored specifically to address patient's phenotype and genotype.
Collapse
Affiliation(s)
- Valentyna Kostiuk
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, United States
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
38
|
Hauck L, Dadson K, Chauhan S, Grothe D, Billia F. Inhibiting the Pkm2/b-catenin axis drives in vivo replication of adult cardiomyocytes following experimental MI. Cell Death Differ 2021; 28:1398-1417. [PMID: 33288902 PMCID: PMC8027412 DOI: 10.1038/s41418-020-00669-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Adult mammalian cardiomyocytes (CM) are postmitotic, differentiated cells that cannot re-enter the cell cycle after any appreciable injury. Therefore, understanding the factors required to induce CM proliferation for repair is of great clinical importance. While expression of muscle pyruvate kinase 2 (Pkm2), a cytosolic enzyme catalyzing the final step in glycolysis, is high in end-stage heart failure (HF), the loss of Pkm2 promotes proliferation in some cellular systems, in vivo. We hypothesized that in the adult heart CM proliferation may require low Pkm2 activity. Thus, we investigated the potential for Pkm2 to regulate CM proliferation in a mouse model of myocardial infarction (MI) employing inducible, cardiac-specific Pkm2 gene knockout (Pkm2KOi) mice. We found a lack of cardiac hypertrophy or expression of the fetal gene program in Pkm2KOi mice post MI, as compared to vehicle control animals (P < 0.01), correlating with smaller infarct size, improved mitochondrial (mt) function, enhanced angiogenesis, reduced degree of CM apoptosis, and reduced oxidative stress post MI. There was significantly higher numbers of dividing CM in the infarct zone between 3-9 days post MI (P < 0.001). Mechanistically, we determined that Pkm2 interacts with β-catenin (Ctnnb1) in the cytoplasm of CM, inhibiting Ctnnb1 phosphorylation at serine 552 and tyrosine 333, by Akt. In the absence of Pkm2, Ctnnb1 translocates to the nucleus leading to transcriptional activation of proliferation-associated target genes. All these effects are abrogated by genetic co-deletion of Pkm2 and Ctnnb1. Collectively, this work supports a novel antiproliferative function for Pkm2 in CM through the sequestration of Ctnnb1 in the cytoplasm of CM whereas loss of Pkm2 is essential for CM proliferation. Reducing cardiac Pkm2 expression may provide a useful strategy for cardiac repair after MI in patients.
Collapse
Affiliation(s)
- Ludger Hauck
- Toronto General Research Institute, 100 College St., M5G 1L7, Toronto, ON, Canada
| | - Keith Dadson
- Toronto General Research Institute, 100 College St., M5G 1L7, Toronto, ON, Canada
| | - Shelly Chauhan
- Toronto General Research Institute, 100 College St., M5G 1L7, Toronto, ON, Canada
| | - Daniela Grothe
- Toronto General Research Institute, 100 College St., M5G 1L7, Toronto, ON, Canada
| | - Filio Billia
- Toronto General Research Institute, 100 College St., M5G 1L7, Toronto, ON, Canada.
- Division of Cardiology, University Health Network (UHN), 200 Elizabeth St., Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
39
|
Sperm Methylome Profiling Can Discern Fertility Levels in the Porcine Biomedical Model. Int J Mol Sci 2021; 22:ijms22052679. [PMID: 33800945 PMCID: PMC7961483 DOI: 10.3390/ijms22052679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
A combined Genotyping By Sequencing (GBS) and methylated DNA immunoprecipitation (MeDIP) protocol was used to identify—in parallel—genetic variation (Genomic-Wide Association Studies (GWAS) and epigenetic differences of Differentially Methylated Regions (DMR) in the genome of spermatozoa from the porcine animal model. Breeding boars with good semen quality (n = 11) and specific and well-documented differences in fertility (farrowing rate, FR) and prolificacy (litter size, LS) (n = 7) in artificial insemination programs, using combined FR and LS, were categorized as High Fertile (HF, n = 4) or Low Fertile (LF, n = 3), and boars with Unknown Fertility (UF, n = 4) were tested for eventual epigenetical similarity with those fertility-proven. We identified 165,944 Single Nucleotide Polymorphisms (SNPs) that explained 14–15% of variance among selection lines. Between HF and LF individuals (n = 7, 4 HF and 3 LF), we identified 169 SNPs with p ≤ 0.00015, which explained 58% of the variance. For the epigenetic analyses, we considered fertility and period of ejaculate collection (late-summer and mid-autumn). Approximately three times more DMRs were observed in HF than in LF boars across these periods. Interestingly, UF boars were clearly clustered with one of the other HF or LF groups. The highest differences in DMRs between HF and LF experimental groups across the pig genome were located in the chr 3, 9, 13, and 16, with most DMRs being hypermethylated in LF boars. In both HF and LF boars, DMRs were mostly hypermethylated in late-summer compared to mid-autumn. Three overlaps were detected between SNPs (p ≤ 0.0005, n = 1318) and CpG sites within DMRs. In conclusion, fertility levels in breeding males including FR and LS can be discerned using methylome analyses. The findings in this biomedical animal model ought to be applied besides sire selection for andrological diagnosis of idiopathic sub/infertility.
Collapse
|
40
|
Rao VG, Kulkarni SS. Xenopus to the rescue: A model to validate and characterize candidate ciliopathy genes. Genesis 2021; 59:e23414. [PMID: 33576572 DOI: 10.1002/dvg.23414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Cilia are present on most vertebrate cells and play a central role in development, growth, and homeostasis. Thus, cilia dysfunction can manifest into an array of diseases, collectively termed ciliopathies, affecting millions of lives worldwide. Yet, our understanding of the gene regulatory networks that control cilia assembly and functions remain incomplete. With the advances in next-generation sequencing technologies, we can now rapidly predict pathogenic variants from hundreds of ciliopathy patients. While the pace of candidate gene discovery is exciting, most of these genes have never been previously implicated in cilia assembly or function. This makes assigning the disease causality difficult. This review discusses how Xenopus, a genetically tractable and high-throughput vertebrate model, has played a central role in identifying, validating, and characterizing candidate ciliopathy genes. The review is focused on multiciliated cells (MCCs) and diseases associated with MCC dysfunction. MCCs harbor multiple motile cilia on their apical surface to generate extracellular fluid flow inside the airway, the brain ventricles, and the oviduct. In Xenopus, these cells are external and present on the embryonic epidermal epithelia, facilitating candidate genes analysis in MCC development in vivo. The ability to introduce patient variants to study their effects on disease progression makes Xenopus a powerful model to improve our understanding of the underlying disease mechanisms and explain the patient phenotype.
Collapse
Affiliation(s)
- Venkatramanan G Rao
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Saurabh S Kulkarni
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
41
|
Paci G, Caria J, Lemke EA. Cargo transport through the nuclear pore complex at a glance. J Cell Sci 2021; 134:237315. [PMID: 33495357 DOI: 10.1242/jcs.247874] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bidirectional transport of macromolecules across the nuclear envelope is a hallmark of eukaryotic cells, in which the genetic material is compartmentalized inside the nucleus. The nuclear pore complex (NPC) is the major gateway to the nucleus and it regulates nucleocytoplasmic transport, which is key to processes including transcriptional regulation and cell cycle control. Accordingly, components of the nuclear transport machinery are often found to be dysregulated or hijacked in diseases. In this Cell Science at a Glance article and accompanying poster, we provide an overview of our current understanding of cargo transport through the NPC, from the basic transport signals and machinery to more emerging aspects, all from a 'cargo perspective'. Among these, we discuss the transport of large cargoes (>15 nm), as well as the roles of different cargo properties to nuclear transport, from size and number of bound nuclear transport receptors (NTRs), to surface and mechanical properties.
Collapse
Affiliation(s)
- Giulia Paci
- Biocentre, Johannes Gutenberg-University Mainz, Hans-Dieter-Hüsch-Weg 15, 555128 Mainz, Germany.,Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany.,European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Joana Caria
- Biocentre, Johannes Gutenberg-University Mainz, Hans-Dieter-Hüsch-Weg 15, 555128 Mainz, Germany.,Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany.,European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Edward A Lemke
- Biocentre, Johannes Gutenberg-University Mainz, Hans-Dieter-Hüsch-Weg 15, 555128 Mainz, Germany .,Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany.,European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
42
|
Bian J, Dannappel M, Wan C, Firestein R. Transcriptional Regulation of Wnt/β-Catenin Pathway in Colorectal Cancer. Cells 2020; 9:cells9092125. [PMID: 32961708 PMCID: PMC7564852 DOI: 10.3390/cells9092125] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin signaling pathway exerts integral roles in embryogenesis and adult homeostasis. Aberrant activation of the pathway is implicated in growth-associated diseases and cancers, especially as a key driver in the initiation and progression of colorectal cancer (CRC). Loss or inactivation of Adenomatous polyposis coli (APC) results in constitutive activation of Wnt/β-catenin signaling, which is considered as an initiating event in the development of CRC. Increased Wnt/β-catenin signaling is observed in virtually all CRC patients, underscoring the importance of this pathway for therapeutic intervention. Prior studies have deciphered the regulatory networks required for the cytoplasmic stabilisation or degradation of the Wnt pathway effector, β-catenin. However, the mechanism whereby nuclear β-catenin drives or inhibits expression of Wnt target genes is more diverse and less well characterised. Here, we describe a brief synopsis of the core canonical Wnt pathway components, set the spotlight on nuclear mediators and highlight the emerging role of chromatin regulators as modulators of β-catenin-dependent transcription activity and oncogenic output.
Collapse
Affiliation(s)
- Jia Bian
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Marius Dannappel
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Chunhua Wan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
- Correspondence:
| |
Collapse
|
43
|
Rivas VN, Magdesian KG, Fagan S, Slovis NM, Luethy D, Javsicas LH, Caserto BG, Miller AD, Dahlgren AR, Peterson J, Hales EN, Peng S, Watson KD, Khokha MK, Finno CJ. A nonsense variant in Rap Guanine Nucleotide Exchange Factor 5 (RAPGEF5) is associated with equine familial isolated hypoparathyroidism in Thoroughbred foals. PLoS Genet 2020; 16:e1009028. [PMID: 32986719 PMCID: PMC7544121 DOI: 10.1371/journal.pgen.1009028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/08/2020] [Accepted: 08/05/2020] [Indexed: 11/18/2022] Open
Abstract
Idiopathic hypocalcemia in Thoroughbred (TB) foals causes tetany and seizures and is invariably fatal. Based upon the similarity of this disease with human familial hypoparathyroidism and occurrence only in the TB breed, we conducted a genetic investigation on two affected TB foals. Familial hypoparathyroidism was identified, and pedigree analysis suggested an autosomal recessive (AR) mode of inheritance. We performed whole-genome sequencing of the two foals, their unaffected dams and four unaffected, unrelated TB horses. Both homozygosity mapping and an association analysis were used to prioritize potential genetic variants. Of the 2,808 variants that significantly associated with the phenotype using an AR mode of inheritance (P<0.02) and located within a region of homozygosity, 1,507 (54%) were located in a 9.7 Mb region on chr4 (44.9-54.6 Mb). Within this region, a nonsense variant (RAPGEF5 c.2624C>A,p.Ser875*) was significantly associated with the hypoparathyroid phenotype (Pallelic = 0.008). Affected foals were homozygous for the variant, with two additional affected foals subsequently confirmed in 2019. Necropsies of all affected foals failed to identify any histologically normal parathyroid glands. Because the nonsense mutation in RAPGEF5 was near the C-terminal end of the protein, the impact on protein function was unclear. Therefore, we tested the variant in our Xenopus overexpression model and demonstrated RAPGEF5 loss-of-function. This RAPGEF5 variant represents the first genetic variant for hypoparathyroidism identified in any domestic animal species.
Collapse
Affiliation(s)
- Victor N. Rivas
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - K. Gary Magdesian
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Sophia Fagan
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Nathan M. Slovis
- Hagyard Equine Medical Hospital, Lexington, Kentucky, United States of America
| | - Daniela Luethy
- Department of Clinical Studies–New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Laura H. Javsicas
- Rhinebeck Equine L.L.P., Rhinebeck, New York, United States of America
| | | | - Andrew D. Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Anna R. Dahlgren
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Janel Peterson
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Erin N. Hales
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Sichong Peng
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Katherine D. Watson
- Department of Anatomic Pathology, Veterinary Medical Teaching Hospital, University of California-Davis, Davis, California, United States of America
| | - Mustafa K. Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Carrie J. Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| |
Collapse
|
44
|
Anthony CC, Robbins DJ, Ahmed Y, Lee E. Nuclear Regulation of Wnt/β-Catenin Signaling: It's a Complex Situation. Genes (Basel) 2020; 11:genes11080886. [PMID: 32759724 PMCID: PMC7465203 DOI: 10.3390/genes11080886] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022] Open
Abstract
Wnt signaling is an evolutionarily conserved metazoan cell communication pathway required for proper animal development. Of the myriad of signaling events that have been ascribed to cellular activation by Wnt ligands, the canonical Wnt/β-catenin pathway has been the most studied and best understood. Misregulation of Wnt/β-catenin signaling has been implicated in developmental defects in the embryo and major diseases in the adult. Despite the latter, no drugs that inhibit the Wnt/β-catenin pathway have been approved by the FDA. In this review, we explore the least understood step in the Wnt/β-catenin pathway-nuclear regulation of Wnt target gene transcription. We initially describe our current understanding of the importation of β-catenin into the nucleus. We then focus on the mechanism of action of the major nuclear proteins implicated in driving gene transcription. Finally, we explore the concept of a nuclear Wnt enhanceosome and propose a modified model that describes the necessary components for the transcription of Wnt target genes.
Collapse
Affiliation(s)
- Christin C. Anthony
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA;
| | - David J. Robbins
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA;
| | - Ethan Lee
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA;
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
45
|
Hoppler S, Conlon FL. Xenopus: Experimental Access to Cardiovascular Development, Regeneration Discovery, and Cardiovascular Heart-Defect Modeling. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037200. [PMID: 31767648 DOI: 10.1101/cshperspect.a037200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Xenopus has been used to study a wide array of developmental processes, benefiting from vast quantities of relatively large, externally developing eggs. Xenopus is particularly amenable to examining the cardiac system because many of the developmental processes and genes involved in cardiac specification, differentiation, and growth are conserved between Xenopus and human and have been characterized in detail. Furthermore, compared with other higher vertebrate models, Xenopus embryos can survive longer without a properly functioning heart or circulatory system, enabling investigation of later consequences of early embryological manipulations. This biology is complemented by experimental technology, such as embryonic explants to study the heart, microinjection of overexpression constructs, and, most recently, the generation of genetic mutations through gene-editing technologies. Recent investigations highlight Xenopus as a powerful experimental system for studying injury/repair and regeneration and for congenital heart disease (CHD) modeling, which reinforces why this model system remains ideal for studying heart development.
Collapse
Affiliation(s)
- Stefan Hoppler
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | - Frank L Conlon
- Department of Biology and Genetics, University of North Carolina McAllister Heart Institute, Chapel Hill, North Carolina 27599-3280, USA
| |
Collapse
|
46
|
Reduced SERCA Function Preferentially Affects Wnt Signaling by Retaining E-Cadherin in the Endoplasmic Reticulum. Cell Rep 2020; 26:322-329.e3. [PMID: 30625314 PMCID: PMC6338334 DOI: 10.1016/j.celrep.2018.12.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/14/2018] [Accepted: 12/11/2018] [Indexed: 12/31/2022] Open
Abstract
Calcium homeostasis in the lumen of the endoplasmic reticulum is required for correct processing and trafficking of transmembrane proteins, and defects in protein trafficking can impinge on cell signaling pathways. We show here that mutations in the endoplasmic reticulum calcium pump SERCA disrupt Wingless signaling by sequestering Armadillo/β-catenin away from the signaling pool. Armadillo remains bound to E-cadherin, which is retained in the endoplasmic reticulum when calcium levels there are reduced. Using hypomorphic and null SERCA alleles in combination with the loss of the plasma membrane calcium channel Orai allowed us to define three distinct thresholds of endoplasmic reticulum calcium. Wingless signaling is sensitive to even a small reduction, while Notch and Hippo signaling are disrupted at intermediate levels, and elimination of SERCA function results in apoptosis. These differential and opposing effects on three oncogenic signaling pathways may complicate the use of SERCA inhibitors as cancer therapeutics. Suisse and Treisman describe genetic conditions that reduce calcium in the endoplasmic reticulum to three distinct extents. They find that Wnt signaling is more sensitive to changes in calcium levels than the Notch and Hippo pathways, potentially complicating the use of calcium pump inhibitors as cancer therapeutics.
Collapse
|
47
|
Cytoplasmic Parvovirus Capsids Recruit Importin Beta for Nuclear Delivery. J Virol 2020; 94:JVI.01532-19. [PMID: 31748386 DOI: 10.1128/jvi.01532-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/16/2019] [Indexed: 02/06/2023] Open
Abstract
Parvoviruses are an important platform for gene and cancer therapy. Their cell entry and the following steps, including nuclear import, are inefficient, limiting their use in therapeutic applications. Two models exist on parvoviral nuclear entry: the classical import of the viral capsid using nuclear transport receptors of the importin (karyopherin) family or the direct attachment of the capsid to the nuclear pore complex leading to the local disintegration of the nuclear envelope. Here, by laser scanning confocal microscopy and in situ proximity ligation analyses combined with coimmunoprecipitation, we show that infection requires importin β-mediated access to the nuclear pore complex and nucleoporin 153-mediated interactions on the nuclear side. The importin β-capsid interaction continued within the nucleoplasm, which suggests a mixed model of nuclear entry in which the classical nuclear import across the nuclear pore complex is accompanied by transient ruptures of the nuclear envelope, also allowing the passive entry of importin β-capsid complexes into the nucleus.IMPORTANCE Parvoviruses are small DNA viruses that deliver their DNA into the postmitotic nuclei, which is an important step for parvoviral gene and cancer therapies. Limitations in virus-receptor interactions or endocytic entry do not fully explain the low transduction/infection efficiency, indicating a bottleneck after virus entry into the cytoplasm. We thus investigated the transfer of parvovirus capsids from the cytoplasm to the nucleus, showing that the nuclear import of the parvovirus capsid follows a unique strategy, which differs from classical nuclear import and those of other viruses.
Collapse
|
48
|
Federspiel JD, Tandon P, Wilczewski CM, Wasson L, Herring LE, Venkatesh SS, Cristea IM, Conlon FL. Conservation and divergence of protein pathways in the vertebrate heart. PLoS Biol 2019; 17:e3000437. [PMID: 31490923 PMCID: PMC6750614 DOI: 10.1371/journal.pbio.3000437] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 09/18/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022] Open
Abstract
Heart disease is the leading cause of death in the western world. Attaining a mechanistic understanding of human heart development and homeostasis and the molecular basis of associated disease states relies on the use of animal models. Here, we present the cardiac proteomes of 4 model vertebrates with dual circulatory systems: the pig (Sus scrofa), the mouse (Mus musculus), and 2 frogs (Xenopus laevis and Xenopus tropicalis). Determination of which proteins and protein pathways are conserved and which have diverged within these species will aid in our ability to choose the appropriate models for determining protein function and to model human disease. We uncover mammalian- and amphibian-specific, as well as species-specific, enriched proteins and protein pathways. Among these, we find and validate an enrichment in cell-cycle-associated proteins within Xenopus laevis. To further investigate functional units within cardiac proteomes, we develop a computational approach to profile the abundance of protein complexes across species. Finally, we demonstrate the utility of these data sets for predicting appropriate model systems for studying given cardiac conditions by testing the role of Kielin/chordin-like protein (Kcp), a protein found as enriched in frog hearts compared to mammals. We establish that germ-line mutations in Kcp in Xenopus lead to valve defects and, ultimately, cardiac failure and death. Thus, integrating these findings with data on proteins responsible for cardiac disease should lead to the development of refined, species-specific models for protein function and disease states.
Collapse
Affiliation(s)
| | - Panna Tandon
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Caralynn M. Wilczewski
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lauren Wasson
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Laura E. Herring
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | | | - Ileana M. Cristea
- Princeton University, Princeton, New Jersey, United States of America
| | - Frank L. Conlon
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
49
|
Alkylglycerol monooxygenase, a heterotaxy candidate gene, regulates left-right patterning via Wnt signaling. Dev Biol 2019; 456:1-7. [PMID: 31398317 DOI: 10.1016/j.ydbio.2019.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/08/2019] [Accepted: 07/31/2019] [Indexed: 12/30/2022]
Abstract
Congenital heart disease (CHD) is a major cause of morbidity in the pediatric population yet its genetic and molecular causes remain poorly defined. Previously, we identified AGMO as a candidate heterotaxy disease gene, a disorder of left-right (LR) patterning that can have a profound effect on cardiac function. AGMO is the only known alkylglycerol monooxygenase, an orphan tetrahydrobiopterin dependent enzyme that cleaves the ether linkage in alkylglycerols. However, whether AGMO plays a role in LR patterning was unexplored. Here we reveal that Agmo is required for correct development of the embryonic LR axis in Xenopus embryos recapitulating the patient's heterotaxy phenotype. Mechanistically, we demonstrate that Agmo is a regulator of canonical Wnt signaling, required during gastrulation for normal formation of the left - right organizer. Mutational analysis demonstrates that this function is dependent on Agmo's alkylglycerol monooxygenase activity. Together, our findings identify Agmo as a regulator of canonical Wnt signaling, demonstrate a role for Agmo in embryonic axis formation, and provide insight into the poorly understood developmental requirements for ether lipid cleavage.
Collapse
|
50
|
Hwang WY, Marquez J, Khokha MK. Xenopus: Driving the Discovery of Novel Genes in Patient Disease and Their Underlying Pathological Mechanisms Relevant for Organogenesis. Front Physiol 2019; 10:953. [PMID: 31417417 PMCID: PMC6682594 DOI: 10.3389/fphys.2019.00953] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 07/09/2019] [Indexed: 12/16/2022] Open
Abstract
Frog model organisms have been appreciated for their utility in exploring physiological phenomena for nearly a century. Now, a vibrant community of biologists that utilize this model organism has poised Xenopus to serve as a high throughput vertebrate organism to model patient-driven genetic diseases. This has facilitated the investigation of effects of patient mutations on specific organs and signaling pathways. This approach promises a rapid investigation into novel mechanisms that disrupt normal organ morphology and function. Considering that many disease states are still interrogated in vitro to determine relevant biological processes for further study, the prospect of interrogating genetic disease in Xenopus in vivo is an attractive alternative. This model may more closely capture important aspects of the pathology under investigation such as cellular micro environments and local forces relevant to a specific organ's development and homeostasis. This review aims to highlight recent methodological advances that allow investigation of genetic disease in organ-specific contexts in Xenopus as well as provide examples of how these methods have led to the identification of novel mechanisms and pathways important for understanding human disease.
Collapse
Affiliation(s)
| | | | - Mustafa K. Khokha
- Department of Pediatrics and Genetics, The Pediatric Genomics Discovery Program, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|