1
|
Harvey LM, Frédérick PM, Gudipati RK, Michaud P, Houle F, Young D, Desbiens C, Ladouceur S, Dufour A, Großhans H, Simard MJ. Dipeptidyl peptidase DPF-3 is a gatekeeper of microRNA Argonaute compensation in animals. Nat Commun 2025; 16:2738. [PMID: 40108168 PMCID: PMC11923051 DOI: 10.1038/s41467-025-58141-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
MicroRNAs (miRNAs) are essential regulators involved in multiple biological processes. To achieve their gene repression function, they are loaded in miRNA-specific Argonautes to form the miRNA-induced silencing complex (miRISC). Mammals and C. elegans possess more than one paralog of miRNA-specific Argonautes, but the dynamic between them remains unclear. Here, we report the conserved dipeptidyl peptidase DPF-3 as an interactor of the miRNA-specific Argonaute ALG-1 in C. elegans. Knockout of dpf-3 increases ALG-2 levels and miRISC formation in alg-1 loss-of-function animals, thereby compensating for ALG-1 loss and rescuing miRNA-related defects observed. DPF-3 can cleave an ALG-2 N-terminal peptide in vitro but does not appear to rely on this catalytic activity to regulate ALG-2 in vivo. This study uncovers the importance of DPF-3 in the miRNA pathway and provides insights into how multiple miRNA Argonautes contribute to achieving proper miRNA-mediated gene regulation in animals.
Collapse
Affiliation(s)
- Louis-Mathieu Harvey
- Oncology Division, CHU de Québec - Université Laval Research Center, Québec, Canada
- Université Laval Cancer Research Centre, Québec, Canada
| | - Pierre-Marc Frédérick
- Oncology Division, CHU de Québec - Université Laval Research Center, Québec, Canada
- Université Laval Cancer Research Centre, Québec, Canada
| | | | - Pascale Michaud
- Oncology Division, CHU de Québec - Université Laval Research Center, Québec, Canada
- Université Laval Cancer Research Centre, Québec, Canada
| | - François Houle
- Oncology Division, CHU de Québec - Université Laval Research Center, Québec, Canada
- Université Laval Cancer Research Centre, Québec, Canada
| | - Daniel Young
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Catherine Desbiens
- Oncology Division, CHU de Québec - Université Laval Research Center, Québec, Canada
- Université Laval Cancer Research Centre, Québec, Canada
| | - Shanna Ladouceur
- Oncology Division, CHU de Québec - Université Laval Research Center, Québec, Canada
- Université Laval Cancer Research Centre, Québec, Canada
| | - Antoine Dufour
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Martin J Simard
- Oncology Division, CHU de Québec - Université Laval Research Center, Québec, Canada.
- Université Laval Cancer Research Centre, Québec, Canada.
| |
Collapse
|
2
|
Farhan SH, Jasim SA, Bansal P, Kaur H, Abed Jawad M, Qasim MT, Jabbar AM, Deorari M, Alawadi A, Hadi A. Exosomal Non-coding RNA Derived from Mesenchymal Stem Cells (MSCs) in Autoimmune Diseases Progression and Therapy; an Updated Review. Cell Biochem Biophys 2024; 82:3091-3108. [PMID: 39225902 DOI: 10.1007/s12013-024-01432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
Inflammation and autoimmune diseases (AD) are common outcomes of an overactive immune system. Inflammation occurs due to the immune system reacting to damaging stimuli. Exosomes are being recognized as an advanced therapeutic approach for addressing an overactive immune system, positioning them as a promising option for treating AD. Mesenchymal stem cells (MSCs) release exosomes that have strong immunomodulatory effects, influenced by their cell of origin. MSCs-exosomes, being a cell-free therapy, exhibit less toxicity and provoke a diminished immune response compared to cell-based therapies. Exosomal non-coding RNAs (ncRNA), particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are intricately linked to various biological and functional aspects of human health. Exosomal ncRNAs can lead to tissue malfunction, aging, and illnesses when they experience tissue-specific alterations as a result of various internal or external problems. In this study, we will examine current trends in exosomal ncRNA researches regarding AD. Then, therapeutic uses of MSCs-exosomal ncRNA will be outlined, with a particle focus on the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Shireen Hamid Farhan
- Biotechnology department, College of Applied Science, Fallujah University, Fallujah, Iraq
| | | | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq.
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Abeer Mhussan Jabbar
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq.
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq
- College of technical engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of technical engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Ali Hadi
- Department of medical laboratories techniques, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
3
|
Lécuyer E, Sauvageau M, Kothe U, Unrau PJ, Damha MJ, Perreault J, Abou Elela S, Bayfield MA, Claycomb JM, Scott MS. Canada's contributions to RNA research: past, present, and future perspectives. Biochem Cell Biol 2024; 102:472-491. [PMID: 39320985 DOI: 10.1139/bcb-2024-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
The field of RNA research has provided profound insights into the basic mechanisms modulating the function and adaption of biological systems. RNA has also been at the center stage in the development of transformative biotechnological and medical applications, perhaps most notably was the advent of mRNA vaccines that were critical in helping humanity through the Covid-19 pandemic. Unbeknownst to many, Canada boasts a diverse community of RNA scientists, spanning multiple disciplines and locations, whose cutting-edge research has established a rich track record of contributions across various aspects of RNA science over many decades. Through this position paper, we seek to highlight key contributions made by Canadian investigators to the RNA field, via both thematic and historical viewpoints. We also discuss initiatives underway to organize and enhance the impact of the Canadian RNA research community, particularly focusing on the creation of the not-for-profit organization RNA Canada ARN. Considering the strategic importance of RNA research in biology and medicine, and its considerable potential to help address major challenges facing humanity, sustained support of this sector will be critical to help Canadian scientists play key roles in the ongoing RNA revolution and the many benefits this could bring about to Canada.
Collapse
Affiliation(s)
- Eric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Martin Sauvageau
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Ute Kothe
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Masad J Damha
- Department of Chemistry, McGill University, Montréal, QC, Canada
| | - Jonathan Perreault
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Sherif Abou Elela
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michelle S Scott
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
4
|
Matsuura-Suzuki E, Kiyokawa K, Iwasaki S, Tomari Y. miRNA-mediated gene silencing in Drosophila larval development involves GW182-dependent and independent mechanisms. EMBO J 2024; 43:6161-6179. [PMID: 39322759 PMCID: PMC11612316 DOI: 10.1038/s44318-024-00249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/11/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
MicroRNAs (miRNAs) regulate a wide variety of biological processes by silencing their target genes. Argonaute (AGO) proteins load miRNAs to form an RNA-induced silencing complex (RISC), which mediates translational repression and/or mRNA decay of the targets. A scaffold protein called GW182 directly binds AGO and the CCR4-NOT deadenylase complex, initiating the mRNA decay reaction. Although previous studies have demonstrated the critical role of GW182 in cultured cells as well as in cell-free systems, its biological significance in living organisms remains poorly explored, especially in Drosophila melanogaster. Here, we generated gw182-null flies using the CRISPR/Cas9 system and found that, unexpectedly, they can survive until an early second-instar larval stage. Moreover, in vivo miRNA reporters can be effectively repressed in gw182-null first-instar larvae. Nevertheless, gw182-null flies have defects in the expression of chitin-related genes and the formation of the larval trachea system, preventing them from completing larval development. Our results highlight the importance of both GW182-dependent and -independent silencing mechanisms in vivo.
Collapse
Affiliation(s)
- Eriko Matsuura-Suzuki
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Kaori Kiyokawa
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yukihide Tomari
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
5
|
Frédérick PM, Jannot G, Banville I, Simard M. Interaction between a J-domain co-chaperone and a specific Argonaute protein contributes to microRNA function in animals. Nucleic Acids Res 2024; 52:6253-6268. [PMID: 38613392 PMCID: PMC11194074 DOI: 10.1093/nar/gkae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
MicroRNAs (miRNAs) are essential regulators of several biological processes. They are loaded onto Argonaute (AGO) proteins to achieve their repressive function, forming the microRNA-Induced Silencing Complex known as miRISC. While several AGO proteins are expressed in plants and animals, it is still unclear why specific AGOs are strictly binding miRNAs. Here, we identified the co-chaperone DNJ-12 as a new interactor of ALG-1, one of the two major miRNA-specific AGOs in Caenorhabditis elegans. DNJ-12 does not interact with ALG-2, the other major miRNA-specific AGO, and PRG-1 and RDE-1, two AGOs involved in other small RNA pathways, making it a specific actor in ALG-1-dependent miRNA-mediated gene silencing. The loss of DNJ-12 causes developmental defects associated with defective miRNA function. Using the Auxin Inducible Degron system, a powerful tool to acutely degrade proteins in specific tissues, we show that DNJ-12 depletion hampers ALG-1 interaction with HSP70, a chaperone required for miRISC loading in vitro. Moreover, DNJ-12 depletion leads to the decrease of several miRNAs and prevents their loading onto ALG-1. This study uncovers the importance of a co-chaperone for the miRNA function in vivo and provides insights to explain how different small RNAs associate with specific AGO in animals.
Collapse
Affiliation(s)
- Pierre-Marc Frédérick
- Oncology Division, CHU de Québec—Université Laval Research Center, Québec, QC G1R 3S3, Canada
- Université Laval Cancer Research Centre, Québec, QC G1R 3S3, Canada
| | - Guillaume Jannot
- Oncology Division, CHU de Québec—Université Laval Research Center, Québec, QC G1R 3S3, Canada
- Université Laval Cancer Research Centre, Québec, QC G1R 3S3, Canada
| | - Isabelle Banville
- Oncology Division, CHU de Québec—Université Laval Research Center, Québec, QC G1R 3S3, Canada
- Université Laval Cancer Research Centre, Québec, QC G1R 3S3, Canada
| | - Martin J Simard
- Oncology Division, CHU de Québec—Université Laval Research Center, Québec, QC G1R 3S3, Canada
- Université Laval Cancer Research Centre, Québec, QC G1R 3S3, Canada
| |
Collapse
|
6
|
Pal A, Vasudevan V, Houle F, Lantin M, Maniates K, Huberdeau MQ, Abbott A, Simard M. Defining the contribution of microRNA-specific Argonautes with slicer capability in animals. Nucleic Acids Res 2024; 52:5002-5015. [PMID: 38477356 PMCID: PMC11109967 DOI: 10.1093/nar/gkae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
microRNAs regulate gene expression through interaction with an Argonaute protein. While some members of this protein family retain an enzymatic activity capable of cleaving RNA molecules complementary to Argonaute-bound small RNAs, the role of the slicer residues in the canonical microRNA pathway is still unclear in animals. To address this, we created Caenorhabditis elegans strains with mutated slicer residues in the endogenous ALG-1 and ALG-2, the only two slicing Argonautes essential for the miRNA pathway in this animal model. We observe that the mutation in ALG-1 and ALG-2 catalytic residues affects overall animal fitness and causes phenotypes reminiscent of miRNA defects only when grown and maintained at restrictive temperature. Furthermore, the analysis of global miRNA expression shows that the slicer residues of ALG-1 and ALG-2 contribute differentially to regulate the level of specific subsets of miRNAs in young adults. We also demonstrate that altering the catalytic tetrad of those miRNA-specific Argonautes does not result in any defect in the production of canonical miRNAs. Together, these data support that the slicer residues of miRNA-specific Argonautes contribute to maintaining levels of a set of miRNAs for optimal viability and fitness in animals particularly exposed to specific growing conditions.
Collapse
Affiliation(s)
- Anisha Pal
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Vaishnav Vasudevan
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - François Houle
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Michael Lantin
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Katherine A Maniates
- Waksman Institute of Microbiology and Department of Genetics, Rutgers University, USA
| | - Miguel Quévillon Huberdeau
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Allison L Abbott
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Martin J Simard
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| |
Collapse
|
7
|
Kotagama K, Grimme AL, Braviner L, Yang B, Sakhawala R, Yu G, Benner LK, Joshua-Tor L, McJunkin K. Catalytic residues of microRNA Argonautes play a modest role in microRNA star strand destabilization in C. elegans. Nucleic Acids Res 2024; 52:4985-5001. [PMID: 38471816 PMCID: PMC11109956 DOI: 10.1093/nar/gkae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Many microRNA (miRNA)-guided Argonaute proteins can cleave RNA ('slicing'), even though miRNA-mediated target repression is generally cleavage-independent. Here we use Caenorhabditis elegans to examine the role of catalytic residues of miRNA Argonautes in organismal development. In contrast to previous work, mutations in presumed catalytic residues did not interfere with development when introduced by CRISPR. We find that unwinding and decay of miRNA star strands is weakly defective in the catalytic residue mutants, with the largest effect observed in embryos. Argonaute-Like Gene 2 (ALG-2) is more dependent on catalytic residues for unwinding than ALG-1. The miRNAs that displayed the greatest (albeit minor) dependence on catalytic residues for unwinding tend to form stable duplexes with their star strand, and in some cases, lowering duplex stability alleviates dependence on catalytic residues. While a few miRNA guide strands are reduced in the mutant background, the basis of this is unclear since changes were not dependent on EBAX-1, an effector of Target-Directed miRNA Degradation (TDMD). Overall, this work defines a role for the catalytic residues of miRNA Argonautes in star strand decay; future work should examine whether this role contributes to the selection pressure to conserve catalytic activity of miRNA Argonautes across the metazoan phylogeny.
Collapse
Affiliation(s)
- Kasuen Kotagama
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Acadia L Grimme
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
- Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Leah Braviner
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Bing Yang
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Rima M Sakhawala
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
- Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Guoyun Yu
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Lars Kristian Benner
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Leemor Joshua-Tor
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Huguet MD, Robin S, Hudaverdian S, Tanguy S, Leterme-Prunier N, Cloteau R, Baulande S, Legoix-Né P, Legeai F, Simon JC, Jaquiéry J, Tagu D, Le Trionnaire G. Transcriptomic basis of sex loss in the pea aphid. BMC Genomics 2024; 25:202. [PMID: 38383295 PMCID: PMC10882735 DOI: 10.1186/s12864-023-09776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/31/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Transitions from sexual to asexual reproduction are common in eukaryotes, but the underlying mechanisms remain poorly known. The pea aphid-Acyrthosiphon pisum-exhibits reproductive polymorphism, with cyclical parthenogenetic and obligate parthenogenetic lineages, offering an opportunity to decipher the genetic basis of sex loss. Previous work on this species identified a single 840 kb region controlling reproductive polymorphism and carrying 32 genes. With the aim of identifying the gene(s) responsible for sex loss and the resulting consequences on the genetic programs controlling sexual or asexual embryogenesis, we compared the transcriptomic response to photoperiod shortening-the main sex-inducing cue-of a sexual and an obligate asexual lineage of the pea aphid, focusing on heads (where the photoperiodic cue is detected) and embryos (the final target of the cue). RESULTS Our analyses revealed that four genes (one expressed in the head, and three in the embryos) of the region responded differently to photoperiod in the two lineages. We also found that the downstream genetic programs expressed during embryonic development of a future sexual female encompass ∼1600 genes, among which miRNAs, piRNAs and histone modification pathways are overrepresented. These genes mainly co-localize in two genomic regions enriched in transposable elements (TEs). CONCLUSIONS Our results suggest that the causal polymorphism(s) in the 840 kb region somehow impair downstream epigenetic and post-transcriptional regulations in obligate asexual lineages, thereby sustaining asexual reproduction.
Collapse
Affiliation(s)
- M D Huguet
- Institute for Genetics, Environment and Plant Protection, IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - S Robin
- Institute for Genetics, Environment and Plant Protection, IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
- Institut National de Recherche en Informatique et en Automatique, Institut de Recherche en Informatique et Systèmes Aléatoires, Genscale, Campus Beaulieu, Rennes, 35042, France
| | - S Hudaverdian
- Institute for Genetics, Environment and Plant Protection, IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - S Tanguy
- Institute for Genetics, Environment and Plant Protection, IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - N Leterme-Prunier
- Institute for Genetics, Environment and Plant Protection, IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - R Cloteau
- Institute for Genetics, Environment and Plant Protection, IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - S Baulande
- Centre de Recherche, Genomics of Excellence Platform, Institut Curie, PSL Research University, Paris Cedex 05, France
| | - P Legoix-Né
- Centre de Recherche, Genomics of Excellence Platform, Institut Curie, PSL Research University, Paris Cedex 05, France
| | - F Legeai
- Institute for Genetics, Environment and Plant Protection, IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
- Institut National de Recherche en Informatique et en Automatique, Institut de Recherche en Informatique et Systèmes Aléatoires, Genscale, Campus Beaulieu, Rennes, 35042, France
| | - J-C Simon
- Institute for Genetics, Environment and Plant Protection, IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - J Jaquiéry
- Institute for Genetics, Environment and Plant Protection, IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - D Tagu
- Institute for Genetics, Environment and Plant Protection, IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - G Le Trionnaire
- Institute for Genetics, Environment and Plant Protection, IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France.
| |
Collapse
|
9
|
Kotagama K, McJunkin K. Recent advances in understanding microRNA function and regulation in C. elegans. Semin Cell Dev Biol 2024; 154:4-13. [PMID: 37055330 PMCID: PMC10564972 DOI: 10.1016/j.semcdb.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/15/2023]
Abstract
MicroRNAs (miRNAs) were first discovered in C. elegans as essential post-transcriptional regulators of gene expression. Since their initial discovery, miRNAs have been implicated in numerous areas of physiology and disease in all animals examined. In recent years, the C. elegans model continues to contribute important advances to all areas of miRNA research. Technological advances in tissue-specific miRNA profiling and genome editing have driven breakthroughs in understanding biological functions of miRNAs, mechanism of miRNA action, and regulation of miRNAs. In this review, we highlight these new C. elegans findings from the past five to seven years.
Collapse
Affiliation(s)
- Kasuen Kotagama
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases Intramural Research Program, Bethesda, MD 20892, USA
| | - Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases Intramural Research Program, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Pal A, Vasudevan V, Houle F, Lantin M, Maniates KA, Quevillon Huberdeau M, Abbott A, Simard MJ. Defining the contribution of microRNA-specific slicing Argonautes in animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.19.524781. [PMID: 36711744 PMCID: PMC9882343 DOI: 10.1101/2023.01.19.524781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
microRNAs regulate gene expression through interaction with an Argonaute protein family member. While some members of this protein family retain an enzymatic activity capable of cleaving RNA molecules complementary to Argonaute-bound small RNAs, the role of the slicing activity in the canonical microRNA pathway is still unclear in animals. To address the importance of slicing Argonautes in animals, we created Caenorhabditis elegans strains, carrying catalytically dead endogenous ALG-1 and ALG-2, the only two slicing Argonautes essential for the miRNA pathway in this animal model. We observe that the loss of ALG-1 and ALG-2 slicing activity affects overall animal fitness and causes phenotypes, reminiscent of miRNA defects, only when grown and maintained at restrictive temperature. Furthermore, the analysis of global miRNA expression shows that the catalytic activity of ALG-1 and ALG-2 differentially regulate the level of specific subsets of miRNAs in young adults. We also demonstrate that altering the slicing activity of those miRNA-specific Argonautes does not result in any defect in the production of canonical miRNAs. Together, these data support that the slicing activity of miRNA-specific Argonautes function to maintain the levels of a set of miRNAs for optimal viability and fitness in animals particularly exposed to specific growing conditions.
Collapse
|
11
|
Kotagama K, Grimme AL, Braviner L, Yang B, Sakhawala RM, Yu G, Benner LK, Joshua-Tor L, McJunkin K. The catalytic activity of microRNA Argonautes plays a modest role in microRNA star strand destabilization in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.19.524782. [PMID: 36711716 PMCID: PMC9882359 DOI: 10.1101/2023.01.19.524782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Many Argonaute proteins can cleave RNA ("slicing") as part of the microRNA-induced silencing complex (miRISC), even though miRNA-mediated target repression is generally independent of target cleavage. Here we use genome editing in C. elegans to examine the role of miRNA-guided slicing in organismal development. In contrast to previous work, slicing-inactivating mutations did not interfere with normal development when introduced by CRISPR. We find that unwinding and decay of miRNA star strands is weakly defective in the absence of slicing, with the largest effect observed in embryos. Argonaute-Like Gene 2 (ALG-2) is more dependent on slicing for unwinding than ALG-1. The miRNAs that displayed the greatest (albeit minor) dependence on slicing for unwinding tend to form stable duplexes with their star strand, and in some cases, lowering duplex stability alleviates dependence on slicing. Gene expression changes were consistent with negligible to moderate loss of function for miRNA guides whose star strand was upregulated, suggesting a reduced proportion of mature miRISC in slicing mutants. While a few miRNA guide strands are reduced in the mutant background, the basis of this is unclear since changes were not dependent on EBAX-1, a factor in the Target-Directed miRNA Degradation (TDMD) pathway. Overall, this work defines a role for miRNA Argonaute slicing in star strand decay; future work should examine whether this role could have contributed to the selection pressure to conserve catalytic activity of miRNA Argonautes across the metazoan phylogeny.
Collapse
Affiliation(s)
- Kasuen Kotagama
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Acadia L. Grimme
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
- Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Leah Braviner
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Bing Yang
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Rima M. Sakhawala
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
- Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Guoyun Yu
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Lars Kristian Benner
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
- Current address: Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Leemor Joshua-Tor
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Shah VN, Neumeier J, Huberdeau MQ, Zeitler DM, Bruckmann A, Meister G, Simard MJ. Casein kinase 1 and 2 phosphorylate Argonaute proteins to regulate miRNA-mediated gene silencing. EMBO Rep 2023; 24:e57250. [PMID: 37712432 PMCID: PMC10626430 DOI: 10.15252/embr.202357250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
MicroRNAs (miRNAs) together with Argonaute (AGO) proteins form the core of the RNA-induced silencing complex (RISC) to regulate gene expression of their target RNAs post-transcriptionally. Argonaute proteins are subjected to intensive regulation via various post-translational modifications that can affect their stability, silencing efficacy and specificity for targeted gene regulation. We report here that in Caenorhabditis elegans, two conserved serine/threonine kinases - casein kinase 1 alpha 1 (CK1A1) and casein kinase 2 (CK2) - regulate a highly conserved phosphorylation cluster of 4 Serine residues (S988:S998) on the miRNA-specific AGO protein ALG-1. We show that CK1A1 phosphorylates ALG-1 at sites S992 and S995, while CK2 phosphorylates ALG-1 at sites S988 and S998. Furthermore, we demonstrate that phospho-mimicking mutants of the entire S988:S998 cluster rescue the various developmental defects observed upon depleting CK1A1 and CK2. In humans, we show that CK1A1 also acts as a priming kinase of this cluster on AGO2. Altogether, our data suggest that phosphorylation of AGO within the cluster by CK1A1 and CK2 is required for efficient miRISC-target RNA binding and silencing.
Collapse
Affiliation(s)
- Vivek Nilesh Shah
- CHU de Québec‐Université Laval Research Center (Oncology Division)Quebec CityQuebecCanada
- Université Laval Cancer Research CentreQuebec CityQuebecCanada
| | - Julia Neumeier
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA BiologyUniversity of RegensburgRegensburgGermany
| | - Miguel Quévillon Huberdeau
- CHU de Québec‐Université Laval Research Center (Oncology Division)Quebec CityQuebecCanada
- Université Laval Cancer Research CentreQuebec CityQuebecCanada
| | - Daniela M Zeitler
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA BiologyUniversity of RegensburgRegensburgGermany
| | - Astrid Bruckmann
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA BiologyUniversity of RegensburgRegensburgGermany
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA BiologyUniversity of RegensburgRegensburgGermany
| | - Martin J Simard
- CHU de Québec‐Université Laval Research Center (Oncology Division)Quebec CityQuebecCanada
- Université Laval Cancer Research CentreQuebec CityQuebecCanada
| |
Collapse
|
13
|
Fridrich A, Salinas-Saaverda M, Kozlolvski I, Surm JM, Chrysostomou E, Tripathi AM, Frank U, Moran Y. An ancient pan-cnidarian microRNA regulates stinging capsule biogenesis in Nematostella vectensis. Cell Rep 2023; 42:113072. [PMID: 37676763 PMCID: PMC10548089 DOI: 10.1016/j.celrep.2023.113072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/12/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
An ancient evolutionary innovation of a novel cell type, the stinging cell (cnidocyte), appeared >600 million years ago in the phylum Cnidaria (sea anemones, corals, hydroids, and jellyfish). A complex bursting nano-injector of venom, the cnidocyst, is embedded in cnidocytes and enables cnidarians to paralyze their prey and predators, contributing to this phylum's evolutionary success. In this work, we show that post-transcriptional regulation by a pan-cnidarian microRNA, miR-2022, is essential for biogenesis of these cells in the sea anemone Nematostella vectensis. By manipulation of miR-2022 levels in a transgenic reporter line of cnidocytes, followed by transcriptomics, single-cell data analysis, prey paralysis assays, and cell sorting of transgenic cnidocytes, we reveal that miR-2022 enables cnidocyte biogenesis in Nematostella, while exhibiting a conserved expression domain with its targets in cnidocytes of other cnidarian species. Thus, here we revealed a functional basis to the conservation of one of nature's most ancient microRNAs.
Collapse
Affiliation(s)
- Arie Fridrich
- Department of Ecology Evolution and Behavior, Faculty of Science, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria.
| | | | - Itamar Kozlolvski
- Department of Ecology Evolution and Behavior, Faculty of Science, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joachim M Surm
- Department of Ecology Evolution and Behavior, Faculty of Science, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Abhinandan M Tripathi
- Department of Ecology Evolution and Behavior, Faculty of Science, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Uri Frank
- Centre for Chromosome Biology, University of Galway, Galway, Ireland
| | - Yehu Moran
- Department of Ecology Evolution and Behavior, Faculty of Science, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
14
|
The Role of microRNAs in Inflammation. Int J Mol Sci 2022; 23:ijms232415479. [PMID: 36555120 PMCID: PMC9779565 DOI: 10.3390/ijms232415479] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a biological response of the immune system to various insults, such as pathogens, toxic compounds, damaged cells, and radiation. The complex network of pro- and anti-inflammatory factors and their direction towards inflammation often leads to the development and progression of various inflammation-associated diseases. The role of small non-coding RNAs (small ncRNAs) in inflammation has gained much attention in the past two decades for their regulation of inflammatory gene expression at multiple levels and their potential to serve as biomarkers and therapeutic targets in various diseases. One group of small ncRNAs, microRNAs (miRNAs), has become a key regulator in various inflammatory disease conditions. Their fine-tuning of target gene regulation often turns out to be an important factor in controlling aberrant inflammatory reactions in the system. This review summarizes the biogenesis of miRNA and the mechanisms of miRNA-mediated gene regulation. The review also briefly discusses various pro- and anti-inflammatory miRNAs, their targets and functions, and provides a detailed discussion on the role of miR-10a in inflammation.
Collapse
|
15
|
Rochester JD, Min H, Gajjar GA, Sharp CS, Maki NJ, Rollins JA, Keiper BD, Graber JH, Updike DL. GLH-1/Vasa represses neuropeptide expression and drives spermiogenesis in the C. elegans germline. Dev Biol 2022; 492:200-211. [PMID: 36273621 PMCID: PMC9677334 DOI: 10.1016/j.ydbio.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 01/09/2023]
Abstract
Germ granules harbor processes that maintain germline integrity and germline stem cell capacity. Depleting core germ granule components in C. elegans leads to the reprogramming of germ cells, causing them to express markers of somatic differentiation in day-two adults. Somatic reprogramming is associated with complete sterility at this stage. The resulting germ cell atrophy and other pleiotropic defects complicate our understanding of the initiation of reprogramming and how processes within germ granules safeguard the totipotency and immortal potential of germline stem cells. To better understand the initial events of somatic reprogramming, we examined total mRNA (transcriptome) and polysome-associated mRNA (translatome) changes in a precision full-length deletion of glh-1, which encodes a homolog of the germline-specific Vasa/DDX4 DEAD-box RNA helicase. Fertile animals at a permissive temperature were analyzed as young adults, a stage that precedes by 24 h the previously determined onset of somatic reporter-gene expression in the germline. Two significant changes are observed at this early stage. First, the majority of neuropeptide-encoding transcripts increase in both the total and polysomal mRNA fractions, suggesting that GLH-1 or its effectors suppress this expression. Second, there is a significant decrease in Major Sperm Protein (MSP)-domain mRNAs when glh-1 is deleted. We find that the presence of GLH-1 helps repress spermatogenic expression during oogenesis, but boosts MSP expression to drive spermiogenesis and sperm motility. These insights define an early role for GLH-1 in repressing somatic reprogramming to maintain germline integrity.
Collapse
Affiliation(s)
- Jesse D Rochester
- Kathryn W. Davis Center for Regenerative Biology and Aging, The Mount Desert Island Biological Laboratory, Bar Harbor, ME, United States; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | - Hyemin Min
- Kathryn W. Davis Center for Regenerative Biology and Aging, The Mount Desert Island Biological Laboratory, Bar Harbor, ME, United States
| | - Gita A Gajjar
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Catherine S Sharp
- Kathryn W. Davis Center for Regenerative Biology and Aging, The Mount Desert Island Biological Laboratory, Bar Harbor, ME, United States
| | - Nathaniel J Maki
- Kathryn W. Davis Center for Regenerative Biology and Aging, The Mount Desert Island Biological Laboratory, Bar Harbor, ME, United States
| | - Jarod A Rollins
- Kathryn W. Davis Center for Regenerative Biology and Aging, The Mount Desert Island Biological Laboratory, Bar Harbor, ME, United States
| | - Brett D Keiper
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Joel H Graber
- Kathryn W. Davis Center for Regenerative Biology and Aging, The Mount Desert Island Biological Laboratory, Bar Harbor, ME, United States
| | - Dustin L Updike
- Kathryn W. Davis Center for Regenerative Biology and Aging, The Mount Desert Island Biological Laboratory, Bar Harbor, ME, United States.
| |
Collapse
|
16
|
Expression of miRNA-Targeted and Not-Targeted Reporter Genes Shows Mutual Influence and Intercellular Specificity. Int J Mol Sci 2022; 23:ijms232315059. [PMID: 36499386 PMCID: PMC9740606 DOI: 10.3390/ijms232315059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
The regulation of translation by RNA-induced silencing complexes (RISCs) composed of Argonaute proteins and micro-RNAs is well established; however, the mechanisms underlying specific cellular responses to miRNAs and how specific complexes arise are not completely clear. To explore these questions, we performed experiments with Renilla and firefly luciferase reporter genes transfected in a psiCHECK-2 plasmid into human HCT116 or Me45 cells, where only the Renilla gene contained sequences targeted by microRNAs (miRNAs) in the 3'UTR. The effects of targeting were miRNA-specific; miRNA-21-5p caused strong inhibition of translation, whereas miRNA-24-3p or Let-7 family caused no change or an increase in reporter Renilla luciferase synthesis. The mRNA-protein complexes formed by transcripts regulated by different miRNAs differed from each other and were different in different cell types, as shown by sucrose gradient centrifugation. Unexpectedly, the presence of miRNA targets on Renilla transcripts also affected the expression of the co-transfected but non-targeted firefly luciferase gene in both cell types. Renilla and firefly transcripts were found in the same sucrose gradient fractions and specific anti-miRNA oligoribonucleotides, which influenced the expression of the Renilla gene, and also influenced that of firefly gene. These results suggest that, in addition to targeted transcripts, miRNAs may also modulate the expression of non-targeted transcripts, and using the latter to normalize the results may cause bias. We discuss some hypothetical mechanisms which could explain the observed miRNA-induced effects.
Collapse
|
17
|
Brenner JL, Jyo EM, Mohammad A, Fox P, Jones V, Mardis E, Schedl T, Maine EM. TRIM-NHL protein, NHL-2, modulates cell fate choices in the C. elegans germ line. Dev Biol 2022; 491:43-55. [PMID: 36063869 PMCID: PMC9922029 DOI: 10.1016/j.ydbio.2022.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/19/2022] [Accepted: 08/27/2022] [Indexed: 12/01/2022]
Abstract
Many tissues contain multipotent stem cells that are critical for maintaining tissue function. In Caenorhabditis elegans, germline stem cells allow gamete production to continue in adulthood. In the gonad, GLP-1/Notch signaling from the distal tip cell niche to neighboring germ cells activates a complex regulatory network to maintain a stem cell population. GLP-1/Notch signaling positively regulates production of LST-1 and SYGL-1 proteins that, in turn, interact with a set of PUF/FBF proteins to positively regulate the stem cell fate. We previously described sog (suppressor of glp-1 loss of function) and teg (tumorous enhancer of glp-1 gain of function) genes that limit the stem cell fate and/or promote the meiotic fate. Here, we show that sog-10 is allelic to nhl-2. NHL-2 is a member of the conserved TRIM-NHL protein family whose members can bind RNA and ubiquitinate protein substrates. We show that NHL-2 acts, at least in part, by inhibiting the expression of PUF-3 and PUF-11 translational repressor proteins that promote the stem cell fate. Two other negative regulators of stem cell fate, CGH-1 (conserved germline helicase) and ALG-5 (Argonaute protein), may work with NHL-2 to modulate the stem cell population. In addition, NHL-2 activity promotes the male germ cell fate in XX animals.
Collapse
Affiliation(s)
- John L Brenner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Erin M Jyo
- Department of Biology, Syracuse University, Syracuse, NY, 13210, USA
| | - Ariz Mohammad
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Paul Fox
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Vovanti Jones
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Elaine Mardis
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Eleanor M Maine
- Department of Biology, Syracuse University, Syracuse, NY, 13210, USA.
| |
Collapse
|
18
|
Dai S, Tang X, Li L, Ishidate T, Ozturk AR, Chen H, Dude AL, Yan YH, Dong MQ, Shen EZ, Mello CC. A family of C. elegans VASA homologs control Argonaute pathway specificity and promote transgenerational silencing. Cell Rep 2022; 40:111265. [PMID: 36070689 PMCID: PMC9887883 DOI: 10.1016/j.celrep.2022.111265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/01/2022] [Accepted: 08/04/2022] [Indexed: 02/02/2023] Open
Abstract
Germline Argonautes direct transcriptome surveillance within perinuclear membraneless organelles called nuage. In C. elegans, a family of Vasa-related Germ Line Helicase (GLH) proteins localize in and promote the formation of nuage. Previous studies have implicated GLH proteins in inherited silencing, but direct roles in small-RNA production, Argonaute binding, or mRNA targeting have not been identified. Here we show that GLH proteins compete with each other to control Argonaute pathway specificity, bind directly to Argonaute target mRNAs, and promote the amplification of small RNAs required for transgenerational inheritance. We show that the ATPase cycle of GLH-1 regulates direct binding to the Argonaute WAGO-1, which engages amplified small RNAs. Our findings support a dynamic and direct role for GLH proteins in inherited silencing beyond their role as structural components of nuage.
Collapse
Affiliation(s)
- Siyuan Dai
- RNA Therapeutic Institute, UMass Chan Medical School, Worcester, MA 01605, USA; Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Xiaoyin Tang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Lili Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Takao Ishidate
- RNA Therapeutic Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Ahmet R Ozturk
- RNA Therapeutic Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Hao Chen
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA; Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Altair L Dude
- RNA Therapeutic Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Yong-Hong Yan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - En-Zhi Shen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| | - Craig C Mello
- RNA Therapeutic Institute, UMass Chan Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA.
| |
Collapse
|
19
|
Donnelly BF, Yang B, Grimme AL, Vieux KF, Liu CY, Zhou L, McJunkin K. The developmentally timed decay of an essential microRNA family is seed-sequence dependent. Cell Rep 2022; 40:111154. [PMID: 35947946 PMCID: PMC9413084 DOI: 10.1016/j.celrep.2022.111154] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 06/04/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
MicroRNA (miRNA) abundance is tightly controlled by regulation of biogenesis and decay. Here, we show that the mir-35 miRNA family undergoes selective decay at the transition from embryonic to larval development in C. elegans. The seed sequence of the miRNA is necessary and largely sufficient for this regulation. Sequences outside the seed (3' end) regulate mir-35 abundance in the embryo but are not necessary for sharp decay at the transition to larval development. Enzymatic modifications of the miRNA 3' end are neither prevalent nor correlated with changes in decay, suggesting that miRNA 3' end display is not a core feature of this mechanism and further supporting a seed-driven decay model. Our findings demonstrate that seed-sequence-specific decay can selectively and coherently regulate all redundant members of a miRNA seed family, a class of mechanism that has great biological and therapeutic potential for dynamic regulation of a miRNA family's target repertoire.
Collapse
Affiliation(s)
- Bridget F Donnelly
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA; Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Bing Yang
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Acadia L Grimme
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA; Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Karl-Frédéric Vieux
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Chen-Yu Liu
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Lecong Zhou
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Hebbar S, Panzade G, Vashisht AA, Wohlschlegel JA, Veksler-Lublinsky I, Zinovyeva AY. Functional identification of microRNA-centered complexes in C. elegans. Sci Rep 2022; 12:7133. [PMID: 35504914 PMCID: PMC9065084 DOI: 10.1038/s41598-022-10771-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/08/2022] [Indexed: 02/02/2023] Open
Abstract
microRNAs (miRNAs) are crucial for normal development and physiology. To identify factors that might coordinate with miRNAs to regulate gene expression, we used 2'O-methylated oligonucleotides to precipitate Caenorhabditis elegans let-7, miR-58, and miR-2 miRNAs and the associated proteins. A total of 211 proteins were identified through mass-spectrometry analysis of miRNA co-precipitates, which included previously identified interactors of key miRNA pathway components. Gene ontology analysis of the identified interactors revealed an enrichment for RNA binding proteins, suggesting that we captured proteins that may be involved in mRNA lifecycle. To determine which miRNA interactors are important for miRNA activity, we used RNAi to deplete putative miRNA co-factors in animals with compromised miRNA activity and looked for alterations of the miRNA mutant phenotypes. Depletion of 25 of 39 tested genes modified the miRNA mutant phenotypes in three sensitized backgrounds. Modulators of miRNA phenotypes ranged from RNA binding proteins RBD-1 and CEY-1 to metabolic factors such as DLST-1 and ECH-5, among others. The observed functional interactions suggest widespread coordination of these proteins with miRNAs to ultimately regulate gene expression. This study provides a foundation for future investigations aimed at deciphering the molecular mechanisms of miRNA-mediated gene regulation.
Collapse
Affiliation(s)
- Shilpa Hebbar
- Division of Biology, Kansas State University, Manhattan, 66506, USA
| | - Ganesh Panzade
- Division of Biology, Kansas State University, Manhattan, 66506, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095, USA
- Genomics Institute of the Novartis Research Foundation, San Diego, 92121, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095, USA
| | - Isana Veksler-Lublinsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Anna Y Zinovyeva
- Division of Biology, Kansas State University, Manhattan, 66506, USA.
| |
Collapse
|
21
|
Owsian D, Gruchota J, Arnaiz O, Nowak JK. The transient Spt4-Spt5 complex as an upstream regulator of non-coding RNAs during development. Nucleic Acids Res 2022; 50:2603-2620. [PMID: 35188560 PMCID: PMC8934623 DOI: 10.1093/nar/gkac106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 12/21/2022] Open
Abstract
The Spt4-Spt5 complex is conserved and essential RNA polymerase elongation factor. To investigate the role of the Spt4-Spt5 complex in non-coding transcription during development, we used the unicellular model Paramecium tetraurelia. In this organism harboring both germline and somatic nuclei, massive transcription of the entire germline genome takes place during meiosis. This phenomenon starts a series of events mediated by different classes of non-coding RNAs that control developmentally programmed DNA elimination. We focused our study on Spt4, a small zinc-finger protein encoded in P. tetraurelia by two genes expressed constitutively and two genes expressed during meiosis. SPT4 genes are not essential in vegetative growth, but they are indispensable for sexual reproduction, even though genes from both expression families show functional redundancy. Silencing of the SPT4 genes resulted in the absence of double-stranded ncRNAs and reduced levels of scnRNAs - 25 nt-long sRNAs produced from these double-stranded precursors in the germline nucleus. Moreover, we observed that the presence of a germline-specific Spt4-Spt5m complex is necessary for transfer of the scnRNA-binding PIWI protein between the germline and somatic nucleus. Our study establishes that Spt4, together with Spt5m, is essential for expression of the germline genome and necessary for developmental genome rearrangements.
Collapse
Affiliation(s)
- Dawid Owsian
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Julita Gruchota
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Olivier Arnaiz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jacek K Nowak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
22
|
Naeli P, Winter T, Hackett AP, Alboushi L, Jafarnejad SM. The intricate balance between microRNA-induced mRNA decay and translational repression. FEBS J 2022; 290:2508-2524. [PMID: 35247033 DOI: 10.1111/febs.16422] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 12/23/2022]
Abstract
Post-transcriptional regulation of messenger RNAs (mRNAs) (i.e., mechanisms that control translation, stability and localization) is a critical focal point in spatiotemporal regulation of gene expression in response to changes in environmental conditions. The human genome encodes ~ 2000 microRNAs (miRNAs), each of which could control the expression of hundreds of protein-coding mRNAs by inducing translational repression and/or promoting mRNA decay. While mRNA degradation is a terminal event, translational repression is reversible and can be employed for rapid response to internal or external cues. Recent years have seen significant progress in our understanding of how miRNAs induce degradation or translational repression of the target mRNAs. Here, we review the recent findings that illustrate the cellular machinery that contributes to miRNA-induced silencing, with a focus on the factors that could influence translational repression vs. decay.
Collapse
Affiliation(s)
- Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Timothy Winter
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | | |
Collapse
|
23
|
Phillips CM, Updike DL. Germ granules and gene regulation in the Caenorhabditis elegans germline. Genetics 2022; 220:6541922. [PMID: 35239965 PMCID: PMC8893257 DOI: 10.1093/genetics/iyab195] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/10/2021] [Indexed: 01/27/2023] Open
Abstract
The transparency of Caenorhabditis elegans provides a unique window to observe and study the function of germ granules. Germ granules are specialized ribonucleoprotein (RNP) assemblies specific to the germline cytoplasm, and they are largely conserved across Metazoa. Within the germline cytoplasm, they are positioned to regulate mRNA abundance, translation, small RNA production, and cytoplasmic inheritance to help specify and maintain germline identity across generations. Here we provide an overview of germ granules and focus on the significance of more recent observations that describe how they further demix into sub-granules, each with unique compositions and functions.
Collapse
Affiliation(s)
- Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,Corresponding author: (C.M.P.); (D.L.U.)
| | - Dustin L Updike
- The Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA,Corresponding author: (C.M.P.); (D.L.U.)
| |
Collapse
|
24
|
Jungers CF, Djuranovic S. Modulation of miRISC-Mediated Gene Silencing in Eukaryotes. Front Mol Biosci 2022; 9:832916. [PMID: 35237661 PMCID: PMC8882679 DOI: 10.3389/fmolb.2022.832916] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Gene expression is regulated at multiple levels in eukaryotic cells. Regulation at the post-transcriptional level is modulated by various trans-acting factors that bind to specific sequences in the messenger RNA (mRNA). The binding of different trans factors influences various aspects of the mRNA such as degradation rate, translation efficiency, splicing, localization, etc. MicroRNAs (miRNAs) are short endogenous ncRNAs that combine with the Argonaute to form the microRNA-induced silencing complex (miRISC), which uses base-pair complementation to silence the target transcript. RNA-binding proteins (RBPs) contribute to post-transcriptional control by influencing the mRNA stability and translation upon binding to cis-elements within the mRNA transcript. RBPs have been shown to impact gene expression through influencing the miRISC biogenesis, composition, or miRISC-mRNA target interaction. While there is clear evidence that those interactions between RBPs, miRNAs, miRISC and target mRNAs influence the efficiency of miRISC-mediated gene silencing, the exact mechanism for most of them remains unclear. This review summarizes our current knowledge on gene expression regulation through interactions of miRNAs and RBPs.
Collapse
|
25
|
Oliver C, Annacondia ML, Wang Z, Jullien PE, Slotkin RK, Köhler C, Martinez G. The miRNome function transitions from regulating developmental genes to transposable elements during pollen maturation. THE PLANT CELL 2022; 34:784-801. [PMID: 34755870 PMCID: PMC8824631 DOI: 10.1093/plcell/koab280] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Animal and plant microRNAs (miRNAs) are essential for the spatio-temporal regulation of development. Together with this role, plant miRNAs have been proposed to target transposable elements (TEs) and stimulate the production of epigenetically active small interfering RNAs. This activity is evident in the plant male gamete containing structure, the male gametophyte or pollen grain. How the dual role of plant miRNAs, regulating both genes and TEs, is integrated during pollen development and which mRNAs are regulated by miRNAs in this cell type at a genome-wide scale are unknown. Here, we provide a detailed analysis of miRNA dynamics and activity during pollen development in Arabidopsis thaliana using small RNA and degradome parallel analysis of RNA end high-throughput sequencing. Furthermore, we uncover miRNAs loaded into the two main active Argonaute (AGO) proteins in the uninuclear and mature pollen grain, AGO1 and AGO5. Our results indicate that the developmental progression from microspore to mature pollen grain is characterized by a transition from miRNAs targeting developmental genes to miRNAs regulating TE activity.
Collapse
Affiliation(s)
- Cecilia Oliver
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Maria Luz Annacondia
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Zhenxing Wang
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
- College of Horticulture and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs and Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China
| | - Pauline E Jullien
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- Division of Biological Sciences, University of Missouri Columbia, Columbia, Missouri 65201, USA
| | - Claudia Köhler
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | | |
Collapse
|
26
|
Iwakawa HO, Tomari Y. Life of RISC: Formation, action, and degradation of RNA-induced silencing complex. Mol Cell 2021; 82:30-43. [PMID: 34942118 DOI: 10.1016/j.molcel.2021.11.026] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023]
Abstract
Small RNAs regulate a wide variety of biological processes by repressing the expression of target genes at the transcriptional and post-transcriptional levels. To achieve these functions, small RNAs form RNA-induced silencing complex (RISC) together with a member of the Argonaute (AGO) protein family. RISC is directed by its bound small RNA to target complementary RNAs and represses their expression through mRNA cleavage, degradation, and/or translational repression. Many different factors fine-tune RISC activity and stability-from guide-target RNA complementarity to the recruitment of other protein partners to post-translational modifications of RISC itself. Here, we review recent progress in understanding RISC formation, action, and degradation, and discuss new, intriguing questions in the field.
Collapse
Affiliation(s)
- Hiro-Oki Iwakawa
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
27
|
Chen HY, Lu J, Wang ZK, Yang J, Ling X, Zhu P, Zheng SY. Hsa-miR-199a-5p Protect Cell Injury in Hypoxia Induces Myocardial Cells Via Targeting HIF1α. Mol Biotechnol 2021; 64:482-492. [PMID: 34843094 DOI: 10.1007/s12033-021-00423-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022]
Abstract
Myocardial infarction (MI) is one of the most common global diseases. Recently, microRNA 199a-5p (miR-199a-5p) has been recognized as a vital regulator in several human diseases. Nevertheless, the function of miR-199a-5p and the associated downstream molecular mechanisms in myocardial injury remain undescribed. Here, we assessed the relative expression of miR-199a-5p in an oxidative stress injury model of human myocardial cells. The effects of miR-199a-5p on myocardial cell viability were determined by cell counting kit-8 (CCK-8), terminal deoxynucleotidyl transferase UTP nick end labeling (TUNEL), flow cytometry, and western blot assays. Online bioinformatic analysis was used to predict the aim of miR-199a-5p in cardiomyocyte injury, which was confirmed by dual-luciferase reporter assays. miR-199a-5p increased the growth rate of cardiomyocytes after treatment with a hypoxic environment. miR-199a-5p acted as an inhibitor directly targeted hypoxia-inducible factor-1 (HIF1α) expression, which was higher in the cardiomyocyte injury model than that in healthy myocardial cells. Upregulated HIF1α expression abolished miR-199a-5p-induced cell proliferation in the cardiomyocyte hypoxia model. Our results suggest that miR-199a-5p is a potential prognostic biomarker in myocardial damage.
Collapse
Affiliation(s)
- Hui-Yong Chen
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China.,Department of Thoracic Surgery, Yuebei People's Hospital, Shantou University, Shaoguan, People's Republic of China
| | - Jun Lu
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Zheng-Kang Wang
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Jie Yang
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Xiao Ling
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Peng Zhu
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China. .,Department of Cardiothoracic Surgery, Nanfang hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun, Guangzhou, Guangdong, 510280, People's Republic of China.
| | - Shao-Yi Zheng
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China. .,Department of Cardiothoracic Surgery, Nanfang hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun, Guangzhou, Guangdong, 510280, People's Republic of China.
| |
Collapse
|
28
|
Frédérick PM, Simard MJ. Regulation and different functions of the animal microRNA-induced silencing complex. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1701. [PMID: 34725940 DOI: 10.1002/wrna.1701] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/03/2023]
Abstract
Among the different types of small RNAs, microRNAs (miRNAs) are key players in controlling gene expression at the mRNA level. To be active, they must associate with an Argonaute protein to form the miRNA induced silencing complex (miRISC) and binds to specific mRNA through complementarity sequences. The miRISC binding to an mRNA can lead to multiple outcomes, the most frequent being inhibition of the translation and/or deadenylation followed by decapping and mRNA decay. In the last years, several studies described different mechanisms modulating miRISC functions in animals. For instance, the regulation of the Argonaute protein through post-translational modifications can change the miRISC gene regulatory activity as well as modulate its binding to proteins, mRNA targets and miRISC stability. Furthermore, the presence of RNA binding proteins and multiple miRISCs at the targeted mRNA 3' untranslated region (3'UTR) can also affect its function through cooperation or competition mechanisms, underlying the importance of the 3'UTR environment in miRNA-mediated repression. Another way to regulate the miRISC function is by modulation of its interactors, forming different types of miRNA silencing complexes that affect gene regulation differently. It is also reported that the subcellular localization of several components of the miRNA pathway can modulate miRISC function, suggesting an important role for vesicular trafficking in the regulation of this essential silencing complex. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Pierre-Marc Frédérick
- Oncology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada.,Université Laval Cancer Research Centre, Québec, QC, Canada
| | - Martin J Simard
- Oncology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada.,Université Laval Cancer Research Centre, Québec, QC, Canada
| |
Collapse
|
29
|
Mayya VK, Flamand MN, Lambert AM, Jafarnejad SM, Wohlschlegel JA, Sonenberg N, Duchaine TF. microRNA-mediated translation repression through GYF-1 and IFE-4 in C. elegans development. Nucleic Acids Res 2021; 49:4803-4815. [PMID: 33758928 PMCID: PMC8136787 DOI: 10.1093/nar/gkab162] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
microRNA (miRNA)-mediated gene silencing is enacted through the recruitment of effector proteins that direct translational repression or degradation of mRNA targets, but the relative importance of their activities for animal development remains unknown. Our concerted proteomic surveys identified the uncharacterized GYF-domain encoding protein GYF-1 and its direct interaction with IFE-4, the ortholog of the mammalian translation repressor 4EHP, as key miRNA effector proteins in Caenorhabditis elegans. Recruitment of GYF-1 protein to mRNA reporters in vitro or in vivo leads to potent translation repression without affecting the poly(A) tail or impinging on mRNA stability. Loss of gyf-1 is synthetic lethal with hypomorphic alleles of embryonic miR-35-42 and larval (L4) let-7 miRNAs, which is phenocopied through engineered mutations in gyf-1 that abolish interaction with IFE-4. GYF-1/4EHP function is cascade-specific, as loss of gyf-1 had no noticeable impact on the functions of other miRNAs, including lin-4 and lsy-6. Overall, our findings reveal the first direct effector of miRNA-mediated translational repression in C. elegans and its physiological importance for the function of several, but likely not all miRNAs.
Collapse
Affiliation(s)
- Vinay K Mayya
- Goodman Cancer Research Center, McGill University, Montréal H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Canada
| | - Mathieu N Flamand
- Goodman Cancer Research Center, McGill University, Montréal H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Canada
| | - Alice M Lambert
- Goodman Cancer Research Center, McGill University, Montréal H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University of Belfast, Belfast BT9 7AE UK
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Nahum Sonenberg
- Goodman Cancer Research Center, McGill University, Montréal H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Canada
| | - Thomas F Duchaine
- Goodman Cancer Research Center, McGill University, Montréal H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Canada
| |
Collapse
|
30
|
Cipriani PG, Bay O, Zinno J, Gutwein M, Gan HH, Mayya VK, Chung G, Chen JX, Fahs H, Guan Y, Duchaine TF, Selbach M, Piano F, Gunsalus KC. Novel LOTUS-domain proteins are organizational hubs that recruit C. elegans Vasa to germ granules. eLife 2021; 10:60833. [PMID: 34223818 PMCID: PMC8331183 DOI: 10.7554/elife.60833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 06/27/2021] [Indexed: 12/16/2022] Open
Abstract
We describe MIP-1 and MIP-2, novel paralogous C. elegans germ granule components that interact with the intrinsically disordered MEG-3 protein. These proteins promote P granule condensation, form granules independently of MEG-3 in the postembryonic germ line, and balance each other in regulating P granule growth and localization. MIP-1 and MIP-2 each contain two LOTUS domains and intrinsically disordered regions and form homo- and heterodimers. They bind and anchor the Vasa homolog GLH-1 within P granules and are jointly required for coalescence of MEG-3, GLH-1, and PGL proteins. Animals lacking MIP-1 and MIP-2 show temperature-sensitive embryonic lethality, sterility, and mortal germ lines. Germline phenotypes include defects in stem cell self-renewal, meiotic progression, and gamete differentiation. We propose that these proteins serve as scaffolds and organizing centers for ribonucleoprotein networks within P granules that help recruit and balance essential RNA processing machinery to regulate key developmental transitions in the germ line.
Collapse
Affiliation(s)
- Patricia Giselle Cipriani
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States.,NYU Abu Dhabi Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Olivia Bay
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - John Zinno
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Michelle Gutwein
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Hin Hark Gan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Vinay K Mayya
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada
| | - George Chung
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Jia-Xuan Chen
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Hala Fahs
- NYU Abu Dhabi Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Yu Guan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Thomas F Duchaine
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada
| | | | - Fabio Piano
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States.,NYU Abu Dhabi Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States.,NYU Abu Dhabi Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
31
|
Brosnan CA, Palmer AJ, Zuryn S. Cell-type-specific profiling of loaded miRNAs from Caenorhabditis elegans reveals spatial and temporal flexibility in Argonaute loading. Nat Commun 2021; 12:2194. [PMID: 33850152 PMCID: PMC8044110 DOI: 10.1038/s41467-021-22503-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
Multicellularity has coincided with the evolution of microRNAs (miRNAs), small regulatory RNAs that are integrated into cellular differentiation and homeostatic gene-regulatory networks. However, the regulatory mechanisms underpinning miRNA activity have remained largely obscured because of the precise, and thus difficult to access, cellular contexts under which they operate. To resolve these, we have generated a genome-wide map of active miRNAs in Caenorhabditis elegans by revealing cell-type-specific patterns of miRNAs loaded into Argonaute (AGO) silencing complexes. Epitope-labelled AGO proteins were selectively expressed and immunoprecipitated from three distinct tissue types and associated miRNAs sequenced. In addition to providing information on biological function, we define adaptable miRNA:AGO interactions with single-cell-type and AGO-specific resolution. We demonstrate spatial and temporal dynamicism, flexibility of miRNA loading, and suggest miRNA regulatory mechanisms via AGO selectivity in different tissues and during ageing. Additionally, we resolve widespread changes in AGO-regulated gene expression by analysing translatomes specifically in neurons.
Collapse
Affiliation(s)
- Christopher A Brosnan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia.
| | - Alexander J Palmer
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
32
|
Michaud P, Shah VN, Adjibade P, Houle F, Quévillon Huberdeau M, Rioux R, Lavoie-Ouellet C, Gu W, Mazroui R, Simard MJ. The RabGAP TBC-11 controls Argonaute localization for proper microRNA function in C. elegans. PLoS Genet 2021; 17:e1009511. [PMID: 33826611 PMCID: PMC8055011 DOI: 10.1371/journal.pgen.1009511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/19/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Once loaded onto Argonaute proteins, microRNAs form a silencing complex called miRISC that targets mostly the 3'UTR of mRNAs to silence their translation. How microRNAs are transported to and from their target mRNA remains poorly characterized. While some reports linked intracellular trafficking to microRNA activity, it is still unclear how these pathways coordinate for proper microRNA-mediated gene silencing and turnover. Through a forward genetic screen using Caenorhabditis elegans, we identified the RabGAP tbc-11 as an important factor for the microRNA pathway. We show that TBC-11 acts mainly through the small GTPase RAB-6 and that its regulation is required for microRNA function. The absence of functional TBC-11 increases the pool of microRNA-unloaded Argonaute ALG-1 that is likely associated to endomembranes. Furthermore, in this condition, this pool of Argonaute accumulates in a perinuclear region and forms a high molecular weight complex. Altogether, our data suggest that the alteration of TBC-11 generates a fraction of ALG-1 that cannot bind to target mRNAs, leading to defective gene repression. Our results establish the importance of intracellular trafficking for microRNA function and demonstrate the involvement of a small GTPase and its GAP in proper Argonaute localization in vivo.
Collapse
Affiliation(s)
- Pascale Michaud
- CHU de Québec-Université Laval Research Center (Oncology division), Québec, Canada
- Université Laval Cancer Research Centre, Québec, Québec, Canada
| | - Vivek Nilesh Shah
- CHU de Québec-Université Laval Research Center (Oncology division), Québec, Canada
- Université Laval Cancer Research Centre, Québec, Québec, Canada
| | - Pauline Adjibade
- CHU de Québec-Université Laval Research Center (Oncology division), Québec, Canada
- Université Laval Cancer Research Centre, Québec, Québec, Canada
| | - Francois Houle
- CHU de Québec-Université Laval Research Center (Oncology division), Québec, Canada
- Université Laval Cancer Research Centre, Québec, Québec, Canada
| | - Miguel Quévillon Huberdeau
- CHU de Québec-Université Laval Research Center (Oncology division), Québec, Canada
- Université Laval Cancer Research Centre, Québec, Québec, Canada
| | - Rachel Rioux
- CHU de Québec-Université Laval Research Center (Oncology division), Québec, Canada
- Université Laval Cancer Research Centre, Québec, Québec, Canada
| | - Camille Lavoie-Ouellet
- CHU de Québec-Université Laval Research Center (Oncology division), Québec, Canada
- Université Laval Cancer Research Centre, Québec, Québec, Canada
| | - Weifeng Gu
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Rachid Mazroui
- CHU de Québec-Université Laval Research Center (Oncology division), Québec, Canada
- Université Laval Cancer Research Centre, Québec, Québec, Canada
| | - Martin J. Simard
- CHU de Québec-Université Laval Research Center (Oncology division), Québec, Canada
- Université Laval Cancer Research Centre, Québec, Québec, Canada
| |
Collapse
|
33
|
Galagali H, Kim JK. The multifaceted roles of microRNAs in differentiation. Curr Opin Cell Biol 2020; 67:118-140. [PMID: 33152557 DOI: 10.1016/j.ceb.2020.08.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are major drivers of cell fate specification and differentiation. The post-transcriptional regulation of key molecular factors by microRNAs contributes to the progression of embryonic and postembryonic development in several organisms. Following the discovery of lin-4 and let-7 in Caenorhabditis elegans and bantam microRNAs in Drosophila melanogaster, microRNAs have emerged as orchestrators of cellular differentiation and developmental timing. Spatiotemporal control of microRNAs and associated protein machinery can modulate microRNA activity. Additionally, adaptive modulation of microRNA expression and function in response to changing environmental conditions ensures that robust cell fate specification during development is maintained. Herein, we review the role of microRNAs in the regulation of differentiation during development.
Collapse
Affiliation(s)
- Himani Galagali
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - John K Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
34
|
Abstract
A diversity of gene regulatory mechanisms drives the changes in gene expression required for animal development. Here, we discuss the developmental roles of a class of gene regulatory factors composed of a core protein subunit of the Argonaute family and a 21-26-nucleotide RNA cofactor. These represent ancient regulatory complexes, originally evolved to repress genomic parasites such as transposons, viruses and retroviruses. However, over the course of evolution, small RNA-guided pathways have expanded and diversified, and they play multiple roles across all eukaryotes. Pertinent to this review, Argonaute and small RNA-mediated regulation has acquired numerous functions that affect all aspects of animal life. The regulatory function is provided by the Argonaute protein and its interactors, while the small RNA provides target specificity, guiding the Argonaute to a complementary RNA. C. elegans has 19 different, functional Argonautes, defining distinct yet interconnected pathways. Each Argonaute binds a relatively well-defined class of small RNA with distinct molecular properties. A broad classification of animal small RNA pathways distinguishes between two groups: (i) the microRNA pathway is involved in repressing relatively specific endogenous genes and (ii) the other small RNA pathways, which effectively act as a genomic immune system to primarily repress expression of foreign or "non-self" RNA while maintaining correct endogenous gene expression. microRNAs play prominent direct roles in all developmental stages, adult physiology and lifespan. The other small RNA pathways act primarily in the germline, but their impact extends far beyond, into embryogenesis and adult physiology, and even to subsequent generations. Here, we review the mechanisms and developmental functions of the diverse small RNA pathways of C. elegans.
Collapse
Affiliation(s)
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
35
|
Dexheimer PJ, Cochella L. MicroRNAs: From Mechanism to Organism. Front Cell Dev Biol 2020; 8:409. [PMID: 32582699 PMCID: PMC7283388 DOI: 10.3389/fcell.2020.00409] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short, regulatory RNAs that act as post-transcriptional repressors of gene expression in diverse biological contexts. The emergence of small RNA-mediated gene silencing preceded the onset of multicellularity and was followed by a drastic expansion of the miRNA repertoire in conjunction with the evolution of complexity in the plant and animal kingdoms. Along this process, miRNAs became an essential feature of animal development, as no higher metazoan lineage tolerated loss of miRNAs or their associated protein machinery. In fact, ablation of the miRNA biogenesis machinery or the effector silencing factors results in severe embryogenesis defects in every animal studied. In this review, we summarize recent mechanistic insight into miRNA biogenesis and function, while emphasizing features that have enabled multicellular organisms to harness the potential of this broad class of repressors. We first discuss how different mechanisms of regulation of miRNA biogenesis are used, not only to generate spatio-temporal specificity of miRNA production within an animal, but also to achieve the necessary levels and dynamics of expression. We then explore how evolution of the mechanism for small RNA-mediated repression resulted in a diversity of silencing complexes that cause different molecular effects on their targets. Multicellular organisms have taken advantage of this variability in the outcome of miRNA-mediated repression, with differential use in particular cell types or even distinct subcellular compartments. Finally, we present an overview of how the animal miRNA repertoire has evolved and diversified, emphasizing the emergence of miRNA families and the biological implications of miRNA sequence diversification. Overall, focusing on selected animal models and through the lens of evolution, we highlight canonical mechanisms in miRNA biology and their variations, providing updated insight that will ultimately help us understand the contribution of miRNAs to the development and physiology of multicellular organisms.
Collapse
Affiliation(s)
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
36
|
Kakumani PK, Harvey LM, Houle F, Guitart T, Gebauer F, Simard MJ. CSDE1 controls gene expression through the miRNA-mediated decay machinery. Life Sci Alliance 2020; 3:e201900632. [PMID: 32161113 PMCID: PMC7067469 DOI: 10.26508/lsa.201900632] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
In animals, miRNAs are the most prevalent small non-coding RNA molecules controlling posttranscriptional gene regulation. The Argonaute proteins (AGO) mediate miRNA-guided gene silencing by recruiting multiple factors involved in translational repression, deadenylation, and decapping. Here, we report that CSDE1, an RNA-binding protein linked to stem cell maintenance and metastasis in cancer, interacts with AGO2 within miRNA-induced silencing complex and mediates gene silencing through its N-terminal domains. We show that CSDE1 interacts with LSM14A, a constituent of P-body assembly and further associates to the DCP1-DCP2 decapping complex, suggesting that CSDE1 could promote the decay of miRNA-induced silencing complex-targeted mRNAs. Together, our findings uncover a hitherto unknown mechanism used by CSDE1 in the control of gene expression mediated by the miRNA pathway.
Collapse
Affiliation(s)
- Pavan Kumar Kakumani
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| | - Louis-Mathieu Harvey
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| | - François Houle
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| | - Tanit Guitart
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fátima Gebauer
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Martin J Simard
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| |
Collapse
|
37
|
Nawalpuri B, Ravindran S, Muddashetty RS. The Role of Dynamic miRISC During Neuronal Development. Front Mol Biosci 2020; 7:8. [PMID: 32118035 PMCID: PMC7025485 DOI: 10.3389/fmolb.2020.00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent protein synthesis plays an important role during neuronal development by fine-tuning the formation and function of neuronal circuits. Recent studies have shown that miRNAs are integral to this regulation because of their ability to control protein synthesis in a rapid, specific and potentially reversible manner. miRNA mediated regulation is a multistep process that involves inhibition of translation before degradation of targeted mRNA, which provides the possibility to store and reverse the inhibition at multiple stages. This flexibility is primarily thought to be derived from the composition of miRNA induced silencing complex (miRISC). AGO2 is likely the only obligatory component of miRISC, while multiple RBPs are shown to be associated with this core miRISC to form diverse miRISC complexes. The formation of these heterogeneous miRISC complexes is intricately regulated by various extracellular signals and cell-specific contexts. In this review, we discuss the composition of miRISC and its functions during neuronal development. Neurodevelopment is guided by both internal programs and external cues. Neuronal activity and external signals play an important role in the formation and refining of the neuronal network. miRISC composition and diversity have a critical role at distinct stages of neurodevelopment. Even though there is a good amount of literature available on the role of miRNAs mediated regulation of neuronal development, surprisingly the role of miRISC composition and its functional dynamics in neuronal development is not much discussed. In this article, we review the available literature on the heterogeneity of the neuronal miRISC composition and how this may influence translation regulation in the context of neuronal development.
Collapse
Affiliation(s)
- Bharti Nawalpuri
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,School of Chemical and Biotechnology, Shanmugha Arts, Science, and Technology and Research Academy (SASTRA) University, Thanjavur, India
| | - Sreenath Ravindran
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ravi S Muddashetty
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India
| |
Collapse
|
38
|
An ortholog of the Vasa intronic gene is required for small RNA-mediated translation repression in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2019; 117:761-770. [PMID: 31871206 PMCID: PMC6955306 DOI: 10.1073/pnas.1908356117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Small RNAs (sRNAs) are a class of noncoding RNAs that regulate complementary mRNAs, by triggering translation repression and/or transcript decay, and influence multiple biological processes. In animals, land plants, and some protists like the alga Chlamydomonas, sRNAs can repress translation of polyribosome-associated mRNAs, without or with only minimal transcript destabilization. However, the precise silencing mechanism is poorly understood. We found that Chlamydomonas VIG1, a homolog of the Drosophila melanogaster Vasa intronic gene and a member of a widely conserved protein family in eukaryotes, is involved in this process. VIG1 appears to be an ancillary ribosomal constituent. Additionally, VIG1 copurifies with core components of sRNA effector complexes and plays a key role in the sRNA-mediated translation repression of polyribosomal transcripts. Small RNAs (sRNAs) associate with Argonaute (AGO) proteins in effector complexes, termed RNA-induced silencing complexes (RISCs), which regulate complementary transcripts by translation inhibition and/or RNA degradation. In the unicellular alga Chlamydomonas, several metazoans, and land plants, emerging evidence indicates that polyribosome-associated transcripts can be translationally repressed by RISCs without substantial messenger RNA (mRNA) destabilization. However, the mechanism of translation inhibition in a polyribosomal context is not understood. Here we show that Chlamydomonas VIG1, an ortholog of the Drosophila melanogaster Vasa intronic gene (VIG), is required for this process. VIG1 localizes predominantly in the cytosol and comigrates with monoribosomes and polyribosomes by sucrose density gradient sedimentation. A VIG1-deleted mutant shows hypersensitivity to the translation elongation inhibitor cycloheximide, suggesting that VIG1 may have a nonessential role in ribosome function/structure. Additionally, FLAG-tagged VIG1 copurifies with AGO3 and Dicer-like 3 (DCL3), consistent with it also being a component of the RISC. Indeed, VIG1 is necessary for the repression of sRNA-targeted transcripts at the translational level but is dispensable for cleavage-mediated RNA interference and for the association of the AGO3 effector with polyribosomes or target transcripts. Our results suggest that VIG1 is an ancillary ribosomal component and plays a role in sRNA-mediated translation repression of polyribosomal transcripts.
Collapse
|
39
|
Li L, Veksler-Lublinsky I, Zinovyeva A. HRPK-1, a conserved KH-domain protein, modulates microRNA activity during Caenorhabditis elegans development. PLoS Genet 2019; 15:e1008067. [PMID: 31584932 PMCID: PMC6795461 DOI: 10.1371/journal.pgen.1008067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/16/2019] [Accepted: 09/11/2019] [Indexed: 01/14/2023] Open
Abstract
microRNAs (miRNAs) are potent regulators of gene expression that function in diverse developmental and physiological processes. Argonaute proteins loaded with miRNAs form the miRNA Induced Silencing Complexes (miRISCs) that repress gene expression at the post-transcriptional level. miRISCs target genes through partial sequence complementarity between the miRNA and the target mRNA’s 3’ UTR. In addition to being targeted by miRNAs, these mRNAs are also extensively regulated by RNA-binding proteins (RBPs) through RNA processing, transport, stability, and translation regulation. While the degree to which RBPs and miRISCs interact to regulate gene expression is likely extensive, we have only begun to unravel the mechanisms of this functional cooperation. An RNAi-based screen of putative ALG-1 Argonaute interactors has identified a role for a conserved RNA binding protein, HRPK-1, in modulating miRNA activity during C. elegans development. Here, we report the physical and genetic interaction between HRPK-1 and ALG-1/miRNAs. Specifically, we report the genetic and molecular characterizations of hrpk-1 and its role in C. elegans development and miRNA-mediated target repression. We show that loss of hrpk-1 causes numerous developmental defects and enhances the mutant phenotypes associated with reduction of miRNA activity, including those of lsy-6, mir-35-family, and let-7-family miRNAs. In addition to hrpk-1 genetic interaction with these miRNA families, hrpk-1 is required for efficient regulation of lsy-6 target cog-1. We report that hrpk-1 plays a role in processing of some but not all miRNAs and is not required for ALG-1/AIN-1 miRISC assembly. We suggest that HRPK-1 may functionally interact with miRNAs by both affecting miRNA processing and by enhancing miRNA/miRISC gene regulatory activity and present models for its activity. microRNAs are small non-coding RNAs that regulate gene expression at the post-transcriptional level. The core microRNA Induced Silencing Complex (miRISC), composed of Argonaute, mature microRNA, and GW182 protein effector, assembles on the target messenger RNA and inhibits translation or leads to messenger RNA degradation. RNA binding proteins interface with miRNA pathways on multiple levels to coordinate gene expression regulation. Here, we report identification and characterization of HRPK-1, a conserved RNA binding protein, as a physical and functional interactor of miRNAs. We confirm the physical interaction between HRPK-1, an hnRNPK homolog, and Argonaute ALG-1. We report characterizations of hrpk-1 role in development and its functional interactions with multiple miRNA families. We suggest that HRPK-1 promotes miRNA activity on multiple levels in part by contributing to miRNA processing and by coordinating with miRISC at the level of target RNAs. This work contributes to our understanding of how RNA binding proteins and auxiliary miRNA cofactors may interface with miRNA pathways to modulate miRNA gene regulatory activity.
Collapse
Affiliation(s)
- Li Li
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Isana Veksler-Lublinsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-sheva, Israel
| | - Anna Zinovyeva
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
40
|
Theil K, Imami K, Rajewsky N. Identification of proteins and miRNAs that specifically bind an mRNA in vivo. Nat Commun 2019; 10:4205. [PMID: 31527589 PMCID: PMC6746756 DOI: 10.1038/s41467-019-12050-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/19/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding regulation of an mRNA requires knowledge of its regulators. However, methods for reliable de-novo identification of proteins binding to a particular RNA are scarce and were thus far only successfully applied to abundant noncoding RNAs in cell culture. Here, we present vIPR, an RNA-protein crosslink, RNA pulldown, and shotgun proteomics approach to identify proteins bound to selected mRNAs in C. elegans. Applying vIPR to the germline-specific transcript gld-1 led to enrichment of known and novel interactors. By comparing enrichment upon gld-1 and lin-41 pulldown, we demonstrate that vIPR recovers both common and specific RNA-binding proteins, and we validate DAZ-1 as a specific gld-1 regulator. Finally, combining vIPR with small RNA sequencing, we recover known and biologically important transcript-specific miRNA interactions, and we identify miR-84 as a specific interactor of the gld-1 transcript. We envision that vIPR will provide a platform for investigating RNA in vivo regulation in diverse biological systems.
Collapse
Affiliation(s)
- Kathrin Theil
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
| | - Koshi Imami
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- Laboratory of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
| |
Collapse
|
41
|
Minogue AL, Arur S. In Situ Hybridization for Detecting Mature MicroRNAs In Vivo at Single-Cell Resolution. ACTA ACUST UNITED AC 2019; 127:e93. [PMID: 31237425 DOI: 10.1002/cpmb.93] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of cell and tissue development. However, spatial resolution of miRNA heterogeneity and accumulation patterns in vivo remains uncharted. Next-generation sequencing methods assay miRNA abundance in tissues, yet these analyses do not provide spatial resolution. A method to assay miRNA expression at single-cell resolution in vivo should clarify the cell-autonomous functions of miRNAs, their roles in influencing the cellular microenvironment, and their perdurance and turnover rate. We present an in situ hybridization protocol to map miRNA subcellular expression in single cells in vivo in four days. Using this protocol, we mapped distinct miRNAs that accumulate in the cytoplasm of one sibling oocyte but not another, dependent on the oocyte developmental stage. Thus, this method provides spatial and temporal resolution of the heterogeneity in expression of miRNAs during Caenorhabditis elegans oogenesis. This protocol can generally be adapted to any tissue amenable to dissection and fixation. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Amanda L Minogue
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Swathi Arur
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
42
|
Lu Z, He Q, Liang J, Li W, Su Q, Chen Z, Wan Q, Zhou X, Cao L, Sun J, Wu Y, Liu L, Wu X, Hou J, Lian K, Wang A. miR-31-5p Is a Potential Circulating Biomarker and Therapeutic Target for Oral Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:471-480. [PMID: 31051332 PMCID: PMC6495075 DOI: 10.1016/j.omtn.2019.03.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/30/2019] [Accepted: 03/31/2019] [Indexed: 12/15/2022]
Abstract
MicroRNAs have been proposed as novel biomarkers for the diagnosis and treatment of many types of cancer. The levels of five candidate microRNAs (miRNAs) (miR-99a-5p, miR-31-5p, miR-138-5p, miR-21-5p, and miR-375-3p) in sera from oral cancer patients and paired tumor and normal tissues were detected by real-time qPCR. The diagnostic power of these miRNAs was analyzed by receiver operating characteristic (ROC) curves. Patient-derived xenograft (PDX) models of oral cancer were established and utilized to verify the potential therapeutic effect of miR-31-5p. Candidate miRNAs were screened from our previous studies and verified in 11 paired oral cancer and adjacent normal tissues. Only serum miR-31-5p levels were significantly different between oral cancer patients and healthy controls and between pre- and postoperative patients. Based on the logistic regression model, this panel of five miRNAs distinguished oral cancer patients from healthy control, with an area under the ROC curve (AUC) of 0.776 (sensitivity = 76.8% and specificity = 73.6%). Furthermore, a miR-31-5p mimic enhanced the proliferation of normal epithelial cells, and antagomiR-31-5p inhibited the proliferation of oral cancer cells in vitro. In vivo, antagomiR-31-5p significantly inhibited tumor growth in oral cancer PDX models. Our findings suggest that circulating miR-31-5p might act as an independent biomarker for oral cancer diagnosis and could serve as a therapeutic target for oral cancer.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, 510080 Guangzhou, China
| | - Qianting He
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, 510080 Guangzhou, China
| | - Jianfeng Liang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 510080 Guangzhou, China
| | - Wuguo Li
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-Sen University, 510080 Guangzhou, China
| | - Qiao Su
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-Sen University, 510080 Guangzhou, China
| | - Zujian Chen
- Center for Molecular Biology of Oral Diseases, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60601, USA
| | - Quan Wan
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, China
| | - Xiaofeng Zhou
- Center for Molecular Biology of Oral Diseases, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60601, USA
| | - Laurel Cao
- Guanghua College of Stomatology, Sun-Yat Sen University, 510080 Guangzhou, China
| | - Jingjing Sun
- Department of Stomatology, First Affiliated Hospital, Guangdong Pharmaceutical University, 510080 Guangzhou, China
| | - Yu Wu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, 510080 Guangzhou, China
| | - Lin Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, 510080 Guangzhou, China
| | - Xinming Wu
- Center for Molecular Biology of Oral Diseases, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60601, USA
| | - Jinsong Hou
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 510080 Guangzhou, China
| | - Keqian Lian
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-Sen University, 510080 Guangzhou, China.
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, 510080 Guangzhou, China.
| |
Collapse
|
43
|
MiR-35 buffers apoptosis thresholds in the C. elegans germline by antagonizing both MAPK and core apoptosis pathways. Cell Death Differ 2019; 26:2637-2651. [PMID: 30952991 PMCID: PMC7224216 DOI: 10.1038/s41418-019-0325-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023] Open
Abstract
Apoptosis is a genetically programmed cell death process with profound roles in development and disease. MicroRNAs modulate the expression of many proteins and are often deregulated in human diseases, such as cancer. C. elegans germ cells undergo apoptosis in response to genotoxic stress by the combined activities of the core apoptosis and MAPK pathways, but how their signalling thresholds are buffered is an open question. Here we show mir-35–42 miRNA family play a dual role in antagonizing both NDK-1, a positive regulator of MAPK signalling, and the BH3-only pro-apoptotic protein EGL-1 to regulate the magnitude of DNA damage-induced apoptosis in the C. elegans germline. We show that while miR-35 represses EGL-1 by promoting transcript degradation, repression of NDK-1 may be through sequestration of the transcript to inhibit translation. Importantly, dramatic increase in NDK-1 expression was observed in cells about to die. In the absence of miR-35, increased NDK-1 activity enhanced MAPK signalling that lead to significant increases in germ cell death. Our findings demonstrate that NDK-1 acts upstream of (or in parallel to) EGL-1, and that miR-35 targets both egl-1 and ndk-1 to fine-tune cell killing in response to genotoxic stress.
Collapse
|
44
|
Liu H, Chen X, Lin T, Chen X, Yan J, Jiang S. MicroRNA-524-5p suppresses the progression of papillary thyroid carcinoma cells via targeting on FOXE1 and ITGA3 in cell autophagy and cycling pathways. J Cell Physiol 2019; 234:18382-18391. [PMID: 30941771 PMCID: PMC6618135 DOI: 10.1002/jcp.28472] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 01/01/2023]
Abstract
MicroRNAs are beneficial for cancer therapy as they can simultaneously downregulate multiple targets involved in diverse biological pathways related to tumor development. In papillary thyroid cancer, many microRNAs were identified as differentially expressed factors in tumor tissues. In another way, recent studies revealed cell proliferation, cell cycling, apoptosis, and autophagy are critical pathways controlling papillary thyroid cancer development and progression. As miR‐524‐5p was approved as a cancer suppressor targeting multiple genes in several types of cancer cells, this study aims to characterize the role of miR‐524‐5p in the thyroid cancer cell. The expression of miR‐524‐5p was decreased in the papillary thyroid cancer tissues and cell lines, while forkhead box E1 (FOXE1) and ITGA3 were increased. In the clinical case, expression of miR‐524‐5p, FOXE1, and ITGA3 were significantly correlated with papillary thyroid cancer development and progression. FOXE1 and ITGA3 were approved as direct targets of miR‐524‐5p. miR‐524‐5p could inhibit papillary thyroid cancer cell viability, migration, invasion, and apoptosis through targeting FOXE1 and ITGA3. Cell cycling and autophagy pathways were disturbed by downregulation of FOXE1 and ITGA3, respectively. Collectively, miR‐524‐5p targeting on FOXE1 and ITGA3 prevents thyroid cancer progression through different pathways including cell cycling and autophagy.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Xi Chen
- Department of Surgery, Ruijin Hospital Affiliated of Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Ting Lin
- Department of Vascular Thyroid Surgery, Affiliated Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xingsheng Chen
- Department of Vascular Thyroid Surgery, Affiliated Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Jiqi Yan
- Department of Surgery, Ruijin Hospital Affiliated of Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Shan Jiang
- Department of Vascular Thyroid Surgery, Affiliated Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
45
|
Ramaiah M, Tan K, Plank TDM, Song HW, Chousal JN, Jones S, Shum EY, Sheridan SD, Peterson KJ, Gromoll J, Haggarty SJ, Cook-Andersen H, Wilkinson MF. A microRNA cluster in the Fragile-X region expressed during spermatogenesis targets FMR1. EMBO Rep 2019; 20:e46566. [PMID: 30573526 PMCID: PMC6362356 DOI: 10.15252/embr.201846566] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/12/2018] [Accepted: 11/21/2018] [Indexed: 01/08/2023] Open
Abstract
Testis-expressed X-linked genes typically evolve rapidly. Here, we report on a testis-expressed X-linked microRNA (miRNA) cluster that despite rapid alterations in sequence has retained its position in the Fragile-X region of the X chromosome in placental mammals. Surprisingly, the miRNAs encoded by this cluster (Fx-mir) have a predilection for targeting the immediately adjacent gene, Fmr1, an unexpected finding given that miRNAs usually act in trans, not in cis Robust repression of Fmr1 is conferred by combinations of Fx-mir miRNAs induced in Sertoli cells (SCs) during postnatal development when they terminate proliferation. Physiological significance is suggested by the finding that FMRP, the protein product of Fmr1, is downregulated when Fx-mir miRNAs are induced, and that FMRP loss causes SC hyperproliferation and spermatogenic defects. Fx-mir miRNAs not only regulate the expression of FMRP, but also regulate the expression of eIF4E and CYFIP1, which together with FMRP form a translational regulatory complex. Our results support a model in which Fx-mir family members act cooperatively to regulate the translation of batteries of mRNAs in a developmentally regulated manner in SCs.
Collapse
Affiliation(s)
- Madhuvanthi Ramaiah
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Terra-Dawn M Plank
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Hye-Won Song
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer N Chousal
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Samantha Jones
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Eleen Y Shum
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Steven D Sheridan
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Boston, MA, USA
- Departments of Neurology and Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Jörg Gromoll
- Center for Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Boston, MA, USA
- Departments of Neurology and Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Heidi Cook-Andersen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
46
|
Mayya VK, Duchaine TF. Ciphers and Executioners: How 3'-Untranslated Regions Determine the Fate of Messenger RNAs. Front Genet 2019; 10:6. [PMID: 30740123 PMCID: PMC6357968 DOI: 10.3389/fgene.2019.00006] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/07/2019] [Indexed: 12/29/2022] Open
Abstract
The sequences and structures of 3'-untranslated regions (3'UTRs) of messenger RNAs govern their stability, localization, and expression. 3'UTR regulatory elements are recognized by a wide variety of trans-acting factors that include microRNAs (miRNAs), their associated machinery, and RNA-binding proteins (RBPs). In turn, these factors instigate common mechanistic strategies to execute the regulatory programs encoded by 3'UTRs. Here, we review classes of factors that recognize 3'UTR regulatory elements and the effector machineries they guide toward mRNAs to dictate their expression and fate. We outline illustrative examples of competitive, cooperative, and coordinated interplay such as mRNA localization and localized translation. We further review the recent advances in the study of mRNP granules and phase transition, and their possible significance for the functions of 3'UTRs. Finally, we highlight some of the most recent strategies aimed at deciphering the complexity of the regulatory codes of 3'UTRs, and identify some of the important remaining challenges.
Collapse
Affiliation(s)
| | - Thomas F. Duchaine
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
47
|
Abstract
MicroRNA-mediated gene silencing can occur by either target mRNA degradation or translational repression. In this issue of Developmental Cell, Dallaire et al. (2018) show in C. elegans that tissue-specific composition of the silencing complex, miRISC, plays a major role in determining the fate of target mRNAs.
Collapse
Affiliation(s)
- Himani Galagali
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - John K Kim
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|