1
|
Ranadive I, Patel S, Pai S, Khaire K, Balakrishnan S. Disruption of BMP and FGF signaling prior to blastema formation causes permanent bending and skeletal malformations in Poecilia latipinna tail fin. ZOOLOGY 2025; 168:126237. [PMID: 39827581 DOI: 10.1016/j.zool.2025.126237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Teleost fish, such as Poecilia latipinna, exhibit remarkable regenerative capabilities, making them excellent models for studying tissue regrowth. They regenerate body parts like the tail fin through epimorphic regeneration, involving wound healing, blastema formation (a pool of proliferative cells), and tissue differentiation. Bone Morphogenetic Protein (BMP) and Fibroblast Growth Factor (FGF) signaling pathways play crucial roles in this process, but their specific functions during blastema formation remain unclear. To explore this, BMP and FGF signaling were inhibited using targeted drug treatments prior to blastema formation in amputated tail fins. The treatment group of P. latipinna received drugs at set intervals, and analyses were conducted using skeletal staining, gene expression via quantitative real-time PCR, and protein analysis with Western blotting to assess blastema formation, extracellular matrix (ECM) remodeling, and skeletal patterning. Dual inhibition of BMP and FGF pathways led to significant regenerative defects, including bent blastema and disrupted bone structure, along with downregulation of essential patterning genes like sonic hedgehog (Shh) and bmp2b. Additionally, ECM remodeling and epithelial-to-mesenchymal transition (EMT) were impaired, as shown by reduced matrix metalloproteinases (MMP2 and MMP9), hindering cell migration and blastema stability. Cell proliferation was markedly decreased, as evidenced by reduced proliferating cell nuclear antigen (PCNA) expression and bromodeoxyuridine (BrdU) incorporation, while apoptosis increased, with elevated markers like caspase 3 (casp3) and higher DNA fragmentation. These findings indicate that BMP and FGF signaling are essential for blastema formation and skeletal patterning, with their inhibition causing major regenerative abnormalities.
Collapse
Affiliation(s)
- Isha Ranadive
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Sonam Patel
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Siddharth Pai
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Kashmira Khaire
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Suresh Balakrishnan
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
| |
Collapse
|
2
|
Kametani H, Tong Y, Shimada A, Takeda H, Sushida T, Akiyama M, Kawanishi T. Twisted cell flow facilitates three-dimensional somite morphogenesis in zebrafish. Cells Dev 2024; 180:203969. [PMID: 39191372 DOI: 10.1016/j.cdev.2024.203969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/05/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Tissue elongation is a fundamental morphogenetic process to construct complex embryonic structures. In zebrafish, somites rapidly elongate in both dorsal and ventral directions, transforming from a cuboidal to a V-shape within a few hours of development. Despite its significance, the cellular behaviors that directly lead to somite elongation have not been examined at single-cell resolution. Here, we describe the motion and shapes of all cells composing the dorsal half of the somite in three-dimensional space using lightsheet microscopy. We identified two types of cell movements-in horizontal and dorsal directions-that occur simultaneously within individual cells, creating a complex, twisted flow of cells during somite elongation. Chemical inhibition of Sdf1 signaling disrupted the collective movement in both directions and inhibited somite elongation, suggesting that Sdf1 signaling is crucial for this cell flow. Furthermore, three-dimensional computational modeling suggested that horizontal cell rotation accelerates the perpendicular elongation of the somite along the dorsoventral axis. Together, our study offers novel insights into the role of collective cell migration in tissue morphogenesis, which proceeds dynamically in the three-dimensional space of the embryo.
Collapse
Affiliation(s)
- Harunobu Kametani
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Yue Tong
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Atsuko Shimada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan; Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| | - Takamichi Sushida
- Faculty of Informatics, University of Fukuchiyama, Kyoto 620-0886, Japan.
| | - Masakazu Akiyama
- Department of Mathematics, Faculty of Science, Academic Assembly, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.
| | - Toru Kawanishi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan.
| |
Collapse
|
3
|
Naganathan SR. An emerging role for tissue plasticity in developmental precision. Biochem Soc Trans 2024; 52:987-995. [PMID: 38716859 PMCID: PMC11346420 DOI: 10.1042/bst20230173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
Reproducible tissue morphology is a fundamental feature of embryonic development. To ensure such robustness during tissue morphogenesis, inherent noise in biological processes must be buffered. While redundant genes, parallel signaling pathways and intricate network topologies are known to reduce noise, over the last few years, mechanical properties of tissues have been shown to play a vital role. Here, taking the example of somite shape changes, I will discuss how tissues are highly plastic in their ability to change shapes leading to increased precision and reproducibility.
Collapse
Affiliation(s)
- Sundar Ram Naganathan
- Department of Biological Sciences, Tata Institute of Fundamental Research, 1, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
4
|
Lencer E, Rains A, Binne E, Prekeris R, Artinger KB. Mutations in cdon and boc affect trunk neural crest cell migration and slow-twitch muscle development in zebrafish. Development 2023; 150:dev201304. [PMID: 37390228 PMCID: PMC10357035 DOI: 10.1242/dev.201304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
The transmembrane proteins cdon and boc are implicated in regulating hedgehog signaling during vertebrate development. Recent work showing roles for these genes in axon guidance and neural crest cell migration suggest that cdon and boc may play additional functions in regulating directed cell movements. We use newly generated and existing mutants to investigate a role for cdon and boc in zebrafish neural crest cell migration. We find that single mutant embryos exhibit normal neural crest phenotypes, but that neural crest migration is strikingly disrupted in double cdon;boc mutant embryos. We further show that this migration phenotype is associated with defects in the differentiation of slow-twitch muscle cells, and the loss of a Col1a1a-containing extracellular matrix, suggesting that neural crest defects may be a secondary consequence to defects in mesoderm development. Combined, our data add to a growing literature showing that cdon and boc act synergistically to promote hedgehog signaling during vertebrate development, and suggest that the zebrafish can be used to study the function of hedgehog receptor paralogs.
Collapse
Affiliation(s)
- Ezra Lencer
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
| | - Addison Rains
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
| | - Erin Binne
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
| | - Kristin B. Artinger
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Che X, Huang Y, Zhong K, Jia K, Wei Y, Meng Y, Yuan W, Lu H. Thiophanate-methyl induces notochord toxicity by activating the PI3K-mTOR pathway in zebrafish (Danio rerio) embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120861. [PMID: 36563988 DOI: 10.1016/j.envpol.2022.120861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/10/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Thiophanate-methyl (TM), a typical pesticide widely used worldwide, was detected in rivers, soil, fruits, and vegetables. Thus, it is urgent to identify the potential harm of TM residual to non-target organisms and its molecular mechanisms. We used zebrafish (Danio rerio) in this study to evaluate TM toxicity. TM exposure induced developmental toxicity, including inhibited hatchability, reduced heart rates, restrained spontaneous locomotion, and decreased body length. Furthermore, we observed obvious toxicity in the notochord and detected increased expression levels of notochord-related genes (shha, col2a, and tbxta) by in situ hybridization in zebrafish larvae. In addition, calcein staining, alkaline phosphatase (ALP) activity analysis, and anatomic analysis indicated that TM induced notochord toxicity. We used rescue experiments to verify whether the PI3K-mTOR pathway involved in the notochord development was the cause of notochord abnormalities. Rapamycin and LY294002 (an inhibitor of PI3K) relieve notochord toxicity caused by TM, including morphological abnormalities. In summary, TM might induce notochord toxicity by activating the PI3K-mTOR pathway in zebrafish.
Collapse
Affiliation(s)
- Xiaofang Che
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Kun Jia
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - You Wei
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yunlong Meng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Wei Yuan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, China.
| |
Collapse
|
6
|
Bomkamp C, Musgrove L, Marques DMC, Fernando GF, Ferreira FC, Specht EA. Differentiation and Maturation of Muscle and Fat Cells in Cultivated Seafood: Lessons from Developmental Biology. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1-29. [PMID: 36374393 PMCID: PMC9931865 DOI: 10.1007/s10126-022-10174-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Cultivated meat, also known as cultured or cell-based meat, is meat produced directly from cultured animal cells rather than from a whole animal. Cultivated meat and seafood have been proposed as a means of mitigating the substantial harms associated with current production methods, including damage to the environment, antibiotic resistance, food security challenges, poor animal welfare, and-in the case of seafood-overfishing and ecological damage associated with fishing and aquaculture. Because biomedical tissue engineering research, from which cultivated meat draws a great deal of inspiration, has thus far been conducted almost exclusively in mammals, cultivated seafood suffers from a lack of established protocols for producing complex tissues in vitro. At the same time, fish such as the zebrafish Danio rerio have been widely used as model organisms in developmental biology. Therefore, many of the mechanisms and signaling pathways involved in the formation of muscle, fat, and other relevant tissue are relatively well understood for this species. The same processes are understood to a lesser degree in aquatic invertebrates. This review discusses the differentiation and maturation of meat-relevant cell types in aquatic species and makes recommendations for future research aimed at recapitulating these processes to produce cultivated fish and shellfish.
Collapse
Affiliation(s)
- Claire Bomkamp
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| | - Lisa Musgrove
- University of the Sunshine Coast, Sippy Downs, Queensland Australia
| | - Diana M. C. Marques
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Gonçalo F. Fernando
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| | - Frederico C. Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Elizabeth A. Specht
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| |
Collapse
|
7
|
Mendieta-Serrano MA, Dhar S, Ng BH, Narayanan R, Lee JJY, Ong HT, Toh PJY, Röllin A, Roy S, Saunders TE. Slow muscles guide fast myocyte fusion to ensure robust myotome formation despite the high spatiotemporal stochasticity of fusion events. Dev Cell 2022; 57:2095-2110.e5. [PMID: 36027918 DOI: 10.1016/j.devcel.2022.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/07/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
Skeletal myogenesis is dynamic, and it involves cell-shape changes together with cell fusion and rearrangements. However, the final muscle arrangement is highly organized with striated fibers. By combining live imaging with quantitative analyses, we dissected fast-twitch myocyte fusion within the zebrafish myotome in toto. We found a strong mediolateral bias in fusion timing; however, at a cellular scale, there was heterogeneity in cell shape and the relationship between initial position of fast myocytes and resulting fusion partners. We show that the expression of the fusogen myomaker is permissive, but not instructive, in determining the spatiotemporal fusion pattern. Rather, we observed a close coordination between slow muscle rearrangements and fast myocyte fusion. In mutants that lack slow fibers, the spatiotemporal fusion pattern is substantially noisier. We propose a model in which slow muscles guide fast myocytes by funneling them close together, enhancing fusion probability. Thus, despite fusion being highly stochastic, a robust myotome structure emerges at the tissue scale.
Collapse
Affiliation(s)
| | - Sunandan Dhar
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Boon Heng Ng
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Rachna Narayanan
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Jorge J Y Lee
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Hui Ting Ong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Pearlyn Jia Ying Toh
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Adrian Röllin
- Department of Statistics and Data Science, National University of Singapore, Singapore 117546, Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Department of Paediatrics, National University of Singapore, Singapore 119228, Singapore.
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
8
|
Tonelotto V, Consorti C, Facchinello N, Trapani V, Sabatelli P, Giraudo C, Spizzotin M, Cescon M, Bertolucci C, Bonaldo P. Collagen VI ablation in zebrafish causes neuromuscular defects during developmental and adult stages. Matrix Biol 2022; 112:39-61. [PMID: 35961424 DOI: 10.1016/j.matbio.2022.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Collagen VI (COL6) is an extracellular matrix protein exerting multiple functions in different tissues. In humans, mutations of COL6 genes cause rare inherited congenital disorders, primarily affecting skeletal muscles and collectively known as COL6-related myopathies, for which no cure is available yet. In order to get insights into the pathogenic mechanisms underlying COL6-related diseases, diverse animal models were produced. However, the roles exerted by COL6 during embryogenesis remain largely unknown. Here, we generated the first zebrafish COL6 knockout line through CRISPR/Cas9 site-specific mutagenesis of the col6a1 gene. Phenotypic characterization during embryonic and larval development revealed that lack of COL6 leads to neuromuscular defects and motor dysfunctions, together with distinctive alterations in the three-dimensional architecture of craniofacial cartilages. These phenotypic features were maintained in adult col6a1 null fish, which displayed defective muscle organization and impaired swimming capabilities. Moreover, col6a1 null fish showed autophagy defects and organelle abnormalities at both embryonic and adult stages, thus recapitulating the main features of patients affected by COL6-related myopathies. Mechanistically, lack of COL6 led to increased BMP signaling, and direct inhibition of BMP activity ameliorated the locomotor col6a1 null embryos. Finally performance of, treatment with salbutamol, a β2-adrenergic receptor agonist, elicited a significant amelioration of the neuromuscular and motility defects of col6a1 null fish embryos. Altogether, these findings indicate that this newly generated zebrafish col6a1 null line is a valuable in vivo tool to model COL6-related myopathies and suitable for drug screenings aimed at addressing the quest for effective therapeutic strategies for these disorders.
Collapse
Affiliation(s)
| | - Chiara Consorti
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Nicola Facchinello
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Valeria Trapani
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Patrizia Sabatelli
- CNR - Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, 40136, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Chiara Giraudo
- Department of Medicine, Unit of Advanced Clinical and Translational Imaging, University of Padova, 35128 Padova, Italy
| | - Marianna Spizzotin
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy; CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
9
|
Luo Z, Shi J, Pandey P, Ruan ZR, Sevdali M, Bu Y, Lu Y, Du S, Chen EH. The cellular architecture and molecular determinants of the zebrafish fusogenic synapse. Dev Cell 2022; 57:1582-1597.e6. [PMID: 35709765 PMCID: PMC10180866 DOI: 10.1016/j.devcel.2022.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/04/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022]
Abstract
Myoblast fusion is an indispensable process in skeletal muscle development and regeneration. Studies in Drosophila led to the discovery of the asymmetric fusogenic synapse, in which one cell invades its fusion partner with actin-propelled membrane protrusions to promote fusion. However, the timing and sites of vertebrate myoblast fusion remain elusive. Here, we show that fusion between zebrafish fast muscle cells is mediated by an F-actin-enriched invasive structure. Two cell adhesion molecules, Jam2a and Jam3b, are associated with the actin structure, with Jam2a being the major organizer. The Arp2/3 actin nucleation-promoting factors, WAVE and WASP-but not the bipartite fusogenic proteins, Myomaker or Myomixer-promote the formation of the invasive structure. Moreover, the convergence of fusogen-containing microdomains and the invasive protrusions is a prerequisite for cell membrane fusion. Thus, our study provides unprecedented insights into the cellular architecture and molecular determinants of the asymmetric fusogenic synapse in an intact vertebrate animal.
Collapse
Affiliation(s)
- Zhou Luo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Shi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Pratima Pandey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhi-Rong Ruan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maria Sevdali
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ye Bu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yue Lu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
11
|
Paulissen E, Palmisano NJ, Waxman J, Martin BL. Somite morphogenesis is required for axial blood vessel formation during zebrafish embryogenesis. eLife 2022; 11:74821. [PMID: 35137687 PMCID: PMC8863375 DOI: 10.7554/elife.74821] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Angioblasts that form the major axial blood vessels of the dorsal aorta and cardinal vein migrate toward the embryonic midline from distant lateral positions. Little is known about what controls the precise timing of angioblast migration and their final destination at the midline. Using zebrafish, we found that midline angioblast migration requires neighboring tissue rearrangements generated by somite morphogenesis. The somitic shape changes cause the adjacent notochord to separate from the underlying endoderm, creating a ventral midline cavity that provides a physical space for the angioblasts to migrate into. The anterior to posterior progression of midline angioblast migration is facilitated by retinoic acid-induced anterior to posterior somite maturation and the subsequent progressive opening of the ventral midline cavity. Our work demonstrates a critical role for somite morphogenesis in organizing surrounding tissues to facilitate notochord positioning and angioblast migration, which is ultimately responsible for creating a functional cardiovascular system.
Collapse
Affiliation(s)
- Eric Paulissen
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| | - Nicholas J Palmisano
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| | - Joshua Waxman
- Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Benjamin Louis Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| |
Collapse
|
12
|
Della Gaspera B, Weill L, Chanoine C. Evolution of Somite Compartmentalization: A View From Xenopus. Front Cell Dev Biol 2022; 9:790847. [PMID: 35111756 PMCID: PMC8802780 DOI: 10.3389/fcell.2021.790847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Somites are transitory metameric structures at the basis of the axial organization of vertebrate musculoskeletal system. During evolution, somites appear in the chordate phylum and compartmentalize mainly into the dermomyotome, the myotome, and the sclerotome in vertebrates. In this review, we summarized the existing literature about somite compartmentalization in Xenopus and compared it with other anamniote and amniote vertebrates. We also present and discuss a model that describes the evolutionary history of somite compartmentalization from ancestral chordates to amniote vertebrates. We propose that the ancestral organization of chordate somite, subdivided into a lateral compartment of multipotent somitic cells (MSCs) and a medial primitive myotome, evolves through two major transitions. From ancestral chordates to vertebrates, the cell potency of MSCs may have evolved and gave rise to all new vertebrate compartments, i.e., the dermomyome, its hypaxial region, and the sclerotome. From anamniote to amniote vertebrates, the lateral MSC territory may expand to the whole somite at the expense of primitive myotome and may probably facilitate sclerotome formation. We propose that successive modifications of the cell potency of some type of embryonic progenitors could be one of major processes of the vertebrate evolution.
Collapse
|
13
|
Manneken JD, Dauer MVP, Currie PD. Dynamics of muscle growth and regeneration: Lessons from the teleost. Exp Cell Res 2021; 411:112991. [PMID: 34958765 DOI: 10.1016/j.yexcr.2021.112991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
The processes of myogenesis during both development and regeneration share a number of similarities across both amniotes and teleosts. In amniotes, the process of muscle formation is considered largely biphasic, with developmental myogenesis occurring through hyperplastic fibre deposition and postnatal muscle growth driven through hypertrophy of existing fibres. In contrast, teleosts continue generating new muscle fibres during adult myogenesis through a process of eternal hyperplasia using a dedicated stem cell system termed the external cell layer. During developmental and regenerative myogenesis alike, muscle progenitors interact with their niche to receive cues guiding their transition into myoblasts and ultimately mature myofibres. During development, muscle precursors receive input from neighbouring embryological tissues; however, during repair, this role is fulfilled by other injury resident cell types, such as those of the innate immune response. Recent work has focused on the role of macrophages as a pro-regenerative cell type which provides input to muscle satellite cells during regenerative myogenesis. As zebrafish harbour a satellite cell system analogous to that of mammals, the processes of regeneration can be interrogated in vivo with the imaging intensive approaches afforded in the zebrafish system. This review discusses the strengths of zebrafish with a focus on both the similarities and differences to amniote myogenesis during both development and repair.
Collapse
Affiliation(s)
- Jessica D Manneken
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Mervyn V P Dauer
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia; EMBL Australia, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
14
|
Kong X, Wang X, Li M, Song W, Huang K, Zhang F, Zhang Q, Qi J, He Y. Establishment of myoblast cell line and identification of key genes regulating myoblast differentiation in a marine teleost, Sebastes schlegelii. Gene 2021; 802:145869. [PMID: 34352298 DOI: 10.1016/j.gene.2021.145869] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 01/06/2023]
Abstract
Skeletal myoblasts are activated satellite cells capable of proliferation and differentiation. Studies on mammalian myoblast differentiation and myogenesis could be carried out in vitro thanks to the availability of mouse myoblast cell line C2C12. Lacking of muscle cell line hinders the studies of teleost fish myogenesis. Here, we established a continuous skeletal muscle cell line from juvenile rockfish (Sebastes schlegelii) muscle using explant method and subcultured more than 50 passages for over 150 days. Stable expression of myoblast-specific marker, MyoD (myoblast determination protein) and the potential of differentiation into multi-nucleated skeletal myotubes upon induction suggested the cell line were predominately composed of myoblasts. Transcriptome analysis revealed a total of 4375 genes differentially expressed at four time points after the switch to differentiation medium, which were mainly involved in proliferation and differentiation of myoblasts. KIF22 (kinesin family member 22) and POLA1 (DNA polymerase alpha 1) were identified as the key genes involved in fish myoblast proliferation whereas MYL3 (myosin light chain 3) and TNNT2 (troponin T2) were determined as the crucial genes responsible for differentiation. In all, the continuous myoblasts cultured in this study provided a cell platform for future studies on marine fish myoblast differentiation and myogenesis. The molecular process of myoblast differentiation revealed in this study will open a window into the understanding of indeterminate muscle growth of large teleost.
Collapse
Affiliation(s)
- Xiangfu Kong
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xuangang Wang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Moli Li
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Weihao Song
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Kejia Huang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Fengyan Zhang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Quanqi Zhang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Jie Qi
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Yan He
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China.
| |
Collapse
|
15
|
Narayanan R, Mendieta-Serrano MA, Saunders TE. The role of cellular active stresses in shaping the zebrafish body axis. Curr Opin Cell Biol 2021; 73:69-77. [PMID: 34303916 DOI: 10.1016/j.ceb.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Tissue remodelling and organ shaping during morphogenesis are products of mechanical forces generated at the cellular level. These cell-scale forces can be coordinated across the tissue via information provided by biochemical and mechanical cues. Such coordination leads to the generation of complex tissue shape during morphogenesis. In this short review, we elaborate the role of cellular active stresses in vertebrate axis morphogenesis, primarily using examples from postgastrulation development of the zebrafish embryo.
Collapse
Affiliation(s)
- Rachna Narayanan
- Mechanobiology Institute, National University of Singapore, Singapore
| | | | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A∗Star, Singapore; Warwick Medical School, University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
16
|
Yadav V, Tolwinski N, Saunders TE. Spatiotemporal sensitivity of mesoderm specification to FGFR signalling in the Drosophila embryo. Sci Rep 2021; 11:14091. [PMID: 34238963 PMCID: PMC8266908 DOI: 10.1038/s41598-021-93512-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Development of the Drosophila embryonic mesoderm is controlled through both internal and external inputs to the mesoderm. One such factor is Heartless (Htl), a Fibroblast Growth Factor Receptor (FGFR) expressed in the mesoderm. Although Htl has been extensively studied, the dynamics of its action are poorly understood after the initial phases of mesoderm formation and spreading. To begin to address this challenge, we have developed an optogenetic version of the FGFR Heartless in Drosophila (Opto-htl). Opto-htl enables us to activate the FGFR pathway in selective spatial (~ 35 μm section from one of the lateral sides of the embryo) and temporal domains (ranging from 40 min to 14 h) during embryogenesis. Importantly, the effects can be tuned by the intensity of light-activation, making this approach significantly more flexible than other genetic approaches. We performed controlled perturbations to the FGFR pathway to define the contribution of Htl signalling to the formation of the developing embryonic heart and somatic muscles. We find a direct correlation between Htl signalling dosage and number of Tinman-positive heart cells specified. Opto-htl activation favours the specification of Tinman positive cardioblasts and eliminates Eve-positive DA1 muscles. This effect is seen to increase progressively with increasing light intensity. Therefore, fine tuning of phenotypic responses to varied Htl signalling dosage can be achieved more conveniently than with other genetic approaches. Overall, Opto-htl is a powerful new tool for dissecting the role of FGFR signalling during development.
Collapse
Affiliation(s)
- V. Yadav
- grid.4280.e0000 0001 2180 6431Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - N. Tolwinski
- grid.4280.e0000 0001 2180 6431Yale-NUS, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - T. E. Saunders
- grid.4280.e0000 0001 2180 6431Mechanobiology Institute, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore ,grid.185448.40000 0004 0637 0221Institute of Molecular and Cell Biology, A*Star, Singapore, Singapore ,grid.7372.10000 0000 8809 1613Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
17
|
Hromowyk KJ, Talbot JC, Martin BL, Janssen PML, Amacher SL. Cell fusion is differentially regulated in zebrafish post-embryonic slow and fast muscle. Dev Biol 2020; 462:85-100. [PMID: 32165147 PMCID: PMC7225055 DOI: 10.1016/j.ydbio.2020.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 02/08/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fusion occurs during development, growth, and regeneration. To investigate how muscle fusion compares among different muscle cell types and developmental stages, we studied muscle cell fusion over time in wild-type, myomaker (mymk), and jam2a mutant zebrafish. Using live imaging, we show that embryonic myoblast elongation and fusion correlate tightly with slow muscle cell migration. In wild-type embryos, only fast muscle fibers are multinucleate, consistent with previous work showing that the cell fusion regulator gene mymk is specifically expressed throughout the embryonic fast muscle domain. However, by 3 weeks post-fertilization, slow muscle fibers also become multinucleate. At this late-larval stage, mymk is not expressed in muscle fibers, but is expressed in small cells near muscle fibers. Although previous work showed that both mymk and jam2a are required for embryonic fast muscle cell fusion, we observe that muscle force and function is almost normal in mymk and jam2a mutant embryos, despite the lack of fast muscle multinucleation. We show that genetic requirements change post-embryonically, with jam2a becoming much less important by late-larval stages and mymk now required for muscle fusion and growth in both fast and slow muscle cell types. Correspondingly, adult mymk mutants perform poorly in sprint and endurance tests compared to wild-type and jam2a mutants. We show that adult mymk mutant muscle contains small mononucleate myofibers with average myonuclear domain size equivalent to that in wild type adults. The mymk mutant fibers have decreased Laminin expression and increased numbers of Pax7-positive cells, suggesting that impaired fiber growth and active regeneration contribute to the muscle phenotype. Our findings identify several aspects of muscle fusion that change with time in slow and fast fibers as zebrafish develop beyond embryonic stages.
Collapse
Affiliation(s)
- Kimberly J Hromowyk
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Jared C Talbot
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA.
| | - Brit L Martin
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Paul M L Janssen
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Sharon L Amacher
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
18
|
Osborn DPS, Li K, Cutty SJ, Nelson AC, Wardle FC, Hinits Y, Hughes SM. Fgf-driven Tbx protein activities directly induce myf5 and myod to initiate zebrafish myogenesis. Development 2020; 147:147/8/dev184689. [PMID: 32345657 PMCID: PMC7197714 DOI: 10.1242/dev.184689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/14/2020] [Indexed: 01/02/2023]
Abstract
Skeletal muscle derives from dorsal mesoderm formed during vertebrate gastrulation. Fibroblast growth factor (Fgf) signalling cooperates with Tbx transcription factors to promote dorsal mesoderm formation, but their role in myogenesis has been unclear. Using zebrafish, we show that dorsally derived Fgf signals act through Tbx16 and Tbxta to induce slow and fast trunk muscle precursors at distinct dorsoventral positions. Tbx16 binds to and directly activates the myf5 and myod genes, which are required for commitment to myogenesis. Tbx16 activity depends on Fgf signalling from the organiser. In contrast, Tbxta is not required for myf5 expression, but binds a specific site upstream of myod that is not bound by Tbx16 and drives (dependent on Fgf signals) myod expression in adaxial slow precursors, thereby initiating trunk myogenesis. After gastrulation, when similar muscle cell populations in the post-anal tail are generated from tailbud, declining Fgf signalling is less effective at initiating adaxial myogenesis, which is instead initiated by Hedgehog signalling from the notochord. Our findings suggest a hypothesis for ancestral vertebrate trunk myogenic patterning and how it was co-opted during tail evolution to generate similar muscle by new mechanisms. This article has an associated ‘The people behind the papers’ interview. Highlighted Article: Tbx16 and Tbxta activate myf5 and myod directly during the earliest myogenesis in zebrafish, and Fgf signalling acts through Tbx16 to drive myogenesis in trunk but not tail.
Collapse
Affiliation(s)
- Daniel P S Osborn
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Kuoyu Li
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Stephen J Cutty
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Andrew C Nelson
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Fiona C Wardle
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Yaniv Hinits
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| |
Collapse
|
19
|
Effects of fasting on the expression pattern of FGFs in different skeletal muscle fibre types and sexes in mice. Biol Sex Differ 2020; 11:9. [PMID: 32156311 PMCID: PMC7063800 DOI: 10.1186/s13293-020-00287-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factors (FGFs) belong to a large family comprising 22 FGF polypeptides that are widely expressed in tissues. Most of the FGFs can be secreted and involved in the regulation of skeletal muscle function and structure. However, the role of fasting on FGF expression pattern in skeletal muscles remains unknown. In this study, we combined bioinformatics analysis and in vivo studies to explore the effect of 24-h fasting on the expression of Fgfs in slow-twitch soleus and fast-twitch tibialis anterior (TA) muscle from male and female C57BL/6 mice. We found that fasting significantly affected the expression of many Fgfs in mouse skeletal muscle. Furthermore, skeletal muscle fibre type and sex also influenced Fgf expression and response to fasting. We observed that in both male and female mice fasting reduced Fgf6 and Fgf11 in the TA muscle rather than the soleus. Moreover, fasting reduced Fgf8 expression in the soleus and TA muscles in female mice rather than in male mice. Fasting also increased Fgf21 expression in female soleus muscle and female and male plasma. Fasting reduced Fgf2 and Fgf18 expression levels without fibre-type and sex-dependent effects in mice. We further found that fasting decreased the expression of an FGF activation marker gene-Flrt2 in the TA muscle but not in the soleus muscle in both male and female mice. This study revealed the expression profile of Fgfs in different skeletal muscle fibre types and different sexes and provides clues to the interaction between the skeletal muscle and other organs, which deserves future investigations.
Collapse
|
20
|
Abstract
Spatially distributed signaling molecules, known as morphogens, provide spatial information during development. A host of different morphogens have now been identified, from subcellular gradients through to morphogens that act across a whole embryo. These gradients form over a wide-range of timescales, from seconds to hours, and their time windows for interpretation are also highly variable; the processes of morphogen gradient formation and interpretation are highly dynamic. The morphogen Bicoid (Bcd), present in the early Drosophila embryo, is essential for setting up the future Drosophila body segments. Due to its accessibility for both genetic perturbations and imaging, this system has provided key insights into how precise patterning can occur within a highly dynamic system. Here, we review the temporal scales of Bcd gradient formation and interpretation. In particular, we discuss the quantitative evidence for different models of Bcd gradient formation, outline the time windows for Bcd interpretation, and describe how Bcd temporally adapts its own ability to be interpreted. The utilization of temporal information in morphogen readout may provide crucial inputs to ensure precise spatial patterning, particularly in rapidly developing systems.
Collapse
|
21
|
Abstract
How do tissues self-organize to generate the complex organ shapes observed in vertebrates? Organ formation requires the integration of chemical and mechanical information, yet how this is achieved is poorly understood for most organs. Muscle compartments in zebrafish display a V shape, which is believed to be required for efficient swimming. We investigate how this structure emerges during zebrafish development, combining live imaging and quantitative analysis of cellular movements. We use theoretical modeling to understand how cell differentiation and mechanical interactions between tissues guide the emergence of a specific tissue morphology. Our work reveals how spatially modulating the mechanical environment around and within tissues can lead to complex organ shape formation. Organ formation is an inherently biophysical process, requiring large-scale tissue deformations. Yet, understanding how complex organ shape emerges during development remains a major challenge. During zebrafish embryogenesis, large muscle segments, called myotomes, acquire a characteristic chevron morphology, which is believed to aid swimming. Myotome shape can be altered by perturbing muscle cell differentiation or the interaction between myotomes and surrounding tissues during morphogenesis. To disentangle the mechanisms contributing to shape formation of the myotome, we combine single-cell resolution live imaging with quantitative image analysis and theoretical modeling. We find that, soon after segmentation from the presomitic mesoderm, the future myotome spreads across the underlying tissues. The mechanical coupling between the future myotome and the surrounding tissues appears to spatially vary, effectively resulting in spatially heterogeneous friction. Using a vertex model combined with experimental validation, we show that the interplay of tissue spreading and friction is sufficient to drive the initial phase of chevron shape formation. However, local anisotropic stresses, generated during muscle cell differentiation, are necessary to reach the acute angle of the chevron in wild-type embryos. Finally, tissue plasticity is required for formation and maintenance of the chevron shape, which is mediated by orientated cellular rearrangements. Our work sheds light on how a spatiotemporal sequence of local cellular events can have a nonlocal and irreversible mechanical impact at the tissue scale, leading to robust organ shaping.
Collapse
|
22
|
Keenan SR, Currie PD. The Developmental Phases of Zebrafish Myogenesis. J Dev Biol 2019; 7:E12. [PMID: 31159511 PMCID: PMC6632013 DOI: 10.3390/jdb7020012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/16/2019] [Accepted: 05/31/2019] [Indexed: 01/11/2023] Open
Abstract
The development and growth of vertebrate axial muscle have been studied for decades at both the descriptive and molecular level. The zebrafish has provided an attractive model system for investigating both muscle patterning and growth due to its simple axial musculature with spatially separated fibre types, which contrasts to complex muscle groups often deployed in amniotes. In recent years, new findings have reshaped previous concepts that define how final teleost muscle form is established and maintained. Here, we summarise recent findings in zebrafish embryonic myogenesis with a focus on fibre type specification, followed by an examination of the molecular mechanisms that control muscle growth with emphasis on the role of the dermomyotome-like external cell layer. We also consider these data sets in a comparative context to gain insight into the evolution of axial myogenic patterning systems within the vertebrate lineage.
Collapse
Affiliation(s)
- Samuel R Keenan
- Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia.
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|