1
|
Keeley O, Coyne AN. Nuclear and degradative functions of the ESCRT-III pathway: implications for neurodegenerative disease. Nucleus 2024; 15:2349085. [PMID: 38700207 PMCID: PMC11073439 DOI: 10.1080/19491034.2024.2349085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
The ESCRT machinery plays a pivotal role in membrane-remodeling events across multiple cellular processes including nuclear envelope repair and reformation, nuclear pore complex surveillance, endolysosomal trafficking, and neuronal pruning. Alterations in ESCRT-III functionality have been associated with neurodegenerative diseases including Frontotemporal Dementia (FTD), Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Disease (AD). In addition, mutations in specific ESCRT-III proteins have been identified in FTD/ALS. Thus, understanding how disruptions in the fundamental functions of this pathway and its individual protein components in the human central nervous system (CNS) may offer valuable insights into mechanisms underlying neurodegenerative disease pathogenesis and identification of potential therapeutic targets. In this review, we discuss ESCRT components, dynamics, and functions, with a focus on the ESCRT-III pathway. In addition, we explore the implications of altered ESCRT-III function for neurodegeneration with a primary emphasis on nuclear surveillance and endolysosomal trafficking within the CNS.
Collapse
Affiliation(s)
- Olivia Keeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyssa N. Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Deolal P, Scholz J, Ren K, Bragulat-Teixidor H, Otsuka S. Sculpting nuclear envelope identity from the endoplasmic reticulum during the cell cycle. Nucleus 2024; 15:2299632. [PMID: 38238284 PMCID: PMC10802211 DOI: 10.1080/19491034.2023.2299632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
The nuclear envelope (NE) regulates nuclear functions, including transcription, nucleocytoplasmic transport, and protein quality control. While the outer membrane of the NE is directly continuous with the endoplasmic reticulum (ER), the NE has an overall distinct protein composition from the ER, which is crucial for its functions. During open mitosis in higher eukaryotes, the NE disassembles during mitotic entry and then reforms as a functional territory at the end of mitosis to reestablish nucleocytoplasmic compartmentalization. In this review, we examine the known mechanisms by which the functional NE reconstitutes from the mitotic ER in the continuous ER-NE endomembrane system during open mitosis. Furthermore, based on recent findings indicating that the NE possesses unique lipid metabolism and quality control mechanisms distinct from those of the ER, we explore the maintenance of NE identity and homeostasis during interphase. We also highlight the potential significance of membrane junctions between the ER and NE.
Collapse
Affiliation(s)
- Pallavi Deolal
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| | - Julia Scholz
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Kaike Ren
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Helena Bragulat-Teixidor
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Shotaro Otsuka
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| |
Collapse
|
3
|
Kono Y, Shimi T. Crosstalk between mitotic reassembly and repair of the nuclear envelope. Nucleus 2024; 15:2352203. [PMID: 38780365 PMCID: PMC11123513 DOI: 10.1080/19491034.2024.2352203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
In eukaryotic cells, the nuclear envelope (NE) is a membrane partition between the nucleus and the cytoplasm to compartmentalize nuclear contents. It plays an important role in facilitating nuclear functions including transcription, DNA replication and repair. In mammalian cells, the NE breaks down and then reforms during cell division, and in interphase it is restored shortly after the NE rupture induced by mechanical force. In this way, the partitioning effect is regulated through dynamic processes throughout the cell cycle. A failure in rebuilding the NE structure triggers the mixing of nuclear and cytoplasmic contents, leading to catastrophic consequences for the nuclear functions. Whereas the precise details of molecular mechanisms for NE reformation during cell division and NE restoration in interphase are still being investigated, here, we mostly focus on mammalian cells to describe key aspects that have been identified and to discuss the crosstalk between them.
Collapse
Affiliation(s)
- Yohei Kono
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takeshi Shimi
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
4
|
Arora M, Mehta P, Sethi S, Anifandis G, Samara M, Singh R. Genetic etiological spectrum of sperm morphological abnormalities. J Assist Reprod Genet 2024; 41:2877-2929. [PMID: 39417902 PMCID: PMC11621285 DOI: 10.1007/s10815-024-03274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
PURPOSE Male infertility manifests in the form of a reduction in sperm count, sperm motility, or the loss of fertilizing ability. While the loss of sperm production can have mixed reasons, sperm structural defects, cumulatively known as teratozoospermia, have predominantly genetic bases. The aim of the present review is to undertake a comprehensive analysis of the genetic mutations leading to sperm morphological deformities/teratozoospermia. METHODS We undertook literature review for genes involved in sperm morphological abnormalities. The genes were classified according to the type of sperm defects they cause and on the basis of the level of evidence determined by the number of human studies and the availability of a mouse knockout. RESULTS Mutations in the SUN5, CEP112, BRDT, DNAH6, PMFBP1, TSGA10, and SPATA20 genes result in acephalic sperm; mutations in the DPY19L2, SPATA16, PICK1, CCNB3, CHPT1, PIWIL4, and TDRD9 genes cause globozoospermia; mutations in the AURKC gene cause macrozoospermia; mutations in the WDR12 gene cause tapered sperm head; mutations in the RNF220 and ADCY10 genes result in small sperm head; mutations in the AMZ2 gene lead to vacuolated head formation; mutations in the CC2D1B and KIAA1210 genes lead to pyriform head formation; mutations in the SEPT14, ZPBP1, FBXO43, ZCWPW1, KATNAL2, PNLDC1, and CCIN genes cause amorphous head; mutations in the SEPT12, RBMX, and ACTL7A genes cause deformed acrosome formation; mutations in the DNAH1, DNAH2, DNAH6, DNAH17, FSIP2, CFAP43, AK7, CHAP251, CFAP65, ARMC2 and several other genes result in multiple morphological abnormalities of sperm flagella (MMAF). CONCLUSIONS Altogether, mutations in 31 genes have been reported to cause head defects and mutations in 62 genes are known to cause sperm tail defects.
Collapse
Affiliation(s)
- Manvi Arora
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Poonam Mehta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shruti Sethi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - George Anifandis
- Department of Obstetrics and Gynaecology, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larisa, Greece
| | - Mary Samara
- Department of Obstetrics and Gynaecology, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larisa, Greece
| | - Rajender Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
5
|
La Torre M, Burla R, Saggio I. Preserving Genome Integrity: Unveiling the Roles of ESCRT Machinery. Cells 2024; 13:1307. [PMID: 39120335 PMCID: PMC11311930 DOI: 10.3390/cells13151307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is composed of an articulated architecture of proteins that assemble at multiple cellular sites. The ESCRT machinery is involved in pathways that are pivotal for the physiology of the cell, including vesicle transport, cell division, and membrane repair. The subunits of the ESCRT I complex are mainly responsible for anchoring the machinery to the action site. The ESCRT II subunits function to bridge and recruit the ESCRT III subunits. The latter are responsible for finalizing operations that, independently of the action site, involve the repair and fusion of membrane edges. In this review, we report on the data related to the activity of the ESCRT machinery at two sites: the nuclear membrane and the midbody and the bridge linking cells in the final stages of cytokinesis. In these contexts, the machinery plays a significant role for the protection of genome integrity by contributing to the control of the abscission checkpoint and to nuclear envelope reorganization and correlated resilience. Consistently, several studies show how the dysfunction of the ESCRT machinery causes genome damage and is a codriver of pathologies, such as laminopathies and cancer.
Collapse
Affiliation(s)
- Mattia La Torre
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| | - Romina Burla
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
- CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
| | - Isabella Saggio
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| |
Collapse
|
6
|
Breuer T, Tibbe C, Troost T, Klein T. Structural Analysis of the ESCRT-III Regulator Lethal(2) Giant Discs/Coiled-Coil and C2 Domain-Containing Protein 1 (Lgd/CC2D1). Cells 2024; 13:1174. [PMID: 39056756 PMCID: PMC11275157 DOI: 10.3390/cells13141174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Members of the LGD/CC2D1 protein family contain repeats of the family-defining DM14 domains. Via this domain, they interact with members of the CHMP family, which are essential for the ESCRT machinery-mediated formation of intraluminal vesicles during endosome maturation. Here, we investigate the requirement of the DM14 domains for the function of Lgd in detail. We found that although both odd-numbered DM14s can act in a functionally redundant manner, the redundancy is not complete and both contribute to the full function of Lgd. Our analysis indicates that some of the AAs that form the KARRxxR motif of the onDM14s are not exchangeable by similarly charged AAs without loss of function, indicating that they not only provide charge, but also fulfil structural roles. Furthermore, we show that the region of Lgd between DM14-4 and the C2 domain as well as its C-terminal region to the C2 domain are important for protein stability/function. Moreover, we analysed the importance of AAs that are conserved in all DM14 domains. Finally, our analysis of the C. elegans ortholog of Lgd revealed that it has only one DM14 domain that is functionally equivalent to the onDM14s. Altogether, the results further the understanding of how Lgd family members regulate the ESCRT machinery.
Collapse
Affiliation(s)
| | | | | | - Thomas Klein
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany; (T.B.); (C.T.); (T.T.)
| |
Collapse
|
7
|
Zhong T, Hou D, Zhao Q, Zhan S, Wang L, Li L, Zhang H, Zhao W, Yang S, Niu L. Comparative whole-genome resequencing to uncover selection signatures linked to litter size in Hu Sheep and five other breeds. BMC Genomics 2024; 25:480. [PMID: 38750582 PMCID: PMC11094944 DOI: 10.1186/s12864-024-10396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Hu sheep (HS), a breed of sheep carrying the FecB mutation gene, is known for its "year-round estrus and multiple births" and is an ideal model for studying the high fecundity mechanisms of livestock. Through analyzing and comparing the genomic selection features of Hu sheep and other sheep breeds, we identified a series of candidate genes that may play a role in Hu sheep's high fecundity mechanisms. In this study, we conducted whole-genome resequencing on six breeds and screened key mutations significantly correlated with high reproductive traits in sheep. Notably, the CC2D1B gene was selected by the fixation index (FST) and the cross-population composite likelihood ratio (XP-CLR) methods in HS and other five breeds. It was worth noting that the CC2D1B gene in HS was different from that in other sheep breeds, and seven missense mutations have been identified. Furthermore, the linkage disequilibrium (LD) analysis revealed a strong linkage disequilibrium in this specific gene region. Subsequently, by performing different grouping based on FecB genotypes in Hu sheep, genome-wide selective signal analysis screened several genes related to reproduction, such as BMPR1B and PPM1K. Besides, FST analysis identified functional genes related to reproductive traits, including RHEB, HSPA2, PPP1CC, HVCN1, and CCDC63. Additionally, a missense mutation was found in the CCDC63 gene and the haplotype was different between the high reproduction (HR) group and low reproduction (LR) group in HS. In summary, we discovered genetic differentiation among six distinct breeding sheep breeds at the whole genome level. Additionally, we identified a set of genes which were associated with reproductive performance in Hu sheep and visualized how these genes differed in different breeds. These findings laid a theoretical foundation for understanding genetic mechanisms behind high prolific traits in sheep.
Collapse
Affiliation(s)
- Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dunying Hou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Zhao
- College of Animal Science, Xichang University, Xichang, 615013, China
| | - Shizhong Yang
- Academy of Agricultural Sciences Liangshan, Xichang, 615000, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
8
|
Hermant C, Matias NR, Michel-Hissier P, Huynh JR, Mathieu J. Lethal Giant Disc is a target of Cdk1 and regulates ESCRT-III localization during germline stem cell abscission. Development 2024; 151:dev202306. [PMID: 38546617 DOI: 10.1242/dev.202306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
Abscission is the final step of cytokinesis that allows the physical separation of sister cells through the scission of the cellular membrane. This deformation is driven by ESCRT-III proteins, which can bind membranes and form dynamic helices. A crucial step in abscission is the recruitment of ESCRT-III proteins at the right time and place. Alix is one of the best characterized proteins that recruits ESCRT-III proteins from yeast to mammals. However, recent studies in vivo have revealed that pathways acting independently or redundantly with Alix are also required at abscission sites in different cellular contexts. Here, we show that Lgd acts redundantly with Alix to properly localize ESCRT-III to the abscission site in germline stem cells (GSCs) during Drosophila oogenesis. We further demonstrate that Lgd is phosphorylated at multiple sites by the CycB/Cdk1 kinase. We found that these phosphorylation events potentiate the activity of Shrub, a Drosophila ESCRT-III, during abscission of GSCs. Our study reveals that redundancy between Lgd and Alix, and coordination with the cell cycle kinase Cdk1, confers robust and timely abscission of Drosophila germline stem cells.
Collapse
Affiliation(s)
- Catherine Hermant
- Collège de France, PSL Research University, CNRS Biologie, INSERM, Center for Interdisciplinary Research in Biology, Paris 75005, France
| | - Neuza Reis Matias
- Collège de France, PSL Research University, CNRS Biologie, INSERM, Center for Interdisciplinary Research in Biology, Paris 75005, France
| | - Pascale Michel-Hissier
- Collège de France, PSL Research University, CNRS Biologie, INSERM, Center for Interdisciplinary Research in Biology, Paris 75005, France
| | - Jean-René Huynh
- Collège de France, PSL Research University, CNRS Biologie, INSERM, Center for Interdisciplinary Research in Biology, Paris 75005, France
| | - Juliette Mathieu
- Collège de France, PSL Research University, CNRS Biologie, INSERM, Center for Interdisciplinary Research in Biology, Paris 75005, France
| |
Collapse
|
9
|
Kelley ME, Carlini L, Kornakov N, Aher A, Khodjakov A, Kapoor TM. Spastin regulates anaphase chromosome separation distance and microtubule-containing nuclear tunnels. Mol Biol Cell 2024; 35:ar48. [PMID: 38335450 PMCID: PMC11064660 DOI: 10.1091/mbc.e24-01-0031-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Nuclear envelope reassembly during the final stages of each mitosis depends on disassembling spindle microtubules without disrupting chromosome separation. This process involves the transient recruitment of the ESCRT-III complex and spastin, a microtubule-severing AAA (ATPases associated with diverse cellular activities) mechanoenzyme, to late-anaphase chromosomes. However, dissecting mechanisms underlying these rapid processes, which can be completed within minutes, has been difficult. Here, we combine fast-acting chemical inhibitors with live-cell imaging and find that spindle microtubules, along with spastin activity, regulate the number and lifetimes of spastin foci at anaphase chromosomes. Unexpectedly, spastin inhibition impedes chromosome separation, but does not alter the anaphase localization dynamics of CHMP4B, an ESCRT-III protein, or increase γ-H2AX foci, a DNA damage marker. We show spastin inhibition increases the frequency of lamin-lined nuclear microtunnels that can include microtubules penetrating the nucleus. Our findings suggest failure to sever spindle microtubules impedes chromosome separation, yet reforming nuclear envelopes can topologically accommodate persistent microtubules ensuring nuclear DNA is not damaged or exposed to cytoplasm.
Collapse
Affiliation(s)
- Megan E. Kelley
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Lina Carlini
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Nikolay Kornakov
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Amol Aher
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY 12237
| | - Tarun M. Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
10
|
Barger SR, Penfield L, Bahmanyar S. Nuclear envelope assembly relies on CHMP-7 in the absence of BAF-LEM-mediated hole closure. J Cell Sci 2023; 136:jcs261385. [PMID: 37795681 PMCID: PMC10668030 DOI: 10.1242/jcs.261385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Barrier-to-autointegration factor (BAF) protein is a DNA-binding protein that crosslinks chromatin to allow mitotic nuclear envelope (NE) assembly. The LAP2-emerin-MAN1 (LEM)-domain protein LEMD2 and ESCRT-II/III hybrid protein CHMP7 close NE holes surrounding spindle microtubules (MTs). BAF binds LEM-domain family proteins to repair NE ruptures in interphase, but whether BAF-LEM binding participates in NE hole closure around spindle MTs is not known. Here, we took advantage of the stereotypical event of NE formation in fertilized Caenorhabditis elegans oocytes to show that BAF-LEM binding and LEM-2-CHMP-7 have distinct roles in NE closure around spindle MTs. LEM-2 and EMR-1 (homologs of LEMD2 and emerin) function redundantly with BAF-1 (the C. elegans BAF protein) in NE closure. Compromising BAF-LEM binding revealed an additional role for EMR-1 in the maintenance of the NE permeability barrier. In the absence of BAF-LEM binding, LEM-2-CHMP-7 was required for NE assembly and embryo survival. The winged helix domain of LEM-2 recruits CHMP-7 to the NE in C. elegans and a LEM-2-independent nucleoplasmic pool of CHMP-7 also contributes to NE stability. Thus, NE hole closure surrounding spindle MTs requires redundant mechanisms that safeguard against failure in NE assembly to support embryogenesis.
Collapse
Affiliation(s)
- Sarah R. Barger
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511, USA
| | - Lauren Penfield
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511, USA
| | - Shirin Bahmanyar
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511, USA
| |
Collapse
|
11
|
Ader NR, Chen L, Surovtsev IV, Chadwick WL, Rodriguez EC, King MC, Lusk CP. An ESCRT grommet cooperates with a diffusion barrier to maintain nuclear integrity. Nat Cell Biol 2023; 25:1465-1477. [PMID: 37783794 PMCID: PMC11365527 DOI: 10.1038/s41556-023-01235-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/17/2023] [Indexed: 10/04/2023]
Abstract
The molecular mechanisms by which the endosomal sorting complexes required for transport (ESCRT) proteins contribute to the integrity of the nuclear envelope (NE) barrier are not fully defined. We leveraged the single NE hole generated by mitotic extrusion of the Schizosaccharomyces pombe spindle pole body to reveal two modes of ESCRT function executed by distinct complements of ESCRT-III proteins, both dependent on CHMP7/Cmp7. A grommet-like function is required to restrict the NE hole in anaphase B, whereas replacement of Cmp7 by a sealing module ultimately closes the NE in interphase. Without Cmp7, nucleocytoplasmic compartmentalization remains intact despite NE discontinuities of up to 540 nm, suggesting mechanisms to limit diffusion through these holes. We implicate spindle pole body proteins as key components of a diffusion barrier acting with Cmp7 in anaphase B. Thus, NE remodelling mechanisms cooperate with proteinaceous diffusion barriers beyond nuclear pore complexes to maintain the nuclear compartment.
Collapse
Affiliation(s)
- Nicholas R Ader
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Linda Chen
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Ivan V Surovtsev
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Physics, Yale University, New Haven, CT, USA
| | | | - Elisa C Rodriguez
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, CT, USA.
| | - C Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
12
|
Cristi AC, Rapuri S, Coyne AN. Nuclear pore complex and nucleocytoplasmic transport disruption in neurodegeneration. FEBS Lett 2023; 597:2546-2566. [PMID: 37657945 PMCID: PMC10612469 DOI: 10.1002/1873-3468.14729] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/29/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Nuclear pore complexes (NPCs) play a critical role in maintaining the equilibrium between the nucleus and cytoplasm, enabling bidirectional transport across the nuclear envelope, and are essential for proper nuclear organization and gene regulation. Perturbations in the regulatory mechanisms governing NPCs and nuclear envelope homeostasis have been implicated in the pathogenesis of several neurodegenerative diseases. The ESCRT-III pathway emerges as a critical player in the surveillance and preservation of well-assembled, functional NPCs, as well as nuclear envelope sealing. Recent studies have provided insights into the involvement of nuclear ESCRT-III in the selective reduction of specific nucleoporins associated with neurodegenerative pathologies. Thus, maintaining quality control of the nuclear envelope and NPCs represents a pivotal element in the pathological cascade leading to neurodegenerative diseases. This review describes the constituents of the nuclear-cytoplasmic transport machinery, encompassing the nuclear envelope, NPC, and ESCRT proteins, and how their structural and functional alterations contribute to the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- América Chandía Cristi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| | - Sampath Rapuri
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| | - Alyssa N Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| |
Collapse
|
13
|
Schenkel L, Wang X, Le N, Burger M, Kroschewski R. A dedicated cytoplasmic container collects extrachromosomal DNA away from the mammalian nucleus. Mol Biol Cell 2023; 34:ar105. [PMID: 37556227 PMCID: PMC10559310 DOI: 10.1091/mbc.e23-04-0118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
Expression from transfected plasmid DNA is generally transient, but it is unclear what process terminates it. We show that DNA entering mammalian cells is rapidly surrounded by a double membrane in the cytoplasm, in some cases after leaving the nucleus. This cytoplasmic container, termed exclusome, frequently also contains extrachromosomal telomeric DNA, and is maintained by the cell over several division cycles. The exclusome envelope contains endoplasmic reticulum proteins and the inner-nuclear membrane proteins Lap2β and Emerin, but differs from the nuclear envelope by its fenestrations and the absence of the Lamin B Receptor and nuclear pore complexes. Reduction of exclusome frequency upon overexpressing Emerin's LEM-domain suggests a role for Emerin in plasmid DNA compartmentalization. Thus, cells distinguish extrachromosomal DNA and chromosomes and wrap them into similar yet distinct envelopes keeping the former in the exclusome but the latter in the nucleus, where transcription occurs.
Collapse
Affiliation(s)
- Laura Schenkel
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
- Molecular Life Science PhD Program, Life Science Zurich Graduate School, 8057 Zurich, Switzerland
| | - Xuan Wang
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
- Molecular Life Science PhD Program, Life Science Zurich Graduate School, 8057 Zurich, Switzerland
| | - Nhung Le
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
- Molecular Life Science PhD Program, Life Science Zurich Graduate School, 8057 Zurich, Switzerland
| | - Michael Burger
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Ruth Kroschewski
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
14
|
Glover J, Scourfield EJ, Ventimiglia LN, Yang X, Lynham S, Agromayor M, Martin-Serrano J. UMAD1 contributes to ESCRT-III dynamic subunit turnover during cytokinetic abscission. J Cell Sci 2023; 136:jcs261097. [PMID: 37439191 PMCID: PMC10445733 DOI: 10.1242/jcs.261097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023] Open
Abstract
Abscission is the final stage of cytokinesis whereby the midbody, a thin intercellular bridge, is resolved to separate the daughter cells. Cytokinetic abscission is mediated by the endosomal sorting complex required for transport (ESCRT), a conserved membrane remodelling machinery. The midbody organiser CEP55 recruits early acting ESCRT factors such as ESCRT-I and ALIX (also known as PDCD6IP), which subsequently initiate the formation of ESCRT-III polymers that sever the midbody. We now identify UMAD1 as an ESCRT-I subunit that facilitates abscission. UMAD1 selectively associates with VPS37C and VPS37B, supporting the formation of cytokinesis-specific ESCRT-I assemblies. TSG101 recruits UMAD1 to the site of midbody abscission, to stabilise the CEP55-ESCRT-I interaction. We further demonstrate that the UMAD1-ESCRT-I interaction facilitates the final step of cytokinesis. Paradoxically, UMAD1 and ALIX co-depletion has synergistic effects on abscission, whereas ESCRT-III recruitment to the midbody is not inhibited. Importantly, we find that both UMAD1 and ALIX are required for the dynamic exchange of ESCRT-III subunits at the midbody. Therefore, UMAD1 reveals a key functional connection between ESCRT-I and ESCRT-III that is required for cytokinesis.
Collapse
Affiliation(s)
- James Glover
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK
| | - Edward J. Scourfield
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK
| | - Leandro N. Ventimiglia
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK
| | - Xiaoping Yang
- Proteomics Facility, Centre of Excellence for Mass Spectrometry, King's College London, London SE5 9NU, UK
| | - Steven Lynham
- Proteomics Facility, Centre of Excellence for Mass Spectrometry, King's College London, London SE5 9NU, UK
| | - Monica Agromayor
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK
| | - Juan Martin-Serrano
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK
| |
Collapse
|
15
|
Barger SR, Penfield L, Bahmanyar S. Nuclear envelope assembly relies on CHMP-7 in the absence of BAF-LEM-mediated hole closure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547980. [PMID: 37461528 PMCID: PMC10350047 DOI: 10.1101/2023.07.06.547980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Barrier-to-autointegration factor (BAF) is a DNA binding protein that crosslinks chromatin to assemble the nuclear envelope (NE) after mitosis. BAF also binds the Lap2b-Emerin-Man1 (LEM) domain family of NE proteins to repair interphase ruptures. The NE adaptors to ESCRTs, LEMD2-CHMP7, seal NE holes surrounding mitotic spindle microtubules (MTs), but whether NE hole closure in mitosis involves BAF-LEM binding is not known. Here, we analyze NE sealing after meiosis II in C. elegans oocytes to show that BAF-LEM binding and LEM-2 LEMD2 -CHMP-7 have distinct roles in hole closure around spindle MTs. LEM-2/EMR-1 emerin function redundantly with BAF-1 to seal the NE. Compromising BAF-LEM binding revealed an additional role for EMR-1 in maintenance of the NE permeability barrier and an essential role for LEM-2-CHMP-7 in preventing NE assembly failure. The WH domain of LEM-2 recruits the majority of CHMP-7 to the NE in C. elegans and a LEM-2 -independent pool of CHMP-7, which is mostly enriched in the nucleoplasm, also contributes to NE stability. Thus, NE hole closure surrounding spindle MTs requires redundant mechanisms that safeguard against failure in NE assembly to support embryogenesis.
Collapse
Affiliation(s)
- Sarah R. Barger
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511
| | - Lauren Penfield
- Current address: Department of Molecular, Cellular, and Developmental Biology at University of California, Santa Barbara, CA
| | - Shirin Bahmanyar
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511
| |
Collapse
|
16
|
Moreno-Andrés D, Holl K, Antonin W. The second half of mitosis and its implications in cancer biology. Semin Cancer Biol 2023; 88:1-17. [PMID: 36436712 DOI: 10.1016/j.semcancer.2022.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
The nucleus undergoes dramatic structural and functional changes during cell division. With the entry into mitosis, in human cells the nuclear envelope breaks down, chromosomes rearrange into rod-like structures which are collected and segregated by the spindle apparatus. While these processes in the first half of mitosis have been intensively studied, much less is known about the second half of mitosis, when a functional nucleus reforms in each of the emerging cells. Here we review our current understanding of mitotic exit and nuclear reformation with spotlights on the links to cancer biology.
Collapse
Affiliation(s)
- Daniel Moreno-Andrés
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany.
| | - Kristin Holl
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
17
|
Clarke AL, Lettman MM, Audhya A. Lgd regulates ESCRT-III complex accumulation at multivesicular endosomes to control intralumenal vesicle formation. Mol Biol Cell 2022; 33:ar144. [PMID: 36287829 PMCID: PMC9727795 DOI: 10.1091/mbc.e22-08-0342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 02/04/2023] Open
Abstract
Membrane remodeling mediated by heteropolymeric filaments composed of ESCRT-III subunits is an essential process that occurs at a variety of organelles to maintain cellular homeostasis. Members of the evolutionarily conserved Lgd/CC2D1 protein family have been suggested to regulate ESCRT-III polymer assembly, although their specific roles, particularly in vivo, remain unclear. Using the Caenorhabditis elegans early embryo as a model system, we show that Lgd/CC2D1 localizes to endosomal membranes, and its loss impairs endolysosomal cargo sorting and degradation. At the ultrastructural level, the absence of Lgd/CC2D1 results in the accumulation of enlarged endosomal compartments that contain a reduced number of intralumenal vesicles (ILVs). However, unlike aberrant endosome morphology caused by depletion of other ESCRT components, ILV size is only modestly altered in embryos lacking Lgd/CC2D1. Instead, loss of Lgd/CC2D1 impairs normal accumulation of ESCRT-III on endosomal membranes, likely slowing the kinetics of ILV formation. Together, our findings suggest a role for Lgd/CC2D1 in the recruitment and/or stable assembly of ESCRT-III subunits on endosomal membranes to facilitate efficient ILV biogenesis.
Collapse
Affiliation(s)
- Aryel L. Clarke
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Molly M. Lettman
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| |
Collapse
|
18
|
Archambault V, Li J, Emond-Fraser V, Larouche M. Dephosphorylation in nuclear reassembly after mitosis. Front Cell Dev Biol 2022; 10:1012768. [PMID: 36268509 PMCID: PMC9576876 DOI: 10.3389/fcell.2022.1012768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
In most animal cell types, the interphase nucleus is largely disassembled during mitotic entry. The nuclear envelope breaks down and chromosomes are compacted into separated masses. Chromatin organization is also mostly lost and kinetochores assemble on centromeres. Mitotic protein kinases play several roles in inducing these transformations by phosphorylating multiple effector proteins. In many of these events, the mechanistic consequences of phosphorylation have been characterized. In comparison, how the nucleus reassembles at the end of mitosis is less well understood in mechanistic terms. In recent years, much progress has been made in deciphering how dephosphorylation of several effector proteins promotes nuclear envelope reassembly, chromosome decondensation, kinetochore disassembly and interphase chromatin organization. The precise roles of protein phosphatases in this process, in particular of the PP1 and PP2A groups, are emerging. Moreover, how these enzymes are temporally and spatially regulated to ensure that nuclear reassembly progresses in a coordinated manner has been partly uncovered. This review provides a global view of nuclear reassembly with a focus on the roles of dephosphorylation events. It also identifies important open questions and proposes hypotheses.
Collapse
Affiliation(s)
- Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Vincent Archambault,
| | - Jingjing Li
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Virginie Emond-Fraser
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Myreille Larouche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
19
|
Baeumers M, Schulz K, Klein T. Using Drosophila melanogaster to Analyse the Human Paralogs of the ESCRT-III Core Component Shrub/CHMP4/Snf7 and Its Interactions with Members of the LGD/CC2D1 Family. Int J Mol Sci 2022; 23:7507. [PMID: 35886850 PMCID: PMC9320689 DOI: 10.3390/ijms23147507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
The evolutionary conserved ESCRT-III complex is a device for membrane remodelling in various cellular processes, such as the formation of intraluminal vesicles (ILVs), cytokinesis, and membrane repair. The common theme of all these processes is the abscission of membrane away from the cytosol. At its heart in Drosophila is Shrub, CHMP4 in humans, which dynamically polymerises into filaments through electrostatic interactions among the protomers. For the full activity, Shrub/CHMP4 requires physical interaction with members of the Lgd protein family. This interaction is mediated by the odd-numbered DM14 domains of Lgd, which bind to the negative interaction surface of Shrub. While only one Lgd and one Shrub exist in the genome of Drosophila, mammals have two Lgd orthologs, LGD1/CC2D1B and LGD2/CC2D1A, as well as three CHMP4s in their genomes, CHMP4A, CHMP4B, and CHMP4C. The rationale for the diversification of the ESCRT components is not understood. We here use Drosophila as a model system to analyse the activity of the human orthologs of Shrub and Lgd at an organismal level. This enabled us to use the plethora of available techniques available for Drosophila. We present evidence that CHMP4B is the true ortholog of Shrub, while CHMP4A and CHMP4C have diverging activities. Nevertheless, CHMP4A and CHMP4C can enhance the activity of CHMP4B, raising the possibility that they can form heteropolymers in vivo. Our structure-function analysis of the LGD1 and LGD2 indicates that the C2 domain of the LGD proteins has a specific function beyond protein stability and subcellular localisation. Moreover, our data specify that CHMP4B interacts more efficiently with LGD1 than with LGD2.
Collapse
Affiliation(s)
- Miriam Baeumers
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany;
| | - Katharina Schulz
- Institut für Angewandte Bewegungswissenschaften, Professur für Sportmedizin/-Biologie, Technische Universität Chemnitz, Thüringer Weg 11, 09126 Chemnitz, Germany;
| | - Thomas Klein
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany;
| |
Collapse
|
20
|
The ESCRT Machinery: Remodeling, Repairing, and Sealing Membranes. MEMBRANES 2022; 12:membranes12060633. [PMID: 35736340 PMCID: PMC9229795 DOI: 10.3390/membranes12060633] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023]
Abstract
The ESCRT machinery is an evolutionarily conserved membrane remodeling complex that is used by the cell to perform reverse membrane scission in essential processes like protein degradation, cell division, and release of enveloped retroviruses. ESCRT-III, together with the AAA ATPase VPS4, harbors the main remodeling and scission function of the ESCRT machinery, whereas early-acting ESCRTs mainly contribute to protein sorting and ESCRT-III recruitment through association with upstream targeting factors. Here, we review recent advances in our understanding of the molecular mechanisms that underlie membrane constriction and scission by ESCRT-III and describe the involvement of this machinery in the sealing and repairing of damaged cellular membranes, a key function to preserve cellular viability and organellar function.
Collapse
|
21
|
Acheta J, Hong J, Jeanette H, Brar S, Yalamanchili A, Feltri ML, Manzini MC, Belin S, Poitelon Y. Cc2d1b Contributes to the Regulation of Developmental Myelination in the Central Nervous System. Front Mol Neurosci 2022; 15:881571. [PMID: 35592111 PMCID: PMC9113218 DOI: 10.3389/fnmol.2022.881571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundNumerous studies have indicated that myelination is the result of the interplay between extracellular signals and an intricate network of transcription factors. Yet, the identification and characterization of the full repertoire of transcription factors that modulate myelination are still incomplete. CC2D1B is a member of the Lgd/CC2D1 family of proteins highly expressed in myelinating cells in the central and peripheral nervous systems. In addition, the absence of CC2D1B limits myelin formation in vitro. Here we propose to delineate the function of CC2D1B in myelinating cells during developmental myelination in vivo in the central and peripheral nervous systems.MethodsWe used a Cc2d1b constitutive knockout mouse model and then performed morphological analyses on semithin sections of sciatic nerves and electron micrographs of optic nerves. We also performed immunohistological studies on coronal brain sections. All analyses were performed at 30 days of age.ResultsIn the peripheral nervous system, animals ablated for Cc2d1b did not show any myelin thickness difference compared to control animals. In the central nervous system, immunohistological studies did not show any difference in the number of oligodendrocytes or the level of myelin proteins in the cortex, corpus callosum, and striatum. However, optic nerves showed a hypomyelination (0.844 ± 0.022) compared to control animals (0.832 ± 0.016) of large diameter myelinated fibers.ConclusionsWe found that CC2D1B plays a role in developmental myelination in the central nervous system. These results suggest that CC2D1B could contribute to gene regulation during oligodendrocytes myelination in optic nerves.
Collapse
Affiliation(s)
- Jenica Acheta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Jiayue Hong
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Haley Jeanette
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Simrandeep Brar
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Anish Yalamanchili
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - M. Laura Feltri
- Departments of Biochemistry and Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - M. Chiara Manzini
- Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, Child Health Institute of New Jersey, New Brunswick, NJ, United States
| | - Sophie Belin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
- *Correspondence: Sophie Belin ; Yannick Poitelon
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
- *Correspondence: Sophie Belin ; Yannick Poitelon
| |
Collapse
|
22
|
Wang L, Paudyal SC, Kang Y, Owa M, Liang FX, Spektor A, Knaut H, Sánchez I, Dynlacht BD. Regulators of tubulin polyglutamylation control nuclear shape and cilium disassembly by balancing microtubule and actin assembly. Cell Res 2022; 32:190-209. [PMID: 34782749 PMCID: PMC8807603 DOI: 10.1038/s41422-021-00584-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/05/2021] [Indexed: 02/03/2023] Open
Abstract
Cytoskeletal networks play an important role in regulating nuclear morphology and ciliogenesis. However, the role of microtubule (MT) post-translational modifications in nuclear shape regulation and cilium disassembly has not been explored. Here we identified a novel regulator of the tubulin polyglutamylase complex (TPGC), C11ORF49/CSTPP1, that regulates cytoskeletal organization, nuclear shape, and cilium disassembly. Mechanistically, loss of C11ORF49/CSTPP1 impacts the assembly and stability of the TPGC, which modulates long-chain polyglutamylation levels on microtubules (MTs) and thereby balances the binding of MT-associated proteins and actin nucleators. As a result, loss of TPGC leads to aberrant, enhanced assembly of MTs that penetrate the nucleus, which in turn leads to defects in nuclear shape, and disorganization of cytoplasmic actin that disrupts the YAP/TAZ pathway and cilium disassembly. Further, we showed that C11ORF49/CSTPP1-TPGC plays mechanistically distinct roles in the regulation of nuclear shape and cilium disassembly. Remarkably, disruption of C11ORF49/CSTPP1-TPGC also leads to developmental defects in vivo. Our findings point to an unanticipated nexus that links tubulin polyglutamylation with nuclear shape and ciliogenesis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA.
| | - Sharad C Paudyal
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuchen Kang
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Mikito Owa
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Feng-Xia Liang
- Microscopy Laboratory, Division of Advanced Research Technologies, NYU Langone Health, New York, NY, USA
| | - Alexander Spektor
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Irma Sánchez
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
23
|
Shankar R, Lettman MM, Whisler W, Frankel EB, Audhya A. The ESCRT machinery directs quality control over inner nuclear membrane architecture. Cell Rep 2022; 38:110263. [PMID: 35045304 PMCID: PMC8801257 DOI: 10.1016/j.celrep.2021.110263] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/21/2021] [Accepted: 12/21/2021] [Indexed: 11/20/2022] Open
Abstract
The late-acting endosomal sorting complex required for transport (ESCRT) machinery has been implicated in facilitating the resealing of the nuclear envelope (NE) after mitosis, enabling compartmentalization of the genome away from the cytoplasm. Here, we leverage the stereotypic first division of the C. elegans embryo to identify additional functions of the ESCRT machinery in maintaining the structure of the inner nuclear membrane. Specifically, impaired ESCRT function results in a defect in the pruning of inner nuclear membrane invaginations, which arise normally during NE reformation and expansion. Additionally, in combination with a hypomorphic mutation that interferes with assembly of the underlying nuclear lamina, inhibition of ESCRT function significantly perturbs NE architecture and increases chromosome segregation defects, resulting in penetrant embryonic lethality. Our findings highlight links between ESCRT-mediated inner nuclear membrane remodeling, maintenance of nuclear envelope morphology, and the preservation of the genome during early development. In this study, Shankar et al. demonstrate that defects in ESCRT machinery functions impair pruning of inner nuclear membrane invaginations that form normally after mitotic exit as the nuclear envelope undergoes expansion. These findings highlight a critical role for the ESCRT machinery in the maintenance of inner nuclear membrane morphology.
Collapse
Affiliation(s)
- Raakhee Shankar
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Molly M Lettman
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - William Whisler
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Elisa B Frankel
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
24
|
Coupling lipid synthesis with nuclear envelope remodeling. Trends Biochem Sci 2022; 47:52-65. [PMID: 34556392 PMCID: PMC9943564 DOI: 10.1016/j.tibs.2021.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/12/2021] [Accepted: 08/25/2021] [Indexed: 01/10/2023]
Abstract
The nuclear envelope (NE) is a protective barrier to the genome, yet its membranes undergo highly dynamic remodeling processes that are necessary for cell growth and maintenance. While mechanisms by which proteins promote NE remodeling are emerging, the types of bilayer lipids and the lipid-protein interactions that define and sculpt nuclear membranes remain elusive. The NE is continuous with the endoplasmic reticulum (ER) and recent evidence suggests that lipids produced in the ER are harnessed to remodel nuclear membranes. In this review, we examine new roles for lipid species made proximally within the ER and locally at the NE to control NE dynamics. We further explore how the biosynthesis of lipids coordinates NE remodeling to ensure genome protection.
Collapse
|
25
|
Wallis SS, Ventimiglia LN, Otigbah E, Infante E, Cuesta-Geijo MA, Kidiyoor GR, Carbajal MA, Fleck RA, Foiani M, Garcia-Manyes S, Martin-Serrano J, Agromayor M. The ESCRT machinery counteracts Nesprin-2G-mediated mechanical forces during nuclear envelope repair. Dev Cell 2021; 56:3192-3202.e8. [PMID: 34818527 PMCID: PMC8657813 DOI: 10.1016/j.devcel.2021.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/03/2021] [Accepted: 10/28/2021] [Indexed: 12/31/2022]
Abstract
Transient nuclear envelope ruptures during interphase (NERDI) occur due to cytoskeletal compressive forces at sites of weakened lamina, and delayed NERDI repair results in genomic instability. Nuclear envelope (NE) sealing is completed by endosomal sorting complex required for transport (ESCRT) machinery. A key unanswered question is how local compressive forces are counteracted to allow efficient membrane resealing. Here, we identify the ESCRT-associated protein BROX as a crucial factor required to accelerate repair of the NE. Critically, BROX binds Nesprin-2G, a component of the linker of nucleoskeleton and cytoskeleton complex (LINC). This interaction promotes Nesprin-2G ubiquitination and facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site. Thus, BROX rebalances excessive cytoskeletal forces in cells experiencing NE instability to promote effective NERDI repair. Our results demonstrate that BROX coordinates mechanoregulation with membrane remodeling to ensure the maintenance of nuclear-cytoplasmic compartmentalization and genomic stability. Cytoskeletal forces exerted on the nucleus can rupture its membrane BROX is recruited to sites of rupture by the ESCRT membrane remodeling machinery BROX ubiquitinates the LINC complex protein Nesprin-2G, targeting it for degradation BROX coordinates local relaxation of mechanical stress with membrane remodeling
Collapse
Affiliation(s)
- Samuel S Wallis
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK
| | - Leandro N Ventimiglia
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK
| | - Evita Otigbah
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK
| | - Elvira Infante
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, and London Centre for Nanotechnology, King's College London, London WC2R 2LS, UK
| | - Miguel Angel Cuesta-Geijo
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK; Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (CSIC), Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain
| | - Gururaj Rao Kidiyoor
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, 20122 Milan, Italy
| | | | - Roland A Fleck
- Centre for Ultrastructural Imaging, King's College London, London SE1 1UL, UK
| | - Marco Foiani
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, 20122 Milan, Italy
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, and London Centre for Nanotechnology, King's College London, London WC2R 2LS, UK; the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Juan Martin-Serrano
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK.
| | - Monica Agromayor
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK.
| |
Collapse
|
26
|
Li Y, Wang Y, Wen Y, Zhang T, Wang X, Jiang C, Zheng R, Zhou F, Chen D, Yang Y, Shen Y. Whole-exome sequencing of a cohort of infertile men reveals novel causative genes in teratozoospermia that are chiefly related to sperm head defects. Hum Reprod 2021; 37:152-177. [PMID: 34791246 DOI: 10.1093/humrep/deab229] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Can whole-exome sequencing (WES) and in vitro validation studies identify new causative genes associated with teratozoospermia, particularly for sperm head defect? SUMMARY ANSWER We investigated a core group of infertile patients, including 82 cases with unexplained abnormal sperm head and 67 individuals with multiple morphological abnormalities of the sperm flagella (MMAF), and revealed rare and novel deleterious gene variants correlated with morphological abnormalities of the sperm head or tail defects. WHAT IS KNOWN ALREADY Teratozoospermia is one of the most common factors causing male infertility. Owing to high phenotypic variability, currently known genetic causes of teratozoospermia can only explain a rather minor component for patients with anomalous sperm-head shapes, and the agents responsible for atypical sperm head shapes remain largely unknown. STUDY DESIGN, SIZE, DURATION We executed WES analysis of a Chinese cohort of patients (N = 149) with teratozoospermia to identify novel genetic causes particularly for defective sperm head. We also sought to reveal the influence of different abnormalities of sperm morphology on ICSI outcome. PARTICIPANTS/MATERIALS, SETTING, METHODS In this study, a cohort of 149 infertile men (82 with abnormal sperm head and 67 with MMAF) were recruited. We implemented WES on infertile patients and analyzed the negative effects of the mutations of candidate genes on their protein conformations and/or expression. We also investigated the candidate genes' spatiotemporal expression/localization during spermatogenesis in both humans and mice, and explored their interactions with proteins that are known to be involved in sperm development. We also compared the ICSI outcomes of the affected individuals with various aberrations in sperm morphology. MAIN RESULTS AND THE ROLE OF CHANCE We identified rare and deleterious variants of piwi like RNA-mediated gene silencing 4 (PIWIL4: 1/82 patients, 1.21%), coiled-coil and C2 domain containing 1B (CC2D1B: 1/82 patients, 1.21%), cyclin B3 (CCNB3: 1/82 patients, 1.21%), KIAA1210 (KIAA1210: 2/82 patients, 2.43%) and choline phosphotransferase 1 (CHPT1: 1/82 patients, 1.21%), which are novel correlates of morphological abnormalities of the sperm head; functional evidence supports roles for all of these genes in sperm head formation. The mutations of septin 12 (SEPTIN12: 2/82 patients, 2.43%) are suggested to be associated with acrosome defects. We additionally observed novel causative mutations of dynein axonemal heavy chain 2 (DNAH2: 1/67 patients, 1.49%), dynein axonemal heavy chain 10 (DNAH10: 1/67 patients, 1.49%) and dynein axonemal heavy chain 12 (DNAH12: 1/67 patients, 1.49%) in patients with MMAF, and revealed a significantly lower fertilization rate of the abnormal sperm-head group compared to the MMAF group following ICSI. Consequently, our study also suggests that the mutations of PIWIL4 and CC2D1B might be circumvented by ICSI to a degree, and that CHPT1 and KIAA1210 loss-of-function variants might be associated with failed ICSI treatment. LIMITATIONS, REASONS FOR CAUTION In this study, we discovered the relationship between the genotype and phenotype of the novel causative genes of sperm head deformities in humans. However, the molecular mechanism of the relevant genes involved in sperm head development needs to be further illuminated in future research. Furthermore, evidence should be provided using knockout/knock-in mouse models for additional confirmation of the roles of these novel genes in spermatogenesis. WIDER IMPLICATIONS OF THE FINDINGS This cohort study of 149 Chinese infertile men documents novel genetic factors involved in teratozoospermia, particularly in anomalous sperm head formation. For the first time, we suggest that SEPTIN12 is related to human acrosomal hypoplasia, and that CCNB3 is a novel causative gene for globozoospermia in humans. We also uncovered variants in two genes-KIAA1210 and CHPT1associated with acrosomal biogenesis in patients with small or absent acrosomes. Additionally, it is postulated that loss-of-function mutations of PIWIL4 and CC2D1B have a contribution to the abnormal sperm-head formation. Furthermore, we are first to demonstrate the influence of different sperm morphologies on ICSI outcomes and indicates that the abnormal sperm head may play a significant role in fertilization failure. Our findings therefore provide valuable information for the diagnosis of teratozoospermia, particularly with respect to abnormalities of the sperm head. This will allow clinicians to adopt the optimal treatment strategy and to develop personalized medicine directly targeting these effects. STUDY FUNDING/COMPETING INTEREST(S) This work was financed by the West China Second University Hospital of Sichuan University (KS369 and KL042). The authors declare that they do not have any conflicts of interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Yaqian Li
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Yuting Wen
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tao Zhang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Xiaodong Wang
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chuan Jiang
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rui Zheng
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fan Zhou
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Daijuan Chen
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yihong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Ying Shen
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Casares-Arias J, Alonso MA, San Paulo Á, González MU. Correlative confocal and scanning electron microscopy of cultured cells without using dedicated equipment. STAR Protoc 2021; 2:100727. [PMID: 34409307 PMCID: PMC8361273 DOI: 10.1016/j.xpro.2021.100727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This protocol enables correlative light and electron microscopy (CLEM) imaging of cell surface features without using dedicated equipment. Cells are cultured and fixed on transparent substrates for confocal microscopy imaging. No conductive coating is employed in the scanning electron microscopy workflow, providing a clean cell surface observation, with fiducial markers assisting alignment of optical and topographical images. This protocol describes CLEM imaging for midbody remnants in MDCK cells but can also be applied to different cell types and surface features. For complete details on the use and execution of this protocol, please refer to Casares-Arias et al. (2020). A CLEM protocol without dedicated equipment requirements Confocal and SEM data sets are acquired on independent setups Large-scale sample features are used for initial correlation and navigation Gold nanobeads are used as fiducial markers during final image alignment
Collapse
Affiliation(s)
- Javier Casares-Arias
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Corresponding author
| | - Miguel A. Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Álvaro San Paulo
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Tres Cantos, Madrid 28760, Spain
| | - María Ujué González
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Tres Cantos, Madrid 28760, Spain
- Corresponding author
| |
Collapse
|
28
|
Merigliano C, Burla R, La Torre M, Del Giudice S, Teo H, Liew CW, Chojnowski A, Goh WI, Olmos Y, Maccaroni K, Giubettini M, Chiolo I, Carlton JG, Raimondo D, Vernì F, Stewart CL, Rhodes D, Wright GD, Burke BE, Saggio I. AKTIP interacts with ESCRT I and is needed for the recruitment of ESCRT III subunits to the midbody. PLoS Genet 2021; 17:e1009757. [PMID: 34449766 PMCID: PMC8428793 DOI: 10.1371/journal.pgen.1009757] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/09/2021] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
To complete mitosis, the bridge that links the two daughter cells needs to be cleaved. This step is carried out by the endosomal sorting complex required for transport (ESCRT) machinery. AKTIP, a protein discovered to be associated with telomeres and the nuclear membrane in interphase cells, shares sequence similarities with the ESCRT I component TSG101. Here we present evidence that during mitosis AKTIP is part of the ESCRT machinery at the midbody. AKTIP interacts with the ESCRT I subunit VPS28 and forms a circular supra-structure at the midbody, in close proximity with TSG101 and VPS28 and adjacent to the members of the ESCRT III module CHMP2A, CHMP4B and IST1. Mechanistically, the recruitment of AKTIP is dependent on MKLP1 and independent of CEP55. AKTIP and TSG101 are needed together for the recruitment of the ESCRT III subunit CHMP4B and in parallel for the recruitment of IST1. Alone, the reduction of AKTIP impinges on IST1 and causes multinucleation. Our data altogether reveal that AKTIP is a component of the ESCRT I module and functions in the recruitment of ESCRT III components required for abscission. To complete cell division, the bridge that links the two daughter cells needs to be cleaved. This step is carried out by a machinery named “endosomal sorting complex required for transport” (ESCRT). The dissection of this machinery is important in basic biology and for investigating diseases in which cell division is altered. AKTIP, a factor discovered to be needed for chromosome integrity, shares similarities with a component of the ESCRT machinery named TSG101. Here we present evidence that AKTIP is part of the ESCRT machinery, as TSG101. More specifically, we show that AKTIP physically interacts with members of the ESCRT machinery and forms a characteristic circular structure at the center of the bridge linking the daughter cells. We also show that the reduction of AKTIP levels causes defects in the assembly of the ESCRT machinery and in cell division. In future work, it will be interesting to investigate the association of AKTIP with cancer, because in tumorigenesis cell division is altered and since an implication in cancer has been described for TSG101 and other ESCRT factors.
Collapse
Affiliation(s)
| | - Romina Burla
- Sapienza University Dept. Biology and Biotechnology, Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Rome, Italy
| | - Mattia La Torre
- Sapienza University Dept. Biology and Biotechnology, Rome, Italy
| | | | - Hsiangling Teo
- Institute of Structural Biology, Nanyang Technological University, Singapore
| | - Chong Wai Liew
- Institute of Structural Biology, Nanyang Technological University, Singapore
| | - Alexandre Chojnowski
- A*STAR, Developmental and Regenerative Biology, ASLR, Agency for Science, Technology and Research, Singapore
- A*STAR, Singapore Nuclear Dynamics and Architecture, ASLR Skin Research Labs, Agency for Science, Technology and Research, Singapore
| | - Wah Ing Goh
- A*STAR Microscopy Platform, Research Support Centre, Agency for Science, Technology and Research, Singapore
| | - Yolanda Olmos
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Organelle Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Klizia Maccaroni
- Sapienza University Dept. Biology and Biotechnology, Rome, Italy
| | | | - Irene Chiolo
- University of Southern California, Molecular and Computational Biology Dept., Los Angeles, California, United States of America
| | - Jeremy G. Carlton
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Organelle Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Fiammetta Vernì
- Sapienza University Dept. Biology and Biotechnology, Rome, Italy
| | - Colin L. Stewart
- A*STAR, Developmental and Regenerative Biology, ASLR, Agency for Science, Technology and Research, Singapore
- Dept. of Physiology National University of Singapore, Singapore
| | - Daniela Rhodes
- Institute of Structural Biology, Nanyang Technological University, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Graham D. Wright
- A*STAR Microscopy Platform, Research Support Centre, Agency for Science, Technology and Research, Singapore
| | - Brian E. Burke
- A*STAR, Singapore Nuclear Dynamics and Architecture, ASLR Skin Research Labs, Agency for Science, Technology and Research, Singapore
| | - Isabella Saggio
- Sapienza University Dept. Biology and Biotechnology, Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Rome, Italy
- Institute of Structural Biology, Nanyang Technological University, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
- * E-mail:
| |
Collapse
|
29
|
Tavares LA, Januário YC, daSilva LLP. HIV-1 Hijacking of Host ATPases and GTPases That Control Protein Trafficking. Front Cell Dev Biol 2021; 9:622610. [PMID: 34307340 PMCID: PMC8295591 DOI: 10.3389/fcell.2021.622610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
The human immunodeficiency virus (HIV-1) modifies the host cell environment to ensure efficient and sustained viral replication. Key to these processes is the capacity of the virus to hijack ATPases, GTPases and the associated proteins that control intracellular protein trafficking. The functions of these energy-harnessing enzymes can be seized by HIV-1 to allow the intracellular transport of viral components within the host cell or to change the subcellular distribution of antiviral factors, leading to immune evasion. Here, we summarize how energy-related proteins deviate from their normal functions in host protein trafficking to aid the virus in different phases of its replicative cycle. Recent discoveries regarding the interplay among HIV-1 and host ATPases and GTPases may shed light on potential targets for pharmacological intervention.
Collapse
Affiliation(s)
- Lucas A Tavares
- Department of Cell and Molecular Biology, Center for Virology Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Yunan C Januário
- Department of Cell and Molecular Biology, Center for Virology Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luis L P daSilva
- Department of Cell and Molecular Biology, Center for Virology Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
30
|
Shokrollahi M, Mekhail K. Interphase microtubules in nuclear organization and genome maintenance. Trends Cell Biol 2021; 31:721-731. [PMID: 33902985 DOI: 10.1016/j.tcb.2021.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022]
Abstract
Microtubules are major cytoskeletal components mediating fundamental cellular processes, including cell division. Recent evidence suggests that microtubules also regulate the nucleus during the cell cycle's interphase stage. Deciphering such roles of microtubules should uncover direct crosstalk between the nucleus and cytoplasm, impacting genome function and organismal health. Here, we review emerging roles for microtubules in interphase genome regulation. We explore how microtubules exert cytoplasmic forces on the nucleus or transport molecular cargo, including DNA, into or within the nucleus. We also describe how microtubules perform these functions by establishing transient or stable connections with nuclear envelope elements. Lastly, we discuss how the regulation of the nucleus by microtubules impacts genome organization and repair. Together, the literature indicates that interphase microtubules are critical regulators of nuclear structure and genome stability.
Collapse
Affiliation(s)
- Mitra Shokrollahi
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Canada Research Chairs Program, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
31
|
Alqabandi M, de Franceschi N, Maity S, Miguet N, Bally M, Roos WH, Weissenhorn W, Bassereau P, Mangenot S. The ESCRT-III isoforms CHMP2A and CHMP2B display different effects on membranes upon polymerization. BMC Biol 2021; 19:66. [PMID: 33832485 PMCID: PMC8033747 DOI: 10.1186/s12915-021-00983-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND ESCRT-III proteins are involved in many membrane remodeling processes including multivesicular body biogenesis as first discovered in yeast. In humans, ESCRT-III CHMP2 exists as two isoforms, CHMP2A and CHMP2B, but their physical characteristics have not been compared yet. RESULTS Here, we use a combination of techniques on biomimetic systems and purified proteins to study their affinity and effects on membranes. We establish that CHMP2B binding is enhanced in the presence of PI(4,5)P2 lipids. In contrast, CHMP2A does not display lipid specificity and requires CHMP3 for binding significantly to membranes. On the micrometer scale and at moderate bulk concentrations, CHMP2B forms a reticular structure on membranes whereas CHMP2A (+CHMP3) binds homogeneously. Thus, CHMP2A and CHMP2B unexpectedly induce different mechanical effects to membranes: CHMP2B strongly rigidifies them while CHMP2A (+CHMP3) has no significant effect. CONCLUSIONS We therefore conclude that CHMP2B and CHMP2A exhibit different mechanical properties and might thus contribute differently to the diverse ESCRT-III-catalyzed membrane remodeling processes.
Collapse
Affiliation(s)
- Maryam Alqabandi
- Laboratoire Physico Chimie Curie, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005, Paris, France
| | - Nicola de Franceschi
- Laboratoire Physico Chimie Curie, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005, Paris, France
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Nolwenn Miguet
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000, Grenoble, France
| | - Marta Bally
- Umeå University, Department of Clinical Microbiology & Wallenberg Centre for Molecular Medicine, 90185, Umeå, Sweden
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Winfried Weissenhorn
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000, Grenoble, France
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005, Paris, France
| | - Stéphanie Mangenot
- Laboratoire Physico Chimie Curie, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005, Paris, France.
| |
Collapse
|
32
|
Halfmann CT, Roux KJ. Barrier-to-autointegration factor: a first responder for repair of nuclear ruptures. Cell Cycle 2021; 20:647-660. [PMID: 33678126 DOI: 10.1080/15384101.2021.1892320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The nuclear envelope (NE) is a critical barrier between the cytosol and nucleus that is key for compartmentalization within the cell and serves an essential role in organizing and protecting genomic DNA. Rupturing of the NE through loss of constitutive NE proteins and/or mechanical force applied to the nucleus results in the unregulated mixing of cytosolic and nuclear compartments, leading to DNA damage and genomic instability. Nuclear rupture has recently gained interest as a mechanism that may participate in various NE-associated diseases as well as cancer. Remarkably, these rupturing events are often transient, with cells being capable of rapidly repairing nuclear ruptures. Recently, we identified Barrier-to-Autointegration Factor (BAF), a DNA-binding protein involved in post-mitotic NE reformation and cytosolic viral regulation, as an essential protein for nuclear rupture repair. During interphase, the highly mobile cytosolic BAF is primed to monitor for a compromised NE by rapidly binding to newly exposed nuclear DNA and subsequently recruiting the factors necessary for NE repair. This review highlights the recent findings of BAF's roles in rupture repair, and offers perspectives on how regulatory factors that control BAF activity may potentially alter the cellular response to nuclear ruptures and how BAF may participate in human disease.
Collapse
Affiliation(s)
| | - Kyle J Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
33
|
Zhen Y, Radulovic M, Vietri M, Stenmark H. Sealing holes in cellular membranes. EMBO J 2021; 40:e106922. [PMID: 33644904 PMCID: PMC8013788 DOI: 10.15252/embj.2020106922] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
The compartmentalization of eukaryotic cells, which is essential for their viability and functions, is ensured by single or double bilayer membranes that separate the cell from the exterior and form boundaries between the cell’s organelles and the cytosol. Nascent nuclear envelopes and autophagosomes, which both are enveloped by double membranes, need to be sealed during the late stage of their biogenesis. On the other hand, the integrity of cellular membranes such as the plasma membrane, lysosomes and the nuclear envelope can be compromised by pathogens, chemicals, radiation, inflammatory responses and mechanical stress. There are cellular programmes that restore membrane integrity after injury. Here, we review cellular mechanisms that have evolved to maintain membrane integrity during organelle biogenesis and after injury, including membrane scission mediated by the endosomal sorting complex required for transport (ESCRT), vesicle patching and endocytosis.
Collapse
Affiliation(s)
- Yan Zhen
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Maja Radulovic
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Marina Vietri
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine and Health Sciences, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
34
|
Thaller DJ, Tong D, Marklew CJ, Ader NR, Mannino PJ, Borah S, King MC, Ciani B, Lusk CP. Direct binding of ESCRT protein Chm7 to phosphatidic acid-rich membranes at nuclear envelope herniations. J Cell Biol 2021; 220:e202004222. [PMID: 33464310 PMCID: PMC7816628 DOI: 10.1083/jcb.202004222] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/04/2020] [Accepted: 12/11/2020] [Indexed: 12/03/2022] Open
Abstract
Mechanisms that control nuclear membrane remodeling are essential to maintain the integrity of the nucleus but remain to be fully defined. Here, we identify a phosphatidic acid (PA)-binding capacity in the nuclear envelope (NE)-specific ESCRT, Chm7, in budding yeast. Chm7's interaction with PA-rich membranes is mediated through a conserved hydrophobic stretch of amino acids, which confers recruitment to the NE in a manner that is independent of but required for Chm7's interaction with the LAP2-emerin-MAN1 (LEM) domain protein Heh1 (LEM2). Consistent with the functional importance of PA binding, mutation of this region abrogates recruitment of Chm7 to membranes and abolishes Chm7 function in the context of NE herniations that form during defective nuclear pore complex (NPC) biogenesis. In fact, we show that a PA sensor specifically accumulates within these NE herniations. We suggest that local control of PA metabolism is important for ensuring productive NE remodeling and that its dysregulation may contribute to pathologies associated with defective NPC assembly.
Collapse
Affiliation(s)
- David J. Thaller
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Danqing Tong
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Christopher J. Marklew
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Brook Hill, Sheffield, UK
| | - Nicholas R. Ader
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | | | - Sapan Borah
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Megan C. King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Barbara Ciani
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Brook Hill, Sheffield, UK
| | - C. Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
35
|
Why Cells and Viruses Cannot Survive without an ESCRT. Cells 2021; 10:cells10030483. [PMID: 33668191 PMCID: PMC7995964 DOI: 10.3390/cells10030483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/15/2022] Open
Abstract
Intracellular organelles enwrapped in membranes along with a complex network of vesicles trafficking in, out and inside the cellular environment are one of the main features of eukaryotic cells. Given their central role in cell life, compartmentalization and mechanisms allowing their maintenance despite continuous crosstalk among different organelles have been deeply investigated over the past years. Here, we review the multiple functions exerted by the endosomal sorting complex required for transport (ESCRT) machinery in driving membrane remodeling and fission, as well as in repairing physiological and pathological membrane damages. In this way, ESCRT machinery enables different fundamental cellular processes, such as cell cytokinesis, biogenesis of organelles and vesicles, maintenance of nuclear–cytoplasmic compartmentalization, endolysosomal activity. Furthermore, we discuss some examples of how viruses, as obligate intracellular parasites, have evolved to hijack the ESCRT machinery or part of it to execute/optimize their replication cycle/infection. A special emphasis is given to the herpes simplex virus type 1 (HSV-1) interaction with the ESCRT proteins, considering the peculiarities of this interplay and the need for HSV-1 to cross both the nuclear-cytoplasmic and the cytoplasmic-extracellular environment compartmentalization to egress from infected cells.
Collapse
|
36
|
Penfield L, Shankar R, Szentgyörgyi E, Laffitte A, Mauro MS, Audhya A, Müller-Reichert T, Bahmanyar S. Regulated lipid synthesis and LEM2/CHMP7 jointly control nuclear envelope closure. J Cell Biol 2021; 219:151636. [PMID: 32271860 PMCID: PMC7199858 DOI: 10.1083/jcb.201908179] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/22/2020] [Accepted: 03/03/2020] [Indexed: 11/22/2022] Open
Abstract
The nuclear permeability barrier depends on closure of nuclear envelope (NE) holes. Here, we investigate closure of the NE opening surrounding the meiotic spindle in C. elegans oocytes. ESCRT-III components accumulate at the opening but are not required for nuclear closure on their own. 3D analysis revealed cytoplasmic membranes directly adjacent to NE holes containing meiotic spindle microtubules. We demonstrate that the NE protein phosphatase, CNEP-1/CTDNEP1, controls de novo glycerolipid synthesis through lipin to prevent invasion of excess ER membranes into NE holes and a defective NE permeability barrier. Loss of NE adaptors for ESCRT-III exacerbates ER invasion and nuclear permeability defects in cnep-1 mutants, suggesting that ESCRTs restrict excess ER membranes during NE closure. Restoring glycerolipid synthesis in embryos deleted for CNEP-1 and ESCRT components rescued NE permeability defects. Thus, regulating the production and feeding of ER membranes into NE holes together with ESCRT-mediated remodeling is required for nuclear closure.
Collapse
Affiliation(s)
- Lauren Penfield
- Department of Molecular, Cellular and Developmental Biology, New Haven, CT
| | - Raakhee Shankar
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
| | - Erik Szentgyörgyi
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alyssa Laffitte
- Department of Molecular, Cellular and Developmental Biology, New Haven, CT
| | - Michael Sean Mauro
- Department of Molecular, Cellular and Developmental Biology, New Haven, CT
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, New Haven, CT
| |
Collapse
|
37
|
Baeumers M, Ruhnau K, Breuer T, Pannen H, Goerlich B, Kniebel A, Haensch S, Weidtkamp-Peters S, Schmitt L, Klein T. Lethal (2) giant discs (Lgd)/CC2D1 is required for the full activity of the ESCRT machinery. BMC Biol 2020; 18:200. [PMID: 33349255 PMCID: PMC7754597 DOI: 10.1186/s12915-020-00933-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/24/2020] [Indexed: 01/10/2023] Open
Abstract
Background A major task of the endosomal sorting complex required for transport (ESCRT) machinery is the pinching off of cargo-loaded intraluminal vesicles (ILVs) into the lumen of maturing endosomes (MEs), which is essential for the complete degradation of transmembrane proteins in the lysosome. The ESCRT machinery is also required for the termination of signalling through activated signalling receptors, as it separates their intracellular domains from the cytosol. At the heart of the machinery lies the ESCRT-III complex, which is required for an increasing number of processes where membrane regions are abscised away from the cytosol. The core of ESCRT-III, comprising four members of the CHMP protein family, organises the assembly of a homopolymer of CHMP4, Shrub in Drosophila, that is essential for abscission. We and others identified the tumour-suppressor lethal (2) giant discs (Lgd)/CC2D1 as a physical interactor of Shrub/CHMP4 in Drosophila and mammals, respectively. Results Here, we show that the loss of function of lgd constitutes a state of reduced activity of Shrub/CHMP4/ESCRT-III. This hypomorphic shrub mutant situation causes a slight decrease in the rate of ILV formation that appears to result in incomplete incorporation of Notch into ILVs. We found that the forced incorporation in ILVs of lgd mutant MEs suppresses the uncontrolled and ligand-independent activation of Notch. Moreover, the analysis of Su(dx) lgd double mutants clarifies their relationship and suggests that they are not operating in a linear pathway. We could show that, despite prolonged lifetime, the MEs of lgd mutants have a similar ILV density as wild-type but less than rab7 mutant MEs, suggesting the rate in lgd mutants is slightly reduced. The analysis of the MEs of wild-type and mutant cells in the electron microscope revealed that the ESCRT-containing electron-dense microdomains of ILV formation at the limiting membrane are elongated, indicating a change in ESCRT activity. Since lgd mutants can be rescued to normal adult flies if extra copies of shrub (or its mammalian ortholog CHMP4B) are added into the genome, we conclude that the net activity of Shrub is reduced upon loss of lgd function. Finally, we show that, in solution, CHMP4B/Shrub exists in two conformations. LGD1/Lgd binding does not affect the conformational state of Shrub, suggesting that Lgd is not a chaperone for Shrub/CHMP4B. Conclusion Our results suggest that Lgd is required for the full activity of Shrub/ESCRT-III. In its absence, the activity of the ESCRT machinery is reduced. This reduction causes the escape of a fraction of cargo, among it Notch, from incorporation into ILVs, which in turn leads to an activation of this fraction of Notch after fusion of the ME with the lysosome. Our results highlight the importance of the incorporation of Notch into ILV not only to assure complete degradation, but also to avoid uncontrolled activation of the pathway.
Collapse
Affiliation(s)
- Miriam Baeumers
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Kristina Ruhnau
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Thomas Breuer
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Hendrik Pannen
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Bastian Goerlich
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Anna Kniebel
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Sebastian Haensch
- Center of Advanced Imaging (CAi), Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Stefanie Weidtkamp-Peters
- Center of Advanced Imaging (CAi), Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry I, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Thomas Klein
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany.
| |
Collapse
|
38
|
Yu H, Li Y, Li L, Huang J, Wang X, Tang R, Jiang Z, Lv L, Chen F, Yu C, Yuan K. Functional reciprocity of proteins involved in mitosis and endocytosis. FEBS J 2020; 288:5850-5866. [PMID: 33300206 DOI: 10.1111/febs.15664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/29/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
Mitosis and endocytosis are two fundamental cellular processes essential for maintaining a eukaryotic life. Mitosis partitions duplicated chromatin enveloped in the nuclear membrane into two new cells, whereas endocytosis takes in extracellular substances through membrane invagination. These two processes are spatiotemporally separated and seemingly unrelated. However, recent studies have uncovered that endocytic proteins have moonlighting functions in mitosis, and mitotic complexes manifest additional roles in endocytosis. In this review, we summarize important proteins or protein complexes that participate in both processes, compare their mechanism of action, and discuss the rationale behind this multifunctionality. We also speculate on the possible origin of the functional reciprocity from an evolutionary perspective.
Collapse
Affiliation(s)
- Haibin Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yinshuang Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Li Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | | | - Xujuan Wang
- The High School Attached to Hunan Normal University, Changsha, China
| | - Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zhenghui Jiang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunhong Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,The Biobank of Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
39
|
Rodger C, Flex E, Allison RJ, Sanchis-Juan A, Hasenahuer MA, Cecchetti S, French CE, Edgar JR, Carpentieri G, Ciolfi A, Pantaleoni F, Bruselles A, Onesimo R, Zampino G, Marcon F, Siniscalchi E, Lees M, Krishnakumar D, McCann E, Yosifova D, Jarvis J, Kruer MC, Marks W, Campbell J, Allen LE, Gustincich S, Raymond FL, Tartaglia M, Reid E. De Novo VPS4A Mutations Cause Multisystem Disease with Abnormal Neurodevelopment. Am J Hum Genet 2020; 107:1129-1148. [PMID: 33186545 PMCID: PMC7820634 DOI: 10.1016/j.ajhg.2020.10.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/26/2020] [Indexed: 11/30/2022] Open
Abstract
The endosomal sorting complexes required for transport (ESCRTs) are essential for multiple membrane modeling and membrane-independent cellular processes. Here we describe six unrelated individuals with de novo missense variants affecting the ATPase domain of VPS4A, a critical enzyme regulating ESCRT function. Probands had structural brain abnormalities, severe neurodevelopmental delay, cataracts, growth impairment, and anemia. In cultured cells, overexpression of VPS4A mutants caused enlarged endosomal vacuoles resembling those induced by expression of known dominant-negative ATPase-defective forms of VPS4A. Proband-derived fibroblasts had enlarged endosomal structures with abnormal accumulation of the ESCRT protein IST1 on the limiting membrane. VPS4A function was also required for normal endosomal morphology and IST1 localization in iPSC-derived human neurons. Mutations affected other ESCRT-dependent cellular processes, including regulation of centrosome number, primary cilium morphology, nuclear membrane morphology, chromosome segregation, mitotic spindle formation, and cell cycle progression. We thus characterize a distinct multisystem disorder caused by mutations affecting VPS4A and demonstrate that its normal function is required for multiple human developmental and cellular processes.
Collapse
Affiliation(s)
- Catherine Rodger
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Elisabetta Flex
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Rachel J Allison
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Alba Sanchis-Juan
- Department of Haematology, NHS Blood and Transplant Centre, University of Cambridge, Cambridge CB2 0XY, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Marcia A Hasenahuer
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK; European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Serena Cecchetti
- Microscopy Area, Core Facilities, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Courtney E French
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Giovanna Carpentieri
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy; Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Francesca Pantaleoni
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Roberta Onesimo
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome 00168, Italy
| | - Giuseppe Zampino
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome 00168, Italy; Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Francesca Marcon
- Unit of Mechanisms, Biomarkers and Models, Department of Environment and Health, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Ester Siniscalchi
- Unit of Mechanisms, Biomarkers and Models, Department of Environment and Health, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Melissa Lees
- Department of Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Deepa Krishnakumar
- Department of Paediatric Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Emma McCann
- Department of Clinical Genetics, Liverpool Women's Hospital, Liverpool L8 7SS, UK
| | - Dragana Yosifova
- Department of Medical Genetics, Guys' and St Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Joanna Jarvis
- Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust, Birmingham B15 2TG, UK
| | | | - Warren Marks
- Cook Children's Medical Centre, Fort Worth, TX 76104, USA
| | - Jonathan Campbell
- Colchester Hospital, East Suffolk and North Essex NHS Foundation Trust, Essex CO4 5JL, UK
| | - Louise E Allen
- Ophthalmology Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Stefano Gustincich
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova 16163, Italy; Area of Neuroscience, SISSA, Trieste 34136, Italy
| | - F Lucy Raymond
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy.
| | - Evan Reid
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
40
|
Burla R, La Torre M, Maccaroni K, Verni F, Giunta S, Saggio I. Interplay of the nuclear envelope with chromatin in physiology and pathology. Nucleus 2020; 11:205-218. [PMID: 32835589 PMCID: PMC7529417 DOI: 10.1080/19491034.2020.1806661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
The nuclear envelope compartmentalizes chromatin in eukaryotic cells. The main nuclear envelope components are lamins that associate with a panoply of factors, including the LEM domain proteins. The nuclear envelope of mammalian cells opens up during cell division. It is reassembled and associated with chromatin at the end of mitosis when telomeres tether to the nuclear periphery. Lamins, LEM domain proteins, and DNA binding factors, as BAF, contribute to the reorganization of chromatin. In this context, an emerging role is that of the ESCRT complex, a machinery operating in multiple membrane assembly pathways, including nuclear envelope reformation. Research in this area is unraveling how, mechanistically, ESCRTs link to nuclear envelope associated factors as LEM domain proteins. Importantly, ESCRTs work also during interphase for repairing nuclear envelope ruptures. Altogether the advances in this field are giving new clues for the interpretation of diseases implicating nuclear envelope fragility, as laminopathies and cancer. ABBREVIATIONS na, not analyzed; ko, knockout; kd, knockdown; NE, nuclear envelope; LEM, LAP2-emerin-MAN1 (LEM)-domain containing proteins; LINC, linker of nucleoskeleton and cytoskeleton complexes; Cyt, cytoplasm; Chr, chromatin; MB, midbody; End, endosomes; Tel, telomeres; INM, inner nuclear membrane; NP, nucleoplasm; NPC, Nuclear Pore Complex; ER, Endoplasmic Reticulum; SPB, spindle pole body.
Collapse
Affiliation(s)
- Romina Burla
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Italy
| | - Mattia La Torre
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Klizia Maccaroni
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Fiammetta Verni
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Simona Giunta
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- Rockefeller University, New York, NY, USA
| | - Isabella Saggio
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Italy
- Institute of Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
41
|
Unravelling of Hidden Secrets: The Tumour Suppressor Lethal (2) Giant Discs (Lgd)/CC2D1, Notch Signalling and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1287:31-46. [PMID: 33034024 DOI: 10.1007/978-3-030-55031-8_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The endosomal pathway plays a pivotal role upon signal transduction in the Notch pathway. Recent work on lethal (2) giant discs (lgd) points to an additional critical role in avoiding uncontrolled ligand-independent signalling during trafficking of the Notch receptor through the endosomal pathway to the lysosome for degradation. In this chapter, we will outline the journey of Notch through the endosomal system and present an overview of the current knowledge about Lgd and its mammalian orthologs Lgd1/CC2D1b and Lgd2/CC2D1a. We will then discuss how Notch is activated in the absence of lgd function in Drosophila and ask whether there is evidence that a similar ligand-independent activation of the Notch pathway can also happen in mammals if the orthologs are inactivated.
Collapse
|
42
|
Unrestrained ESCRT-III drives micronuclear catastrophe and chromosome fragmentation. Nat Cell Biol 2020; 22:856-867. [PMID: 32601372 DOI: 10.1038/s41556-020-0537-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/24/2020] [Indexed: 12/11/2022]
Abstract
The ESCRT-III membrane fission machinery maintains the integrity of the nuclear envelope. Although primary nuclei resealing takes minutes, micronuclear envelope ruptures seem to be irreversible. Instead, micronuclear ruptures result in catastrophic membrane collapse and are associated with chromosome fragmentation and chromothripsis, complex chromosome rearrangements thought to be a major driving force in cancer development. Here we use a combination of live microscopy and electron tomography, as well as computer simulations, to uncover the mechanism underlying micronuclear collapse. We show that, due to their small size, micronuclei inherently lack the capacity of primary nuclei to restrict the accumulation of CHMP7-LEMD2, a compartmentalization sensor that detects loss of nuclear integrity. This causes unrestrained ESCRT-III accumulation, which drives extensive membrane deformation, DNA damage and chromosome fragmentation. Thus, the nuclear-integrity surveillance machinery is a double-edged sword, as its sensitivity ensures rapid repair at primary nuclei while causing unrestrained activity at ruptured micronuclei, with catastrophic consequences for genome stability.
Collapse
|
43
|
Bahmanyar S, Schlieker C. Lipid and protein dynamics that shape nuclear envelope identity. Mol Biol Cell 2020; 31:1315-1323. [PMID: 32530796 PMCID: PMC7353140 DOI: 10.1091/mbc.e18-10-0636] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
The nuclear envelope (NE) is continuous with the endoplasmic reticulum (ER), yet the NE carries out many functions distinct from those of bulk ER. This functional specialization depends on a unique protein composition that defines NE identity and must be both established and actively maintained. The NE undergoes extensive remodeling in interphase and mitosis, so mechanisms that seal NE holes and protect its unique composition are critical for maintaining its functions. New evidence shows that closure of NE holes relies on regulated de novo lipid synthesis, providing a link between lipid metabolism and generating and maintaining NE identity. Here, we review regulation of the lipid bilayers of the NE and suggest ways to generate lipid asymmetry across the NE despite its direct continuity with the ER. We also discuss the elusive mechanism of membrane fusion during nuclear pore complex (NPC) biogenesis. We propose a model in which NPC biogenesis is carefully controlled to ensure that a permeability barrier has been established before membrane fusion, thereby avoiding a major threat to compartmentalization.
Collapse
Affiliation(s)
- Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Christian Schlieker
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
44
|
Midbody Remnant Inheritance Is Regulated by the ESCRT Subunit CHMP4C. iScience 2020; 23:101244. [PMID: 32629610 PMCID: PMC7322264 DOI: 10.1016/j.isci.2020.101244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/19/2020] [Accepted: 06/04/2020] [Indexed: 01/05/2023] Open
Abstract
The inheritance of the midbody remnant (MBR) breaks the symmetry of the two daughter cells, with functional consequences for lumen and primary cilium formation by polarized epithelial cells, and also for development and differentiation. However, despite its importance, neither the relationship between the plasma membrane and the inherited MBR nor the mechanism of MBR inheritance is well known. Here, the analysis by correlative light and ultra-high-resolution scanning electron microscopy reveals a membranous stalk that physically connects the MBR to the apical membrane of epithelial cells. The stalk, which derives from the uncleaved side of the midbody, concentrates the ESCRT machinery. The ESCRT CHMP4C subunit enables MBR inheritance, and its depletion dramatically reduces the percentage of ciliated cells. We demonstrate (1) that MBRs are physically connected to the plasma membrane, (2) how CHMP4C helps maintain the integrity of the connection, and (3) the functional importance of the connection. Most midbody remnants of MDCK cells are physically connected to the apical membrane The connection derives from the uncleaved arm of the midbody CHMP4C distributes asymmetrically in the connection and maintains its integrity A connected midbody remnant is necessary for primary cilium formation by these cells
Collapse
|
45
|
Lusk CP, Ader NR. CHMPions of repair: Emerging perspectives on sensing and repairing the nuclear envelope barrier. Curr Opin Cell Biol 2020; 64:25-33. [PMID: 32105978 PMCID: PMC7371540 DOI: 10.1016/j.ceb.2020.01.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Abstract
Understanding how the integrity of the nuclear membranes is protected against internal and external stresses is an emergent challenge. Work reviewed here investigated the mechanisms by which losses of nuclear-cytoplasmic compartmentalization are sensed and ameliorated. Fundamental to these is spatial control over interactions between the endosomal sorting complexes required for transport machinery and LAP2-emerin-MAN1 family inner nuclear membrane proteins, which together promote nuclear envelope sealing in interphase and at the end of mitosis. We suggest that the size of the nuclear envelope hole dictates the mechanism of its repair, with larger holes requiring barrier-to-autointegration factor and the potential triggering of a postmitotic nuclear envelope reassembly pathway in interphase. We also consider why these mechanisms fail at ruptured micronuclei. Together, this work re-emphasizes the need to understand how membrane flow and local lipid metabolism help ensure that the nuclear envelope is refractory to mechanical rupture yet fluid enough to allow its essential dynamics.
Collapse
Affiliation(s)
- C Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, 295 Congress Avenue, New Haven, CT, 06520, USA.
| | - Nicholas R Ader
- Department of Cell Biology, Yale School of Medicine, 295 Congress Avenue, New Haven, CT, 06520, USA
| |
Collapse
|
46
|
Naso FD, Sterbini V, Crecca E, Asteriti IA, Russo AD, Giubettini M, Cundari E, Lindon C, Rosa A, Guarguaglini G. Excess TPX2 Interferes with Microtubule Disassembly and Nuclei Reformation at Mitotic Exit. Cells 2020; 9:E374. [PMID: 32041138 PMCID: PMC7072206 DOI: 10.3390/cells9020374] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
The microtubule-associated protein TPX2 is a key mitotic regulator that contributes through distinct pathways to spindle assembly. A well-characterised function of TPX2 is the activation, stabilisation and spindle localisation of the Aurora-A kinase. High levels of TPX2 are reported in tumours and the effects of its overexpression have been investigated in cancer cell lines, while little is known in non-transformed cells. Here we studied TPX2 overexpression in hTERT RPE-1 cells, using either the full length TPX2 or a truncated form unable to bind Aurora-A, to identify effects that are dependent-or independent-on its interaction with the kinase. We observe significant defects in mitotic spindle assembly and progression through mitosis that are more severe when overexpressed TPX2 is able to interact with Aurora-A. Furthermore, we describe a peculiar, and Aurora-A-interaction-independent, phenotype in telophase cells, with aberrantly stable microtubules interfering with nuclear reconstitution and the assembly of a continuous lamin B1 network, resulting in daughter cells displaying doughnut-shaped nuclei. Our results using non-transformed cells thus reveal a previously uncharacterised consequence of abnormally high TPX2 levels on the correct microtubule cytoskeleton remodelling and G1 nuclei reformation, at the mitosis-to-interphase transition.
Collapse
Affiliation(s)
- Francesco D. Naso
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.D.N.); (V.S.); (E.C.); (I.A.A.); (A.D.R.); (E.C.)
| | - Valentina Sterbini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.D.N.); (V.S.); (E.C.); (I.A.A.); (A.D.R.); (E.C.)
| | - Elena Crecca
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.D.N.); (V.S.); (E.C.); (I.A.A.); (A.D.R.); (E.C.)
| | - Italia A. Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.D.N.); (V.S.); (E.C.); (I.A.A.); (A.D.R.); (E.C.)
| | - Alessandra D. Russo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.D.N.); (V.S.); (E.C.); (I.A.A.); (A.D.R.); (E.C.)
| | - Maria Giubettini
- CrestOptics S.p.A., Via di Torre Rossa 66, 00165 Rome, Italy;
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Enrico Cundari
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.D.N.); (V.S.); (E.C.); (I.A.A.); (A.D.R.); (E.C.)
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK;
| | - Alessandro Rosa
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.D.N.); (V.S.); (E.C.); (I.A.A.); (A.D.R.); (E.C.)
| |
Collapse
|
47
|
Abstract
Cellular membranes can form two principally different involutions, which either exclude or contain cytosol. The 'classical' budding reactions, such as those occurring during endocytosis or formation of exocytic vesicles, involve proteins that assemble on the cytosol-excluding face of the bud neck. Inverse membrane involution occurs in a wide range of cellular processes, supporting cytokinesis, endosome maturation, autophagy, membrane repair and many other processes. Such inverse membrane remodelling is mediated by a heteromultimeric protein machinery known as endosomal sorting complex required for transport (ESCRT). ESCRT proteins assemble on the cytosolic (or nucleoplasmic) face of the neck of the forming involution and cooperate with the ATPase VPS4 to drive membrane scission or sealing. Here, we review similarities and differences of various ESCRT-dependent processes, with special emphasis on mechanisms of ESCRT recruitment.
Collapse
|
48
|
Gatta AT, Carlton JG. The ESCRT-machinery: closing holes and expanding roles. Curr Opin Cell Biol 2019; 59:121-132. [DOI: 10.1016/j.ceb.2019.04.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 01/08/2023]
|
49
|
HIPK2 Phosphorylates the Microtubule-Severing Enzyme Spastin at S268 for Abscission. Cells 2019; 8:cells8070684. [PMID: 31284535 PMCID: PMC6678495 DOI: 10.3390/cells8070684] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022] Open
Abstract
Abscission is the final step of cell division, mediating the physical separation of the two daughter cells. A key player in this process is the microtubule-severing enzyme spastin that localizes at the midbody where its activity is crucial to cut microtubules and culminate the cytokinesis. Recently, we demonstrated that HIPK2, a multifunctional kinase involved in several cellular pathways, contributes to abscission and prevents tetraploidization. Here, we show that HIPK2 binds and phosphorylates spastin at serine 268. During cytokinesis, the midbody-localized spastin is phosphorylated at S268 in HIPK2-proficient cells. In contrast, no spastin is detectable at the midbody in HIPK2-depleted cells. The non-phosphorylatable spastin-S268A mutant does not localize at the midbody and cannot rescue HIPK2-depleted cells from abscission defects. In contrast, the phosphomimetic spastin-S268D mutant localizes at the midbody and restores successful abscission in the HIPK2-depleted cells. These results show that spastin is a novel target of HIPK2 and that HIPK2-mediated phosphorylation of spastin contributes to its midbody localization for successful abscission.
Collapse
|
50
|
Thaller DJ, Allegretti M, Borah S, Ronchi P, Beck M, Lusk CP. An ESCRT-LEM protein surveillance system is poised to directly monitor the nuclear envelope and nuclear transport system. eLife 2019; 8:e45284. [PMID: 30942170 PMCID: PMC6461442 DOI: 10.7554/elife.45284] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022] Open
Abstract
The integrity of the nuclear membranes coupled to the selective barrier of nuclear pore complexes (NPCs) are essential for the segregation of nucleoplasm and cytoplasm. Mechanical membrane disruption or perturbation to NPC assembly triggers an ESCRT-dependent surveillance system that seals nuclear pores: how these pores are sensed and sealed is ill defined. Using a budding yeast model, we show that the ESCRT Chm7 and the integral inner nuclear membrane (INM) protein Heh1 are spatially segregated by nuclear transport, with Chm7 being actively exported by Xpo1/Crm1. Thus, the exposure of the INM triggers surveillance with Heh1 locally activating Chm7. Sites of Chm7 hyperactivation show fenestrated sheets at the INM and potential membrane delivery at sites of nuclear envelope herniation. Our data suggest that perturbation to the nuclear envelope barrier would lead to local nuclear membrane remodeling to promote membrane sealing. Our findings have implications for disease mechanisms linked to NPC assembly and nuclear envelope integrity.
Collapse
Affiliation(s)
- David J Thaller
- Department of Cell BiologyYale School of MedicineNew HavenUnited States
| | - Matteo Allegretti
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryMeyerhofstrasseGermany
| | - Sapan Borah
- Department of Cell BiologyYale School of MedicineNew HavenUnited States
| | - Paolo Ronchi
- Electron Microscopy Core FacilityEuropean Molecular Biology LaboratoryMeyerhofstrasseGermany
| | - Martin Beck
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryMeyerhofstrasseGermany
| | - C Patrick Lusk
- Department of Cell BiologyYale School of MedicineNew HavenUnited States
| |
Collapse
|