1
|
Liu J, Aye Y. Tools to Dissect Lipid Droplet Regulation, Players, and Mechanisms. ACS Chem Biol 2025; 20:539-552. [PMID: 40035358 PMCID: PMC11934092 DOI: 10.1021/acschembio.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 03/05/2025]
Abstract
Spurred by the authors' own recent discovery of reactive metabolite-regulated nexuses involving lipid droplets (LDs), this perspective discusses the latest knowledge and multifaceted approaches toward deconstructing the function of these dynamic organelles, LD-associated localized signaling networks, and protein players. Despite accumulating knowledge surrounding protein families and pathways of conserved importance for LD homeostasis surveillance and maintenance across taxa, much remains to be understood at the molecular level. In particular, metabolic stress-triggered contextual changes in LD-proteins' localized functions, crosstalk with other organelles, and feedback signaling loops and how these are specifically rewired in disease states remain to be illuminated with spatiotemporal precision. We hope this perspective promotes an increased interest in these essential organelles and innovations of new tools and strategies to better understand context-specific LD regulation critical for organismal health.
Collapse
Affiliation(s)
- Jinmin Liu
- University
of Oxford, Oxford OX1 3TA, United
Kingdom
| | - Yimon Aye
- University
of Oxford, Oxford OX1 3TA, United
Kingdom
| |
Collapse
|
2
|
Wu Z, Li K, Hou A, Wang Y, Li Z. The Positive Effect of Akkermansia muciniphila postbiotics on the Glycolipid Metabolism of Caenorhabditis elegans Induced by High-Glucose Diet. Nutrients 2025; 17:976. [PMID: 40290025 PMCID: PMC11945073 DOI: 10.3390/nu17060976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Glycolipid metabolism is essential for maintaining metabolic homeostasis. As a new postbiotic, pasteurized Akkermansia muciniphila (P-AKK) is important for the regulation of immunity and metabolism. OBJECTIVES This study aimed to evaluate the effects of P-AKK on glycolipid metabolism in Caenorhabditis elegans fed a high glucose diet. RESULTS We discovered that feeding nematodes P-AKK improved their healthy lifespan when fed a high-glucose diet. Furthermore, P-AKK contributes to reducing the accumulation of glucose, advanced glycation end products, and lipids and maintains a better physiological state. In addition, P-AKK improved the composition of free fatty acids and decreased the total free fatty acid content of C. elegans. Transcriptome sequencing analysis revealed that P-AKK induced significant enrichment of carbohydrate, oxidative phosphorylation, and fatty acid metabolism pathways. These significantly enriched biological processes were closely related to glucose and lipid metabolism. Among them, P-AKK activated the β-oxidation of fatty acids while inhibiting the de novo synthesis of fatty acids to regulate fatty acid metabolism. CONCLUSIONS The administration of P-AKK positively affected the body phenotypes of C. elegans under high glucose conditions. P-AKK mitigated the fat accumulation induced by a high-glucose diet by regulating key metabolic enzymes, including acyl-CoA synthetase and stearoyl-CoA desaturase.
Collapse
Affiliation(s)
- Zhongqin Wu
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (Y.W.)
- School of Pharmaceutical and Bioengineering, Hunan Chemical Vocational Technology College, Zhuzhou 412000, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| | - Ke Li
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (Y.W.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| | - Aixing Hou
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (Y.W.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| | - Yuanliang Wang
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (Y.W.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| | - Zongjun Li
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (Y.W.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| |
Collapse
|
3
|
Zhou Y, Ahsan FM, Soukas AA. The nuclear pore complex connects energy sensing to transcriptional plasticity in longevity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638704. [PMID: 40027662 PMCID: PMC11870510 DOI: 10.1101/2025.02.17.638704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
As the only gateway governing nucleocytoplasmic transport, the nuclear pore complex (NPC) maintains fundamental cellular processes and deteriorates with age. However, the study of age-related roles of single NPC components remains challenging owing to the complexity of NPC composition. Here we demonstrate that the master energy sensor, AMPK, post-translationally regulates the abundance of the nucleoporin NPP-16/NUP50 in response to nutrient availability and energetic stress. In turn, NPP-16/NUP50 promotes transcriptomic activation of lipid catabolism to extend the lifespan of Caenorhabditis elegans independently of its role in nuclear transport. Rather, the intrinsically disordered region (IDR) of NPP-16/NUP50, through direct interaction with the transcriptional machinery, transactivates the promoters of catabolic genes. Remarkably, elevated NPP-16/NUP50 levels are sufficient to promote longevity and metabolic stress defenses. AMPK-NUP50 signaling is conserved to human, indicating that bridging energy sensing to metabolic adaptation is an ancient role of this signaling axis.
Collapse
Affiliation(s)
- Yifei Zhou
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, United States
- Broad Institute of Harvard and MIT, Cambridge, United States
| | - Fasih M Ahsan
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, United States
- Broad Institute of Harvard and MIT, Cambridge, United States
- Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, United States
| | - Alexander A Soukas
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, United States
- Broad Institute of Harvard and MIT, Cambridge, United States
| |
Collapse
|
4
|
Stoldt M, Negroni MA, Feldmeyer B, Foitzik S. Molecular Adjustment to a Social Niche: Brain Transcriptomes Reveal Divergent Influence of Social Environment on the Two Queen Morphs of the Ant Temnothorax rugatulus. Mol Ecol 2025:e17649. [PMID: 39775902 DOI: 10.1111/mec.17649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/15/2024] [Accepted: 09/30/2024] [Indexed: 01/11/2025]
Abstract
Social insects form complex societies with division of labour between different female castes. In most species, a single queen heads the colony; in others, several queens share the task of reproduction. These different social organisations are often associated with distinct queen morphologies and life-history strategies and occur in different environments. In the ant Temnothorax rugatulus, queens are dimorphic. Macrogynes and microgynes reside in mono- and polygynous colonies and at lower and higher elevations, respectively. We analysed plastic changes in brain transcriptomes in response to the social environment in these queen morphs and their workers. We manipulated the number of queens over 4 months to investigate whether transcriptional activity is influenced by queen morph, social environment or their interaction. Changes in gene expression in the queens' brains in response to our manipulations were largely influenced by the interaction between social environment and queen morph, rather than independently by these factors. Macrogynes and microgynes thus adjust differently to their social environment. Similarly, worker transcriptomes were influenced by an interaction between behavioural type, that is, nurses or foragers, and queen morph. Nurses differentially regulated genes related to nutrition depending on queen morph, suggesting a link between social environment and metabolic dynamics in ant colonies. Overall, our study sheds light on how the social environment influences the molecular physiology of social insects. Furthermore, we demonstrate that in this ant with two queen morphs, worker physiology depends on queen morph and their role in the colony.
Collapse
Affiliation(s)
- Marah Stoldt
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Matteo Antoine Negroni
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Center (SBiK-F), Molecular Ecology, Frankfurt, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
5
|
Domingues N, Pires J, Milosevic I, Raimundo N. Role of lipids in interorganelle communication. Trends Cell Biol 2025; 35:46-58. [PMID: 38866684 PMCID: PMC11632148 DOI: 10.1016/j.tcb.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Cell homeostasis and function rely on well-orchestrated communication between different organelles. This communication is ensured by signaling pathways and membrane contact sites between organelles. Many players involved in organelle crosstalk have been identified, predominantly proteins and ions. The role of lipids in interorganelle communication remains poorly understood. With the development and broader availability of methods to quantify lipids, as well as improved spatiotemporal resolution in detecting different lipid species, the contribution of lipids to organelle interactions starts to be evident. However, the specific roles of various lipid molecules in intracellular communication remain to be studied systematically. We summarize new insights in the interorganelle communication field from the perspective of organelles and discuss the roles played by lipids in these complex processes.
Collapse
Affiliation(s)
- Neuza Domingues
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Joana Pires
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Ira Milosevic
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nuno Raimundo
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal; Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA; Penn State Cancer Institute, Hershey, PA, USA.
| |
Collapse
|
6
|
Erinjeri AP, Wang X, Williams R, Chiozzi RZ, Thalassinos K, Labbadia J. HSF-1 promotes longevity through ubiquilin-1-dependent mitochondrial network remodelling. Nat Commun 2024; 15:9797. [PMID: 39532882 PMCID: PMC11557981 DOI: 10.1038/s41467-024-54136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Increased activity of the heat shock factor, HSF-1, suppresses proteotoxicity and enhances longevity. However, the precise mechanisms by which HSF-1 promotes lifespan are unclear. Using an RNAi screen, we identify ubiquilin-1 (ubql-1) as an essential mediator of lifespan extension in worms overexpressing hsf-1. We find that hsf-1 overexpression leads to transcriptional downregulation of all components of the CDC-48-UFD-1-NPL-4 complex, which is central to both endoplasmic reticulum and mitochondria associated protein degradation, and that this is complemented by UBQL-1-dependent turnover of NPL-4.1. As a consequence, mitochondrial network dynamics are altered, leading to increased lifespan. Together, our data establish that HSF-1 mediates lifespan extension through mitochondrial network adaptations that occur in response to down-tuning of components associated with organellar protein degradation pathways.
Collapse
Affiliation(s)
- Annmary Paul Erinjeri
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, UK
| | - Xunyan Wang
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, UK
| | - Rhianna Williams
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, UK
| | - Riccardo Zenezini Chiozzi
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
- UCL Mass Spectrometry Science Technology Platform, Division of Biosciences, University College London, London, UK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
- UCL Mass Spectrometry Science Technology Platform, Division of Biosciences, University College London, London, UK
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
| | - Johnathan Labbadia
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, UK.
| |
Collapse
|
7
|
Shen K, Durieux J, Mena CG, Webster BM, Tsui CK, Zhang H, Joe L, Berendzen KM, Dillin A. The germline coordinates mitokine signaling. Cell 2024; 187:4605-4620.e17. [PMID: 38959891 DOI: 10.1016/j.cell.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/01/2024] [Accepted: 06/08/2024] [Indexed: 07/05/2024]
Abstract
The ability of mitochondria to coordinate stress responses across tissues is critical for health. In C. elegans, neurons experiencing mitochondrial stress elicit an inter-tissue signaling pathway through the release of mitokine signals, such as serotonin or the Wnt ligand EGL-20, which activate the mitochondrial unfolded protein response (UPRMT) in the periphery to promote organismal health and lifespan. We find that germline mitochondria play a surprising role in neuron-to-periphery UPRMT signaling. Specifically, we find that germline mitochondria signal downstream of neuronal mitokines, Wnt and serotonin, and upstream of lipid metabolic pathways in the periphery to regulate UPRMT activation. We also find that the germline tissue itself is essential for UPRMT signaling. We propose that the germline has a central signaling role in coordinating mitochondrial stress responses across tissues, and germline mitochondria play a defining role in this coordination because of their inherent roles in germline integrity and inter-tissue signaling.
Collapse
Affiliation(s)
- Koning Shen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jenni Durieux
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cesar G Mena
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brant M Webster
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - C Kimberly Tsui
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hanlin Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Larry Joe
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kristen M Berendzen
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
8
|
Lee YT, Senturk M, Guan Y, Wang MC. Bacteria-organelle communication in physiology and disease. J Cell Biol 2024; 223:e202310134. [PMID: 38748249 PMCID: PMC11096858 DOI: 10.1083/jcb.202310134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/03/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Bacteria, omnipresent in our environment and coexisting within our body, exert dual beneficial and pathogenic influences. These microorganisms engage in intricate interactions with the human body, impacting both human health and disease. Simultaneously, certain organelles within our cells share an evolutionary relationship with bacteria, particularly mitochondria, best known for their energy production role and their dynamic interaction with each other and other organelles. In recent years, communication between bacteria and mitochondria has emerged as a new mechanism for regulating the host's physiology and pathology. In this review, we delve into the dynamic communications between bacteria and host mitochondria, shedding light on their collaborative regulation of host immune response, metabolism, aging, and longevity. Additionally, we discuss bacterial interactions with other organelles, including chloroplasts, lysosomes, and the endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Yi-Tang Lee
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Integrative Program of Molecular and Biochemical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Mumine Senturk
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Youchen Guan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Meng C. Wang
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
9
|
Gao SM, Qi Y, Zhang Q, Guan Y, Lee YT, Ding L, Wang L, Mohammed AS, Li H, Fu Y, Wang MC. Aging atlas reveals cell-type-specific effects of pro-longevity strategies. NATURE AGING 2024; 4:998-1013. [PMID: 38816550 PMCID: PMC11257944 DOI: 10.1038/s43587-024-00631-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/10/2024] [Indexed: 06/01/2024]
Abstract
Organismal aging involves functional declines in both somatic and reproductive tissues. Multiple strategies have been discovered to extend lifespan across species. However, how age-related molecular changes differ among various tissues and how those lifespan-extending strategies slow tissue aging in distinct manners remain unclear. Here we generated the transcriptomic Cell Atlas of Worm Aging (CAWA, http://mengwanglab.org/atlas ) of wild-type and long-lived strains. We discovered cell-specific, age-related molecular and functional signatures across all somatic and germ cell types. We developed transcriptomic aging clocks for different tissues and quantitatively determined how three different pro-longevity strategies slow tissue aging distinctively. Furthermore, through genome-wide profiling of alternative polyadenylation (APA) events in different tissues, we discovered cell-type-specific APA changes during aging and revealed how these changes are differentially affected by the pro-longevity strategies. Together, this study offers fundamental molecular insights into both somatic and reproductive aging and provides a valuable resource for in-depth understanding of the diversity of pro-longevity mechanisms.
Collapse
Affiliation(s)
- Shihong Max Gao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yanyan Qi
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Qinghao Zhang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Youchen Guan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Molecular and Cellular Biology Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Yi-Tang Lee
- Integrative Program of Molecular and Biochemical Science, Baylor College of Medicine, Houston, TX, USA
| | - Lang Ding
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Graduate Program in Chemical, Physical & Structural Biology, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Lihua Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Aaron S Mohammed
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Yusi Fu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA.
| | - Meng C Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
10
|
Domingues N, Calcagni’ A, Pires J, Freire SR, Herz NJ, Huynh T, Wieciorek K, Moreno MJ, Outeiro TF, Girão H, Milosevic I, Ballabio A, Raimundo N. Loss of the lysosomal protein CLN3 modifies the lipid content of the nuclear envelope leading to DNA damage and activation of YAP1 pro-apoptotic signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596474. [PMID: 38853929 PMCID: PMC11160784 DOI: 10.1101/2024.05.31.596474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Batten disease is characterized by early-onset blindness, juvenile dementia and death during the second decade of life. The most common genetic causes are mutations in the CLN3 gene encoding a lysosomal protein. There are currently no therapies targeting the progression of the disease, mostly due to the lack of knowledge about the disease mechanisms. To gain insight into the impact of CLN3 loss on cellular signaling and organelle function, we generated CLN3 knock-out cells in a human cell line (CLN3-KO), and performed RNA sequencing to obtain the cellular transcriptome. Following a multi-dimensional transcriptome analysis, we identified the transcriptional regulator YAP1 as a major driver of the transcriptional changes observed in CLN3-KO cells. We further observed that YAP1 pro-apoptotic signaling is hyperactive as a consequence of CLN3 functional loss in retinal pigment epithelia cells, and in the hippocampus and thalamus of CLN3exΔ7/8 mice, an established model of Batten disease. Loss of CLN3 activates YAP1 by a cascade of events that starts with the inability of releasing glycerophosphodiesthers from CLN3-KO lysosomes, which leads to perturbations in the lipid content of the nuclear envelope and nuclear dysmorphism. This results in increased number of DNA lesions, activating the kinase c-Abl, which phosphorylates YAP1, stimulating its pro-apoptotic signaling. Altogether, our results highlight a novel organelle crosstalk paradigm in which lysosomal metabolites regulate nuclear envelope content, nuclear shape and DNA homeostasis. This novel molecular mechanism underlying the loss of CLN3 in mammalian cells and tissues may open new c-Abl-centric therapeutic strategies to target Batten disease.
Collapse
Affiliation(s)
- Neuza Domingues
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Alessia Calcagni’
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Joana Pires
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Sofia Roque Freire
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Niculin Joachim Herz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Tuong Huynh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Katarzyna Wieciorek
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Maria João Moreno
- CQC-Biological Chemistry Group, Chemistry Department FCTUC, Coimbra, Portugal
| | - Tiago Fleming Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Henrique Girão
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Centre for Innovative Biomedicine and Biotechnology, Academic and Clinical Center of Coimbra, Faculty of Medicine, University of Coimbra, Portugal
| | - Ira Milosevic
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, UK
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- SSM School for Advanced Studies, Federico II University, Naples, Italy
| | - Nuno Raimundo
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
- Penn State Cancer Institute, Hershey, PA, USA
| |
Collapse
|
11
|
Liu M, Sun Y, Teh DBL, Zhang Y, Cao D, Mei Q. Nanothermometry for cellular temperature monitoring and disease diagnostics. INTERDISCIPLINARY MEDICINE 2024; 2. [DOI: 10.1002/inmd.20230059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/17/2024] [Indexed: 01/05/2025]
Abstract
AbstractBody temperature variations, including the generation, transfer, and dissipation of heat, play an important role throughout life and participate in all biological events. Cellular temperature information is an indispensable link in the comprehensive understanding of life science processes, but traditional testing strategies cannot provide sufficient information due to their low precision and inefficient cellular‐entrance. In recent years, with the help of luminescent nanomaterials, a variety of new thermometers have been developed to achieve real‐time temperature measurement at the micro/nano scale. In this review, we summarized the latest advances in several nanoparticles for cellular temperature detection and their related applications in revealing cell metabolism and disease diagnosis. Furthermore, this review proposed a few challenges for the nano‐thermometry, expecting to spark novel thought to push forward its preclinical and translational uses.
Collapse
Affiliation(s)
- Meilin Liu
- Department of Medical Biochemistry and Molecular Biology School of Medicine Jinan University Guangzhou China
| | - Yaru Sun
- Department of Medical Biochemistry and Molecular Biology School of Medicine Jinan University Guangzhou China
| | - Daniel Boon Loong Teh
- Departments of Ophthalmology Anatomy Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Yi Zhang
- Department of Medical Biochemistry and Molecular Biology School of Medicine Jinan University Guangzhou China
| | - Donglin Cao
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University Guangzhou China
- Department of Laboratory Medicine Guangdong Second Provincial General Hospital Guangzhou China
| | - Qingsong Mei
- Department of Medical Biochemistry and Molecular Biology School of Medicine Jinan University Guangzhou China
| |
Collapse
|
12
|
Hamsanathan S, Anthonymuthu T, Prosser D, Lokshin A, Greenspan SL, Resnick NM, Perera S, Okawa S, Narasimhan G, Gurkar AU. A molecular index for biological age identified from the metabolome and senescence-associated secretome in humans. Aging Cell 2024; 23:e14104. [PMID: 38454639 PMCID: PMC11019119 DOI: 10.1111/acel.14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
Unlike chronological age, biological age is a strong indicator of health of an individual. However, the molecular fingerprint associated with biological age is ill-defined. To define a high-resolution signature of biological age, we analyzed metabolome, circulating senescence-associated secretome (SASP)/inflammation markers and the interaction between them, from a cohort of healthy and rapid agers. The balance between two fatty acid oxidation mechanisms, β-oxidation and ω-oxidation, associated with the extent of functional aging. Furthermore, a panel of 25 metabolites, Healthy Aging Metabolic (HAM) index, predicted healthy agers regardless of gender and race. HAM index was also validated in an independent cohort. Causal inference with machine learning implied three metabolites, β-cryptoxanthin, prolylhydroxyproline, and eicosenoylcarnitine as putative drivers of biological aging. Multiple SASP markers were also elevated in rapid agers. Together, our findings reveal that a network of metabolic pathways underlie biological aging, and the HAM index could serve as a predictor of phenotypic aging in humans.
Collapse
Affiliation(s)
- Shruthi Hamsanathan
- Aging Institute of UPMC and the University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Tamil Anthonymuthu
- Department of Critical Care MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Denise Prosser
- Department of MedicineUniversity of Pittsburgh Medical Center and University of Pittsburgh Cancer InstitutePittsburghPennsylvaniaUSA
| | - Anna Lokshin
- Department of MedicineUniversity of Pittsburgh Medical Center and University of Pittsburgh Cancer InstitutePittsburghPennsylvaniaUSA
| | - Susan L. Greenspan
- Division of Geriatric Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Neil M. Resnick
- Aging Institute of UPMC and the University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Division of Geriatric Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Subashan Perera
- Division of Geriatric Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of BiostatisticsUniversity of Pittsburgh Graduate School of Public HealthPittsburghPennsylvaniaUSA
| | - Satoshi Okawa
- Pittsburgh Heart, Lung, and Blood Vascular Medicine InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of Computational and Systems BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- McGowan Institute for Regenerative MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), School of Computing and Information Sciences, Biomolecular Sciences InstituteFlorida International UniversityMiamiFloridaUSA
| | - Aditi U. Gurkar
- Aging Institute of UPMC and the University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Division of Geriatric Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
13
|
Pires da Silva A, Kelleher R, Reynoldson L. Decoding lifespan secrets: the role of the gonad in Caenorhabditis elegans aging. FRONTIERS IN AGING 2024; 5:1380016. [PMID: 38605866 PMCID: PMC11008531 DOI: 10.3389/fragi.2024.1380016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
The gonad has become a central organ for understanding aging in C. elegans, as removing the proliferating stem cells in the germline results in significant lifespan extension. Similarly, when starvation in late larval stages leads to the quiescence of germline stem cells the adult nematode enters reproductive diapause, associated with an extended lifespan. This review summarizes recent advancements in identifying the mechanisms behind gonad-mediated lifespan extension, including comparisons with other nematodes and the role of lipid signaling and transcriptional changes. Given that the gonad also mediates lifespan regulation in other invertebrates and vertebrates, elucidating the underlying mechanisms may help to gain new insights into the mechanisms and evolution of aging.
Collapse
|
14
|
Sharifi S, Chaudhari P, Martirosyan A, Eberhardt AO, Witt F, Gollowitzer A, Lange L, Woitzat Y, Okoli EM, Li H, Rahnis N, Kirkpatrick J, Werz O, Ori A, Koeberle A, Bierhoff H, Ermolaeva M. Reducing the metabolic burden of rRNA synthesis promotes healthy longevity in Caenorhabditis elegans. Nat Commun 2024; 15:1702. [PMID: 38402241 PMCID: PMC10894287 DOI: 10.1038/s41467-024-46037-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
Ribosome biogenesis is initiated by RNA polymerase I (Pol I)-mediated synthesis of pre-ribosomal RNA (pre-rRNA). Pol I activity was previously linked to longevity, but the underlying mechanisms were not studied beyond effects on nucleolar structure and protein translation. Here we use multi-omics and functional tests to show that curtailment of Pol I activity remodels the lipidome and preserves mitochondrial function to promote longevity in Caenorhabditis elegans. Reduced pre-rRNA synthesis improves energy homeostasis and metabolic plasticity also in human primary cells. Conversely, the enhancement of pre-rRNA synthesis boosts growth and neuromuscular performance of young nematodes at the cost of accelerated metabolic decline, mitochondrial stress and premature aging. Moreover, restriction of Pol I activity extends lifespan more potently than direct repression of protein synthesis, and confers geroprotection even when initiated late in life, showcasing this intervention as an effective longevity and metabolic health treatment not limited by aging.
Collapse
Affiliation(s)
- Samim Sharifi
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
- Matter Bio, Inc., Brooklyn, NY, 11237, USA
| | - Prerana Chaudhari
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Asya Martirosyan
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Alexander Otto Eberhardt
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany
| | - Finja Witt
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Lisa Lange
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Yvonne Woitzat
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | | | - Huahui Li
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, PR China
| | - Norman Rahnis
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Joanna Kirkpatrick
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
- Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Holger Bierhoff
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany.
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany.
| | - Maria Ermolaeva
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
15
|
Maestri A, Garagnani P, Pedrelli M, Hagberg CE, Parini P, Ehrenborg E. Lipid droplets, autophagy, and ageing: A cell-specific tale. Ageing Res Rev 2024; 94:102194. [PMID: 38218464 DOI: 10.1016/j.arr.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Lipid droplets are the essential organelle for storing lipids in a cell. Within the variety of the human body, different cells store, utilize and release lipids in different ways, depending on their intrinsic function. However, these differences are not well characterized and, especially in the context of ageing, represent a key factor for cardiometabolic diseases. Whole body lipid homeostasis is a central interest in the field of cardiometabolic diseases. In this review we characterize lipid droplets and their utilization via autophagy and describe their diverse fate in three cells types central in cardiometabolic dysfunctions: adipocytes, hepatocytes, and macrophages.
Collapse
Affiliation(s)
- Alice Maestri
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ehrenborg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
16
|
Yu Y, Gao SM, Guan Y, Hu PW, Zhang Q, Liu J, Jing B, Zhao Q, Sabatini DM, Abu-Remaileh M, Jung SY, Wang MC. Organelle proteomic profiling reveals lysosomal heterogeneity in association with longevity. eLife 2024; 13:e85214. [PMID: 38240316 PMCID: PMC10876212 DOI: 10.7554/elife.85214] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Lysosomes are active sites to integrate cellular metabolism and signal transduction. A collection of proteins associated with the lysosome mediate these metabolic and signaling functions. Both lysosomal metabolism and lysosomal signaling have been linked to longevity regulation; however, how lysosomes adjust their protein composition to accommodate this regulation remains unclear. Using deep proteomic profiling, we systemically profiled lysosome-associated proteins linked with four different longevity mechanisms. We discovered the lysosomal recruitment of AMP-activated protein kinase and nucleoporin proteins and their requirements for longevity in response to increased lysosomal lipolysis. Through comparative proteomic analyses of lysosomes from different tissues and labeled with different markers, we further elucidated lysosomal heterogeneity across tissues as well as the increased enrichment of the Ragulator complex on Cystinosin-positive lysosomes. Together, this work uncovers lysosomal proteome heterogeneity across multiple scales and provides resources for understanding the contribution of lysosomal protein dynamics to signal transduction, organelle crosstalk, and organism longevity.
Collapse
Affiliation(s)
- Yong Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
- Huffington Center on Aging, Baylor College of MedicineHoustonUnited States
| | - Shihong M Gao
- Developmental Biology Graduate Program, Baylor College of MedicineHoustonUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Youchen Guan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Molecular and Cellular Biology Graduate Program, Baylor College of MedicineHoustonUnited States
| | - Pei-Wen Hu
- Huffington Center on Aging, Baylor College of MedicineHoustonUnited States
| | - Qinghao Zhang
- Huffington Center on Aging, Baylor College of MedicineHoustonUnited States
| | - Jiaming Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Bentian Jing
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Qian Zhao
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - David M Sabatini
- Institute of Organic Chemistry and BiochemistryPragueCzech Republic
| | - Monther Abu-Remaileh
- Institute for Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford UniversityStanfordUnited States
- Department of Chemical Engineering and Genetics, Stanford UniversityStanfordUnited States
| | - Sung Yun Jung
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Meng C Wang
- Huffington Center on Aging, Baylor College of MedicineHoustonUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
17
|
Oleson BJ, Bhattrai J, Zalubas SL, Kravchenko TR, Ji Y, Jiang EL, Lu CC, Madden CR, Coffman JG, Bazopoulou D, Jones JW, Jakob U. Early life changes in histone landscape protect against age-associated amyloid toxicities through HSF-1-dependent regulation of lipid metabolism. NATURE AGING 2024; 4:48-61. [PMID: 38057386 PMCID: PMC11481004 DOI: 10.1038/s43587-023-00537-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
Transient events during development can exert long-lasting effects on organismal lifespan. Here we demonstrate that exposure of Caenorhabditis elegans to reactive oxygen species during development protects against amyloid-induced proteotoxicity later in life. We show that this protection is initiated by the inactivation of the redox-sensitive H3K4me3-depositing COMPASS complex and conferred by a substantial increase in the heat-shock-independent activity of heat shock factor 1 (HSF-1), a longevity factor known to act predominantly during C. elegans development. We show that depletion of HSF-1 leads to marked rearrangements of the organismal lipid landscape and a significant decrease in mitochondrial β-oxidation and that both lipid and metabolic changes contribute to the protective effects of HSF-1 against amyloid toxicity. Together, these findings link developmental changes in the histone landscape, HSF-1 activity and lipid metabolism to protection against age-associated amyloid toxicities later in life.
Collapse
Affiliation(s)
- Bryndon J Oleson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Janakraj Bhattrai
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sarah L Zalubas
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Tessa R Kravchenko
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yuanyuan Ji
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Emily L Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Christine C Lu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ciara R Madden
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Julia G Coffman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daphne Bazopoulou
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Biology, University of Crete, Heraklion, Greece
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
18
|
Chamoli M, Rane A, Foulger A, Chinta SJ, Shahmirzadi AA, Kumsta C, Nambiar DK, Hall D, Holcom A, Angeli S, Schmidt M, Pitteri S, Hansen M, Lithgow GJ, Andersen JK. A drug-like molecule engages nuclear hormone receptor DAF-12/FXR to regulate mitophagy and extend lifespan. NATURE AGING 2023; 3:1529-1543. [PMID: 37957360 PMCID: PMC10797806 DOI: 10.1038/s43587-023-00524-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
Autophagy-lysosomal function is crucial for maintaining healthy lifespan and preventing age-related diseases. The transcription factor TFEB plays a key role in regulating this pathway. Decreased TFEB expression is associated with various age-related disorders, making it a promising therapeutic target. In this study, we screened a natural product library and discovered mitophagy-inducing coumarin (MIC), a benzocoumarin compound that enhances TFEB expression and lysosomal function. MIC robustly increases the lifespan of Caenorhabditis elegans in an HLH-30/TFEB-dependent and mitophagy-dependent manner involving DCT-1/BNIP3 while also preventing mitochondrial dysfunction in mammalian cells. Mechanistically, MIC acts by inhibiting ligand-induced activation of the nuclear hormone receptor DAF-12/FXR, which, in turn, induces mitophagy and extends lifespan. In conclusion, our study uncovers MIC as a promising drug-like molecule that enhances mitochondrial function and extends lifespan by targeting DAF-12/FXR. Furthermore, we discovered DAF-12/FXR as a previously unknown upstream regulator of HLH-30/TFEB and mitophagy.
Collapse
Affiliation(s)
| | - Anand Rane
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Anna Foulger
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Shankar J Chinta
- Buck Institute for Research on Aging, Novato, CA, USA
- Touro University California, Vallejo, CA, USA
| | - Azar Asadi Shahmirzadi
- Buck Institute for Research on Aging, Novato, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | - Caroline Kumsta
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - David Hall
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Angelina Holcom
- Buck Institute for Research on Aging, Novato, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | | | - Minna Schmidt
- Buck Institute for Research on Aging, Novato, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | | | - Malene Hansen
- Buck Institute for Research on Aging, Novato, CA, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | | |
Collapse
|
19
|
Zhang R, Fang J, Qi T, Zhu S, Yao L, Fang G, Li Y, Zang X, Xu W, Hao W, Liu S, Yang D, Chen D, Yang J, Ma X, Wu L. Maternal aging increases offspring adult body size via transmission of donut-shaped mitochondria. Cell Res 2023; 33:821-834. [PMID: 37500768 PMCID: PMC10624822 DOI: 10.1038/s41422-023-00854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
Maternal age at childbearing has continued to increase in recent decades. However, whether and how it influences offspring adult traits are largely unknown. Here, using adult body size as the primary readout, we reveal that maternal rather than paternal age has an evolutionarily conserved effect on offspring adult traits in humans, Drosophila, and Caenorhabditis elegans. Elucidating the mechanisms of such effects in humans and other long-lived animals remains challenging due to their long life course and difficulties in conducting in vivo studies. We thus employ the short-lived and genetically tractable nematode C. elegans to explore the mechanisms underlying the regulation of offspring adult trait by maternal aging. By microscopic analysis, we find that old worms transmit aged mitochondria with a donut-like shape to offspring. These mitochondria are rejuvenated in the offspring's early life, with their morphology fully restored before adulthood in an AMPK-dependent manner. Mechanistically, we demonstrate that early-life mitochondrial dysfunction activates AMPK, which in turn not only alleviates mitochondrial abnormalities but also activates TGFβ signaling to increase offspring adult size. Together, our findings provide mechanistic insight into the ancient role of maternal aging in shaping the traits of adult offspring.
Collapse
Affiliation(s)
- Runshuai Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jinan Fang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Ting Qi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Shihao Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Luxia Yao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Guicun Fang
- Microscopy Core Facility, Westlake University, Hangzhou, Zhejiang, China
| | - Yunsheng Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xiao Zang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Weina Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Wanyu Hao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shouye Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Dan Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Di Chen
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jian Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| | - Xianjue Ma
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| | - Lianfeng Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
20
|
Li Y, Du X, Pian H, Fan X, Zhang Y, Wang T, Zhai F, Abro SM, Yu D. Effects of dietary supplement with licorice and rutin mixture on production performance, egg quality, antioxidant capacity, and gut microbiota in quails (Turnix tanki). Poult Sci 2023; 102:103038. [PMID: 37729679 PMCID: PMC10514455 DOI: 10.1016/j.psj.2023.103038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023] Open
Abstract
This study was conducted to evaluate the effect of licorice and rutin on production performance, egg quality, and mucosa antioxidant levels in Chinese yellow quail. A total of 240 Chinese Yellow Quail (400-day-old) were randomly distributed into 5 groups: the Control group, fed with a basic diet; the LR1 group, fed with basal diet supplemented with 300 + 100 mg licorice and rutin mixture/kg diet; the LR2 group, fed with basal diet supplemented with 300 + 200 mg licorice and rutin mixture/kg diet; the LR3 group, fed with basal diet supplemented with 600 + 100 mg licorice and rutin mixture/kg diet and the LR4 group, fed with basal diet supplemented with 600 + 200 mg licorice and rutin mixture/kg diet. Compared with the control, supplementation with the licorice and rutin mixture improved the laying rate and eggshell thickness whereas decreased the feed conversion ratio of quails. Moreover, dietary supplementation with the licorice and rutin mixture improved the antioxidant capacity by increasing the activity of the superoxide dismutase (SOD) level and decreasing the concentration of malondialdehyde (MDA) in the jejunal mucosa. The licorice and rutin mixture altered the composition of intestinal microbiota by influencing the relative abundances of Bacteroidetes and Bacteroides. The relative abundances of the Bacteroidetes were significantly related to the laying rate of quails. In addition, the mixture of licorice and rutin was also effective in reducing the relative abundance of intestinal Proteobacteria and Enterobacter in quails, reducing the accumulation of antibiotic-resistance genes. The results revealed that supplementation of licorice and rutin mixture to the diet improved production performance, egg quality, and antioxidant capacity and modified the composition of intestinal microbiota in quails. This study provides a reference for Chinese herbal additives to promote production performance by modulating quail gut microbes.
Collapse
Affiliation(s)
- Yan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Xubin Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Huifang Pian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Xiaoji Fan
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, PR China
| | - Yuchen Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, PR China
| | - Feng Zhai
- Tangrenshen Group Shares Co, Ltd., Zhuzhou, Hunan, PR China
| | - Sarang Mazhar Abro
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing, PR China; Department of Veterinary Medicine, Sindh Agriculture University Tandojam, Sindh, Pakistan
| | - Debing Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China.
| |
Collapse
|
21
|
Kumar AV, Mills J, Parker WM, Leitão JA, Rodriguez DI, Daigle SE, Ng C, Patel R, Aguilera JL, Johnson JR, Wong SQ, Lapierre LR. Lipid droplets modulate proteostasis, SQST-1/SQSTM1 dynamics, and lifespan in C. elegans. iScience 2023; 26:107960. [PMID: 37810233 PMCID: PMC10551902 DOI: 10.1016/j.isci.2023.107960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 06/01/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
In several long-lived Caenorhabditis elegans strains, such as insulin/IGF-1 receptor daf-2 mutants, enhanced proteostatic mechanisms are accompanied by elevated intestinal lipid stores, but their role in longevity is unclear. Here, while determining the regulatory network of the selective autophagy receptor SQST-1/SQSTM1, we uncovered an important role for lipid droplets in proteostasis and longevity. Using genome-wide RNAi screening, we identified several SQST-1 modulators, including lipid droplets-associated and aggregation-prone proteins. Expansion of intestinal lipid droplets by silencing the conserved cytosolic triacylglycerol lipase gene atgl-1/ATGL enhanced autophagy, and extended lifespan. Notably, a substantial amount of ubiquitinated proteins were found on lipid droplets. Reducing lipid droplet levels exacerbated the proteostatic collapse when autophagy or proteasome function was compromised, and significantly reduced the lifespan of long-lived daf-2 animals. Altogether, our study uncovered a key role for lipid droplets in C. elegans as a proteostatic mediator that modulates ubiquitinated protein accumulation, facilitates autophagy, and promotes longevity.
Collapse
Affiliation(s)
- Anita V Kumar
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Joslyn Mills
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
- Biology Department, Wheaton College, 26 E. Main Street, Norton, MA 02766, USA
| | - Wesley M Parker
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Joshua A Leitão
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Diego I Rodriguez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Sandrine E Daigle
- New Brunswick Center for Precision Medicine, 27 rue Providence, Moncton, NB E1C 8X3, Canada
- Département de chimie et biochimie, Université de Moncton, 18 Antonine Maillet, Moncton, NB E1A 3E9, Canada
| | - Celeste Ng
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Rishi Patel
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Joseph L Aguilera
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Joseph R Johnson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Shi Quan Wong
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
- New Brunswick Center for Precision Medicine, 27 rue Providence, Moncton, NB E1C 8X3, Canada
- Département de chimie et biochimie, Université de Moncton, 18 Antonine Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
22
|
Li TY, Wang Q, Gao AW, Li X, Sun Y, Mottis A, Shong M, Auwerx J. Lysosomes mediate the mitochondrial UPR via mTORC1-dependent ATF4 phosphorylation. Cell Discov 2023; 9:92. [PMID: 37679337 PMCID: PMC10484937 DOI: 10.1038/s41421-023-00589-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/21/2023] [Indexed: 09/09/2023] Open
Abstract
Lysosomes are central platforms for not only the degradation of macromolecules but also the integration of multiple signaling pathways. However, whether and how lysosomes mediate the mitochondrial stress response (MSR) remain largely unknown. Here, we demonstrate that lysosomal acidification via the vacuolar H+-ATPase (v-ATPase) is essential for the transcriptional activation of the mitochondrial unfolded protein response (UPRmt). Mitochondrial stress stimulates v-ATPase-mediated lysosomal activation of the mechanistic target of rapamycin complex 1 (mTORC1), which then directly phosphorylates the MSR transcription factor, activating transcription factor 4 (ATF4). Disruption of mTORC1-dependent ATF4 phosphorylation blocks the UPRmt, but not other similar stress responses, such as the UPRER. Finally, ATF4 phosphorylation downstream of the v-ATPase/mTORC1 signaling is indispensable for sustaining mitochondrial redox homeostasis and protecting cells from ROS-associated cell death upon mitochondrial stress. Thus, v-ATPase/mTORC1-mediated ATF4 phosphorylation via lysosomes links mitochondrial stress to UPRmt activation and mitochondrial function resilience.
Collapse
Affiliation(s)
- Terytty Yang Li
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Laboratory of Longevity and Metabolic Adaptations, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Qi Wang
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Arwen W Gao
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yu Sun
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Laboratory of Longevity and Metabolic Adaptations, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Adrienne Mottis
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Minho Shong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
23
|
F AR, Quadrilatero J. Emerging role of mitophagy in myoblast differentiation and skeletal muscle remodeling. Semin Cell Dev Biol 2023; 143:54-65. [PMID: 34924331 DOI: 10.1016/j.semcdb.2021.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022]
Abstract
Mitochondrial turnover in the form of mitophagy is emerging as a central process in maintaining cellular function. The degradation of damaged mitochondria through mitophagy is particularly important in cells/tissues that exhibit high energy demands. Skeletal muscle is one such tissue that requires precise turnover of mitochondria in several conditions in order to optimize energy production and prevent bioenergetic crisis. For instance, the formation of skeletal muscle (i.e., myogenesis) is accompanied by robust turnover of low-functioning mitochondria to eventually allow the formation of high-functioning mitochondria. In mature skeletal muscle, alterations in mitophagy-related signaling occur during exercise, aging, and various disease states. Nonetheless, several questions regarding the direct role of mitophagy in various skeletal muscle conditions remain unknown. Furthermore, given the heterogenous nature of skeletal muscle with respect to various cellular and molecular properties, and the plasticity in these properties in various conditions, the involvement and characterization of mitophagy requires more careful consideration in this tissue. Therefore, this review will highlight the known mechanisms of mitophagy in skeletal muscle, and discuss their involvement during myogenesis and various skeletal muscle conditions. This review also provides important considerations for the accurate measurement of mitophagy and interpretation of data in skeletal muscle.
Collapse
Affiliation(s)
- Ahmad Rahman F
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Joe Quadrilatero
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
24
|
Jia H, Yue S. Stimulated Raman Scattering Imaging Sheds New Light on Lipid Droplet Biology. J Phys Chem B 2023; 127:2381-2394. [PMID: 36897936 PMCID: PMC10042165 DOI: 10.1021/acs.jpcb.3c00038] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/05/2023] [Indexed: 03/11/2023]
Abstract
A lipid droplet (LD) is a dynamic organelle closely associated with cellular functions and energy homeostasis. Dysregulated LD biology underlies an increasing number of human diseases, including metabolic disease, cancer, and neurodegenerative disorder. Commonly used lipid staining and analytical tools have difficulty providing the information regarding LD distribution and composition at the same time. To address this problem, stimulated Raman scattering (SRS) microscopy uses the intrinsic chemical contrast of biomolecules to achieve both direct visualization of LD dynamics and quantitative analysis of LD composition with high molecular selectivity at the subcellular level. Recent developments of Raman tags have further enhanced sensitivity and specificity of SRS imaging without perturbing molecular activity. With these advantages, SRS microscopy has offered great promise for deciphering LD metabolism in single live cells. This article overviews and discusses the latest applications of SRS microscopy as an emerging platform to dissect LD biology in health and disease.
Collapse
Affiliation(s)
- Hao Jia
- Key Laboratory of Biomechanics and
Mechanobiology (Beihang University), Ministry of Education, Institute
of Medical Photonics, Beijing Advanced Innovation Center for Biomedical
Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Shuhua Yue
- Key Laboratory of Biomechanics and
Mechanobiology (Beihang University), Ministry of Education, Institute
of Medical Photonics, Beijing Advanced Innovation Center for Biomedical
Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
25
|
Palikaras K, Mari M, Ploumi C, Princz A, Filippidis G, Tavernarakis N. Age-dependent nuclear lipid droplet deposition is a cellular hallmark of aging in Caenorhabditis elegans. Aging Cell 2023; 22:e13788. [PMID: 36718841 PMCID: PMC10086520 DOI: 10.1111/acel.13788] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/01/2023] Open
Abstract
Aging is the major risk factor for several life-threatening pathologies and impairs the function of multiple cellular compartments and organelles. Age-dependent deterioration of nuclear morphology is a common feature in evolutionarily divergent organisms. Lipid droplets have been shown to localize in most nuclear compartments, where they impinge on genome architecture and integrity. However, the significance of progressive nuclear lipid accumulation and its impact on organismal homeostasis remain obscure. Here, we implement non-linear imaging modalities to monitor and quantify age-dependent nuclear lipid deposition in Caenorhabditis elegans. We find that lipid droplets increasingly accumulate in the nuclear envelope, during aging. Longevity-promoting interventions, such as low insulin signaling and caloric restriction, abolish the rate of nuclear lipid accrual and decrease the size of lipid droplets. Suppression of lipotoxic lipid accumulation in hypodermal and intestinal nuclei is dependent on the transcription factor HLH-30/TFEB and the triglyceride lipase ATGL-1. HLH-30 regulates the expression of ATGL-1 to reduce nuclear lipid droplet abundance in response to lifespan-extending conditions. Notably, ATGL-1 localizes to the nuclear envelope and moderates lipid content in long-lived mutant nematodes during aging. Our findings indicate that the reduced ATGL-1 activity leads to excessive nuclear lipid accumulation, perturbing nuclear homeostasis and undermining organismal physiology, during aging.
Collapse
Affiliation(s)
- Konstantinos Palikaras
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Meropi Mari
- Institute of Electronic Structure and Laser, Foundation for Research and Technology, Heraklion, Greece
| | - Christina Ploumi
- Institute of Molecular Biology and Biotechnology Foundation for Research and Technology, Heraklion, Greece.,Medical School, University of Crete, Heraklion, Greece
| | - Andrea Princz
- Institute of Molecular Biology and Biotechnology Foundation for Research and Technology, Heraklion, Greece
| | - George Filippidis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology Foundation for Research and Technology, Heraklion, Greece.,Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
26
|
Savova MS, Todorova MN, Apostolov AG, Yahubyan GT, Georgiev MI. Betulinic acid counteracts the lipid accumulation in Caenorhabditis elegans by modulation of nhr-49 expression. Biomed Pharmacother 2022; 156:113862. [DOI: 10.1016/j.biopha.2022.113862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 11/02/2022] Open
|
27
|
Fundamental roles for inter-organelle communication in aging. Biochem Soc Trans 2022; 50:1389-1402. [PMID: 36305642 PMCID: PMC9704535 DOI: 10.1042/bst20220519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
Advances in public health have nearly doubled life expectancy over the last century, but this demographic shift has also changed the landscape of human illness. Today, chronic and age-dependent diseases dominate the leading causes of morbidity and mortality worldwide. Targeting the underlying molecular, genetic and cell biological drivers of the aging process itself appears to be an increasingly viable strategy for developing therapeutics against these diseases of aging. Towards this end, one of the most exciting developments in cell biology over the last decade is the explosion of research into organelle contact sites and related mechanisms of inter-organelle communication. Identification of the molecular mediators of inter-organelle tethering and signaling is now allowing the field to investigate the consequences of aberrant organelle interactions, which frequently seem to correlate with age-onset pathophysiology. This review introduces the major cellular roles for inter-organelle interactions, including the regulation of organelle morphology, the transfer of ions, lipids and other metabolites, and the formation of hubs for nutrient and stress signaling. We explore how these interactions are disrupted in aging and present findings that modulation of inter-organelle communication is a promising avenue for promoting longevity. Through this review, we propose that the maintenance of inter-organelle interactions is a pillar of healthy aging. Learning how to target the cellular mechanisms for sensing and controlling inter-organelle communication is a key next hurdle for geroscience.
Collapse
|
28
|
Lipid metabolism and ageing in Caenorhabditis elegans: a complex interplay. Biogerontology 2022; 23:541-557. [PMID: 36048312 DOI: 10.1007/s10522-022-09989-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022]
Abstract
Life expectancy in Western countries is increasing, with concomitant rise in ageing-related pathologies, including Parkinson's and Alzheimer's disease, as well as other neurodegenerative diseases. Consequently, the medical, psychological and economic burden to society is increasing. Thus, understanding the cellular and molecular mechanisms underlying the association of ageing with elevated vulnerability to disease is crucial towards promoting quality of life in old age. Caenorhabditis elegans has emerged as a versatile model to study ageing, due to its simplicity, fast life cycle, and the availability of a wide range of biological tools to target specific genes and cells. Indeed, recent studies in C. elegans have revealed that lipid metabolism plays a key role in controlling longevity by impinging on a plethora of molecular pathways and cell types. Here, we summarise findings relevant to the interplay between lipid metabolism and ageing in C. elegans, and discuss the implications for the pathogenesis of age-related disorders in humans.
Collapse
|
29
|
Shang L, Aughey E, Kim H, Heden TD, Wang L, Najt CP, Esch N, Brunko S, Abrahante JE, Macchietto M, Mashek MT, Fairbanks T, Promislow DEL, Neufeld TP, Mashek DG. Systemic lipolysis promotes physiological fitness in Drosophila melanogaster. Aging (Albany NY) 2022; 14:6481-6506. [PMID: 36044277 PMCID: PMC9467406 DOI: 10.18632/aging.204251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Since interventions such as caloric restriction or fasting robustly promote lipid catabolism and improve aging-related phenotypical markers, we investigated the direct effect of increased lipid catabolism via overexpression of bmm (brummer, FBgn0036449), the major triglyceride hydrolase in Drosophila, on lifespan and physiological fitness. Comprehensive characterization was carried out using RNA-seq, lipidomics and metabolomics analysis. Global overexpression of bmm strongly promoted numerous markers of physiological fitness, including increased female fecundity, fertility maintenance, preserved locomotion activity, increased mitochondrial biogenesis and oxidative metabolism. Increased bmm robustly upregulated the heat shock protein 70 (Hsp70) family of proteins, which equipped the flies with higher resistance to heat, cold, and ER stress via improved proteostasis. Despite improved physiological fitness, bmm overexpression did not extend lifespan. Taken together, these data show that bmm overexpression has broad beneficial effects on physiological fitness, but these effects did not impact lifespan.
Collapse
Affiliation(s)
- Linshan Shang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elizabeth Aughey
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huiseon Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy D. Heden
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Charles P. Najt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicholas Esch
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sophia Brunko
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Juan E. Abrahante
- University of Minnesota Informatics Institute, Minneapolis, MN 55455, USA
| | - Marissa Macchietto
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mara T. Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Todd Fairbanks
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel E. L. Promislow
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Department of Lab Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Thomas P. Neufeld
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas G. Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
30
|
Savini M, Folick A, Lee YT, Jin F, Cuevas A, Tillman MC, Duffy JD, Zhao Q, Neve IA, Hu PW, Yu Y, Zhang Q, Ye Y, Mair WB, Wang J, Han L, Ortlund EA, Wang MC. Lysosome lipid signalling from the periphery to neurons regulates longevity. Nat Cell Biol 2022; 24:906-916. [PMID: 35681008 PMCID: PMC9203275 DOI: 10.1038/s41556-022-00926-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
Lysosomes are key cellular organelles that metabolize extra- and intracellular substrates. Alterations in lysosomal metabolism are implicated in ageing-associated metabolic and neurodegenerative diseases. However, how lysosomal metabolism actively coordinates the metabolic and nervous systems to regulate ageing remains unclear. Here we report a fat-to-neuron lipid signalling pathway induced by lysosomal metabolism and its longevity-promoting role in Caenorhabditis elegans. We discovered that induced lysosomal lipolysis in peripheral fat storage tissue upregulates the neuropeptide signalling pathway in the nervous system to promote longevity. This cell-non-autonomous regulation is mediated by a specific polyunsaturated fatty acid, dihomo-γ-linolenic acid, and LBP-3 lipid chaperone protein transported from the fat storage tissue to neurons. LBP-3 binds to dihomo-γ-linolenic acid, and acts through NHR-49 nuclear receptor and NLP-11 neuropeptide in neurons to extend lifespan. These results reveal lysosomes as a signalling hub to coordinate metabolism and ageing, and lysosomal signalling mediated inter-tissue communication in promoting longevity.
Collapse
Affiliation(s)
- Marzia Savini
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Andrew Folick
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Yi-Tang Lee
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Integrative Program of Molecular and Biochemical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Feng Jin
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - André Cuevas
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew C Tillman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathon D Duffy
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Qian Zhao
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Isaiah A Neve
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Pei-Wen Hu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yong Yu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qinghao Zhang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - William B Mair
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA.,Center of Epigenetics and Disease Prevention, Institute of Bioscience and Technology, Texas A&M University, Houston, TX, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Meng C Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA. .,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
31
|
Remofuscin induces xenobiotic detoxification via a lysosome-to-nucleus signaling pathway to extend the Caenorhabditis elegans lifespan. Sci Rep 2022; 12:7161. [PMID: 35504961 PMCID: PMC9064964 DOI: 10.1038/s41598-022-11325-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/15/2022] [Indexed: 11/09/2022] Open
Abstract
Lipofuscin is a representative biomarker of aging that is generated naturally over time. Remofuscin (soraprazan) improves age-related eye diseases by removing lipofuscin from retinal pigment epithelium (RPE) cells. In this study, the effect of remofuscin on longevity in Caenorhabditis elegans and the underlying mechanism were investigated. The results showed that remofuscin significantly (p < 0.05) extended the lifespan of C. elegans (N2) compared with the negative control. Aging biomarkers were improved in remofuscin-treated worms. The expression levels of genes related to lysosomes (lipl-1 and lbp-8), a nuclear hormone receptor (nhr-234), fatty acid beta-oxidation (ech-9), and xenobiotic detoxification (cyp-34A1, cyp-35A1, cyp-35A2, cyp-35A3, cyp-35A4, cyp-35A5, cyp-35C1, gst-28, and gst-5) were increased in remofuscin-treated worms. Moreover, remofuscin failed to extend the lives of C. elegans with loss-of-function mutations (lipl-1, lbp-8, nhr-234, nhr-49, nhr-8, cyp-35A1, cyp-35A2, cyp-35A3, cyp-35A5, and gst-5), suggesting that these genes are associated with lifespan extension in remofuscin-treated C. elegans. In conclusion, remofuscin activates the lysosome-to-nucleus pathway in C. elegans, thereby increasing the expression levels of xenobiotic detoxification genes resulted in extending their lifespan.
Collapse
|
32
|
Liu YJ, Gao AW, Smith RL, Janssens GE, Panneman DM, Jongejan A, van Weeghel M, Vaz FM, Silvestrini MJ, Lapierre LR, MacInnes AW, Houtkooper RH. Reduced ech-6 expression attenuates fat-induced lifespan shortening in C. elegans. Sci Rep 2022; 12:3350. [PMID: 35233004 PMCID: PMC8888598 DOI: 10.1038/s41598-022-07397-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
Deregulated energy homeostasis represents a hallmark of aging and results from complex gene-by-environment interactions. Here, we discovered that reducing the expression of the gene ech-6 encoding enoyl-CoA hydratase remitted fat diet-induced deleterious effects on lifespan in Caenorhabditis elegans, while a basal expression of ech-6 was important for survival under normal dietary conditions. Lipidomics revealed that supplementation of fat in ech-6-silenced worms had marginal effects on lipid profiles, suggesting an alternative fat utilization for energy production. Transcriptomics further suggest a causal relation between the lysosomal pathway, energy production, and the longevity effect conferred by the interaction between ech-6 and fat diets. Indeed, enhancing energy production from endogenous fat by overexpressing lysosomal lipase lipl-4 recapitulated the lifespan effects of fat diets on ech-6-silenced worms. Collectively, these results suggest that the gene ech-6 is potential modulator of metabolic flexibility and may be a target for promoting metabolic health and longevity.
Collapse
Affiliation(s)
- Yasmine J Liu
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Arwen W Gao
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Reuben L Smith
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Daan M Panneman
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, AZ, Amsterdam, The Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Core Facility Metabolomics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Core Facility Metabolomics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Melissa J Silvestrini
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Alyson W MacInnes
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Hamsanathan S, Anthonymuthu T, Han S, Shinglot H, Siefken E, Sims A, Sen P, Pepper HL, Snyder NW, Bayir H, Kagan V, Gurkar AU. Integrated -omics approach reveals persistent DNA damage rewires lipid metabolism and histone hyperacetylation via MYS-1/Tip60. SCIENCE ADVANCES 2022; 8:eabl6083. [PMID: 35171671 PMCID: PMC8849393 DOI: 10.1126/sciadv.abl6083] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Although DNA damage is intricately linked to metabolism, the metabolic alterations that occur in response to DNA damage are not well understood. We use a DNA repair-deficient model of ERCC1-XPF in Caenorhabditis elegans to gain insights on how genotoxic stress drives aging. Using multi-omic approach, we discover that nuclear DNA damage promotes mitochondrial β-oxidation and drives a global loss of fat depots. This metabolic shift to β-oxidation generates acetyl-coenzyme A to promote histone hyperacetylation and an associated change in expression of immune-effector and cytochrome genes. We identify the histone acetyltransferase MYS-1, as a critical regulator of this metabolic-epigenetic axis. We show that in response to DNA damage, polyunsaturated fatty acids, especially arachidonic acid (AA) and AA-related lipid mediators, are elevated and this is dependent on mys-1. Together, these findings reveal that DNA damage alters the metabolic-epigenetic axis to drive an immune-like response that can promote age-associated decline.
Collapse
Affiliation(s)
- Shruthi Hamsanathan
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - Tamil Anthonymuthu
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Children’s Neuroscience Institute, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Adeptrix Corp., Beverly, MA 01915, USA
| | - Suhao Han
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - Himaly Shinglot
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - Ella Siefken
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - Austin Sims
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hannah L. Pepper
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Nathaniel W. Snyder
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hulya Bayir
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Children’s Neuroscience Institute, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Environmental Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Valerian Kagan
- Children’s Neuroscience Institute, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Environmental Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aditi U. Gurkar
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Kaufmann Medical Building Suite 500, Pittsburgh, PA 15213, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
34
|
Anti-aging effects of chlorpropamide depend on mitochondrial complex-II and the production of mitochondrial reactive oxygen species. Acta Pharm Sin B 2022; 12:665-677. [PMID: 35256938 PMCID: PMC8897034 DOI: 10.1016/j.apsb.2021.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Sulfonylureas are widely used oral anti-diabetic drugs. However, its long-term usage effects on patients’ lifespan remain controversial, with no reports of influence on animal longevity. Hence, the anti-aging effects of chlorpropamide along with glimepiride, glibenclamide, and tolbutamide were studied with special emphasis on the interaction of chlorpropamide with mitochondrial ATP-sensitive K+ (mitoK-ATP) channels and mitochondrial complex II. Chlorpropamide delayed aging in Caenorhabditis elegans, human lung fibroblast MRC-5 cells and reduced doxorubicin-induced senescence in both MRC-5 cells and mice. In addition, the mitochondrial membrane potential and ATP levels were significantly increased in chlorpropamide-treated worms, which is consistent with the function of its reported targets, mitoK-ATP channels. Increased levels of mitochondrial reactive oxygen species (mtROS) were observed in chlorpropamide-treated worms. Moreover, the lifespan extension by chlorpropamide required complex II and increased mtROS levels, indicating that chlorpropamide acts on complex II directly or indirectly via mitoK-ATP to increase the production of mtROS as a pro-longevity signal. This study provides mechanistic insight into the anti-aging effects of sulfonylureas in C. elegans.
Collapse
|
35
|
Yang R, Li Y, Wang Y, Zhang J, Fan Q, Tan J, Li W, Zou X, Liang B. NHR-80 senses the mitochondrial UPR to rewire citrate metabolism for lipid accumulation in Caenorhabditis elegans. Cell Rep 2022; 38:110206. [PMID: 35021096 DOI: 10.1016/j.celrep.2021.110206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/27/2021] [Accepted: 12/10/2021] [Indexed: 11/26/2022] Open
Abstract
Mitochondria are known as the powerhouse of the cell. Dysfunction of mitochondria homeostasis induces the mitochondrial unfolded protein response (UPRmt), altering cellular metabolism. How cells sense the UPRmt to rewire metabolism is largely unknown. Here, we show that inactivation of either the citric/tricarboxylic acid (TCA) cycle enzymes aco-2 or idha-1, which encode aconitase and isocitrate dehydrogenase respectively, leads to citrate accumulation. In Caenorhabditis elegans, both in vitro and in vivo, citrate accumulation consequently triggers the UPRmt and also promotes lipid accumulation. The transcription factor DVE-1 binds to the promoter of the nuclear hormone receptor nhr-80 to transactivate its expression. NHR-80 then upregulates lipogenesis and lipid accumulation, shifting excess citrate for use in lipogenesis and for storage as triacylglycerol in lipid droplets. Inactivation of DVE-1 or NHR-80 fully abolishes the citrate-induced lipid accumulation. Therefore, our work uncovers a DVE-1-NHR-80-lipogenesis axis linking the transmission of the mitochondrial stress signal to lipid metabolism.
Collapse
Affiliation(s)
- Rendan Yang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Yamei Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China
| | - Yanli Wang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jingjing Zhang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qijing Fan
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Jianlin Tan
- Yunnan Institute of Product Quality Supervision and Inspection and National Agricultural and Sideline Products Quality Supervision and Inspection Center, Kunming 650223, China
| | - Weizhen Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China.
| | - Xiaoju Zou
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| | - Bin Liang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China.
| |
Collapse
|
36
|
Gao AW, El Alam G, Lalou A, Li TY, Molenaars M, Zhu Y, Overmyer KA, Shishkova E, Hof K, Bou Sleiman M, Houtkooper RH, Coon JJ, Auwerx J. Multi-omics analysis identifies essential regulators of mitochondrial stress response in two wild-type C. elegans strains. iScience 2022; 25:103734. [PMID: 35118355 PMCID: PMC8792074 DOI: 10.1016/j.isci.2022.103734] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/02/2021] [Accepted: 12/31/2021] [Indexed: 11/28/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is a promising pharmacological target for aging and age-related diseases. However, the integrative analysis of the impact of UPRmt activation on different signaling layers in animals with different genetic backgrounds is lacking. Here, we applied systems approaches to investigate the effect of UPRmt induced by doxycycline (Dox) on transcriptome, proteome, and lipidome in two genetically divergent worm strains, named N2 and CB4856. From the integrated omics datasets, we found that Dox prolongs lifespan of both worm strains through shared and strain-specific mechanisms. Specifically, Dox strongly impacts mitochondria, upregulates defense response, and lipid metabolism, while decreasing triglycerides. We further validated that lipid genes acs-2/20 and fat-7/6 were required for Dox-induced UPRmt and longevity in N2 and CB4856 worms, respectively. Our data have translational value as they indicate that the beneficial effects of Dox-induced UPRmt on lifespan are consistent across different genetic backgrounds through different regulators. Dox extends lifespan of N2 and CB4856 via shared and strain-specific mechanisms Dox controls mitochondria, defense responses, and lipid metabolism in both strains Dox-mediated longevity requires acs-2/20 in N2 and fat-7/6 in CB4856 worms
Collapse
Affiliation(s)
- Arwen W. Gao
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Gaby El Alam
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Amélia Lalou
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Terytty Yang Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Marte Molenaars
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, AZ, the Netherlands
| | - Yunyun Zhu
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Katherine A. Overmyer
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53515, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53515, USA
| | - Kevin Hof
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, AZ, the Netherlands
| | - Joshua J. Coon
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53515, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Corresponding author
| |
Collapse
|
37
|
Held JP, Feng G, Saunders BR, Pereira CV, Burkewitz K, Patel MR. A tRNA processing enzyme is a key regulator of the mitochondrial unfolded protein response. eLife 2022; 11:71634. [PMID: 35451962 PMCID: PMC9064297 DOI: 10.7554/elife.71634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) has emerged as a predominant mechanism that preserves mitochondrial function. Consequently, multiple pathways likely exist to modulate UPRmt. We discovered that the tRNA processing enzyme, homolog of ELAC2 (HOE-1), is key to UPRmt regulation in Caenorhabditis elegans. We find that nuclear HOE-1 is necessary and sufficient to robustly activate UPRmt. We show that HOE-1 acts via transcription factors ATFS-1 and DVE-1 that are crucial for UPRmt. Mechanistically, we show that HOE-1 likely mediates its effects via tRNAs, as blocking tRNA export prevents HOE-1-induced UPRmt. Interestingly, we find that HOE-1 does not act via the integrated stress response, which can be activated by uncharged tRNAs, pointing toward its reliance on a new mechanism. Finally, we show that the subcellular localization of HOE-1 is responsive to mitochondrial stress and is subject to negative regulation via ATFS-1. Together, we have discovered a novel RNA-based cellular pathway that modulates UPRmt.
Collapse
Affiliation(s)
- James P Held
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Gaomin Feng
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| | - Benjamin R Saunders
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Claudia V Pereira
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Kristopher Burkewitz
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States,Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States,Diabetes Research and Training Center, Vanderbilt University School of MedicineNashvilleUnited States
| |
Collapse
|
38
|
Zhou Y, Hu G, Wang MC. Host and microbiota metabolic signals in aging and longevity. Nat Chem Biol 2021; 17:1027-1036. [PMID: 34552221 DOI: 10.1038/s41589-021-00837-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
Aging is an inevitable biochemical process that adversely affects personal health and poses ever-increasing challenges to society. Recent research has revealed the crucial role of metabolism in regulating aging and longevity. During diverse metabolic processes, the host organism and their symbiotic partners-the microbiota-produce thousands of chemical products (metabolites). Emerging studies have uncovered specific metabolites that act as signaling molecules to actively regulate longevity. Here we review the latest progress in understanding the molecular mechanisms by which metabolites from the host and/or microbiota promote longevity. We also highlight state-of-the-art technologies for discovering, profiling and imaging aging- and longevity-regulating metabolites and for deciphering the molecular basis of their actions. The broad application of these technologies in aging research, together with future advances, will foster the systematic discovery of aging- and longevity-regulating metabolites and their signaling pathways. These metabolite signals should provide promising targets for developing new interventions to promote longevity and healthy aging.
Collapse
Affiliation(s)
- Yue Zhou
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Guo Hu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Graduate Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Meng C Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA. .,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
39
|
Metabolomic profiling of single enlarged lysosomes. Nat Methods 2021; 18:788-798. [PMID: 34127857 DOI: 10.1038/s41592-021-01182-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
Lysosomes are critical for cellular metabolism and are heterogeneously involved in various cellular processes. The ability to measure lysosomal metabolic heterogeneity is essential for understanding their physiological roles. We therefore built a single-lysosome mass spectrometry (SLMS) platform integrating lysosomal patch-clamp recording and induced nano-electrospray ionization (nanoESI)/mass spectrometry (MS) that enables concurrent metabolic and electrophysiological profiling of individual enlarged lysosomes. The accuracy and reliability of this technique were validated by supporting previous findings, such as the transportability of lysosomal cationic amino acids transporters such as PQLC2 and the lysosomal trapping of lysosomotropic, hydrophobic weak base drugs such as lidocaine. We derived metabolites from single lysosomes in various cell types and classified lysosomes into five major subpopulations based on their chemical and biological divergence. Senescence and carcinoma altered metabolic profiles of lysosomes in a type-specific manner. Thus, SLMS can open more avenues for investigating heterogeneous lysosomal metabolic changes during physiological and pathological processes.
Collapse
|
40
|
Cruz‐Ruiz P, Hernando‐Rodríguez B, Pérez‐Jiménez MM, Rodríguez‐Palero MJ, Martínez‐Bueno MD, Pla A, Gatsi R, Artal‐Sanz M. Prohibitin depletion extends lifespan of a TORC2/SGK-1 mutant through autophagy and the mitochondrial UPR. Aging Cell 2021; 20:e13359. [PMID: 33939875 PMCID: PMC8135086 DOI: 10.1111/acel.13359] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 03/05/2021] [Accepted: 03/25/2021] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial prohibitins (PHB) are highly conserved proteins with a peculiar effect on lifespan. While PHB depletion shortens lifespan of wild‐type animals, it enhances longevity of a plethora of metabolically compromised mutants, including target of rapamycin complex 2 (TORC2) mutants sgk‐1 and rict‐1. Here, we show that sgk‐1 mutants have impaired mitochondrial homeostasis, lipogenesis and yolk formation, plausibly due to alterations in membrane lipid and sterol homeostasis. Remarkably, all these features are suppressed by PHB depletion. Our analysis shows the requirement of SRBP1/SBP‐1 for the lifespan extension of sgk‐1 mutants and the further extension conferred by PHB depletion. Moreover, although the mitochondrial unfolded protein response (UPRmt) and autophagy are induced in sgk‐1 mutants and upon PHB depletion, they are dispensable for lifespan. However, the enhanced longevity caused by PHB depletion in sgk‐1 mutants requires both, the UPRmt and autophagy, but not mitophagy. We hypothesize that UPRmt induction upon PHB depletion extends lifespan of sgk‐1 mutants through autophagy and probably modulation of lipid metabolism.
Collapse
Affiliation(s)
- Patricia Cruz‐Ruiz
- Andalusian Centre for Developmental Biology Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide Seville Spain
- Department of Molecular Biology and Biochemical Engineering Universidad Pablo de Olavide Seville Spain
| | - Blanca Hernando‐Rodríguez
- Andalusian Centre for Developmental Biology Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide Seville Spain
- Department of Molecular Biology and Biochemical Engineering Universidad Pablo de Olavide Seville Spain
| | - Mercedes M. Pérez‐Jiménez
- Andalusian Centre for Developmental Biology Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide Seville Spain
- Department of Molecular Biology and Biochemical Engineering Universidad Pablo de Olavide Seville Spain
| | - María Jesús Rodríguez‐Palero
- Andalusian Centre for Developmental Biology Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide Seville Spain
- Department of Molecular Biology and Biochemical Engineering Universidad Pablo de Olavide Seville Spain
| | - Manuel D. Martínez‐Bueno
- Andalusian Centre for Developmental Biology Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide Seville Spain
- Department of Molecular Biology and Biochemical Engineering Universidad Pablo de Olavide Seville Spain
| | - Antoni Pla
- Andalusian Centre for Developmental Biology Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide Seville Spain
- Department of Molecular Biology and Biochemical Engineering Universidad Pablo de Olavide Seville Spain
| | - Roxani Gatsi
- Andalusian Centre for Developmental Biology Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide Seville Spain
- Department of Molecular Biology and Biochemical Engineering Universidad Pablo de Olavide Seville Spain
| | - Marta Artal‐Sanz
- Andalusian Centre for Developmental Biology Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide Seville Spain
- Department of Molecular Biology and Biochemical Engineering Universidad Pablo de Olavide Seville Spain
| |
Collapse
|
41
|
Triolo M, Hood DA. Manifestations of Age on Autophagy, Mitophagy and Lysosomes in Skeletal Muscle. Cells 2021; 10:cells10051054. [PMID: 33946883 PMCID: PMC8146406 DOI: 10.3390/cells10051054] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/18/2023] Open
Abstract
Sarcopenia is the loss of both muscle mass and function with age. Although the molecular underpinnings of sarcopenia are not fully understood, numerous pathways are implicated, including autophagy, in which defective cargo is selectively identified and degraded at the lysosome. The specific tagging and degradation of mitochondria is termed mitophagy, a process important for the maintenance of an organelle pool that functions efficiently in energy production and with relatively low reactive oxygen species production. Emerging data, yet insufficient, have implicated various steps in this pathway as potential contributors to the aging muscle atrophy phenotype. Included in this is the lysosome, the end-stage organelle possessing a host of proteolytic and degradative enzymes, and a function devoted to the hydrolysis and breakdown of defective molecular complexes and organelles. This review provides a summary of our current understanding of how the autophagy-lysosome system is regulated in aging muscle, highlighting specific areas where knowledge gaps exist. Characterization of the autophagy pathway with a particular focus on the lysosome will undoubtedly pave the way for the development of novel therapeutic strategies to combat age-related muscle loss.
Collapse
Affiliation(s)
- Matthew Triolo
- Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | - David A. Hood
- Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
- Correspondence: ; Tel.: +(416)-736-2100 (ext. 66640)
| |
Collapse
|
42
|
Mutlu AS, Duffy J, Wang MC. Lipid metabolism and lipid signals in aging and longevity. Dev Cell 2021; 56:1394-1407. [PMID: 33891896 DOI: 10.1016/j.devcel.2021.03.034] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/05/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Lipids play crucial roles in regulating aging and longevity. In the past few decades, a series of genetic pathways have been discovered to regulate lifespan in model organisms. Interestingly, many of these regulatory pathways are linked to lipid metabolism and lipid signaling. Lipid metabolic enzymes undergo significant changes during aging and are regulated by different longevity pathways. Lipids also actively modulate lifespan and health span as signaling molecules. In this review, we summarize recent insights into the roles of lipid metabolism and lipid signaling in aging and discuss lipid-related interventions in promoting longevity.
Collapse
Affiliation(s)
- Ayse Sena Mutlu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathon Duffy
- Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng C Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
43
|
Liu YJ, McIntyre RL, Janssens GE, Williams EG, Lan J, van Weeghel M, Schomakers B, van der Veen H, van der Wel NN, Yao P, Mair WB, Aebersold R, MacInnes AW, Houtkooper RH. Mitochondrial translation and dynamics synergistically extend lifespan in C. elegans through HLH-30. J Cell Biol 2021; 219:151623. [PMID: 32259199 PMCID: PMC7265311 DOI: 10.1083/jcb.201907067] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/22/2020] [Accepted: 03/05/2020] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial form and function are closely interlinked in homeostasis and aging. Inhibiting mitochondrial translation is known to increase lifespan in C. elegans, and is accompanied by a fragmented mitochondrial network. However, whether this link between mitochondrial translation and morphology is causal in longevity remains uncharacterized. Here, we show in C. elegans that disrupting mitochondrial network homeostasis by blocking fission or fusion synergizes with reduced mitochondrial translation to prolong lifespan and stimulate stress response such as the mitochondrial unfolded protein response, UPRMT. Conversely, immobilizing the mitochondrial network through a simultaneous disruption of fission and fusion abrogates the lifespan increase induced by mitochondrial translation inhibition. Furthermore, we find that the synergistic effect of inhibiting both mitochondrial translation and dynamics on lifespan, despite stimulating UPRMT, does not require it. Instead, this lifespan-extending synergy is exclusively dependent on the lysosome biogenesis and autophagy transcription factor HLH-30/TFEB. Altogether, our study reveals the mechanistic crosstalk between mitochondrial translation, mitochondrial dynamics, and lysosomal signaling in regulating longevity.
Collapse
Affiliation(s)
- Yasmine J Liu
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Evan G Williams
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology in Zurich, Zurich, Switzerland
| | - Jiayi Lan
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology in Zurich, Zurich, Switzerland
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Core Facility Metabolomics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Bauke Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Core Facility Metabolomics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Henk van der Veen
- Electron Microscopy Center Amsterdam, Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole N van der Wel
- Electron Microscopy Center Amsterdam, Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Pallas Yao
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - William B Mair
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology in Zurich, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Alyson W MacInnes
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Alassaf A, Mignotte B. [Lysosomal signaling allows interorganelle cross-talk that optimizes metabolic activity and redox homeostasis, and increases longevity in Caenorhabditis elegans]. Med Sci (Paris) 2021; 37:192-193. [PMID: 33591264 DOI: 10.1051/medsci/2020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Assaf Alassaf
- M1 Biologie Santé, Université Paris-Saclay, 91405 Orsay, France
| | - Bernard Mignotte
- Université Paris-Saclay, UVSQ, LGBC, 78000, Versailles, France - École pratique des hautes études, PSL University, 75014, Paris, France
| |
Collapse
|
45
|
Redhai S, Boutros M. The Role of Organelles in Intestinal Function, Physiology, and Disease. Trends Cell Biol 2021; 31:485-499. [PMID: 33551307 DOI: 10.1016/j.tcb.2021.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
The intestine maintains homeostasis by coordinating internal biological processes to adjust to fluctuating external conditions. The intestinal epithelium is continuously renewed and comprises multiple cell types, including absorptive cells, secretory cells, and resident stem cells. An important feature of this organ is its ability to coordinate many processes including cell proliferation, differentiation, regeneration, damage/stress response, immune activity, feeding behavior, and age-related changes by using conserved signaling pathways. However, the subcellular spatial organization of these signaling events and the organelles involved has only recently been studied in detail. Here we discuss how organelles of intestinal cells serve to initiate, mediate, and terminate signals, that are vital for homeostasis.
Collapse
Affiliation(s)
- Siamak Redhai
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, BioQuant and Medical Faculty Mannheim, D-69120 Heidelberg, Germany.
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, BioQuant and Medical Faculty Mannheim, D-69120 Heidelberg, Germany.
| |
Collapse
|
46
|
Currim F, Singh J, Shinde A, Gohel D, Roy M, Singh K, Shukla S, Mane M, Vasiyani H, Singh R. Exosome Release Is Modulated by the Mitochondrial-Lysosomal Crosstalk in Parkinson's Disease Stress Conditions. Mol Neurobiol 2021; 58:1819-1833. [PMID: 33404982 DOI: 10.1007/s12035-020-02243-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN) pars compacta region of the brain. The main pathological hallmark involves cytoplasmic inclusions of α-synuclein and mitochondrial dysfunction, which is observed in other part of the central nervous system other than SN suggesting the spread of pathogenesis to bystander neurons. The inter-neuronal communication through exosomes may play an important role in the spread of the disease; however, the mechanisms are not well elucidated. Mitochondria and its role in inter-organellar crosstalk with multivesicular body (MVB) and lysosome and its role in modulation of exosome release in PD is not well understood. In the current study, we investigated the mitochondria-lysosome crosstalk modulating the exosome release in neuronal and glial cells. We observed that PD stress showed enhanced release of exosomes in dopaminergic neurons and glial cells. The PD stress condition in these cells showed fragmented network and mitochondrial dysfunction which further leads to functional deficit of lysosomes and hence inhibition of autophagy flux. Neuronal and glial cells treated with rapamycin showed enhanced autophagy and inhibited the exosomal release. The results here suggest that maintenance of mitochondrial function is important for the lysosomal function and hence exosomal release which is important for the pathogenesis of PD.
Collapse
Affiliation(s)
- Fatema Currim
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Jyoti Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Anjali Shinde
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Dhruv Gohel
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Milton Roy
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Kritarth Singh
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Shatakshi Shukla
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Minal Mane
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Hitesh Vasiyani
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
47
|
Targeting metabolic pathways for extension of lifespan and healthspan across multiple species. Ageing Res Rev 2020; 64:101188. [PMID: 33031925 DOI: 10.1016/j.arr.2020.101188] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Metabolism plays a significant role in the regulation of aging at different levels, and metabolic reprogramming represents a major driving force in aging. Metabolic reprogramming leads to impaired organismal fitness, an age-dependent increase in susceptibility to diseases, decreased ability to mount a stress response, and increased frailty. The complexity of age-dependent metabolic reprogramming comes from the multitude of levels on which metabolic changes can be connected to aging and regulation of lifespan. This is further complicated by the different metabolic requirements of various tissues, cross-organ communication via metabolite secretion, and direct effects of metabolites on epigenetic state and redox regulation; however, not all of these changes are causative to aging. Studies in yeast, flies, worms, and mice have played a crucial role in identifying mechanistic links between observed changes in various metabolic traits and their effects on lifespan. Here, we review how changes in the organismal and organ-specific metabolome are associated with aging and how targeting of any one of over a hundred different targets in specific metabolic pathways can extend lifespan. An important corollary is that restriction or supplementation of different metabolites can change activity of these metabolic pathways in ways that improve healthspan and extend lifespan in different organisms. Due to the high levels of conservation of metabolism in general, translating findings from model systems to human beings will allow for the development of effective strategies for human health- and lifespan extension.
Collapse
|
48
|
Saftig P, Puertollano R. How Lysosomes Sense, Integrate, and Cope with Stress. Trends Biochem Sci 2020; 46:97-112. [PMID: 33012625 DOI: 10.1016/j.tibs.2020.09.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
Lysosomes are in the center of the cellular control of catabolic and anabolic processes. These membrane-surrounded acidic organelles contain around 70 hydrolases, 200 membrane proteins, and numerous accessory proteins associated with the cytosolic surface of lysosomes. Accessory and transmembrane proteins assemble in signaling complexes that sense and integrate multiple signals and transmit the information to the nucleus. This communication allows cells to respond to changes in multiple environmental conditions, including nutrient levels, pathogens, energy availability, and lysosomal damage, with the goal of restoring cellular homeostasis. This review summarizes our current understanding of the major molecular players and known pathways that are involved in control of metabolic and stress responses that either originate from lysosomes or regulate lysosomal functions.
Collapse
Affiliation(s)
- Paul Saftig
- Biochemical Institute, Christian-Albrechts-Universität Kiel, Kiel, Germany.
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Schmeisser S, Li S, Bouchard B, Ruiz M, Des Rosiers C, Roy R. Muscle-Specific Lipid Hydrolysis Prolongs Lifespan through Global Lipidomic Remodeling. Cell Rep 2020; 29:4540-4552.e8. [PMID: 31875559 DOI: 10.1016/j.celrep.2019.11.090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/20/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
A growing body of evidence suggests that changes in fat metabolism may have a significant effect on lifespan. Accumulation of lipid deposits in non-adipose tissue appears to be critical for age-related pathologies and may also contribute to the aging process itself. We established a model of lipid storage in muscle cells of C. elegans to reveal a mechanism that promotes longevity non-cell-autonomously. Here, we describe how muscle-specific activation of adipose triglyceride lipase (ATGL) and the phospholipase A2 (PLA2) ortholog IPLA-7 collectively affect inter-tissular communication and systemic adaptation that requires the activity of AMP-dependent protein kinase (AMPK) and a highly conserved nuclear receptor outside of the muscle. Our data suggest that muscle-specific bioactive lipid signals, or "lipokines," are generated following triglyceride breakdown and that these signals impinge on a complex network of genes that modify the global lipidome, consequently extending the lifespan.
Collapse
Affiliation(s)
| | - Shaolin Li
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Bertrand Bouchard
- Montreal Heart Institute, Research Center, Montreal, QC H1T 1C8, Canada
| | - Matthieu Ruiz
- Montreal Heart Institute, Research Center, Montreal, QC H1T 1C8, Canada; Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Christine Des Rosiers
- Montreal Heart Institute, Research Center, Montreal, QC H1T 1C8, Canada; Department of Nutrition, University of Montreal, Montreal, QC H2T 1A8, Canada
| | - Richard Roy
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
50
|
Liu X, Liu F, Ding S, Shen J, Zhu K. Sublethal Levels of Antibiotics Promote Bacterial Persistence in Epithelial Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1900840. [PMID: 32999821 PMCID: PMC7509632 DOI: 10.1002/advs.201900840] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/17/2020] [Indexed: 05/21/2023]
Abstract
Antibiotic therapy and host cells frequently fail to eliminate invasive bacterial pathogens due to the emergence of antibiotic resistance, resulting in the relapse and recurrence of infections. Bacteria evolve various strategies to persist and survive in epithelial cells, a front-line barrier of host tissues counteracting invasion; however, it remains unclear how bacteria hijack cellular responses to promote cytoplasmic survival under antibiotic therapy. Here, it is demonstrated that extracellular bacteria show invasive behavior and survive in epithelial cells in both in vivo and in vitro models, to increase antibiotic tolerance. In turn, sublethal levels of antibiotics increase bacterial invasion through promoting the production of bacterial virulence factors. Furthermore, antibiotic treatments interrupt lysosomal acidification in autophagy due to the internalized bacteria, using Bacillus cereus and ciprofloxacin as a model. In addition, it is found that sublethal levels of ciprofloxacin cause mitochondrial dysfunction and reactive oxygen species (ROS) accumulation to impair lysosomal vascular tape ATPase (V-ATPase) to further promote bacterial persistence. Collectively, these results highlight the potential of host cells mediated antibiotic tolerance, which markedly compromises antibiotic efficacy and worsens the outcomes of infection.
Collapse
Affiliation(s)
- Xiaoye Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RoadBeijing100193China
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Fei Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RoadBeijing100193China
| | - Shuangyang Ding
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food Safety and Beijing Laboratory for Food Quality and SafetyChina Agricultural UniversityBeijing100193China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RoadBeijing100193China
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food Safety and Beijing Laboratory for Food Quality and SafetyChina Agricultural UniversityBeijing100193China
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RoadBeijing100193China
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| |
Collapse
|