1
|
Francois-Campion V, Berger F, Oikawa M, Goumeidane M, Mouniée N, Chenouard V, Petrova K, Abreu JG, Fourgeux C, Poschmann J, Peshkin L, Gibeaux R, Jullien J. Sperm derived H2AK119ub1 is required for embryonic development in Xenopus laevis. Nat Commun 2025; 16:3268. [PMID: 40188103 PMCID: PMC11972363 DOI: 10.1038/s41467-025-58615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/28/2025] [Indexed: 04/07/2025] Open
Abstract
Ubiquitylation of H2A (H2AK119ub1) by the polycomb repressive complexe-1 plays a key role in the initiation of facultative heterochromatin formation in somatic cells. Here we evaluate the contribution of sperm derived H2AK119ub1 to embryo development. In Xenopus laevis we found that H2AK119ub1 is present during spermiogenesis and into early embryonic development, highlighting its credential for a role in the transmission of epigenetic information from the sperm to the embryo. In vitro treatment of sperm with USP21, a H2AK119ub1 deubiquitylase, just prior to injection to egg, results in developmental defects associated with gene upregulation. Sperm H2AK119ub1 editing disrupts egg factor mediated paternal chromatin remodelling processes. It leads to post-replication accumulation of H2AK119ub1 on repeat element of the genome instead of CpG islands. This shift in post-replication H2AK119ub1 distribution triggered by sperm epigenome editing entails a loss of H2AK119ub1 from genes misregulated in embryos derived from USP21 treated sperm. We conclude that sperm derived H2AK119ub1 instructs egg factor mediated epigenetic remodelling of paternal chromatin and is required for embryonic development.
Collapse
Affiliation(s)
- Valentin Francois-Campion
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Florian Berger
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Mami Oikawa
- Laboratory of Regenerative Medicine, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Maissa Goumeidane
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Nolwenn Mouniée
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Vanessa Chenouard
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | | | - Jose G Abreu
- Systems Biology, Harvard Medical School, Boston, MA, USA
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Cynthia Fourgeux
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Jeremie Poschmann
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Leonid Peshkin
- Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Romain Gibeaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, Rennes, France
| | - Jérôme Jullien
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| |
Collapse
|
2
|
Kojima ML, Hoppe C, Giraldez AJ. The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nat Rev Genet 2025; 26:245-267. [PMID: 39587307 PMCID: PMC11928286 DOI: 10.1038/s41576-024-00792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/27/2024]
Abstract
A fertilized egg is initially transcriptionally silent and relies on maternally provided factors to initiate development. For embryonic development to proceed, the oocyte-inherited cytoplasm and the nuclear chromatin need to be reprogrammed to create a permissive environment for zygotic genome activation (ZGA). During this maternal-to-zygotic transition (MZT), which is conserved in metazoans, transient totipotency is induced and zygotic transcription is initiated to form the blueprint for future development. Recent technological advances have enhanced our understanding of MZT regulation, revealing common themes across species and leading to new fundamental insights about transcription, mRNA decay and translation.
Collapse
Affiliation(s)
- Mina L Kojima
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hoppe
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Kravchenko P, Tachibana K. Rise and SINE: roles of transcription factors and retrotransposons in zygotic genome activation. Nat Rev Mol Cell Biol 2025; 26:68-79. [PMID: 39358607 DOI: 10.1038/s41580-024-00772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 10/04/2024]
Abstract
In sexually reproducing organisms, life begins with the fusion of transcriptionally silent gametes, the oocyte and sperm. Although initiation of transcription in the embryo, known as zygotic genome activation (ZGA), is universally required for development, the transcription factors regulating this process are poorly conserved. In this Perspective, we discuss recent insights into the mechanisms of ZGA in totipotent mammalian embryos, namely ZGA regulation by several transcription factors, including by orphan nuclear receptors (OrphNRs) such as the pioneer transcription factor NR5A2, and by factors of the DUX, TPRX and OBOX families. We performed a meta-analysis and compiled a list of pan-ZGA genes, and found that most of these genes are indeed targets of the above transcription factors. Remarkably, more than a third of these ZGA genes appear to be regulated both by OrphNRs such as NR5A2 and by OBOX proteins, whose motifs co-occur in SINE B1 retrotransposable elements, which are enriched near ZGA genes. We propose that ZGA in mice is activated by recruitment of multiple transcription factors to SINE B1 elements that function as enhancers, and discuss a potential relevance of this mechanism to Alu retrotransposable elements in human ZGA.
Collapse
Affiliation(s)
- Pavel Kravchenko
- Department of Totipotency, Max Planck Institute of Biochemistry, Munich, Germany
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Munich, Germany.
| |
Collapse
|
4
|
Rios KT, McGee JP, Sebastian A, Gedara SA, Moritz RL, Feric M, Absalon S, Swearingen KE, Lindner SE. Widespread release of translational repression across Plasmodium's host-to-vector transmission event. PLoS Pathog 2025; 21:e1012823. [PMID: 39777415 PMCID: PMC11750109 DOI: 10.1371/journal.ppat.1012823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/21/2025] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Malaria parasites must respond quickly to environmental changes, including during their transmission between mammalian and mosquito hosts. Therefore, female gametocytes proactively produce and translationally repress mRNAs that encode essential proteins that the zygote requires to establish a new infection. While the release of translational repression of individual mRNAs has been documented, the details of the global release of translational repression have not. Moreover, changes in the spatial arrangement and composition of the DOZI/CITH/ALBA complex that contribute to translational control are also not known. Therefore, we have conducted the first quantitative, comparative transcriptomics and DIA-MS proteomics of Plasmodium parasites across the host-to-vector transmission event to document the global release of translational repression. Using female gametocytes and zygotes of P. yoelii, we found that ~200 transcripts are released for translation soon after fertilization, including those encoding essential functions. Moreover, we identified that many transcripts remain repressed beyond this point. TurboID-based proximity proteomics of the DOZI/CITH/ALBA regulatory complex revealed substantial spatial and/or compositional changes across this transmission event, which are consistent with recent, paradigm-shifting models of translational control. Together, these data provide a model for the essential translational control mechanisms that promote Plasmodium's efficient transmission from mammalian host to mosquito vector.
Collapse
Affiliation(s)
- Kelly T. Rios
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - James P. McGee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Aswathy Sebastian
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sanjaya Aththawala Gedara
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Marina Feric
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | | | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
5
|
Parasyraki E, Mallick M, Hatch V, Vastolo V, Musheev MU, Karaulanov E, Gopanenko A, Moxon S, Méndez-Lago M, Han D, Schomacher L, Mukherjee D, Niehrs C. 5-Formylcytosine is an activating epigenetic mark for RNA Pol III during zygotic reprogramming. Cell 2024; 187:6088-6103.e18. [PMID: 39214079 DOI: 10.1016/j.cell.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/15/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
5-Methylcytosine (5mC) is an established epigenetic mark in vertebrate genomic DNA, but whether its oxidation intermediates formed during TET-mediated DNA demethylation possess an instructive role of their own that is also physiologically relevant remains unresolved. Here, we reveal a 5-formylcytosine (5fC) nuclear chromocenter, which transiently forms during zygotic genome activation (ZGA) in Xenopus and mouse embryos. We identify this chromocenter as the perinucleolar compartment, a structure associated with RNA Pol III transcription. In Xenopus embryos, 5fC is highly enriched on Pol III target genes activated at ZGA, notably at oocyte-type tandem arrayed tRNA genes. By manipulating Tet and Tdg enzymes, we show that 5fC is required as a regulatory mark to promote Pol III recruitment as well as tRNA expression. Concordantly, 5fC modification of a tRNA transgene enhances its expression in vivo. The results establish 5fC as an activating epigenetic mark during zygotic reprogramming of Pol III gene expression.
Collapse
Affiliation(s)
| | | | - Victoria Hatch
- Institute of Molecular Biology (IMB), Mainz 55128, Germany
| | | | | | | | | | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TU, UK
| | | | - Dandan Han
- Institute of Molecular Biology (IMB), Mainz 55128, Germany
| | | | | | - Christof Niehrs
- Institute of Molecular Biology (IMB), Mainz 55128, Germany; Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg 69120, Germany.
| |
Collapse
|
6
|
Chadha Y, Khurana A, Schmoller KM. Eukaryotic cell size regulation and its implications for cellular function and dysfunction. Physiol Rev 2024; 104:1679-1717. [PMID: 38900644 PMCID: PMC11495193 DOI: 10.1152/physrev.00046.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/24/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024] Open
Abstract
Depending on cell type, environmental inputs, and disease, the cells in the human body can have widely different sizes. In recent years, it has become clear that cell size is a major regulator of cell function. However, we are only beginning to understand how the optimization of cell function determines a given cell's optimal size. Here, we review currently known size control strategies of eukaryotic cells and the intricate link of cell size to intracellular biomolecular scaling, organelle homeostasis, and cell cycle progression. We detail the cell size-dependent regulation of early development and the impact of cell size on cell differentiation. Given the importance of cell size for normal cellular physiology, cell size control must account for changing environmental conditions. We describe how cells sense environmental stimuli, such as nutrient availability, and accordingly adapt their size by regulating cell growth and cell cycle progression. Moreover, we discuss the correlation of pathological states with misregulation of cell size and how for a long time this was considered a downstream consequence of cellular dysfunction. We review newer studies that reveal a reversed causality, with misregulated cell size leading to pathophysiological phenotypes such as senescence and aging. In summary, we highlight the important roles of cell size in cellular function and dysfunction, which could have major implications for both diagnostics and treatment in the clinic.
Collapse
Affiliation(s)
- Yagya Chadha
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Arohi Khurana
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
7
|
Sharma A, Dsilva GJ, Deshpande G, Galande S. Exploring the versatility of zygotic genome regulators: A comparative and functional analysis. Cell Rep 2024; 43:114680. [PMID: 39182225 DOI: 10.1016/j.celrep.2024.114680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/30/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
The activation of the zygotic genome constitutes an essential process during early embryogenesis that determines the overall progression of embryonic development. Zygotic genome activation (ZGA) is tightly regulated, involving a delicate interplay of activators and repressors, to precisely control the timing and spatial pattern of gene expression. While regulators of ZGA vary across species, they accomplish comparable outcomes. Recent studies have shed light on the unanticipated roles of ZGA components both during and after ZGA. Moreover, different ZGA regulators seem to have acquired unique functional modalities to manifest their regulatory potential. In this review, we explore these observations to assess whether these are simply anecdotal or contribute to a broader regulatory framework that employs a versatile means to arrive at the conserved outcome.
Collapse
Affiliation(s)
- Ankita Sharma
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR 201314, India
| | - Greg Jude Dsilva
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR 201314, India
| | - Girish Deshpande
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA.
| | - Sanjeev Galande
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR 201314, India.
| |
Collapse
|
8
|
Vidal PJ, Pérez AP, Yahya G, Aldea M. Transcriptomic balance and optimal growth are determined by cell size. Mol Cell 2024; 84:3288-3301.e3. [PMID: 39084218 DOI: 10.1016/j.molcel.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
Cell size and growth are intimately related across the evolutionary scale, but whether cell size is important to attain maximal growth or fitness is still an open question. We show that growth rate is a non-monotonic function of cell volume, with maximal values around the critical size of wild-type yeast cells. The transcriptome of yeast and mouse cells undergoes a relative inversion in response to cell size, which we associate theoretically and experimentally with the necessary genome-wide diversity in RNA polymerase II affinity for promoters. Although highly expressed genes impose strong negative effects on fitness when the DNA/mass ratio is reduced, transcriptomic alterations mimicking the relative inversion by cell size strongly restrain cell growth. In all, our data indicate that cells set the critical size to obtain a properly balanced transcriptome and, as a result, maximize growth and fitness during proliferation.
Collapse
Affiliation(s)
- Pedro J Vidal
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain
| | - Alexis P Pérez
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain; Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Galal Yahya
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain; Department of Microbiology and Immunology, School of Pharmacy, Zagazig University, 44511 Zagazig, Egypt.
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain; Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain.
| |
Collapse
|
9
|
Fukushima HS, Ikeda T, Ikeda S, Takeda H. Cell cycle length governs heterochromatin reprogramming during early development in non-mammalian vertebrates. EMBO Rep 2024; 25:3300-3323. [PMID: 38943003 PMCID: PMC11315934 DOI: 10.1038/s44319-024-00188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024] Open
Abstract
Heterochromatin marks such as H3K9me3 undergo global erasure and re-establishment after fertilization, and the proper reprogramming of H3K9me3 is essential for early development. Despite the widely conserved dynamics of heterochromatin reprogramming in invertebrates and non-mammalian vertebrates, previous studies have shown that the underlying mechanisms may differ between species. Here, we investigate the molecular mechanism of H3K9me3 dynamics in medaka (Japanese killifish, Oryzias latipes) as a non-mammalian vertebrate model, and show that rapid cell cycle during cleavage stages causes DNA replication-dependent passive erasure of H3K9me3. We also find that cell cycle slowing, toward the mid-blastula transition, permits increasing nuclear accumulation of H3K9me3 histone methyltransferase Setdb1, leading to the onset of H3K9me3 re-accumulation. We further demonstrate that cell cycle length in early development also governs H3K9me3 reprogramming in zebrafish and Xenopus laevis. Together with the previous studies in invertebrates, we propose that a cell cycle length-dependent mechanism for both global erasure and re-accumulation of H3K9me3 is conserved among rapid-cleavage species of non-mammalian vertebrates and invertebrates such as Drosophila, C. elegans, Xenopus and teleost fish.
Collapse
Affiliation(s)
- Hiroto S Fukushima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
- Center for Integrative Medical Sciences, RIKEN, Yokohama, 230-0045, Japan.
| | - Takafumi Ikeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, 603-8555, Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Shinra Ikeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan.
| |
Collapse
|
10
|
Small CD, Benfey TJ, Crawford BD. Tissue-specific compensatory mechanisms maintain tissue architecture and body size independent of cell size in polyploid zebrafish. Dev Biol 2024; 509:85-96. [PMID: 38387487 DOI: 10.1016/j.ydbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/01/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Genome duplications and ploidy transitions have occurred in nearly every major taxon of eukaryotes, but they are far more common in plants than in animals. Due to the conservation of the nuclear:cytoplasmic volume ratio increased DNA content results in larger cells. In plants, polyploid organisms are larger than diploids as cell number remains relatively constant. Conversely, vertebrate body size does not correlate with cell size and ploidy as vertebrates compensate for increased cell size to maintain tissue architecture and body size. This has historically been explained by a simple reduction in cell number that matches the increase in cell size maintaining body size as ploidy increases, but here we show that the compensatory mechanisms that maintain body size in triploid zebrafish are tissue-specific: A) erythrocytes respond in the classical pattern with a reduced number of larger erythrocytes in circulation, B) muscle, a tissue comprised of polynucleated muscle fibers, compensates by reducing the number of larger nuclei such that myofiber and myotome size in unaffected by ploidy, and C) vascular tissue compensates by thickening blood vessel walls, possibly at the expense of luminal diameter. Understanding the physiological implications of ploidy on tissue function requires a detailed description of the specific mechanisms of morphological compensation occurring in each tissue to understand how ploidy changes affect development and physiology.
Collapse
Affiliation(s)
- C D Small
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - T J Benfey
- Biology Department, University of New Brunswick, Fredericton, NB, Canada
| | - B D Crawford
- Biology Department, University of New Brunswick, Fredericton, NB, Canada.
| |
Collapse
|
11
|
Qu HX, Wang YQ, Dong YW, Qi JJ, Wei HK, Zhang Y, Sun H, Sun BX, Liang S. Chlorogenic acid improves the development of porcine parthenogenetic embryos by regulating oxidative stress and ameliorating mitochondrial function. Reprod Domest Anim 2024; 59:e14596. [PMID: 38757656 DOI: 10.1111/rda.14596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024]
Abstract
Chlorogenic acid (CGA) is an effective phenolic antioxidant that can scavenge hydroxyl radicals and superoxide anions. Herein, the protective effects and mechanisms leading to CGA-induced porcine parthenogenetic activation (PA) in early-stage embryos were investigated. Our results showed that 50 μM CGA treatment during the in vitro culture (IVC) period significantly increased the cleavage and blastocyst formation rates and improved the blastocyst quality of porcine early-stage embryos derived from PAs. Then, genes related to zygotic genome activation (ZGA) were identified and investigated, revealing that CGA can promote ZGA in porcine PA early-stage embryos. Further analysis revealed that CGA treatment during the IVC period decreased the abundance of reactive oxygen species (ROS), increased the abundance of glutathione and enhanced the activity of catalase and superoxide dismutase in porcine PA early-stage embryos. Mitochondrial function analysis revealed that CGA increased mitochondrial membrane potential and ATP levels and upregulated the mitochondrial homeostasis-related gene NRF-1 in porcine PA early-stage embryos. In summary, our results suggest that CGA treatment during the IVC period helps porcine PA early-stage embryos by regulating oxidative stress and improving mitochondrial function.
Collapse
Affiliation(s)
- He-Xuan Qu
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Yan-Qiu Wang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Yan-Wei Dong
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jia-Jia Qi
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Hua-Kai Wei
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Yan Zhang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Hao Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Bo-Xing Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
12
|
Sakamoto M, Ito A, Wakayama S, Sasaki H, Wakayama T, Ishiuchi T. Detection of newly synthesized RNA reveals transcriptional reprogramming during ZGA and a role of Obox3 in totipotency acquisition. Cell Rep 2024; 43:114118. [PMID: 38619966 DOI: 10.1016/j.celrep.2024.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/15/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
Zygotic genome activation (ZGA) after fertilization enables the maternal-to-zygotic transition. However, the global view of ZGA, particularly at initiation, is incompletely understood. Here, we develop a method to capture and sequence newly synthesized RNA in early mouse embryos, providing a view of transcriptional reprogramming during ZGA. Our data demonstrate that major ZGA gene activation begins earlier than previously thought. Furthermore, we identify a set of genes activated during minor ZGA, the promoters of which show enrichment of the Obox factor motif, and find that Obox3 or Obox5 overexpression in mouse embryonic stem cells activates ZGA genes. Notably, the expression of Obox factors is severely impaired in somatic cell nuclear transfer (SCNT) embryos, and restoration of Obox3 expression corrects the ZGA profile and greatly improves SCNT embryo development. Hence, our study reveals dynamic transcriptional reprogramming during ZGA and underscores the crucial role of Obox3 in facilitating totipotency acquisition.
Collapse
Affiliation(s)
- Mizuki Sakamoto
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Aoi Ito
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Takashi Ishiuchi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan.
| |
Collapse
|
13
|
Rios KT, McGee JP, Sebastian A, Moritz RL, Feric M, Absalon S, Swearingen KE, Lindner SE. Global Release of Translational Repression Across Plasmodium's Host-to-Vector Transmission Event. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.577866. [PMID: 38352447 PMCID: PMC10862809 DOI: 10.1101/2024.02.01.577866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Malaria parasites must be able to respond quickly to changes in their environment, including during their transmission between mammalian hosts and mosquito vectors. Therefore, before transmission, female gametocytes proactively produce and translationally repress mRNAs that encode essential proteins that the zygote requires to establish a new infection. This essential regulatory control requires the orthologues of DDX6 (DOZI), LSM14a (CITH), and ALBA proteins to form a translationally repressive complex in female gametocytes that associates with many of the affected mRNAs. However, while the release of translational repression of individual mRNAs has been documented, the details of the global release of translational repression have not. Moreover, the changes in spatial arrangement and composition of the DOZI/CITH/ALBA complex that contribute to translational control are also not known. Therefore, we have conducted the first quantitative, comparative transcriptomics and DIA-MS proteomics of Plasmodium parasites across the host-to-vector transmission event to document the global release of translational repression. Using female gametocytes and zygotes of P. yoelii, we found that nearly 200 transcripts are released for translation soon after fertilization, including those with essential functions for the zygote. However, we also observed that some transcripts remain repressed beyond this point. In addition, we have used TurboID-based proximity proteomics to interrogate the spatial and compositional changes in the DOZI/CITH/ALBA complex across this transmission event. Consistent with recent models of translational control, proteins that associate with either the 5' or 3' end of mRNAs are in close proximity to one another during translational repression in female gametocytes and then dissociate upon release of repression in zygotes. This observation is cross-validated for several protein colocalizations in female gametocytes via ultrastructure expansion microscopy and structured illumination microscopy. Moreover, DOZI exchanges its interaction from NOT1-G in female gametocytes to the canonical NOT1 in zygotes, providing a model for a trigger for the release of mRNAs from DOZI. Finally, unenriched phosphoproteomics revealed the modification of key translational control proteins in the zygote. Together, these data provide a model for the essential translational control mechanisms used by malaria parasites to promote their efficient transmission from their mammalian host to their mosquito vector.
Collapse
Affiliation(s)
- Kelly T. Rios
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| | - James P. McGee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| | - Aswathy Sebastian
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802
| | | | - Marina Feric
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| |
Collapse
|
14
|
Xie J, Levy DL, Minc N, Sallé J. Manipulation of Embryonic Cleavage Geometry Using Magnetic Tweezers. Methods Mol Biol 2024; 2740:125-140. [PMID: 38393473 PMCID: PMC11059781 DOI: 10.1007/978-1-0716-3557-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The geometry of reductive divisions that mark the development of early embryos instructs cell fates, sizes, and positions, by mechanisms that remain unclear. In that context, new methods to mechanically manipulate these divisions are starting to emerge in different model systems. These are key to develop future innovative approaches and understand developmental mechanisms controlled by cleavage geometry. In particular, how cell cycle pace is regulated in rapidly reducing blastomeres and how fate diversity can arise from blastomere size and position within embryos are fundamental questions that remain at the heart of ongoing research. In this chapter, we provide a detailed protocol to assemble and use magnetic tweezers in the sea urchin model and generate spatially controlled asymmetric and oriented divisions during early embryonic development.
Collapse
Affiliation(s)
- Jing Xie
- CNRS, Institut Jacques Monod, Université Paris Cité, Paris, France
- Equipe Labellisée LIGUE Contre le Cancer, Paris, France
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Nicolas Minc
- CNRS, Institut Jacques Monod, Université Paris Cité, Paris, France
- Equipe Labellisée LIGUE Contre le Cancer, Paris, France
| | - Jérémy Sallé
- CNRS, Institut Jacques Monod, Université Paris Cité, Paris, France.
- Equipe Labellisée LIGUE Contre le Cancer, Paris, France.
| |
Collapse
|
15
|
Phelps WA, Hurton MD, Ayers TN, Carlson AE, Rosenbaum JC, Lee MT. Hybridization led to a rewired pluripotency network in the allotetraploid Xenopus laevis. eLife 2023; 12:e83952. [PMID: 37787392 PMCID: PMC10569791 DOI: 10.7554/elife.83952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/02/2023] [Indexed: 10/04/2023] Open
Abstract
After fertilization, maternally contributed factors to the egg initiate the transition to pluripotency to give rise to embryonic stem cells, in large part by activating de novo transcription from the embryonic genome. Diverse mechanisms coordinate this transition across animals, suggesting that pervasive regulatory remodeling has shaped the earliest stages of development. Here, we show that maternal homologs of mammalian pluripotency reprogramming factors OCT4 and SOX2 divergently activate the two subgenomes of Xenopus laevis, an allotetraploid that arose from hybridization of two diploid species ~18 million years ago. Although most genes have been retained as two homeologous copies, we find that a majority of them undergo asymmetric activation in the early embryo. Chromatin accessibility profiling and CUT&RUN for modified histones and transcription factor binding reveal extensive differences in predicted enhancer architecture between the subgenomes, which likely arose through genomic disruptions as a consequence of allotetraploidy. However, comparison with diploid X. tropicalis and zebrafish shows broad conservation of embryonic gene expression levels when divergent homeolog contributions are combined, implying strong selection to maintain dosage in the core vertebrate pluripotency transcriptional program, amid genomic instability following hybridization.
Collapse
Affiliation(s)
- Wesley A Phelps
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Matthew D Hurton
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Taylor N Ayers
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Anne E Carlson
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Joel C Rosenbaum
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Miler T Lee
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| |
Collapse
|
16
|
Zhou CY, Heald R. Principles of genome activation in the early embryo. Curr Opin Genet Dev 2023; 81:102062. [PMID: 37339553 PMCID: PMC11419330 DOI: 10.1016/j.gde.2023.102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/22/2023]
Abstract
A major hurdle in an embryo's life is the initiation of its own transcriptional program, a process termed Zygotic Genome Activation (ZGA). In many species, ZGA is intricately timed, with bulk transcription initiating at the end of a series of reductive cell divisions when cell cycle duration increases. At the same time, major changes in genome architecture give rise to chromatin states that are permissive to RNA polymerase II activity. Yet, we still do not understand the series of events that trigger gene expression at the right time and in the correct sequence. Here we discuss new discoveries that deepen our understanding of how zygotic genes are primed for transcription, and how these events are regulated by the cell cycle and nuclear import. Finally, we speculate on the evolutionary basis of ZGA timing as an exciting future direction for the field.
Collapse
Affiliation(s)
- Coral Y Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
17
|
Febrimarsa, Gornik SG, Barreira SN, Salinas‐Saavedra M, Schnitzler CE, Baxevanis AD, Frank U. Randomly incorporated genomic N6-methyldeoxyadenosine delays zygotic transcription initiation in a cnidarian. EMBO J 2023; 42:e112934. [PMID: 37708295 PMCID: PMC10390872 DOI: 10.15252/embj.2022112934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 09/16/2023] Open
Abstract
N6-methyldeoxyadenosine (6mA) is a chemical alteration of DNA, observed across all realms of life. Although the functions of 6mA are well understood in bacteria and protists, its roles in animal genomes have been controversial. We show that 6mA randomly accumulates in early embryos of the cnidarian Hydractinia symbiolongicarpus, with a peak at the 16-cell stage followed by clearance to background levels two cell cycles later, at the 64-cell stage-the embryonic stage at which zygotic genome activation occurs in this animal. Knocking down Alkbh1, a putative initiator of animal 6mA clearance, resulted in higher levels of 6mA at the 64-cell stage and a delay in the initiation of zygotic transcription. Our data are consistent with 6mA originating from recycled nucleotides of degraded m6A-marked maternal RNA postfertilization. Therefore, while 6mA does not function as an epigenetic mark in Hydractinia, its random incorporation into the early embryonic genome inhibits transcription. In turn, Alkbh1 functions as a genomic 6mA "cleaner," facilitating timely zygotic genome activation. Given the random nature of genomic 6mA accumulation and its ability to interfere with gene expression, defects in 6mA clearance may represent a hitherto unknown cause of various pathologies.
Collapse
Affiliation(s)
- Febrimarsa
- Centre for Chromosome Biology, School of Biological and Chemical SciencesUniversity of GalwayGalwayRepublic of Ireland
| | - Sebastian G Gornik
- Centre for Chromosome Biology, School of Biological and Chemical SciencesUniversity of GalwayGalwayRepublic of Ireland
- Present address:
Centre for Organismal StudiesHeidelberg UniversityHeidelbergGermany
| | - Sofia N Barreira
- Computational and Statistical Genomics Branch, Division of Intramural ResearchNational Human Genome Research Institute, National Institutes of HealthBethesdaMDUSA
| | - Miguel Salinas‐Saavedra
- Centre for Chromosome Biology, School of Biological and Chemical SciencesUniversity of GalwayGalwayRepublic of Ireland
| | - Christine E Schnitzler
- Whitney Laboratory for Marine BioscienceUniversity of FloridaSt. AugustineFLUSA
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | - Andreas D Baxevanis
- Computational and Statistical Genomics Branch, Division of Intramural ResearchNational Human Genome Research Institute, National Institutes of HealthBethesdaMDUSA
| | - Uri Frank
- Centre for Chromosome Biology, School of Biological and Chemical SciencesUniversity of GalwayGalwayRepublic of Ireland
| |
Collapse
|
18
|
Ayers TN, Nicotra ML, Lee MT. Parallels and contrasts between the cnidarian and bilaterian maternal-to-zygotic transition are revealed in Hydractinia embryos. PLoS Genet 2023; 19:e1010845. [PMID: 37440598 PMCID: PMC10368294 DOI: 10.1371/journal.pgen.1010845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Embryogenesis requires coordinated gene regulatory activities early on that establish the trajectory of subsequent development, during a period called the maternal-to-zygotic transition (MZT). The MZT comprises transcriptional activation of the embryonic genome and post-transcriptional regulation of egg-inherited maternal mRNA. Investigation into the MZT in animals has focused almost exclusively on bilaterians, which include all classical models such as flies, worms, sea urchin, and vertebrates, thus limiting our capacity to understand the gene regulatory paradigms uniting the MZT across all animals. Here, we elucidate the MZT of a non-bilaterian, the cnidarian Hydractinia symbiolongicarpus. Using parallel poly(A)-selected and non poly(A)-dependent RNA-seq approaches, we find that the Hydractinia MZT is composed of regulatory activities similar to many bilaterians, including cytoplasmic readenylation of maternally contributed mRNA, delayed genome activation, and separate phases of maternal mRNA deadenylation and degradation that likely depend on both maternally and zygotically encoded clearance factors, including microRNAs. But we also observe massive upregulation of histone genes and an expanded repertoire of predicted H4K20 methyltransferases, aspects thus far particular to the Hydractinia MZT and potentially underlying a novel mode of early embryonic chromatin regulation. Thus, similar regulatory strategies with taxon-specific elaboration underlie the MZT in both bilaterian and non-bilaterian embryos, providing insight into how an essential developmental transition may have arisen in ancestral animals.
Collapse
Affiliation(s)
- Taylor N. Ayers
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh Pennsylvania, United States of America
| | - Matthew L. Nicotra
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Miler T. Lee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh Pennsylvania, United States of America
| |
Collapse
|
19
|
Fung HF, Bergmann DC. Function follows form: How cell size is harnessed for developmental decisions. Eur J Cell Biol 2023; 102:151312. [PMID: 36989838 DOI: 10.1016/j.ejcb.2023.151312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Cell size has profound effects on biological function, influencing a wide range of processes, including biosynthetic capacity, metabolism, and nutrient uptake. As a result, size is typically maintained within a narrow, population-specific range through size control mechanisms, which are an active area of study. While the physiological consequences of cell size are relatively well-characterized, less is known about its developmental consequences, and specifically its effects on developmental transitions. In this review, we compare systems where cell size is linked to developmental transitions, paying particular attention to examples from plants. We conclude by proposing that size can offer a simple readout of complex inputs, enabling flexible decisions during plant development.
Collapse
|
20
|
Qian W, Good MC. Peeking under the hood of early embryogenesis: Using tools and synthetic biology to understand native control systems and sculpt tissues. Semin Cell Dev Biol 2023; 141:43-49. [PMID: 35525819 PMCID: PMC9633583 DOI: 10.1016/j.semcdb.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
Abstract
Early embryogenesis requires rapid division of pluripotent blastomeres, regulated genome activation, precise spatiotemporal signaling to pattern cell fate, and morphogenesis to shape primitive tissue architectures. The complexity of this process has inspired researchers to move beyond simple genetic perturbation into engineered devices and synthetic biology tools to permit temporal and spatial manipulation of the control systems guiding development. By precise alteration of embryo organization, it is now possible to advance beyond basic analytical strategies and directly test the sufficiency of models for developmental regulation. Separately, advances in micropatterning and embryoid culture have facilitated the bottom-up construction of complex embryo tissues allowing ex vivo systems to recapitulate even later stages of development. Embryos fertilized and grown ex vivo offer an excellent opportunity to exogenously perturb fundamental pathways governing embryogenesis. Here we review the technologies developed to thermally modulate the embryo cell cycle, and optically regulate morphogen and signaling pathways in space and time, specifically in the blastula embryo. Additionally, we highlight recent advances in cell patterning in two and three dimensions that have helped reveal the self-organizing properties and gene regulatory networks guiding early embryo organization.
Collapse
Affiliation(s)
- Wenchao Qian
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew C. Good
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA,Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Lead Contact,Correspondence: (M.C.G), Address: 421 Curie Blvd, 1151 Biomedical Research Building, Philadelphia PA 19104
| |
Collapse
|
21
|
Ayers TN, Nicotra ML, Lee MT. Parallels and contrasts between the cnidarian and bilaterian maternal-to-zygotic transition are revealed in Hydractinia embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540083. [PMID: 37214839 PMCID: PMC10197650 DOI: 10.1101/2023.05.09.540083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Embryogenesis requires coordinated gene regulatory activities early on that establish the trajectory of subsequent development, during a period called the maternal-to-zygotic transition (MZT). The MZT comprises transcriptional activation of the embryonic genome and post-transcriptional regulation of egg-inherited maternal mRNA. Investigation into the MZT in animals has focused almost exclusively on bilaterians, which include all classical models such as flies, worms, sea urchin, and vertebrates, thus limiting our capacity to understand the gene regulatory paradigms uniting the MZT across all animals. Here, we elucidate the MZT of a non-bilaterian, the cnidarian Hydractinia symbiolongicarpus . Using parallel poly(A)-selected and non poly(A)-dependent RNA-seq approaches, we find that the Hydractinia MZT is composed of regulatory activities analogous to many bilaterians, including cytoplasmic readenylation of maternally contributed mRNA, delayed genome activation, and separate phases of maternal mRNA deadenylation and degradation that likely depend on both maternally and zygotically encoded clearance factors, including microRNAs. But we also observe massive upregulation of histone genes and an expanded repertoire of predicted H4K20 methyltransferases, aspects thus far unique to the Hydractinia MZT and potentially underlying a novel mode of early embryonic chromatin regulation. Thus, similar regulatory strategies with taxon-specific elaboration underlie the MZT in both bilaterian and non-bilaterian embryos, providing insight into how an essential developmental transition may have arisen in ancestral animals.
Collapse
Affiliation(s)
- Taylor N. Ayers
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15213 U.S.A
| | - Matthew L. Nicotra
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261 U.S.A
| | - Miler T. Lee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15213 U.S.A
| |
Collapse
|
22
|
Olivetta M, Dudin O. The nuclear-to-cytoplasmic ratio drives cellularization in the close animal relative Sphaeroforma arctica. Curr Biol 2023; 33:1597-1605.e3. [PMID: 36996815 DOI: 10.1016/j.cub.2023.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/31/2023]
Abstract
The ratio of nuclear content to cytoplasmic volume (N/C ratio) is a key regulator driving the maternal-to-zygotic transition in most animal embryos. Altering this ratio often impacts zygotic genome activation and deregulates the timing and outcome of embryogenesis.1,2,3 Despite being ubiquitous across animals, little is known about when the N/C ratio evolved to control multicellular development. Such capacity either originated with the emergence of animal multicellularity or was co-opted from the mechanisms present in unicellular organisms.4 An effective strategy to tackle this question is to investigate the close relatives of animals exhibiting life cycles with transient multicellular stages.5 Among these are ichthyosporeans, a lineage of protists undergoing coenocytic development followed by cellularization and cell release.6,7,8 During cellularization, a transient multicellular stage resembling animal epithelia is generated, offering a unique opportunity to examine whether the N/C ratio regulates multicellular development. Here, we use time-lapse microscopy to characterize how the N/C ratio affects the life cycle of the best-studied ichthyosporean model, Sphaeroforma arctica. We uncover that the last stages of cellularization coincide with a significant increase in the N/C ratio. Increasing the N/C ratio by reducing the coenocytic volume accelerates cellularization, whereas decreasing the N/C ratio by lowering the nuclear content halts it. Moreover, centrifugation and pharmacological inhibitor experiments suggest that the N/C ratio is locally sensed at the cortex and relies on phosphatase activity. Altogether, our results show that the N/C ratio drives cellularization in S. arctica, suggesting that its capacity to control multicellular development predates animal emergence.
Collapse
|
23
|
Li X, Zhong Y, Zhang X, Sood AK, Liu J. Spatiotemporal view of malignant histogenesis and macroevolution via formation of polyploid giant cancer cells. Oncogene 2023; 42:665-678. [PMID: 36596845 PMCID: PMC9957731 DOI: 10.1038/s41388-022-02588-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023]
Abstract
To understand how malignant tumors develop, we tracked cell membrane, nuclear membrane, spindle, and cell cycle dynamics in polyploid giant cancer cells (PGCCs) during the formation of high-grade serous carcinoma organoids using long-term time-lapse imaging. Single cells underwent traditional mitosis to generate tissue with uniform nuclear size, while others formed PGCCs via asymmetric mitosis, endoreplication, multipolar endomitosis, nuclear fusion, and karyokinesis without cytokinesis. PGCCs underwent restitution multipolar endomitosis, nuclear fragmentation, and micronuclei formation to increase nuclear contents and heterogeneity. At the cellular level, the development of PGCCs was associated with forming transient intracellular cells, termed fecundity cells. The fecundity cells can be decellularized to facilitate nuclear fusion and synchronized with other nuclei for subsequent nuclear replication. PGCCs can undergo several rounds of entosis to form complex tissue structures, termed fecundity structures. The formation of PGCCs via multiple modes of nuclear replication in the absence of cytokinesis leads to an increase in the nuclear-to-cytoplasmic (N/C) ratio and intracellular cell reproduction, which is remarkably similar to the mode of nuclear division during pre-embryogenesis. Our data support that PGCCs may represent a central regulator in malignant histogenesis, intratumoral heterogeneity, immune escape, and macroevolution via the de-repression of suppressed pre-embryogenic program in somatic cells.
Collapse
Affiliation(s)
- Xiaoran Li
- Department of Anatomical Pathology, Division of Pathology and Laboratory Medicine, Houston, TX, USA
| | - Yanping Zhong
- Department of Anatomical Pathology, Division of Pathology and Laboratory Medicine, Houston, TX, USA
- Department of Pathology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Xudong Zhang
- Department of Anatomical Pathology, Division of Pathology and Laboratory Medicine, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030-4095, USA
| | - Jinsong Liu
- Department of Anatomical Pathology, Division of Pathology and Laboratory Medicine, Houston, TX, USA.
| |
Collapse
|
24
|
Chen P, Levy DL. Regulation of organelle size and organization during development. Semin Cell Dev Biol 2023; 133:53-64. [PMID: 35148938 PMCID: PMC9357868 DOI: 10.1016/j.semcdb.2022.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
During early embryogenesis, as cells divide in the developing embryo, the size of intracellular organelles generally decreases to scale with the decrease in overall cell size. Organelle size scaling is thought to be important to establish and maintain proper cellular function, and defective scaling may lead to impaired development and disease. However, how the cell regulates organelle size and organization are largely unanswered questions. In this review, we summarize the process of size scaling at both the cell and organelle levels and discuss recently discovered mechanisms that regulate this process during early embryogenesis. In addition, we describe how some recently developed techniques and Xenopus as an animal model can be used to investigate the underlying mechanisms of size regulation and to uncover the significance of proper organelle size scaling and organization.
Collapse
Affiliation(s)
- Pan Chen
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
25
|
Satouh Y, Sato K. Reorganization, specialization, and degradation of oocyte maternal components for early development. Reprod Med Biol 2023; 22:e12505. [PMID: 36726596 PMCID: PMC9884333 DOI: 10.1002/rmb2.12505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/30/2023] Open
Abstract
Background Oocyte components are maternally provided, solely determine oocyte quality, and coordinately determine embryo quality with zygotic gene expression. During oocyte maturation, maternal organelles are drastically reorganized and specialized to support oocyte characteristics. A large number of maternal components are actively degraded after fertilization and gradually replaced by zygotic gene products. The molecular basis and the significance of these processes on oocyte/embryo quality are not fully understood. Methods Firstly, recent findings in organelle characteristics of other cells or oocytes from model organisms are introduced for further understanding of oocyte organelle reorganization/specialization. Secondly, recent progress in studies on maternal components degradation and their molecular mechanisms are introduced. Finally, future applications of these advancements for predicting mammalian oocyte/embryo quality are discussed. Main findings The significance of cellular surface protein degradation via endocytosis for embryonic development, and involvement of biogenesis of lipid droplets in embryonic quality, were recently reported using mammalian model organisms. Conclusion Identifying key oocyte component characteristics and understanding their dynamics may lead to new applications in oocyte/embryo quality prediction and improvement. To implement these multidimensional concepts, development of new technical approaches that allow us to address the complexity and efficient studies using model organisms are required.
Collapse
Affiliation(s)
- Yuhkoh Satouh
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular RegulationGunma UniversityMaebashiJapan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular RegulationGunma UniversityMaebashiJapan
| |
Collapse
|
26
|
Zhou JJ, Cho KWY. Epigenomic dynamics of early Xenopus Embryos. Dev Growth Differ 2022; 64:508-516. [PMID: 36168140 PMCID: PMC10550391 DOI: 10.1111/dgd.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 12/31/2022]
Abstract
How the embryonic genome regulates accessibility to transcription factors is one of the major questions in understanding the spatial and temporal dynamics of gene expression during embryogenesis. Epigenomic analyses of embryonic chromatin provide molecular insights into cell-specific gene activities and genomic architectures. In recent years, significant advances have been made to elucidate the dynamic changes behind the activation of the zygotic genome in various model organisms. Here we provide an overview of the recent epigenomic studies pertaining to early Xenopus development.
Collapse
Affiliation(s)
- Jeff Jiajing Zhou
- Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Ken W Y Cho
- Developmental and Cell Biology, University of California, Irvine, California, USA
- Center for Complex Biological Systems, University of California, Irvine, California, USA
| |
Collapse
|
27
|
Balachandra S, Sarkar S, Amodeo AA. The Nuclear-to-Cytoplasmic Ratio: Coupling DNA Content to Cell Size, Cell Cycle, and Biosynthetic Capacity. Annu Rev Genet 2022; 56:165-185. [PMID: 35977407 PMCID: PMC10165727 DOI: 10.1146/annurev-genet-080320-030537] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Though cell size varies between different cells and across species, the nuclear-to-cytoplasmic (N/C) ratio is largely maintained across species and within cell types. A cell maintains a relatively constant N/C ratio by coupling DNA content, nuclear size, and cell size. We explore how cells couple cell division and growth to DNA content. In some cases, cells use DNA as a molecular yardstick to control the availability of cell cycle regulators. In other cases, DNA sets a limit for biosynthetic capacity. Developmentally programmed variations in the N/C ratio for a given cell type suggest that a specific N/C ratio is required to respond to given physiological demands. Recent observations connecting decreased N/C ratios with cellular senescence indicate that maintaining the proper N/C ratio is essential for proper cellular functioning. Together, these findings suggest a causative, not simply correlative, role for the N/C ratio in regulating cell growth and cell cycle progression.
Collapse
Affiliation(s)
- Shruthi Balachandra
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA; ,
| | - Sharanya Sarkar
- Department of Microbiology and Immunology, Dartmouth College, Hanover, New Hampshire, USA;
| | - Amanda A Amodeo
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA; ,
| |
Collapse
|
28
|
Chen H, Good MC. Nascent transcriptome reveals orchestration of zygotic genome activation in early embryogenesis. Curr Biol 2022; 32:4314-4324.e7. [PMID: 36007528 PMCID: PMC9560990 DOI: 10.1016/j.cub.2022.07.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/25/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022]
Abstract
Early embryo development requires maternal-to-zygotic transition, during which transcriptionally silent nuclei begin widespread gene expression during zygotic genome activation (ZGA).1-3 ZGA is vital for early cell fating and germ-layer specification,3,4 and ZGA timing is regulated by multiple mechanisms.1-5 However, controversies remain about whether these mechanisms are interrelated and vary among species6-10 and whether the timing of germ-layer-specific gene activation is temporally ordered.11,12 In some embryonic models, widespread ZGA onset is spatiotemporally graded,13,14 yet it is unclear whether the transcriptome follows this pattern. A major challenge in addressing these questions is to accurately measure the timing of each gene activation. Here, we metabolically label and identify the nascent transcriptome using 5-ethynyl uridine (5-EU) in Xenopus blastula embryos. We find that EU-RNA-seq outperforms total RNA-seq in detecting the ZGA transcriptome, which is dominated by transcription from maternal-zygotic genes, enabling improved ZGA timing determination. We uncover discrete spatiotemporal patterns for individual gene activation, a majority following a spatial pattern of ZGA that is correlated with a cell size gradient.14 We further reveal that transcription necessitates a period of developmental progression and that ZGA can be precociously induced by cycloheximide, potentially through elongation of interphase. Finally, most ectodermal genes are activated earlier than endodermal genes, suggesting a temporal orchestration of germ-layer-specific genes, potentially linked to the spatially graded pattern of ZGA. Together, our study provides fundamental new insights into the composition and dynamics of the ZGA transcriptome, mechanisms regulating ZGA timing, and its role in the onset of early cell fating.
Collapse
Affiliation(s)
- Hui Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew C Good
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Differential nuclear import sets the timing of protein access to the embryonic genome. Nat Commun 2022; 13:5887. [PMID: 36202846 PMCID: PMC9537182 DOI: 10.1038/s41467-022-33429-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 09/16/2022] [Indexed: 02/02/2023] Open
Abstract
The development of a fertilized egg to an embryo requires the proper temporal control of gene expression. During cell differentiation, timing is often controlled via cascades of transcription factors (TFs). However, in early development, transcription is often inactive, and many TF levels stay constant, suggesting that alternative mechanisms govern the observed rapid and ordered onset of gene expression. Here, we find that in early embryonic development access of maternally deposited nuclear proteins to the genome is temporally ordered via importin affinities, thereby timing the expression of downstream targets. We quantify changes in the nuclear proteome during early development and find that nuclear proteins, such as TFs and RNA polymerases, enter the nucleus sequentially. Moreover, we find that the timing of nuclear proteins' access to the genome corresponds to the timing of downstream gene activation. We show that the affinity of proteins to importin is a major determinant in the timing of protein entry into embryonic nuclei. Thus, we propose a mechanism by which embryos encode the timing of gene expression in early development via biochemical affinities. This process could be critical for embryos to organize themselves before deploying the regulatory cascades that control cell identities.
Collapse
|
30
|
Bossi F, Jin B, Lazarus E, Cartwright H, Dorone Y, Rhee SY. CHIQUITA1 maintains the temporal transition between proliferation and differentiation in Arabidopsis thaliana. Development 2022; 149:275423. [DOI: 10.1242/dev.200565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/29/2022] [Indexed: 01/17/2023]
Abstract
ABSTRACT
Body size varies widely among species, populations and individuals, depending on the environment. Transitioning between proliferation and differentiation is a crucial determinant of final organ size, but how the timing of this transition is established and maintained remains unknown. Using cell proliferation markers and genetic analysis, we show that CHIQUITA1 (CHIQ1) is required to maintain the timing of the transition from proliferation to differentiation in Arabidopsis thaliana. Combining kinematic and cell lineage-tracking studies, we found that the number of actively dividing cells in chiquita1-1 plants decreases prematurely compared with wild-type plants, suggesting CHIQ1 maintains the proliferative capacity in dividing cells and ensures that cells divide a specific number of times. CHIQ1 belongs to a plant-specific gene family of unknown molecular function and genetically interacts with three close members of its family to control the timing of proliferation exit. Our work reveals the interdependency between cellular and organ-level processes underlying final organ size determination.
Collapse
Affiliation(s)
- Flavia Bossi
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| | - Benjamin Jin
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| | - Elena Lazarus
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| | - Heather Cartwright
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| | - Yanniv Dorone
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
- Stanford University 2 Department of Biology , , Stanford, CA 94305, USA
| | - Seung Y. Rhee
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| |
Collapse
|
31
|
Haase J, Chen R, Parker WM, Bonner MK, Jenkins LM, Kelly AE. The TFIIH complex is required to establish and maintain mitotic chromosome structure. eLife 2022; 11:e75475. [PMID: 35293859 PMCID: PMC8956287 DOI: 10.7554/elife.75475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Condensins compact chromosomes to promote their equal segregation during mitosis, but the mechanism of condensin engagement with and action on chromatin is incompletely understood. Here, we show that the general transcription factor TFIIH complex is continuously required to establish and maintain a compacted chromosome structure in transcriptionally silent Xenopus egg extracts. Inhibiting the DNA-dependent ATPase activity of the TFIIH complex subunit XPB rapidly and reversibly induces a complete loss of chromosome structure and prevents the enrichment of condensins I and II, but not topoisomerase II, on chromatin. In addition, inhibiting TFIIH prevents condensation of both mouse and Xenopus nuclei in Xenopus egg extracts, which suggests an evolutionarily conserved mechanism of TFIIH action. Reducing nucleosome density through partial histone depletion restores chromosome structure and condensin enrichment in the absence of TFIIH activity. We propose that the TFIIH complex promotes mitotic chromosome condensation by dynamically altering the chromatin environment to facilitate condensin loading and condensin-dependent loop extrusion.
Collapse
Affiliation(s)
- Julian Haase
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Richard Chen
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Wesley M Parker
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Mary Kate Bonner
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Lisa M Jenkins
- Laboratory of Cell Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Alexander E Kelly
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| |
Collapse
|
32
|
Özgüç Ö, de Plater L, Kapoor V, Tortorelli AF, Clark AG, Maître JL. Cortical softening elicits zygotic contractility during mouse preimplantation development. PLoS Biol 2022; 20:e3001593. [PMID: 35324889 PMCID: PMC8982894 DOI: 10.1371/journal.pbio.3001593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/05/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Actomyosin contractility is a major engine of preimplantation morphogenesis, which starts at the 8-cell stage during mouse embryonic development. Contractility becomes first visible with the appearance of periodic cortical waves of contraction (PeCoWaCo), which travel around blastomeres in an oscillatory fashion. How contractility of the mouse embryo becomes active remains unknown. We have taken advantage of PeCoWaCo to study the awakening of contractility during preimplantation development. We find that PeCoWaCo become detectable in most embryos only after the second cleavage and gradually increase their oscillation frequency with each successive cleavage. To test the influence of cell size reduction during cleavage divisions, we use cell fusion and fragmentation to manipulate cell size across a 20- to 60-μm range. We find that the stepwise reduction in cell size caused by cleavage divisions does not explain the presence of PeCoWaCo or their accelerating rhythm. Instead, we discover that blastomeres gradually decrease their surface tensions until the 8-cell stage and that artificially softening cells enhances PeCoWaCo prematurely. We further identify the programmed down-regulation of the formin Fmnl3 as a required event to soften the cortex and expose PeCoWaCo. Therefore, during cleavage stages, cortical softening, mediated by Fmnl3 down-regulation, awakens zygotic contractility before preimplantation morphogenesis. During preimplantation morphogenesis, the mouse embryo relies on forces generated by the actomyosin cytoskeleton. This study uncovers how periodic actomyosin contractions increase in frequency during cleavage stages as blastomeres soften with each cleavage division.
Collapse
Affiliation(s)
- Özge Özgüç
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Ludmilla de Plater
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Varun Kapoor
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Anna Francesca Tortorelli
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Andrew G. Clark
- Institute of Cell Biology and Immunology, Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
- Center for Personalized Medicine, University of Tübingen, Tübingen, Germany
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
- * E-mail:
| |
Collapse
|
33
|
Yolk platelets impede nuclear expansion in Xenopus embryos. Dev Biol 2021; 482:101-113. [PMID: 34906546 DOI: 10.1016/j.ydbio.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 08/14/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022]
Abstract
During metazoan early embryogenesis, the intracellular properties of proteins and organelles change dynamically through rapid cleavage. In particular, a change in the nucleus size is known to contribute to embryonic development-dependent cell cycle and gene expression regulation. Here, we compared the nuclear sizes of various blastomeres from developing Xenopus embryos and analyzed the mechanisms that control the nuclear expansion dynamics by manipulating the amount of intracellular components in a cell-free system. Nuclear expansion was slower in blastomeres from vegetal hemispheres during a longer interphase than in those from animal hemispheres. Furthermore, upon recapitulating interphase events by manipulating the concentration of yolk platelets, which are originally rich in the vegetal blastomeres, in cell-free cytoplasmic extracts, nuclear expansion and DNA replication became slower than that in normal yolk-free conditions. Under these conditions, the supplemented yolk platelets accumulated around the nucleus in a microtubule-dependent manner and impeded the organization of the endoplasmic reticulum network. Overall, we propose that yolk platelets around the nucleus reduce membrane supply from the endoplasmic reticulum to the nucleus, resulting in slower nuclear expansion and cell cycle progression in the yolk-rich vegetal blastomeres.
Collapse
|
34
|
Hao X, Wang Q, Hou J, Liu K, Feng B, Shao C. Temporal Transcriptome Analysis Reveals Dynamic Expression Profiles of Gametes and Embryonic Development in Japanese Flounder ( Paralichthys olivaceus). Genes (Basel) 2021; 12:genes12101561. [PMID: 34680958 PMCID: PMC8535655 DOI: 10.3390/genes12101561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
The maternal-to-zygotic transition (MZT) is a crucial event in embryo development. While the features of the MZT across species are shared, the stage of this transition is different among species. We characterized MZT in a flatfish species, Japanese flounder (Paralichthys olivaceus). In this study, we analyzed the 551.57 GB transcriptome data of two types of gametes (sperms and eggs) and 10 embryo developmental stages in Japanese flounder. We identified 2512 maternal factor-related genes and found that most of those maternal factor-related genes expression decreased at the low blastula (LB) stage and remained silent in the subsequent embryonic development period. Meanwhile, we verified that the zygotic genome transcription might occur at the 128-cell stage and large-scale transcription began at the LB stage, which indicates the LB stage is the major wave zygotic genome activation (ZGA) occurs. In addition, we indicated that the Wnt signaling pathway, playing a diverse role in embryonic development, was involved in the ZGA and the axis formation. The results reported the list of the maternal genes in Japanese flounder and defined the stage of MZT, contributing to the understanding of the details of MZT during Japanese flounder embryonic development.
Collapse
Affiliation(s)
- Xiancai Hao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266072, China; (X.H.); (Q.W.); (K.L.); (B.F.)
| | - Qian Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266072, China; (X.H.); (Q.W.); (K.L.); (B.F.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jilun Hou
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China;
| | - Kaiqiang Liu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266072, China; (X.H.); (Q.W.); (K.L.); (B.F.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Bo Feng
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266072, China; (X.H.); (Q.W.); (K.L.); (B.F.)
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266072, China; (X.H.); (Q.W.); (K.L.); (B.F.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Correspondence:
| |
Collapse
|
35
|
Palozola KC, Donahue G, Zaret KS. EU-RNA-seq for in vivo labeling and high throughput sequencing of nascent transcripts. STAR Protoc 2021; 2:100651. [PMID: 34485932 PMCID: PMC8403648 DOI: 10.1016/j.xpro.2021.100651] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The protocol allows for labeling nascent RNA without isolating nuclei. The cell-permeable uridine analog, 5-ethynyluridine (EU), is added to media to allow in vivo labeling of nascent transcripts. Cells are lysed, total RNA is collected, and biotin is conjugated to EU-labeled RNAs. Custom biotin RNAs are added and biotinylated RNAs are isolated for generation of cDNA libraries. The sequencing data are normalized to controls for quantitative assessment of the nascent transcriptome. The protocol takes 4 days, not including sequencing and analysis. For complete details on the use and execution of this protocol, please refer to Palozola et al. (2017). Labeling nascent RNAs with EU does not require nuclear isolation EU-RNA-Seq maps nascent transcripts across a large dynamic range Control biotin RNAs are customizable Custom biotin RNAs allow for global normalization following sequencing
Collapse
Affiliation(s)
- Katherine C Palozola
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Greg Donahue
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kenneth S Zaret
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
36
|
Cell division geometries as central organizers of early embryo development. Semin Cell Dev Biol 2021; 130:3-11. [PMID: 34419349 DOI: 10.1016/j.semcdb.2021.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/08/2021] [Indexed: 11/24/2022]
Abstract
Early cellular patterning is a critical step of embryonic development that determines the proper progression of morphogenesis in all metazoans. It relies on a series of rapid reductive divisions occurring simultaneously with the specification of the fate of different subsets of cells. Multiple species developmental strategies emerged in the form of a unique cleavage pattern with stereotyped division geometries. Cleavage geometries have long been associated to the emergence of canonical developmental features such as cell cycle asynchrony, zygotic genome activation and fate specification. Yet, the direct causal role of division positioning on blastomere cell behavior remain partially understood. Oriented and/or asymmetric divisions define blastomere cell sizes, contacts and positions, with potential immediate impact on cellular decisions, lineage specification and morphogenesis. Division positions also instruct daughter cells polarity, mechanics and geometries, thereby influencing subsequent division events, in an emergent interplay that may pattern early embryos independently of firm deterministic genetic programs. We here review the recent literature which helped to delineate mechanisms and functions of division positioning in early embryos.
Collapse
|
37
|
Jukam D, Kapoor RR, Straight AF, Skotheim JM. The DNA-to-cytoplasm ratio broadly activates zygotic gene expression in Xenopus. Curr Biol 2021; 31:4269-4281.e8. [PMID: 34388374 DOI: 10.1016/j.cub.2021.07.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/13/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
In multicellular animals, the first major event after fertilization is the switch from maternal to zygotic control of development. During this transition, zygotic gene transcription is broadly activated in an otherwise quiescent genome in a process known as zygotic genome activation (ZGA). In fast-developing embryos, ZGA often overlaps with the slowing of initially synchronous cell divisions at the mid-blastula transition (MBT). Initial studies of the MBT led to the nuclear-to-cytoplasmic ratio model where MBT timing is regulated by the exponentially increasing amounts of some nuclear component "N" titrated against a fixed cytoplasmic component "C." However, more recent experiments have been interpreted to suggest that ZGA is independent of the N/C ratio. To determine the role of the N/C ratio in ZGA, we generated Xenopus frog embryos with ∼3-fold differences in genomic DNA (i.e., N) by using X. tropicalis sperm to fertilize X. laevis eggs with or without their maternal genome. Resulting embryos have otherwise identical X. tropicalis genome template amounts, embryo sizes, and X. laevis maternal environments. We generated transcriptomic time series across the MBT in both conditions and used X. tropicalis paternally derived mRNA to identify a high-confidence set of exclusively zygotic transcripts. Both ZGA and the increase in cell-cycle duration are delayed in embryos with ∼3-fold less DNA per cell. Thus, DNA is an important component of the N/C ratio, which is a critical regulator of zygotic genome activation in Xenopus embryos.
Collapse
Affiliation(s)
- David Jukam
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rishabh R Kapoor
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Aaron F Straight
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
38
|
Abstract
Understanding the mechanisms of embryonic cell cycles is a central goal of developmental biology, as the regulation of the cell cycle must be closely coordinated with other events during early embryogenesis. Quantitative imaging approaches have recently begun to reveal how the cell cycle oscillator is controlled in space and time, and how it is integrated with mechanical signals to drive morphogenesis. Here, we discuss how the Drosophila embryo has served as an excellent model for addressing the molecular and physical mechanisms of embryonic cell cycles, with comparisons to other model systems to highlight conserved and species-specific mechanisms. We describe how the rapid cleavage divisions characteristic of most metazoan embryos require chemical waves and cytoplasmic flows to coordinate morphogenesis across the large expanse of the embryo. We also outline how, in the late cleavage divisions, the cell cycle is inter-regulated with the activation of gene expression to ensure a reliable maternal-to-zygotic transition. Finally, we discuss how precise transcriptional regulation of the timing of mitosis ensures that tissue morphogenesis and cell proliferation are tightly controlled during gastrulation.
Collapse
Affiliation(s)
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27705, USA
| |
Collapse
|
39
|
Liu B, Zhao H, Wu K, Großhans J. Temporal Gradients Controlling Embryonic Cell Cycle. BIOLOGY 2021; 10:biology10060513. [PMID: 34207742 PMCID: PMC8228447 DOI: 10.3390/biology10060513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Embryonic cells sense temporal gradients of regulatory signals to determine whether and when to proceed or remodel the cell cycle. Such a control mechanism is allowed to accurately link the cell cycle with the developmental program, including cell differentiation, morphogenesis, and gene expression. The mid-blastula transition has been a paradigm for timing in early embryogenesis in frog, fish, and fly, among others. It has been argued for decades now if the events associated with the mid-blastula transition, i.e., the onset of zygotic gene expression, remodeling of the cell cycle, and morphological changes, are determined by a control mechanism or by absolute time. Recent studies indicate that multiple independent signals and mechanisms contribute to the timing of these different processes. Here, we focus on the mechanisms for cell cycle remodeling, specifically in Drosophila, which relies on gradual changes of the signal over time. We discuss pathways for checkpoint activation, decay of Cdc25 protein levels, as well as depletion of deoxyribonucleotide metabolites and histone proteins. The gradual changes of these signals are linked to Cdk1 activity by readout mechanisms involving thresholds. Abstract Cell proliferation in early embryos by rapid cell cycles and its abrupt pause after a stereotypic number of divisions present an attractive system to study the timing mechanism in general and its coordination with developmental progression. In animals with large eggs, such as Xenopus, zebrafish, or Drosophila, 11–13 very fast and synchronous cycles are followed by a pause or slowdown of the cell cycle. The stage when the cell cycle is remodeled falls together with changes in cell behavior and activation of the zygotic genome and is often referred to as mid-blastula transition. The number of fast embryonic cell cycles represents a clear and binary readout of timing. Several factors controlling the cell cycle undergo dynamics and gradual changes in activity or concentration and thus may serve as temporal gradients. Recent studies have revealed that the gradual loss of Cdc25 protein, gradual depletion of free deoxyribonucleotide metabolites, or gradual depletion of free histone proteins impinge on Cdk1 activity in a threshold-like manner. In this review, we will highlight with a focus on Drosophila studies our current understanding and recent findings on the generation and readout of these temporal gradients, as well as their position within the regulatory network of the embryonic cell cycle.
Collapse
Affiliation(s)
- Boyang Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (B.L.); (H.Z.); (K.W.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Han Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (B.L.); (H.Z.); (K.W.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Keliang Wu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (B.L.); (H.Z.); (K.W.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Jörg Großhans
- Department of Biology, Philipps University, 35043 Marburg, Germany
- Correspondence:
| |
Collapse
|
40
|
Liu J. Giant cells: Linking McClintock's heredity to early embryogenesis and tumor origin throughout millennia of evolution on Earth. Semin Cancer Biol 2021; 81:176-192. [PMID: 34116161 DOI: 10.1016/j.semcancer.2021.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 02/08/2023]
Abstract
The "life code" theory postulates that egg cells, which are giant, are the first cells in reproduction and that damaged or aged giant somatic cells are the first cells in tumorigenesis. However, the hereditary basis for giant cells remains undefined. Here I propose that stress-induced genomic reorganization proposed by Nobel Laureate Barbara McClintock may represent the underlying heredity for giant cells, referred to as McClintock's heredity. Increase in cell size may serve as a response to environmental stress via switching proliferative mitosis to intranuclear replication for reproduction. Intranuclear replication activates McClintock's heredity to reset the genome following fertilization for reproduction or restructures the somatic genome for neoplastic transformation via formation of polyploid giant cancer cells (PGCCs). The genome-based McClintock heredity functions together with gene-based Mendel's heredity to regulate the genomic stability at two different stages of life cycle or tumorigenesis. Thus, giant cells link McClintock's heredity to both early embryogenesis and tumor origin. Cycling change in cell size together with ploidy number switch may represent the most fundamental mechanism on how both germ and soma for coping with environmental stresses for the survival across the tree of life which evolved over millions of years on Earth.
Collapse
Affiliation(s)
- Jinsong Liu
- Department of Anatomical Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, United States.
| |
Collapse
|
41
|
Modeling the role for nuclear import dynamics in the early embryonic cell cycle. Biophys J 2021; 120:4277-4286. [PMID: 34022240 DOI: 10.1016/j.bpj.2021.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/22/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022] Open
Abstract
Nuclear composition determines nuclear function. The early embryos of many species begin life with large pools of maternally provided components that become rapidly imported into an increasing number of nuclei as the cells undergo repeated cleavage divisions. Because early cell cycles are too fast for nuclei to achieve steady-state nucleocytoplasmic partitioning, the composition of cleavage stage nuclei is likely dominated by nuclear import. The end of the rapid cleavage stage and onset of major zygotic transcription, known as the mid-blastula transition (MBT), is controlled by the ratio of nuclei/cytoplasm, indicating that changes in nuclear composition likely mediate MBT timing. Here, we explore how different nuclear import regimes can affect protein accumulation in the nucleus in the early Drosophila embryo. We find that nuclear import differs dramatically for a general nuclear cargo (NLS (nuclear localization signal)-mRFP) and a proposed MBT regulator (histone H3). We show that nuclear import rates of NLS-mRFP in a given nucleus remain relatively unchanged throughout the cleavage cycles, whereas those of H3 halve with each cycle. We model these two distinct modes of nuclear import as "nucleus-limited" and "import-limited" and examine how the two different modes can contribute to different protein accumulation dynamics. Finally, we incorporate these distinct modes of nuclear import into a model for cell-cycle regulation at the MBT and find that the import-limited H3 dynamics contribute to increased robustness and allow for stepwise cell-cycle slowing at the MBT.
Collapse
|
42
|
Abstract
The fertilized frog egg contains all the materials needed to initiate development of a new organism, including stored RNAs and proteins deposited during oogenesis, thus the earliest stages of development do not require transcription. The onset of transcription from the zygotic genome marks the first genetic switch activating the gene regulatory network that programs embryonic development. Zygotic genome activation occurs after an initial phase of transcriptional quiescence that continues until the midblastula stage, a period called the midblastula transition, which was first identified in Xenopus. Activation of transcription is programmed by maternally supplied factors and is regulated at multiple levels. A similar switch exists in most animals and is of great interest both to developmental biologists and to those interested in understanding nuclear reprogramming. Here we review in detail our knowledge on this major switch in transcription in Xenopus and place recent discoveries in the context of a decades old problem.
Collapse
Affiliation(s)
- Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States.
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States.
| |
Collapse
|
43
|
Shindo Y, Amodeo AA. Excess histone H3 is a competitive Chk1 inhibitor that controls cell-cycle remodeling in the early Drosophila embryo. Curr Biol 2021; 31:2633-2642.e6. [PMID: 33848457 DOI: 10.1016/j.cub.2021.03.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/08/2021] [Accepted: 03/10/2021] [Indexed: 12/31/2022]
Abstract
The DNA damage checkpoint is crucial to protect genome integrity.1,2 However, the early embryos of many metazoans sacrifice this safeguard to allow for rapid cleavage divisions that are required for speedy development. At the mid-blastula transition (MBT), embryos switch from rapid cleavage divisions to slower, patterned divisions with the addition of gap phases and acquisition of DNA damage checkpoints. The timing of the MBT is dependent on the nuclear-to-cytoplasmic (N/C ratio)3-7 and the activation of the checkpoint kinase, Chk1.8-17 How Chk1 activity is coupled to the N/C ratio has remained poorly understood. Here, we show that dynamic changes in histone H3 availability in response to the increasing N/C ratio control Chk1 activity and thus time the MBT in the Drosophila embryo. We show that excess H3 in the early cycles interferes with cell-cycle slowing independent of chromatin incorporation. We find that the N-terminal tail of H3 acts as a competitive inhibitor of Chk1 in vitro and reduces Chk1 activity in vivo. Using a H3-tail mutant that has reduced Chk1 inhibitor activity, we show that the amount of available Chk1 sites in the H3 pool controls the dynamics of cell-cycle progression. Mathematical modeling quantitatively supports a mechanism where titration of H3 during early cleavage cycles regulates Chk1-dependent cell-cycle slowing. This study defines Chk1 regulation by H3 as a key mechanism that coordinates cell-cycle remodeling with developmental progression.
Collapse
Affiliation(s)
- Yuki Shindo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Amanda A Amodeo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
44
|
The nuclear to cytoplasmic ratio directly regulates zygotic transcription in Drosophila through multiple modalities. Proc Natl Acad Sci U S A 2021; 118:2010210118. [PMID: 33790005 DOI: 10.1073/pnas.2010210118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Early embryos must rapidly generate large numbers of cells to form an organism. Many species accomplish this through a series of rapid, reductive, and transcriptionally silent cleavage divisions. Previous work has demonstrated that the number of divisions before both cell cycle elongation and zygotic genome activation (ZGA) is regulated by the ratio of nuclear content to cytoplasm (N/C). To understand how the N/C ratio affects the timing of ZGA, we directly assayed the behavior of several previously identified N/C ratio-dependent genes using the MS2-MCP reporter system in living Drosophila embryos with altered ploidy and cell cycle durations. For every gene that we examined, we found that nascent RNA output per cycle is delayed in haploid embryos. Moreover, we found that the N/C ratio influences transcription through three overlapping modes of action. For some genes (knirps, fushi tarazu, and snail), the effect of ploidy can be primarily attributed to changes in cell cycle duration. However, additional N/C ratio-mediated mechanisms contribute significantly to transcription delays for other genes. For giant and bottleneck, the kinetics of transcription activation are significantly disrupted in haploids, while for frühstart and Krüppel, the N/C ratio controls the probability of transcription initiation. Our data demonstrate that the regulatory elements of N/C ratio-dependent genes respond directly to the N/C ratio through multiple modes of regulation.
Collapse
|
45
|
Chen H, Good MC. Nuclear sizER in Early Development. Dev Cell 2021; 54:297-298. [PMID: 32781022 DOI: 10.1016/j.devcel.2020.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this issue of Developmental Cell, Mukherjee et al. (2020) investigate control of nuclear growth by live imaging of early embryogenesis, perturbations of blastomere dimensions, and reconstitution in vitro. The authors uncover new mechanisms of nuclear size scaling by the amount of inherited perinuclear ER and duration of interphase.
Collapse
Affiliation(s)
- Hui Chen
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Blvd., 1151 BRB II/III, Philadelphia, PA 19104, USA
| | - Matthew C Good
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Blvd., 1151 BRB II/III, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, 421 Curie Blvd., 1151 BRB II/III, Philadelphia, PA 19104, USA.
| |
Collapse
|
46
|
Chen H, Qian W, Good MC. Integrating cellular dimensions with cell differentiation during early development. Curr Opin Cell Biol 2020; 67:109-117. [PMID: 33152556 DOI: 10.1016/j.ceb.2020.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/14/2020] [Accepted: 08/03/2020] [Indexed: 11/25/2022]
Abstract
Early embryo development is characterized by alteration of cellular dimensions and fating of blastomeres. An emerging concept is that cell size and shape drive cellular differentiation during early embryogenesis in a variety of model organisms. In this review, we summarize recent advances that elucidate the contribution of the physical dimensions of a cell to major embryonic transitions and cell fate specification in vivo. We also highlight techniques and newly evolving methods for manipulating the sizes and shapes of cells and whole embryos in situ and ex vivo. Finally, we provide an outlook for addressing fundamental questions in the field and more broadly uncovering how changes to cell size control decision making in a variety of biological contexts.
Collapse
Affiliation(s)
- Hui Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenchao Qian
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew C Good
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
47
|
Mukherjee RN, Sallé J, Dmitrieff S, Nelson KM, Oakey J, Minc N, Levy DL. The Perinuclear ER Scales Nuclear Size Independently of Cell Size in Early Embryos. Dev Cell 2020; 54:395-409.e7. [PMID: 32473090 PMCID: PMC7423768 DOI: 10.1016/j.devcel.2020.05.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/26/2020] [Accepted: 05/05/2020] [Indexed: 01/15/2023]
Abstract
Nuclear size plays pivotal roles in gene expression, embryo development, and disease. A central hypothesis in organisms ranging from yeast to vertebrates is that nuclear size scales to cell size. This implies that nuclei may reach steady-state sizes set by limiting cytoplasmic pools of size-regulating components. By monitoring nuclear dynamics in early sea urchin embryos, we found that nuclei undergo substantial growth in each interphase, reaching a maximal size prior to mitosis that declined steadily over the course of development. Manipulations of cytoplasmic volume through multiple chemical and physical means ruled out cell size as a major determinant of nuclear size and growth. Rather, our data suggest that the perinuclear endoplasmic reticulum, accumulated through dynein activity, serves as a limiting membrane pool that sets nuclear surface growth rate. Partitioning of this local pool at each cell division modulates nuclear growth kinetics and dictates size scaling throughout early development.
Collapse
Affiliation(s)
| | - Jérémy Sallé
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, F-75006, Paris, France
| | - Serge Dmitrieff
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, F-75006, Paris, France
| | - Katherine M Nelson
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Nicolas Minc
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, F-75006, Paris, France.
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
48
|
Chen H, Good MC. Imaging nascent transcription in wholemount vertebrate embryos to characterize zygotic genome activation. Methods Enzymol 2020; 638:139-165. [PMID: 32416911 DOI: 10.1016/bs.mie.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A major event in early embryo development is the awakening of the embryonic genome, a process of large-scale transcriptional induction termed zygotic genome activation (ZGA). To understand how ZGA is controlled temporally and spatially, tools are required to image and quantify nascent transcription in wholemount embryos. In this chapter, we describe a metabolic labeling approach that leverages 5-ethynyl uridine (5-EU) incorporation into newly transcribed RNAs. Subsequently, click chemistry is used to conjugate these nascent transcripts to fluorophores for wholemount confocal imaging or biotin for RNA sequencing. Such an approach facilitates direct visualization of the global transcriptional state of each cell during early embryogenesis and provides a spatial map of gene expression activity. We describe this procedure for imaging nascent transcription in a vertebrate embryo Xenopus laevis, and use it as our model the onset of large-scale ZGA. Unlike cell culture systems in which 5-EU can be added to the media, metabolic labeling in Xenopus embryos requires microinjection in one-cell or two-cell stage embryos. This method is a powerful tool to quantify the nascent transcriptome at a single-cell level and to dissect mechanisms that control ZGA. We propose that this methodology can be applied broadly in other embryonic systems, and demonstrate the feasibility using zebrafish cleavage stage embryos. Finally, we demonstrate how to sequence the nascent transcriptome via 5-EU incorporation and separation of zygotic vs maternal RNAs. Altogether, our generalizable methodology will facilitate new insights into gene regulation and spatial patterning of ZGA during early embryogenesis.
Collapse
Affiliation(s)
- Hui Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Matthew C Good
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
49
|
Liu J. The "life code": A theory that unifies the human life cycle and the origin of human tumors. Semin Cancer Biol 2020; 60:380-397. [PMID: 31521747 DOI: 10.1016/j.semcancer.2019.09.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Tumors arise from the transformation of normal stem cells or mature somatic cells. Intriguingly, two types of tumors have been observed by pathologists for centuries: well-differentiated tumors and undifferentiated tumors. Well-differentiated tumors are architecturally similar to the tissues from which they originate, whereas undifferentiated tumors exhibit high nuclear atypia and do not resemble their tissue of origin. The relationship between these two tumor types and the human life cycle has not been clear. Here I propose a unifying theory that explains the processes of transformation of both tumor types with our life cycle. Human life starts with fertilization of an egg by a sperm to form a zygote. The zygote undergoes successive rounds of cleavage division to form blastomeres within the zona pellucida, with progressive decreases in cell size, and the cleaved blastomeres then compact to form a 32-cell or a "64n" morula [n = 1 full set of chromosomes]. Thus early embryogenesis can be interpreted as a progressive increase in ploidy, and if the zona pellucida is considered a cell membrane and cleavage is interpreted as endomitosis, then the 32-cell morula can be considered a multinucleated giant cell (or 64n syncytium). The decrease in cell size is accompanied by an increase in the nuclear-to-cytoplasmic (N/C) ratio, which then selectively activates a combined set of embryonic transcription factors that dedifferentiate the parental genome to a zygotic genome. This process is associated with a morphologic transition from a morula to a blastocyst and formation of an inner cell mass that gives rise to a new embryonic life. If the subsequent differentiation proceeds to complete maturation, then a normal life results. However, if differentiation is blocked at any point along the continuum of primordial germ cell to embryonic maturation to fetal organ maturation, a well-differentiated tumor will develop. Depending on the level of developmental hierarchy at which the stem cell differentiation is blocked, the resulting tumor can range from highly malignant to benign. Undifferentiated tumors are derived from mature somatic cells through dedifferentiation via a recently described reprogramming mechanism named the giant cell life cycle or the giant cell cycle. This mechanism can initiate "somatic embryogenesis" via an increase in ploidy ranging from 4n to 64n or more, similar to that in normal embryogenesis. This dedifferentiation mechanism is initiated through an endocycle and is followed by endomitosis, which leads to the formation of mononucleated or multinucleated polyploid giant cancer cells (PGCCs), that is, cancer stem-like cells that mimic the blastomere-stage embryo. The giant cell life cycle leads to progressive increases in the N/C ratio and awakens the suppressed embryonic reprogram, resulting in mature somatic transformation into undifferentiated tumors. Thus, the increase in ploidy explains not only normal embryogenesis for well-differentiated tumors but also "somatic embryogenesis" for undifferentiated tumors. I refer to this ploidy increase as the 'life code". The concept of the "life code" may provide a simple theoretical framework to guide our immense efforts to understand cancer and fight this disease.
Collapse
Affiliation(s)
- Jinsong Liu
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, United States.
| |
Collapse
|
50
|
Wesley CC, Mishra S, Levy DL. Organelle size scaling over embryonic development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e376. [PMID: 32003549 DOI: 10.1002/wdev.376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Cell division without growth results in progressive cell size reductions during early embryonic development. How do the sizes of intracellular structures and organelles scale with cell size and what are the functional implications of such scaling relationships? Model organisms, in particular Caenorhabditis elegans worms, Drosophila melanogaster flies, Xenopus laevis frogs, and Mus musculus mice, have provided insights into developmental size scaling of the nucleus, mitotic spindle, and chromosomes. Nuclear size is regulated by nucleocytoplasmic transport, nuclear envelope proteins, and the cytoskeleton. Regulators of microtubule dynamics and chromatin compaction modulate spindle and mitotic chromosome size scaling, respectively. Developmental scaling relationships for membrane-bound organelles, like the endoplasmic reticulum, Golgi, mitochondria, and lysosomes, have been less studied, although new imaging approaches promise to rectify this deficiency. While models that invoke limiting components and dynamic regulation of assembly and disassembly can account for some size scaling relationships in early embryos, it will be exciting to investigate the contribution of newer concepts in cell biology such as phase separation and interorganellar contacts. With a growing understanding of the underlying mechanisms of organelle size scaling, future studies promise to uncover the significance of proper scaling for cell function and embryonic development, as well as how aberrant scaling contributes to disease. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Early Embryonic Development > Fertilization to Gastrulation Comparative Development and Evolution > Model Systems.
Collapse
Affiliation(s)
- Chase C Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|