1
|
Xiao L, Jin H, Dang Y, Zhao P, Li S, Shi Y, Wang S, Zhang K. DUX-mediated configuration of p300/CBP drives minor zygotic genome activation independent of its catalytic activity. Cell Rep 2025; 44:115544. [PMID: 40202846 DOI: 10.1016/j.celrep.2025.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/18/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025] Open
Abstract
Maternal-deposited factors initiate zygotic genome activation (ZGA), driving the maternal-to-zygotic transition; however, the coordination between maternal coactivators and transcription factors (TFs) in this process remains unclear. In this study, by profiling the dynamic landscape of p300 during mouse ZGA, we reveal its role in promoting RNA polymerase II (Pol II) pre-configuration at ZGA gene regions and sequentially establishing enhancer activity and regulatory networks. Moreover, p300/CBP-catalyzed acetylation drives Pol II elongation and minor ZGA gene expression by inducing pivotal TFs such as Dux. Remarkably, the supplementation of exogenous Dux rescues ZGA failure and developmental defects caused by the loss of p300/CBP acetylation. DUX functions as a pioneer factor, guiding p300 and Pol II to minor ZGA gene regions and activating them in a manner dependent on the non-catalytic functions of p300/CBP. Together, our findings reveal a mutual dependency between p300/CBP and DUX, highlighting their coordinated role in regulating minor ZGA activation.
Collapse
Affiliation(s)
- Lieying Xiao
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hao Jin
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yanna Dang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Panpan Zhao
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuang Li
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yan Shi
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shaohua Wang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kun Zhang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
2
|
Kojima ML, Hoppe C, Giraldez AJ. The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nat Rev Genet 2025; 26:245-267. [PMID: 39587307 PMCID: PMC11928286 DOI: 10.1038/s41576-024-00792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/27/2024]
Abstract
A fertilized egg is initially transcriptionally silent and relies on maternally provided factors to initiate development. For embryonic development to proceed, the oocyte-inherited cytoplasm and the nuclear chromatin need to be reprogrammed to create a permissive environment for zygotic genome activation (ZGA). During this maternal-to-zygotic transition (MZT), which is conserved in metazoans, transient totipotency is induced and zygotic transcription is initiated to form the blueprint for future development. Recent technological advances have enhanced our understanding of MZT regulation, revealing common themes across species and leading to new fundamental insights about transcription, mRNA decay and translation.
Collapse
Affiliation(s)
- Mina L Kojima
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hoppe
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Cardamone F, Piva A, Löser E, Eichenberger B, Romero-Mulero MC, Zenk F, Shields EJ, Cabezas-Wallscheid N, Bonasio R, Tiana G, Zhan Y, Iovino N. Chromatin landscape at cis-regulatory elements orchestrates cell fate decisions in early embryogenesis. Nat Commun 2025; 16:3007. [PMID: 40148291 PMCID: PMC11950382 DOI: 10.1038/s41467-025-57719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
The establishment of germ layers during early development is crucial for body formation. The Drosophila zygote serves as a model for investigating these transitions in relation to the chromatin landscape. However, the cellular heterogeneity of the blastoderm embryo poses a challenge for gaining mechanistic insights. Using 10× Multiome, we simultaneously analyzed the in vivo epigenomic and transcriptomic states of wild-type, E(z)-, and CBP-depleted embryos during zygotic genome activation at single-cell resolution. We found that pre-zygotic H3K27me3 safeguards tissue-specific gene expression by modulating cis-regulatory elements. Furthermore, we demonstrate that CBP is essential for cell fate specification functioning as a transcriptional activator by stabilizing transcriptional factors binding at key developmental genes. Surprisingly, while CBP depletion leads to transcriptional arrest, chromatin accessibility continues to progress independently through the retention of stalled RNA Polymerase II. Our study reveals fundamental principles of chromatin-mediated gene regulation essential for establishing and maintaining cellular identities during early embryogenesis.
Collapse
Affiliation(s)
- Francesco Cardamone
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School of Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
| | - Annamaria Piva
- Department of Experimental Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Eva Löser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Bastian Eichenberger
- Department of Experimental Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Mari Carmen Romero-Mulero
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Fides Zenk
- Epigenomics of Neurodevelopment, Brain Mind Institute, School of Life Sciences, EPFL - Ecole Polytechnique Federal Lusanne, Ecublens, Switzerland
| | - Emily J Shields
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Nina Cabezas-Wallscheid
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Laboratory of Stem Cell Biology and Ageing, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
- Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg, Germany
| | - Roberto Bonasio
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Guido Tiana
- Università degli Studi di Milano and INFN, Milan, Italy
| | - Yinxiu Zhan
- Department of Experimental Oncology, European Institute of Oncology, IRCCS, Milan, Italy.
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
4
|
Savy V, Stein P, Delker D, Estermann MA, Papas BN, Xu Z, Radonova L, Williams CJ. Calcium signals shape metabolic control of H3K27ac and H3K18la to regulate EGA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643362. [PMID: 40161793 PMCID: PMC11952514 DOI: 10.1101/2025.03.14.643362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The use of assisted reproductive technologies (ART) has enabled the birth of over 9 million babies; but it is associated with increased risks of negative metabolic outcomes in offspring. Yet, the underlying mechanism remains unknown. Calcium (Ca2+) signals, which initiate embryo development at fertilization, are frequently disrupted in human ART. In mice, abnormal Ca2+ signals at fertilization impair embryo development and adult offspring metabolism. Changes in intracellular Ca2+ drive mitochondrial activity and production of metabolites used by the epigenetic machinery. For example, acetyl-CoA (derived mainly from pyruvate) and lactyl-CoA (derived from lactate) are used for writing H3K27ac and H3K18la marks that orchestrate initiation of development. Using both a genetic mouse model and treatment with ionomycin to raise intracellular Ca2+ of wild-type fertilized eggs, we found that excess Ca2+ at fertilization changes metabolic substrate availability, causing epigenetic changes that impact embryo development and offspring health. Specifically, increased Ca2+ exposure at fertilization led to increased H3K27ac levels and decreased H3K18la levels at the 1-cell (1C) stage, that persisted until the 2-cell (2C) stage. Ultralow input CUT&Tag revealed significant differences in H3K27ac and H3K18la genomic profiles between control and ionomycin groups. In addition, increased Ca2+ exposure resulted in a marked reduction in global transcription at the 1C stage that persisted through the 2C stage due to diminished activity of RNA polymerase I. Excess Ca2+ following fertilization increased pyruvate dehydrogenase activity (enzyme that converts pyruvate to acetyl-CoA) and decreased total lactate levels. Provision of exogenous lactyl-CoA before ionomycin treatment restored H3K18la levels at the 1C and 2C stages and rescued global transcription to control levels. Our findings demonstrate conclusively that Ca2+ dynamics drive metabolic regulation of epigenetic reprogramming at fertilization and alter EGA.
Collapse
Affiliation(s)
- Virginia Savy
- Reproductive Medicine Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Paula Stein
- Reproductive Medicine Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Don Delker
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Martín A. Estermann
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Brian N. Papas
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Zongli Xu
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lenka Radonova
- Reproductive Medicine Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Carmen J. Williams
- Reproductive Medicine Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
5
|
González B, González CR. Sperm-borne mRNAs: potential roles in zygote genome activation and epigenetic inheritance. Open Biol 2025; 15:240321. [PMID: 40132645 PMCID: PMC11936680 DOI: 10.1098/rsob.240321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/18/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
It is well accepted that sperm carry an RNA cargo with functions in early embryo development. However, most research has focused on the role of small RNAs, such as microRNAs, transfer RNAs and long non-coding RNAs, while protein-coding messenger RNAs (mRNAs) received less attention, even though they represent a substantial amount of the sperm RNA pool. Here, we curated mouse transcriptomic data from mature sperm and selected the most abundant mRNAs (above the 0.7 quantile). The obtained gene list was further filtered using two criteria: (i) mRNAs that are statistically higher in the one-cell embryo compared to the MII oocyte transcriptome, indicative of paternal mRNA contribution after fertilization; and (ii) mRNAs that are found bound to ribosomes in the one-cell embryo, indicative of positive translation in the zygote translatome. Our analysis identified 94 genes that form networks functionally involved in epigenetic chromatin organization, gene expression, RNA processing and translation during zygote genome activation. These findings underscore the significant role of sperm-borne mRNAs in early embryonic development and epigenetic inheritance, highlighting the need for further research to fully understand their functions.
Collapse
Affiliation(s)
- Betina González
- Instituto de Investigaciones Farmacológicas, Buenos Aires, Argentina
| | | |
Collapse
|
6
|
Wu X, Zhang X, Tang S, Wang Y. The important role of the histone acetyltransferases p300/CBP in cancer and the promising anticancer effects of p300/CBP inhibitors. Cell Biol Toxicol 2025; 41:32. [PMID: 39825161 PMCID: PMC11742294 DOI: 10.1007/s10565-024-09984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/21/2024] [Indexed: 01/20/2025]
Abstract
Histone acetyltransferases p300 (E1A-associated protein p300) and CBP (CREB binding protein), collectively known as p300/CBP due to shared sequence and functional synergy, catalyze histone H3K27 acetylation and consequently induce gene transcription. p300/CBP over-expression or over-activity activates the transcription of oncogenes, leading to cancer cell growth, resistance to apoptosis, tumor initiation and development. The discovery of small molecule inhibitors targeting p300/CBP histone acetyltransferase activity, bromodomains, dual inhibitors of p300/CBP and BRD4 bromodomains, as well as proteolysis-targeted-chimaera p300/CBP protein degraders, marks significant progress in cancer therapeutics. These inhibitors and degraders induce histone H3K27 deacetylation, reduce oncogene expression and cancer cell proliferation, promote cancer cell death, and decrease tumor progression in mice. Furthermore, p300/CBP inhibitors and protein degraders have been demonstrated to exert synergy when in combination with conventional radiotherapy, chemotherapy and BRD4 inhibitors in vitro as well as in mice. Importantly, two p300/CBP bromodomain inhibitors, CCS1477 and FT-7051, as well as the dual p300/CBP and BRD4 bromodomain inhibitor NEO2734 have entered Phase I and IIa clinical trials in patients with advanced and refractory hematological malignancies or solid tumors. Taken together, the identification of p300/CBP as critical drivers of tumorigenesis and the development of p300/CBP inhibitors and proteolysis-targeted-chimaera protein degraders represent promising avenues for clinical translation of novel cancer therapeutics.
Collapse
Affiliation(s)
- Xin Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, Liaoning, China
| | - Xin Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, Liaoning, China
| | - Shaoshan Tang
- Department of Ultrasound, Shengjing Hospital of China Medical University, 110004, Shenyang, Liaoning, China.
| | - Yao Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, 110004, Shenyang, Liaoning, China.
| |
Collapse
|
7
|
Chen H. Quantifying Nascent Transcription in Early Embryogenesis. Methods Mol Biol 2025; 2923:143-162. [PMID: 40418448 DOI: 10.1007/978-1-0716-4522-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
The early embryonic genome exists in a dormant state following fertilization, and it then subsequently undergoes broad activation of zygotic transcription at the early stages of development. A major challenge is the detection of newly made zygotic transcripts and the determination of their activation onset time due to the presence of large and predominantly maternal pool of RNAs. Here we describe a detailed method to measure the zygotic transcription during zygotic genome activation (ZGA) of Xenopus early embryos using metabolic labeling of nascent transcripts with 5-ethynyl uridine (5-EU) followed by purifying and sequencing the nascent EU-RNAs (EU-RNA-seq). This method is highly sensitive in detecting early zygotic transcripts that are not detected by total RNA-seq and determines the actual onset time of transcriptional activation for zygotic genes. The method is applicable to a wide variety of embryonic model systems and has already afforded novel insights into gene regulation in early embryogenesis.
Collapse
Affiliation(s)
- Hui Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
8
|
Serradimigni R, Rojas A, Pal U, Pathirajage KS, Bryan M, Sharma S, Dasgupta S. Flame retardant tetrabromobisphenol A (TBBPA) disrupts histone acetylation during zebrafish maternal-to-zygotic transition. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135845. [PMID: 39305598 PMCID: PMC11822891 DOI: 10.1016/j.jhazmat.2024.135845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/28/2024] [Accepted: 09/14/2024] [Indexed: 09/25/2024]
Abstract
3,3',5.5'-Tetrabromobisphenol A (TBBPA) is a widely used brominated flame-retardant. The objective of this study is to use zebrafish as a model and determine the effects of TBBPA exposure on early embryogenesis. We initiated TBBPA exposures at 0.75 h post fertilization (hpf) and showed that TBBPA induced developmental delays during maternal-to-zygotic transition (MZT) and zygotic genome activation (ZGA). To examine the genetic basis of TBBPA-induced delays, we conducted mRNA-sequencing on embryos exposed to 0 or 40 μM TBBPA from 0.75 hpf to 2, 3.5 or 4.5 hpf. Read count data showed that while TBBPA exposures had no overall impacts on maternal or maternal-zygotic genes, collective read counts for zygotically activated genes were lower in TBBPA treatment at 4.5 hpf compared to time-matched controls, suggesting that TBBPA delays ZGA. Gene ontology assessments for both time- and stage-matched differentially expressed genes revealed TBBPA-induced inhibition of chromatin assembly- a process regulated by histone modifications. Immunostaining and in vitro experiments showed inhibition of histone H3 lysine 27 acetylation (H3K27Ac) as well as its catalyzing enzyme, p300. Finally, co-exposure with a p300 activator showed partial mitigation of effects, demonstrating that inhibition of histone acetylation drives TBBPA-induced developmental delays.
Collapse
Affiliation(s)
| | - Alfredo Rojas
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Uttam Pal
- Technical Research Centre, S.N. Bose National Centre for Basic Sciences, Kolkata, WB, India
| | | | - Madeline Bryan
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Sunil Sharma
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Subham Dasgupta
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
9
|
Zhao Y, Qin C, Lin C, Li Z, Zhao B, Li T, Zhang X, Wang W. Pancreatic ductal adenocarcinoma cells reshape the immune microenvironment: Molecular mechanisms and therapeutic targets. Biochim Biophys Acta Rev Cancer 2024; 1879:189183. [PMID: 39303859 DOI: 10.1016/j.bbcan.2024.189183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a digestive system malignancy characterized by challenging early detection, limited treatment alternatives, and generally poor prognosis. Although there have been significant advancements in immunotherapy for hematological malignancies and various solid tumors in recent decades, with impressive outcomes in recent preclinical and clinical trials, the effectiveness of these therapies in treating PDAC continues to be modest. The unique immunological microenvironment of PDAC, especially the abnormal distribution, complex composition, and variable activation states of tumor-infiltrating immune cells, greatly restricts the effectiveness of immunotherapy. Undoubtedly, integrating data from both preclinical models and human studies helps accelerate the identification of reliable molecules and pathways responsive to targeted biological therapies and immunotherapies, thereby continuously optimizing therapeutic combinations. In this review, we delve deeply into how PDAC cells regulate the immune microenvironment through complex signaling networks, affecting the quantity and functional status of immune cells to promote immune escape and tumor progression. Furthermore, we explore the multi-modal immunotherapeutic strategies currently under development, emphasizing the transformation of the immunosuppressive environment into an anti-tumor milieu by targeting specific molecular and cellular pathways, providing insights for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Chen Lin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Xiangyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| |
Collapse
|
10
|
Reimão-Pinto MM, Behrens A, Forcelloni S, Fröhlich K, Kaya S, Nedialkova DD. The dynamics and functional impact of tRNA repertoires during early embryogenesis in zebrafish. EMBO J 2024; 43:5747-5779. [PMID: 39402326 PMCID: PMC11574265 DOI: 10.1038/s44318-024-00265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/20/2024] Open
Abstract
Embryogenesis entails dramatic shifts in mRNA translation and turnover that reprogram gene expression during cellular proliferation and differentiation. Codon identity modulates mRNA stability during early vertebrate embryogenesis, but how the composition of tRNA pools is matched to translational demand is unknown. By quantitative profiling of tRNA repertoires in zebrafish embryos during the maternal-to-zygotic transition, we show that zygotic tRNA repertoires are established after the onset of gastrulation, succeeding the major wave of zygotic mRNA transcription. Maternal and zygotic tRNA pools are distinct, but their reprogramming does not result in a better match to the codon content of the zygotic transcriptome. Instead, we find that an increase in global translation at gastrulation sensitizes decoding rates to tRNA supply, thus destabilizing maternal mRNAs enriched in slowly translated codons. Translational activation and zygotic tRNA expression temporally coincide with an increase of TORC1 activity at gastrulation, which phosphorylates and inactivates the RNA polymerase III repressor Maf1a/b. Our data indicate that a switch in global translation, rather than tRNA reprogramming, determines the onset of codon-dependent maternal mRNA decay during zebrafish embryogenesis.
Collapse
Affiliation(s)
| | - Andrew Behrens
- Mechanisms of Protein Biogenesis Laboratory, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Sergio Forcelloni
- Mechanisms of Protein Biogenesis Laboratory, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | | | - Selay Kaya
- Mechanisms of Protein Biogenesis Laboratory, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Danny D Nedialkova
- Mechanisms of Protein Biogenesis Laboratory, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany.
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, 85748, Garching, Germany.
| |
Collapse
|
11
|
da Silva Pescador G, Baia Amaral D, Varberg JM, Zhang Y, Hao Y, Florens L, Bazzini AA. Protein profiling of zebrafish embryos unmasks regulatory layers during early embryogenesis. Cell Rep 2024; 43:114769. [PMID: 39302832 PMCID: PMC11544563 DOI: 10.1016/j.celrep.2024.114769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/22/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
The maternal-to-zygotic transition is crucial in embryonic development, marked by the degradation of maternally provided mRNAs and initiation of zygotic gene expression. However, the changes occurring at the protein level during this transition remain unclear. Here, we conducted protein profiling throughout zebrafish embryogenesis using quantitative mass spectrometry, integrating transcriptomics and translatomics datasets. Our data show that, unlike RNA changes, protein changes are less dynamic. Further, increases in protein levels correlate with mRNA translation, whereas declines in protein levels do not, suggesting active protein degradation processes. Interestingly, proteins from pure zygotic genes are present at fertilization, challenging existing mRNA-based gene classifications. As a proof of concept, we utilized CRISPR-Cas13d to target znf281b mRNA, a gene whose protein significantly accumulates within the first 2 h post-fertilization, demonstrating its crucial role in development. Consequently, our protein profiling, coupled with CRISPR-Cas13d, offers a complementary approach to unraveling maternal factor function during embryonic development.
Collapse
Affiliation(s)
| | | | - Joseph M Varberg
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Yan Hao
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| |
Collapse
|
12
|
Wang Y, Wang X, Wang W, Cao Z, Zhang Y, Liu G. Screening of functional maternal-specific chromatin regulators in early embryonic development of zebrafish. Commun Biol 2024; 7:1354. [PMID: 39427068 PMCID: PMC11490497 DOI: 10.1038/s42003-024-06983-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/28/2024] [Indexed: 10/21/2024] Open
Abstract
The early stages of embryonic development rely on maternal products for proper regulation. However, screening for functional maternal-specific factors is challenging due to the time- and labor-intensive nature of traditional approaches. Here, we combine a computational pipeline and F0 null mutant technology to screen for functional maternal-specific chromatin regulators in zebrafish embryogenesis and identify Mcm3l, Mcm6l, and Npm2a as playing essential roles in DNA replication and cell division. Our results contribute to understanding the molecular mechanisms underlying early embryo development and highlight the importance of maternal-specific chromatin regulators in this critical stage.
Collapse
Affiliation(s)
- Yiman Wang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiangxiu Wang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center at Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wen Wang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zheng Cao
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yong Zhang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Guifen Liu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
13
|
Zou Z, Wang Q, Wu X, Schultz RM, Xie W. Kick-starting the zygotic genome: licensors, specifiers, and beyond. EMBO Rep 2024; 25:4113-4130. [PMID: 39160344 PMCID: PMC11467316 DOI: 10.1038/s44319-024-00223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Zygotic genome activation (ZGA), the first transcription event following fertilization, kickstarts the embryonic program that takes over the control of early development from the maternal products. How ZGA occurs, especially in mammals, is poorly understood due to the limited amount of research materials. With the rapid development of single-cell and low-input technologies, remarkable progress made in the past decade has unveiled dramatic transitions of the epigenomes, transcriptomes, proteomes, and metabolomes associated with ZGA. Moreover, functional investigations are yielding insights into the key regulators of ZGA, among which two major classes of players are emerging: licensors and specifiers. Licensors would control the permission of transcription and its timing during ZGA. Accumulating evidence suggests that such licensors of ZGA include regulators of the transcription apparatus and nuclear gatekeepers. Specifiers would instruct the activation of specific genes during ZGA. These specifiers include key transcription factors present at this stage, often facilitated by epigenetic regulators. Based on data primarily from mammals but also results from other species, we discuss in this review how recent research sheds light on the molecular regulation of ZGA and its executors, including the licensors and specifiers.
Collapse
Affiliation(s)
- Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qiuyan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
14
|
Sharma A, Dsilva GJ, Deshpande G, Galande S. Exploring the versatility of zygotic genome regulators: A comparative and functional analysis. Cell Rep 2024; 43:114680. [PMID: 39182225 DOI: 10.1016/j.celrep.2024.114680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/30/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
The activation of the zygotic genome constitutes an essential process during early embryogenesis that determines the overall progression of embryonic development. Zygotic genome activation (ZGA) is tightly regulated, involving a delicate interplay of activators and repressors, to precisely control the timing and spatial pattern of gene expression. While regulators of ZGA vary across species, they accomplish comparable outcomes. Recent studies have shed light on the unanticipated roles of ZGA components both during and after ZGA. Moreover, different ZGA regulators seem to have acquired unique functional modalities to manifest their regulatory potential. In this review, we explore these observations to assess whether these are simply anecdotal or contribute to a broader regulatory framework that employs a versatile means to arrive at the conserved outcome.
Collapse
Affiliation(s)
- Ankita Sharma
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR 201314, India
| | - Greg Jude Dsilva
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR 201314, India
| | - Girish Deshpande
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA.
| | - Sanjeev Galande
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR 201314, India.
| |
Collapse
|
15
|
Hurton MD, Miller JM, Lee MT. H3K4me2 distinguishes a distinct class of enhancers during the maternal-to-zygotic transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609713. [PMID: 39253505 PMCID: PMC11383010 DOI: 10.1101/2024.08.26.609713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
After egg fertilization, an initially silent embryonic genome is transcriptionally activated during the maternal-to-zygotic transition. In zebrafish, maternal vertebrate pluripotency factors Nanog, Pou5f3 (OCT4 homolog), and Sox19b (SOX2 homolog) (NPS) play essential roles in orchestrating embryonic genome activation, acting as "pioneers" that open condensed chromatin and mediate acquisition of activating histone modifications. However, some embryonic gene transcription still occurs in the absence of these factors, suggesting the existence of other mechanisms regulating genome activation. To identify chromatin signatures of these unknown pathways, we profiled the histone modification landscape of zebrafish embryos using CUT&RUN. Our regulatory map revealed two subclasses of enhancers distinguished by presence or absence of H3K4me2. Enhancers lacking H3K4me2 tend to require NPS factors for de novo activation, while enhancers bearing H3K4me2 are epigenetically bookmarked by DNA hypomethylation to recapitulate gamete activity in the embryo, independent of NPS pioneering. Thus, parallel enhancer activation pathways combine to induce transcriptional reprogramming to pluripotency in the early embryo.
Collapse
Affiliation(s)
- Matthew D Hurton
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15213 U.S.A
| | - Jennifer M Miller
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15213 U.S.A
| | - Miler T Lee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15213 U.S.A
| |
Collapse
|
16
|
Fukushima HS, Ikeda T, Ikeda S, Takeda H. Cell cycle length governs heterochromatin reprogramming during early development in non-mammalian vertebrates. EMBO Rep 2024; 25:3300-3323. [PMID: 38943003 PMCID: PMC11315934 DOI: 10.1038/s44319-024-00188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024] Open
Abstract
Heterochromatin marks such as H3K9me3 undergo global erasure and re-establishment after fertilization, and the proper reprogramming of H3K9me3 is essential for early development. Despite the widely conserved dynamics of heterochromatin reprogramming in invertebrates and non-mammalian vertebrates, previous studies have shown that the underlying mechanisms may differ between species. Here, we investigate the molecular mechanism of H3K9me3 dynamics in medaka (Japanese killifish, Oryzias latipes) as a non-mammalian vertebrate model, and show that rapid cell cycle during cleavage stages causes DNA replication-dependent passive erasure of H3K9me3. We also find that cell cycle slowing, toward the mid-blastula transition, permits increasing nuclear accumulation of H3K9me3 histone methyltransferase Setdb1, leading to the onset of H3K9me3 re-accumulation. We further demonstrate that cell cycle length in early development also governs H3K9me3 reprogramming in zebrafish and Xenopus laevis. Together with the previous studies in invertebrates, we propose that a cell cycle length-dependent mechanism for both global erasure and re-accumulation of H3K9me3 is conserved among rapid-cleavage species of non-mammalian vertebrates and invertebrates such as Drosophila, C. elegans, Xenopus and teleost fish.
Collapse
Affiliation(s)
- Hiroto S Fukushima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
- Center for Integrative Medical Sciences, RIKEN, Yokohama, 230-0045, Japan.
| | - Takafumi Ikeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, 603-8555, Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Shinra Ikeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan.
| |
Collapse
|
17
|
Gao D, Li C, Liu SY, Xu TT, Lin XT, Tan YP, Gao FM, Yi LT, Zhang JV, Ma JY, Meng TG, Yeung WSB, Liu K, Ou XH, Su RB, Sun QY. P300 regulates histone crotonylation and preimplantation embryo development. Nat Commun 2024; 15:6418. [PMID: 39080296 PMCID: PMC11289097 DOI: 10.1038/s41467-024-50731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Histone lysine crotonylation, an evolutionarily conserved modification differing from acetylation, exerts pivotal control over diverse biological processes. Among these are gene transcriptional regulation, spermatogenesis, and cell cycle processes. However, the dynamic changes and functions of histone crotonylation in preimplantation embryonic development in mammals remain unclear. Here, we show that the transcription coactivator P300 functions as a writer of histone crotonylation during embryonic development. Depletion of P300 results in significant developmental defects and dysregulation of the transcriptome of embryos. Importantly, we demonstrate that P300 catalyzes the crotonylation of histone, directly stimulating transcription and regulating gene expression, thereby ensuring successful progression of embryo development up to the blastocyst stage. Moreover, the modification of histone H3 lysine 18 crotonylation (H3K18cr) is primarily localized to active promoter regions. This modification serves as a distinctive epigenetic indicator of crucial transcriptional regulators, facilitating the activation of gene transcription. Together, our results propose a model wherein P300-mediated histone crotonylation plays a crucial role in regulating the fate of embryonic development.
Collapse
Affiliation(s)
- Di Gao
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong Shenzhen Hospital, 518053, Shenzhen, China
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China
| | - Chao Li
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China
| | - Shao-Yuan Liu
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China
| | - Teng-Teng Xu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Xiao-Ting Lin
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China
| | - Yong-Peng Tan
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China
| | - Fu-Min Gao
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China
| | - Li-Tao Yi
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Jun-Yu Ma
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China
| | - Tie-Gang Meng
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China
| | - William S B Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong Shenzhen Hospital, 518053, Shenzhen, China
| | - Kui Liu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong Shenzhen Hospital, 518053, Shenzhen, China
| | - Xiang-Hong Ou
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China.
| | - Rui-Bao Su
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China.
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China.
| |
Collapse
|
18
|
Huber PB, Rao A, LaBonne C. BET activity plays an essential role in control of stem cell attributes in Xenopus. Development 2024; 151:dev202990. [PMID: 38884356 PMCID: PMC11266789 DOI: 10.1242/dev.202990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Neural crest cells are a stem cell population unique to vertebrate embryos that retains broad multi-germ layer developmental potential through neurulation. Much remains to be learned about the genetic and epigenetic mechanisms that control the potency of neural crest cells. Here, we examine the role that epigenetic readers of the BET (bromodomain and extra terminal) family play in controlling the potential of pluripotent blastula and neural crest cells. We find that inhibiting BET activity leads to loss of pluripotency at blastula stages and a loss of neural crest at neurula stages. We compare the effects of HDAC (an eraser of acetylation marks) and BET (a reader of acetylation) inhibition and find that they lead to similar cellular outcomes through distinct effects on the transcriptome. Interestingly, loss of BET activity in cells undergoing lineage restriction is coupled to increased expression of genes linked to pluripotency and prolongs the competence of initially pluripotent cells to transit to a neural progenitor state. Together these findings advance our understanding of the epigenetic control of pluripotency and the formation of the vertebrate neural crest.
Collapse
Affiliation(s)
- Paul B. Huber
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- National Institute for Theory and Mathematics in Biology, Northwestern University, Evanston, IL 60208, USA
| | - Anjali Rao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- National Institute for Theory and Mathematics in Biology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
19
|
Freund MM, Harrison MM, Torres-Zelada EF. Exploring the reciprocity between pioneer factors and development. Development 2024; 151:dev201921. [PMID: 38958075 PMCID: PMC11266817 DOI: 10.1242/dev.201921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Development is regulated by coordinated changes in gene expression. Control of these changes in expression is largely governed by the binding of transcription factors to specific regulatory elements. However, the packaging of DNA into chromatin prevents the binding of many transcription factors. Pioneer factors overcome this barrier owing to unique properties that enable them to bind closed chromatin, promote accessibility and, in so doing, mediate binding of additional factors that activate gene expression. Because of these properties, pioneer factors act at the top of gene-regulatory networks and drive developmental transitions. Despite the ability to bind target motifs in closed chromatin, pioneer factors have cell type-specific chromatin occupancy and activity. Thus, developmental context clearly shapes pioneer-factor function. Here, we discuss this reciprocal interplay between pioneer factors and development: how pioneer factors control changes in cell fate and how cellular environment influences pioneer-factor binding and activity.
Collapse
Affiliation(s)
- Meghan M. Freund
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| | - Melissa M. Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| | - Eliana F. Torres-Zelada
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| |
Collapse
|
20
|
Brantley S, Di Talia S. The maternal-to-zygotic transition. Curr Biol 2024; 34:R519-R523. [PMID: 38834020 DOI: 10.1016/j.cub.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Rapid cleavage divisions and the transition from maternal to zygotic control of gene expression are the hallmarks of early embryonic development in most species. Early development in insects, fish and amphibians is characterized by several short cell cycles with no gap phases, necessary for the rapid production of cells prior to patterning and morphogenesis. Maternal mRNAs and proteins loaded into the egg during oogenesis are essential to drive these rapid early divisions. Once the function of these maternal inputs is complete, the maternal-to-zygotic transition (MZT) marks the handover of developmental control to the gene products synthesized from the zygotic genome. The MZT requires three major events: the removal of a subset of maternal mRNAs, the initiation of zygotic transcription, and the remodeling of the cell cycle. In each species, the MZT occurs at a highly reproducible time during development due to a series of feedback mechanisms that tightly couple these three processes. Dissecting these feedback mechanisms and their spatiotemporal control will be essential to understanding the control of the MZT. In this primer, we outline the mechanisms that govern the major events of the MZT across species and highlight the role of feedback mechanisms that ensure the MZT is precisely timed and orchestrated.
Collapse
Affiliation(s)
- Susanna Brantley
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27705, USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27705, USA.
| |
Collapse
|
21
|
Gillis A, Berry S. Global control of RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195024. [PMID: 38552781 DOI: 10.1016/j.bbagrm.2024.195024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
RNA polymerase II (Pol II) is the multi-protein complex responsible for transcribing all protein-coding messenger RNA (mRNA). Most research on gene regulation is focused on the mechanisms controlling which genes are transcribed when, or on the mechanics of transcription. How global Pol II activity is determined receives comparatively less attention. Here, we follow the life of a Pol II molecule from 'assembly of the complex' to nuclear import, enzymatic activity, and degradation. We focus on how Pol II spends its time in the nucleus, and on the two-way relationship between Pol II abundance and activity in the context of homeostasis and global transcriptional changes.
Collapse
Affiliation(s)
- Alexander Gillis
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, Australia; UNSW RNA Institute, University of New South Wales, Sydney, Australia; Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Scott Berry
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, Australia; UNSW RNA Institute, University of New South Wales, Sydney, Australia; Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
22
|
Hernandez-Huertas L, Moreno-Sanchez I, Crespo-Cuadrado J, Vargas-Baco A, da Silva Pescador G, Santos-Pereira JM, Bazzini AA, Moreno-Mateos MA. CRISPR-RfxCas13d screening uncovers Bckdk as a post-translational regulator of the maternal-to-zygotic transition in teleosts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595167. [PMID: 38826327 PMCID: PMC11142190 DOI: 10.1101/2024.05.22.595167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The Maternal-to-Zygotic transition (MZT) is a reprograming process encompassing zygotic genome activation (ZGA) and the clearance of maternally-provided mRNAs. While some factors regulating MZT have been identified, there are thousands of maternal RNAs whose function has not been ascribed yet. Here, we have performed a proof-of-principle CRISPR-RfxCas13d maternal screening targeting mRNAs encoding protein kinases and phosphatases in zebrafish and identified Bckdk as a novel post-translational regulator of MZT. Bckdk mRNA knockdown caused epiboly defects, ZGA deregulation, H3K27ac reduction and a partial impairment of miR-430 processing. Phospho-proteomic analysis revealed that Phf10/Baf45a, a chromatin remodeling factor, is less phosphorylated upon Bckdk depletion. Further, phf10 mRNA knockdown also altered ZGA and Phf10 constitutively phosphorylated rescued the developmental defects observed after bckdk mRNA depletion. Altogether, our results demonstrate the competence of CRISPR-RfxCas13d screenings to uncover new regulators of early vertebrate development and shed light on the post-translational control of MZT mediated by protein phosphorylation.
Collapse
Affiliation(s)
- Luis Hernandez-Huertas
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Ismael Moreno-Sanchez
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Jesús Crespo-Cuadrado
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Ana Vargas-Baco
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | | | - José M. Santos-Pereira
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Ariel A. Bazzini
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Miguel A. Moreno-Mateos
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| |
Collapse
|
23
|
Mao S, Song C, Huang H, Nie Y, Ding K, Cui J, Tian J, Tang H. Role of transcriptional cofactors in cardiovascular diseases. Biochem Biophys Res Commun 2024; 706:149757. [PMID: 38490050 DOI: 10.1016/j.bbrc.2024.149757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Cardiovascular disease is a main cause of mortality in the world and the highest incidence of all diseases. However, the mechanism of the pathogenesis of cardiovascular disease is still unclear, and we need to continue to explore its mechanism of action. The occurrence and development of cardiovascular disease is significantly associated with genetic abnormalities, and gene expression is affected by transcriptional regulation. In this complex process, the protein-protein interaction promotes the RNA polymerase II to the initiation site. And in this process of transcriptional regulation, transcriptional cofactors are responsible for passing cues from enhancers to promoters and promoting the binding of RNA polymerases to promoters, so transcription cofactors playing a key role in gene expression regulation. There is growing evidence that transcriptional cofactors play a critical role in cardiovascular disease. Transcriptional cofactors can promote or inhibit transcription by affecting the function of transcription factors. It can affect the initiation and elongation process of transcription by forming complexes with transcription factors, which are important for the stabilization of DNA rings. It can also act as a protein that interacts with other proteins to affect the expression of other genes. Therefore, the aim of this overview is to summarize the effect of some transcriptional cofactors such as BRD4, EP300, MED1, EZH2, YAP, SIRT6 in cardiovascular disease and to provide a promising therapeutic strategy for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Shuqing Mao
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Chao Song
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Huang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yali Nie
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Kai Ding
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jian Cui
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Huifang Tang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
24
|
Sakamoto M, Ito A, Wakayama S, Sasaki H, Wakayama T, Ishiuchi T. Detection of newly synthesized RNA reveals transcriptional reprogramming during ZGA and a role of Obox3 in totipotency acquisition. Cell Rep 2024; 43:114118. [PMID: 38619966 DOI: 10.1016/j.celrep.2024.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/15/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
Zygotic genome activation (ZGA) after fertilization enables the maternal-to-zygotic transition. However, the global view of ZGA, particularly at initiation, is incompletely understood. Here, we develop a method to capture and sequence newly synthesized RNA in early mouse embryos, providing a view of transcriptional reprogramming during ZGA. Our data demonstrate that major ZGA gene activation begins earlier than previously thought. Furthermore, we identify a set of genes activated during minor ZGA, the promoters of which show enrichment of the Obox factor motif, and find that Obox3 or Obox5 overexpression in mouse embryonic stem cells activates ZGA genes. Notably, the expression of Obox factors is severely impaired in somatic cell nuclear transfer (SCNT) embryos, and restoration of Obox3 expression corrects the ZGA profile and greatly improves SCNT embryo development. Hence, our study reveals dynamic transcriptional reprogramming during ZGA and underscores the crucial role of Obox3 in facilitating totipotency acquisition.
Collapse
Affiliation(s)
- Mizuki Sakamoto
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Aoi Ito
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Takashi Ishiuchi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan.
| |
Collapse
|
25
|
Fishman L, Modak A, Nechooshtan G, Razin T, Erhard F, Regev A, Farrell JA, Rabani M. Cell-type-specific mRNA transcription and degradation kinetics in zebrafish embryogenesis from metabolically labeled single-cell RNA-seq. Nat Commun 2024; 15:3104. [PMID: 38600066 PMCID: PMC11006943 DOI: 10.1038/s41467-024-47290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
During embryonic development, pluripotent cells assume specialized identities by adopting particular gene expression profiles. However, systematically dissecting the relative contributions of mRNA transcription and degradation to shaping those profiles remains challenging, especially within embryos with diverse cellular identities. Here, we combine single-cell RNA-Seq and metabolic labeling to capture temporal cellular transcriptomes of zebrafish embryos where newly-transcribed (zygotic) and pre-existing (maternal) mRNA can be distinguished. We introduce kinetic models to quantify mRNA transcription and degradation rates within individual cell types during their specification. These models reveal highly varied regulatory rates across thousands of genes, coordinated transcription and destruction rates for many transcripts, and link differences in degradation to specific sequence elements. They also identify cell-type-specific differences in degradation, namely selective retention of maternal transcripts within primordial germ cells and enveloping layer cells, two of the earliest specified cell types. Our study provides a quantitative approach to study mRNA regulation during a dynamic spatio-temporal response.
Collapse
Affiliation(s)
- Lior Fishman
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Avani Modak
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20814, USA
| | - Gal Nechooshtan
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Talya Razin
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Florian Erhard
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
- Chair of Computational Immunology, University of Regensburg, Regensburg, Germany
| | - Aviv Regev
- Department of Biology, MIT, Cambridge, MA, 02139, USA
- Klarman Cell Observatory Broad Institute of MIT and Harvard Cambridge, Cambridge, MA, 02142, USA
| | - Jeffrey A Farrell
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20814, USA.
| | - Michal Rabani
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel.
| |
Collapse
|
26
|
Hwang DW, Maekiniemi A, Singer RH, Sato H. Real-time single-molecule imaging of transcriptional regulatory networks in living cells. Nat Rev Genet 2024; 25:272-285. [PMID: 38195868 DOI: 10.1038/s41576-023-00684-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Gene regulatory networks drive the specific transcriptional programmes responsible for the diversification of cell types during the development of multicellular organisms. Although our knowledge of the genes involved in these dynamic networks has expanded rapidly, our understanding of how transcription is spatiotemporally regulated at the molecular level over a wide range of timescales in the small volume of the nucleus remains limited. Over the past few decades, advances in the field of single-molecule fluorescence imaging have enabled real-time behaviours of individual transcriptional components to be measured in living cells and organisms. These efforts are now shedding light on the dynamic mechanisms of transcription, revealing not only the temporal rules but also the spatial coordination of underlying molecular interactions during various biological events.
Collapse
Affiliation(s)
- Dong-Woo Hwang
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Anna Maekiniemi
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Robert H Singer
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Hanae Sato
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
- Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan.
| |
Collapse
|
27
|
Serradimigni R, Rojas A, Leong C, Pal U, Bryan M, Sharma S, Dasgupta S. Flame retardant tetrabromobisphenol A (TBBPA) disrupts histone acetylation during zebrafish maternal-to-zygotic transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.587433. [PMID: 38617289 PMCID: PMC11014481 DOI: 10.1101/2024.03.31.587433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
3,3',5.5'-Tetrabromobisphenol A (TBBPA) is a widely used brominated flame-retardant utilized in the production of electronic devices and plastic paints. The objective of this study is to use zebrafish as a model and determine the effects of TBBPA exposure on early embryogenesis. We initiated TBBPA exposures (0, 10, 20 and 40μM) at 0.75 h post fertilization (hpf) and monitored early developmental events such as cleavage, blastula and epiboly that encompass maternal-to-zygotic transition (MZT) and zygotic genome activation (ZGA). Our data revealed that TBBPA exposures induced onset of developmental delays by 3 hpf (blastula). By 5.5 hpf (epiboly), TBBPA-exposed (10-20 μM) embryos showed concentration-dependent developmental lag by up to 3 stages or 100% mortality at 40 μM. Embryos exposed to sublethal TBBPA concentrations from 0.75-6 hpf and raised in clean water to 120 hpf showed altered larval photomotor response (LPR), suggesting a compromised developmental health. To examine the genetic basis of TBBPA-induced delays, we conducted mRNA-sequencing on embryos exposed to 0 or 40 μM TBBPA from 0.75 hpf to 2, 3.5 or 4.5 hpf. Read count data showed that while TBBPA exposures had no overall impacts on maternal or maternal-zygotic genes, collective read counts for zygotically activated genes were lower in TBBPA treatment at 4.5 hpf compared to time-matched controls, suggesting that TBBPA delays ZGA. Gene ontology assessments for both time- and stage-matched differentially expressed genes revealed TBBPA-induced inhibition of chromatin assembly- a process regulated by histone modifications. Since acetylation is the primary histone modification system operant during early ZGA, we immunostained embryos with an H3K27Ac antibody and demonstrated reduced acetylation in TBBPA-exposed embryos. Leveraging in silico molecular docking studies and in vitro assays, we also showed that TBBPA potentially binds to P300- a protein that catalyzes acetylation- and inhibits P300 activity. Finally, we co-exposed embryos to 20 μM TBBPA and 50 μM n-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benzamide (CTPB) -a histone acetyltransferase activator that promotes histone acetylation- and showed that TBBPA-CTPB co or pre-exposures significantly reversed TBBPA-only developmental delays, suggesting that TBBPA-induced phenotypes are indeed driven by repression of histone acetylation. Collectively, our work demonstrates that TBBPA disrupts ZGA and early developmental morphology, potentially by inhibiting histone acetylation. Future studies will focus on mechanisms of TBBPA-induced chromatin modifications.
Collapse
|
28
|
Ugolini M, Kerlin MA, Kuznetsova K, Oda H, Kimura H, Vastenhouw NL. Transcription bodies regulate gene expression by sequestering CDK9. Nat Cell Biol 2024; 26:604-612. [PMID: 38589534 PMCID: PMC11021188 DOI: 10.1038/s41556-024-01389-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
The localization of transcriptional activity in specialized transcription bodies is a hallmark of gene expression in eukaryotic cells. It remains unclear, however, if and how transcription bodies affect gene expression. Here we disrupted the formation of two prominent endogenous transcription bodies that mark the onset of zygotic transcription in zebrafish embryos and analysed the effect on gene expression using enriched SLAM-seq and live-cell imaging. We find that the disruption of transcription bodies results in the misregulation of hundreds of genes. Here we focus on genes that are upregulated. These genes have accessible chromatin and are poised to be transcribed in the presence of the two transcription bodies, but they do not go into elongation. Live-cell imaging shows that disruption of the two large transcription bodies enables these poised genes to be transcribed in ectopic transcription bodies, suggesting that the large transcription bodies sequester a pause release factor. Supporting this hypothesis, we find that CDK9-the kinase that releases paused polymerase II-is highly enriched in the two large transcription bodies. Overexpression of CDK9 in wild-type embryos results in the formation of ectopic transcription bodies and thus phenocopies the removal of the two large transcription bodies. Taken together, our results show that transcription bodies regulate transcription by sequestering machinery, thereby preventing genes elsewhere in the nucleus from being transcribed.
Collapse
Affiliation(s)
- Martino Ugolini
- Center for Integrative Genomics (CIG), University of Lausanne (UNIL), Lausanne, Switzerland
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Maciej A Kerlin
- Center for Integrative Genomics (CIG), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ksenia Kuznetsova
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Haruka Oda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- Institute of Human Genetics, CNRS, Montpellier, France
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Nadine L Vastenhouw
- Center for Integrative Genomics (CIG), University of Lausanne (UNIL), Lausanne, Switzerland.
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.
| |
Collapse
|
29
|
Baia Amaral D, Egidy R, Perera A, Bazzini AA. miR-430 regulates zygotic mRNA during zebrafish embryogenesis. Genome Biol 2024; 25:74. [PMID: 38504288 PMCID: PMC10949700 DOI: 10.1186/s13059-024-03197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/15/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Early embryonic developmental programs are guided by the coordinated interplay between maternally inherited and zygotically manufactured RNAs and proteins. Although these processes happen concomitantly and affecting gene function during this period is bound to affect both pools of mRNAs, it has been challenging to study their expression dynamics separately. RESULTS By employing SLAM-seq, a nascent mRNA labeling transcriptomic approach, in a developmental time series we observe that over half of the early zebrafish embryo transcriptome consists of maternal-zygotic genes, emphasizing their pivotal role in early embryogenesis. We provide an hourly resolution of de novo transcriptional activation events and follow nascent mRNA trajectories, finding that most de novo transcriptional events are stable throughout this period. Additionally, by blocking microRNA-430 function, a key post transcriptional regulator during zebrafish embryogenesis, we directly show that it destabilizes hundreds of de novo transcribed mRNAs from pure zygotic as well as maternal-zygotic genes. This unveils a novel miR-430 function during embryogenesis, fine-tuning zygotic gene expression. CONCLUSION These insights into zebrafish early embryo transcriptome dynamics emphasize the significance of post-transcriptional regulators in zygotic genome activation. The findings pave the way for future investigations into the coordinated interplay between transcriptional and post-transcriptional landscapes required for the establishment of animal cell identities and functions.
Collapse
Affiliation(s)
- Danielson Baia Amaral
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Rhonda Egidy
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Anoja Perera
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
30
|
Harrison MM, Marsh AJ, Rushlow CA. Setting the stage for development: the maternal-to-zygotic transition in Drosophila. Genetics 2023; 225:iyad142. [PMID: 37616526 PMCID: PMC10550319 DOI: 10.1093/genetics/iyad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
The zygote has a daunting task ahead of itself; it must develop from a single cell (fertilized egg) into a fully functioning adult with a multitude of different cell types. In the beginning, the zygote has help from its mother, in the form of gene products deposited into the egg, but eventually, it must rely on its own resources to proceed through development. The transfer of developmental control from the mother to the embryo is called the maternal-to-zygotic transition (MZT). All animals undergo this transition, which is defined by two main processes-the degradation of maternal RNAs and the synthesis of new RNAs from the zygote's own genome. Here, we review the regulation of the MZT in Drosophila, but given the broad conservation of this essential process, much of the regulation is shared among metazoans.
Collapse
Affiliation(s)
- Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Audrey J Marsh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | | |
Collapse
|
31
|
Tschurikow X, Gadzekpo A, Tran MP, Chatterjee R, Sobucki M, Zaburdaev V, Göpfrich K, Hilbert L. Amphiphiles Formed from Synthetic DNA-Nanomotifs Mimic the Stepwise Dispersal of Transcriptional Clusters in the Cell Nucleus. NANO LETTERS 2023; 23:7815-7824. [PMID: 37586706 PMCID: PMC10510709 DOI: 10.1021/acs.nanolett.3c01301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Stem cells exhibit prominent clusters controlling the transcription of genes into RNA. These clusters form by a phase-separation mechanism, and their size and shape are controlled via an amphiphilic effect of transcribed genes. Here, we construct amphiphile-nanomotifs purely from DNA, and we achieve similar size and shape control for phase-separated droplets formed from fully synthetic, self-interacting DNA-nanomotifs. Increasing amphiphile concentrations induce rounding of droplets, prevent droplet fusion, and, at high concentrations, cause full dispersal of droplets. Super-resolution microscopy data obtained from zebrafish embryo stem cells reveal a comparable transition for transcriptional clusters with increasing transcription levels. Brownian dynamics and lattice simulations further confirm that the addition of amphiphilic particles is sufficient to explain the observed changes in shape and size. Our work reproduces key aspects of transcriptional cluster formation in biological cells using relatively simple DNA sequence-programmable nanostructures, opening novel ways to control the mesoscopic organization of synthetic nanomaterials.
Collapse
Affiliation(s)
- Xenia Tschurikow
- Institute
of Biological and Chemical Systems, Karlsruhe
Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Zoological
Institute, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Aaron Gadzekpo
- Institute
of Biological and Chemical Systems, Karlsruhe
Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Zoological
Institute, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Mai P. Tran
- Center
for Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
- Max
Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Rakesh Chatterjee
- Max
Planck Zentrum für Physik und Medizin, Erlangen 91058, Germany
- Chair
of Mathematics in Life Sciences, Friedrich-Alexander
Universität Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Marcel Sobucki
- Institute
of Biological and Chemical Systems, Karlsruhe
Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Vasily Zaburdaev
- Max
Planck Zentrum für Physik und Medizin, Erlangen 91058, Germany
- Chair
of Mathematics in Life Sciences, Friedrich-Alexander
Universität Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Kerstin Göpfrich
- Center
for Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
- Max
Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Lennart Hilbert
- Institute
of Biological and Chemical Systems, Karlsruhe
Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Zoological
Institute, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| |
Collapse
|
32
|
Westerich KJ, Tarbashevich K, Schick J, Gupta A, Zhu M, Hull K, Romo D, Zeuschner D, Goudarzi M, Gross-Thebing T, Raz E. Spatial organization and function of RNA molecules within phase-separated condensates in zebrafish are controlled by Dnd1. Dev Cell 2023; 58:1578-1592.e5. [PMID: 37463577 PMCID: PMC10528888 DOI: 10.1016/j.devcel.2023.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/08/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
Germ granules, condensates of phase-separated RNA and protein, are organelles that are essential for germline development in different organisms. The patterning of the granules and their relevance for germ cell fate are not fully understood. Combining three-dimensional in vivo structural and functional analyses, we study the dynamic spatial organization of molecules within zebrafish germ granules. We find that the localization of RNA molecules to the periphery of the granules, where ribosomes are localized, depends on translational activity at this location. In addition, we find that the vertebrate-specific Dead end (Dnd1) protein is essential for nanos3 RNA localization at the condensates' periphery. Accordingly, in the absence of Dnd1, or when translation is inhibited, nanos3 RNA translocates into the granule interior, away from the ribosomes, a process that is correlated with the loss of germ cell fate. These findings highlight the relevance of sub-granule compartmentalization for post-transcriptional control and its importance for preserving germ cell totipotency.
Collapse
Affiliation(s)
- Kim Joana Westerich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | - Katsiaryna Tarbashevich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | - Jan Schick
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | - Antra Gupta
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | - Mingzhao Zhu
- Department of Chemistry & Biochemistry and The Baylor Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX 76706, USA
| | - Kenneth Hull
- Department of Chemistry & Biochemistry and The Baylor Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX 76706, USA
| | - Daniel Romo
- Department of Chemistry & Biochemistry and The Baylor Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX 76706, USA
| | - Dagmar Zeuschner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Mohammad Goudarzi
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | - Theresa Gross-Thebing
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany; Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.
| |
Collapse
|
33
|
Cho CY, O'Farrell PH. Stepwise modifications of transcriptional hubs link pioneer factor activity to a burst of transcription. Nat Commun 2023; 14:4848. [PMID: 37563108 PMCID: PMC10415302 DOI: 10.1038/s41467-023-40485-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/29/2023] [Indexed: 08/12/2023] Open
Abstract
Binding of transcription factors (TFs) promotes the subsequent recruitment of coactivators and preinitiation complexes to initiate eukaryotic transcription, but this time course is usually not visualized. It is commonly assumed that recruited factors eventually co-reside in a higher-order structure, allowing distantly bound TFs to activate transcription at core promoters. We use live imaging of endogenously tagged proteins, including the pioneer TF Zelda, the coactivator dBrd4, and RNA polymerase II (RNAPII), to define a cascade of events upstream of transcriptional initiation in early Drosophila embryos. These factors are sequentially and transiently recruited to discrete clusters during activation of non-histone genes. Zelda and the acetyltransferase dCBP nucleate dBrd4 clusters, which then trigger pre-transcriptional clustering of RNAPII. Subsequent transcriptional elongation disperses clusters of dBrd4 and RNAPII. Our results suggest that activation of transcription by eukaryotic TFs involves a succession of distinct biomolecular condensates that culminates in a self-limiting burst of transcription.
Collapse
Affiliation(s)
- Chun-Yi Cho
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Patrick H O'Farrell
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
34
|
Zhou CY, Heald R. Principles of genome activation in the early embryo. Curr Opin Genet Dev 2023; 81:102062. [PMID: 37339553 PMCID: PMC11419330 DOI: 10.1016/j.gde.2023.102062] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/22/2023]
Abstract
A major hurdle in an embryo's life is the initiation of its own transcriptional program, a process termed Zygotic Genome Activation (ZGA). In many species, ZGA is intricately timed, with bulk transcription initiating at the end of a series of reductive cell divisions when cell cycle duration increases. At the same time, major changes in genome architecture give rise to chromatin states that are permissive to RNA polymerase II activity. Yet, we still do not understand the series of events that trigger gene expression at the right time and in the correct sequence. Here we discuss new discoveries that deepen our understanding of how zygotic genes are primed for transcription, and how these events are regulated by the cell cycle and nuclear import. Finally, we speculate on the evolutionary basis of ZGA timing as an exciting future direction for the field.
Collapse
Affiliation(s)
- Coral Y Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
35
|
Westerich KJ, Tarbashevich K, Schick J, Gupta A, Zhu M, Hull K, Romo D, Zeuschner D, Goudarzi M, Gross-Thebing T, Raz E. Spatial organization and function of RNA molecules within phase-separated condensates are controlled by Dnd1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.09.548244. [PMID: 37461638 PMCID: PMC10350045 DOI: 10.1101/2023.07.09.548244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Germ granules, condensates of phase-separated RNA and protein, are organelles essential for germline development in different organisms The patterning of the granules and its relevance for germ cell fate are not fully understood. Combining three-dimensional in vivo structural and functional analyses, we study the dynamic spatial organization of molecules within zebrafish germ granules. We find that localization of RNA molecules to the periphery of the granules, where ribosomes are localized depends on translational activity at this location. In addition, we find that the vertebrate-specific Dead end (Dnd1) protein is essential for nanos3 RNA localization at the condensates' periphery. Accordingly, in the absence of Dnd1, or when translation is inhibited, nanos3 RNA translocates into the granule interior, away from the ribosomes, a process that is correlated with loss of germ cell fate. These findings highlight the relevance of sub-granule compartmentalization for posttranscriptional control, and its importance for preserving germ cell totipotency.
Collapse
Affiliation(s)
- Kim Joana Westerich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster; 48149 Münster, Germany
| | - Katsiaryna Tarbashevich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster; 48149 Münster, Germany
| | - Jan Schick
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster; 48149 Münster, Germany
| | - Antra Gupta
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster; 48149 Münster, Germany
| | - Mingzhao Zhu
- Department of Chemistry & Biochemistry and The Baylor Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, Texas 76706, United States
| | - Kenneth Hull
- Department of Chemistry & Biochemistry and The Baylor Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, Texas 76706, United States
| | - Daniel Romo
- Department of Chemistry & Biochemistry and The Baylor Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, Texas 76706, United States
| | - Dagmar Zeuschner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Mohammad Goudarzi
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster; 48149 Münster, Germany
| | - Theresa Gross-Thebing
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster; 48149 Münster, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster; 48149 Münster, Germany
- Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| |
Collapse
|
36
|
Pownall ME, Miao L, Vejnar CE, M’Saad O, Sherrard A, Frederick MA, Benitez MD, Boswell CW, Zaret KS, Bewersdorf J, Giraldez AJ. Chromatin expansion microscopy reveals nanoscale organization of transcription and chromatin. Science 2023; 381:92-100. [PMID: 37410825 PMCID: PMC10372697 DOI: 10.1126/science.ade5308] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/17/2023] [Indexed: 07/08/2023]
Abstract
Nanoscale chromatin organization regulates gene expression. Although chromatin is notably reprogrammed during zygotic genome activation (ZGA), the organization of chromatin regulatory factors during this universal process remains unclear. In this work, we developed chromatin expansion microscopy (ChromExM) to visualize chromatin, transcription, and transcription factors in vivo. ChromExM of embryos during ZGA revealed how the pioneer factor Nanog interacts with nucleosomes and RNA polymerase II (Pol II), providing direct visualization of transcriptional elongation as string-like nanostructures. Blocking elongation led to more Pol II particles clustered around Nanog, with Pol II stalled at promoters and Nanog-bound enhancers. This led to a new model termed "kiss and kick", in which enhancer-promoter contacts are transient and released by transcriptional elongation. Our results demonstrate that ChromExM is broadly applicable to study nanoscale nuclear organization.
Collapse
Affiliation(s)
- Mark E. Pownall
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Liyun Miao
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Charles E. Vejnar
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Ons M’Saad
- Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University; New Haven, CT 06510, USA
| | - Alice Sherrard
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Megan A. Frederick
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria D.J. Benitez
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Curtis W. Boswell
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Kenneth S. Zaret
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine; New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University; New Haven, CT 06510, USA
- Department of Physics, Yale University; New Haven, CT 06510, USA
- Nanobiology Institute, Yale University; West Haven, CT 06477, USA
| | - Antonio J. Giraldez
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
- Yale Stem Cell Center, Yale University School of Medicine; New Haven, CT 06510, USA
- Yale Cancer Center, Yale University School of Medicine; New Haven, CT 06510, USA
| |
Collapse
|
37
|
Ayers TN, Nicotra ML, Lee MT. Parallels and contrasts between the cnidarian and bilaterian maternal-to-zygotic transition are revealed in Hydractinia embryos. PLoS Genet 2023; 19:e1010845. [PMID: 37440598 PMCID: PMC10368294 DOI: 10.1371/journal.pgen.1010845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Embryogenesis requires coordinated gene regulatory activities early on that establish the trajectory of subsequent development, during a period called the maternal-to-zygotic transition (MZT). The MZT comprises transcriptional activation of the embryonic genome and post-transcriptional regulation of egg-inherited maternal mRNA. Investigation into the MZT in animals has focused almost exclusively on bilaterians, which include all classical models such as flies, worms, sea urchin, and vertebrates, thus limiting our capacity to understand the gene regulatory paradigms uniting the MZT across all animals. Here, we elucidate the MZT of a non-bilaterian, the cnidarian Hydractinia symbiolongicarpus. Using parallel poly(A)-selected and non poly(A)-dependent RNA-seq approaches, we find that the Hydractinia MZT is composed of regulatory activities similar to many bilaterians, including cytoplasmic readenylation of maternally contributed mRNA, delayed genome activation, and separate phases of maternal mRNA deadenylation and degradation that likely depend on both maternally and zygotically encoded clearance factors, including microRNAs. But we also observe massive upregulation of histone genes and an expanded repertoire of predicted H4K20 methyltransferases, aspects thus far particular to the Hydractinia MZT and potentially underlying a novel mode of early embryonic chromatin regulation. Thus, similar regulatory strategies with taxon-specific elaboration underlie the MZT in both bilaterian and non-bilaterian embryos, providing insight into how an essential developmental transition may have arisen in ancestral animals.
Collapse
Affiliation(s)
- Taylor N. Ayers
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh Pennsylvania, United States of America
| | - Matthew L. Nicotra
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Miler T. Lee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh Pennsylvania, United States of America
| |
Collapse
|
38
|
Ayers TN, Nicotra ML, Lee MT. Parallels and contrasts between the cnidarian and bilaterian maternal-to-zygotic transition are revealed in Hydractinia embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540083. [PMID: 37214839 PMCID: PMC10197650 DOI: 10.1101/2023.05.09.540083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Embryogenesis requires coordinated gene regulatory activities early on that establish the trajectory of subsequent development, during a period called the maternal-to-zygotic transition (MZT). The MZT comprises transcriptional activation of the embryonic genome and post-transcriptional regulation of egg-inherited maternal mRNA. Investigation into the MZT in animals has focused almost exclusively on bilaterians, which include all classical models such as flies, worms, sea urchin, and vertebrates, thus limiting our capacity to understand the gene regulatory paradigms uniting the MZT across all animals. Here, we elucidate the MZT of a non-bilaterian, the cnidarian Hydractinia symbiolongicarpus . Using parallel poly(A)-selected and non poly(A)-dependent RNA-seq approaches, we find that the Hydractinia MZT is composed of regulatory activities analogous to many bilaterians, including cytoplasmic readenylation of maternally contributed mRNA, delayed genome activation, and separate phases of maternal mRNA deadenylation and degradation that likely depend on both maternally and zygotically encoded clearance factors, including microRNAs. But we also observe massive upregulation of histone genes and an expanded repertoire of predicted H4K20 methyltransferases, aspects thus far unique to the Hydractinia MZT and potentially underlying a novel mode of early embryonic chromatin regulation. Thus, similar regulatory strategies with taxon-specific elaboration underlie the MZT in both bilaterian and non-bilaterian embryos, providing insight into how an essential developmental transition may have arisen in ancestral animals.
Collapse
Affiliation(s)
- Taylor N. Ayers
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15213 U.S.A
| | - Matthew L. Nicotra
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261 U.S.A
| | - Miler T. Lee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15213 U.S.A
| |
Collapse
|
39
|
Fishman L, Nechooshtan G, Erhard F, Regev A, Farrell JA, Rabani M. Single-cell temporal dynamics reveals the relative contributions of transcription and degradation to cell-type specific gene expression in zebrafish embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537620. [PMID: 37131717 PMCID: PMC10153228 DOI: 10.1101/2023.04.20.537620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
During embryonic development, pluripotent cells assume specialized identities by adopting particular gene expression profiles. However, systematically dissecting the underlying regulation of mRNA transcription and degradation remains a challenge, especially within whole embryos with diverse cellular identities. Here, we collect temporal cellular transcriptomes of zebrafish embryos, and decompose them into their newly-transcribed (zygotic) and pre-existing (maternal) mRNA components by combining single-cell RNA-Seq and metabolic labeling. We introduce kinetic models capable of quantifying regulatory rates of mRNA transcription and degradation within individual cell types during their specification. These reveal different regulatory rates between thousands of genes, and sometimes between cell types, that shape spatio-temporal expression patterns. Transcription drives most cell-type restricted gene expression. However, selective retention of maternal transcripts helps to define the gene expression profiles of germ cells and enveloping layer cells, two of the earliest specified cell-types. Coordination between transcription and degradation restricts expression of maternal-zygotic genes to specific cell types or times, and allows the emergence of spatio-temporal patterns when overall mRNA levels are held relatively constant. Sequence-based analysis links differences in degradation to specific sequence motifs. Our study reveals mRNA transcription and degradation events that control embryonic gene expression, and provides a quantitative approach to study mRNA regulation during a dynamic spatio-temporal response.
Collapse
Affiliation(s)
- Lior Fishman
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Gal Nechooshtan
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Florian Erhard
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Aviv Regev
- Department of Biology, MIT, Cambridge MA 02139, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jeffrey A. Farrell
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20814, USA
| | - Michal Rabani
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| |
Collapse
|
40
|
Fukushima HS, Takeda H, Nakamura R. Incomplete erasure of histone marks during epigenetic reprogramming in medaka early development. Genome Res 2023; 33:572-586. [PMID: 37117034 PMCID: PMC10234297 DOI: 10.1101/gr.277577.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/29/2023] [Indexed: 04/30/2023]
Abstract
Epigenetic modifications undergo drastic erasure and reestablishment after fertilization. This reprogramming is required for proper embryonic development and cell differentiation. In mammals, some histone modifications are not completely reprogrammed and play critical roles in later development. In contrast, in nonmammalian vertebrates, most histone modifications are thought to be more intensively erased and reestablished by the stage of zygotic genome activation (ZGA). However, histone modifications that escape reprogramming in nonmammalian vertebrates and their potential functional roles remain unknown. Here, we quantitatively and comprehensively analyzed histone modification dynamics during epigenetic reprogramming in Japanese killifish, medaka (Oryzias latipes) embryos. Our data revealed that H3K27ac, H3K27me3, and H3K9me3 escape complete reprogramming, whereas H3K4 methylation is completely erased during cleavage stage. Furthermore, we experimentally showed the functional roles of such retained modifications at early stages: (i) H3K27ac premarks promoters during the cleavage stage, and inhibition of histone acetyltransferases disrupts proper patterning of H3K4 and H3K27 methylation at CpG-dense promoters, but does not affect chromatin accessibility after ZGA; (ii) H3K9me3 is globally erased but specifically retained at telomeric regions, which is required for maintenance of genomic stability during the cleavage stage. These results expand the understanding of diversity and conservation of reprogramming in vertebrates, and unveil previously uncharacterized functions of histone modifications retained during epigenetic reprogramming.
Collapse
Affiliation(s)
- Hiroto S Fukushima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
41
|
Bhat P, Cabrera-Quio LE, Herzog VA, Fasching N, Pauli A, Ameres SL. SLAMseq resolves the kinetics of maternal and zygotic gene expression during early zebrafish embryogenesis. Cell Rep 2023; 42:112070. [PMID: 36757845 DOI: 10.1016/j.celrep.2023.112070] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/27/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
The maternal-to-zygotic transition (MZT) is a key developmental process in metazoan embryos that involves the activation of zygotic transcription (ZGA) and degradation of maternal transcripts. We employed metabolic mRNA sequencing (SLAMseq) to deconvolute the compound embryonic transcriptome in zebrafish. While mitochondrial zygotic transcripts prevail prior to MZT, we uncover the spurious transcription of hundreds of short and intron-poor genes as early as the 2-cell stage. Upon ZGA, most zygotic transcripts originate from thousands of maternal-zygotic (MZ) genes that are transcribed at rates comparable to those of hundreds of purely zygotic genes and replenish maternal mRNAs at distinct timescales. Rapid replacement of MZ transcripts involves transcript decay features unrelated to major maternal degradation pathways and promotes de novo synthesis of the core gene expression machinery by increasing poly(A)-tail length and translation efficiency. SLAMseq hence provides insights into the timescales, molecular features, and regulation of MZT during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Pooja Bhat
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Luis E Cabrera-Quio
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Veronika A Herzog
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Nina Fasching
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| | - Stefan L Ameres
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
42
|
Comparative Analysis of miRNA-mRNA Regulation in the Testes of Gobiocypris rarus following 17α-Methyltestosterone Exposure. Int J Mol Sci 2023; 24:ijms24044239. [PMID: 36835651 PMCID: PMC9968023 DOI: 10.3390/ijms24044239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
17α-Methyltestosterone (17MT), a synthetic organic compound commonly found in sewage waters, can affect reproduction in aquatic animals, such as tilapia and yellow catfish. In the present study, male Gobiocypris rarus were exposed to 25, 50, and 100 ng/L of 17α-methyltestosterone (17MT) for 7 days. We first analyzed miRNA- and RNA-seq results to determine miRNA-target gene pairs and then developed miRNA-mRNA interactive networks after 17MT administration. Total weights, total lengths, and body lengths were not significantly different between the test groups and control groups. The paraffin slice method was applied to testes of G. rarus in the MT exposure and control groups. We found that there were more mature sperm (S) and fewer secondary spermatocytes (SSs) and spermatogonia (SGs) in the testes of control groups. As 17MT concentration increased, fewer and fewer mature sperm (S) were observed in the testes of male G. rarus. The results showed that FSH, 11-KT, and E2 were significantly higher in individuals exposed to 25 ng/L 17MT compared with the control groups. VTG, FSH, LH, 11-KT, and E2 were significantly lower in the 50 ng/L 17MT exposure groups compared to the control groups. VTG, FSH, LH, 11-KT, E2, and T were significantly lower in the groups exposed to 100 ng/L 17MT. High-throughput sequencing revealed 73,449 unigenes, 1205 known mature miRNAs, and 939 novel miRNAs in the gonads of G. rarus. With miRNA-seq, 49 (MT25-M vs. Con-M), 66 (MT50-M vs. Con-M), and 49 (MT100-M vs. Con-M) DEMs were identified in the treatment groups. Five mature miRNAs (miR-122-x, miR-574-x, miR-430-y, lin-4-x, and miR-7-y), as well as seven differentially expressed genes (soat2, inhbb, ihhb, gatm, faxdc2, ebp, and cyp1a1), which may be associated with testicular development, metabolism, apoptosis, and disease response, were assayed using qRT-PCR. Furthermore, miR-122-x (related to lipid metabolism), miR-430-y (embryonic development), lin-4-x (apoptosis), and miR-7-y (disease) were differentially expressed in the testes of 17MT-exposed G. rarus. This study highlights the role of miRNA-mRNA pairs in the regulation of testicular development and immune response to disease and will facilitate future studies on the miRNA-RNA-associated regulation of teleost reproduction.
Collapse
|
43
|
Xiao Y, Chen J, Yang S, Sun H, Xie L, Li J, Jing N, Zhu X. Maternal mRNA deadenylation and allocation via Rbm14 condensates facilitate vertebrate blastula development. EMBO J 2023; 42:e111364. [PMID: 36477743 PMCID: PMC9890236 DOI: 10.15252/embj.2022111364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Early embryonic development depends on proper utilization and clearance of maternal transcriptomes. How these processes are spatiotemporally regulated remains unclear. Here we show that nuclear RNA-binding protein Rbm14 and maternal mRNAs co-phase separate into cytoplasmic condensates to facilitate vertebrate blastula-to-gastrula development. In zebrafish, Rbm14 condensates were highly abundant in blastomeres and markedly reduced after prominent activation of zygotic transcription. They concentrated at spindle poles by associating with centrosomal γ-tubulin puncta and displayed mainly asymmetric divisions with a global symmetry across embryonic midline in 8- and 16-cell embryos. Their formation was dose-dependently stimulated by m6 A, but repressed by m5 C modification of the maternal mRNA. Furthermore, deadenylase Parn co-phase separated with these condensates, and this was required for deadenylation of the mRNAs in early blastomeres. Depletion of Rbm14 impaired embryonic cell differentiations and full activations of the zygotic genome in both zebrafish and mouse and resulted in developmental arrest at the blastula stage. Our results suggest that cytoplasmic Rbm14 condensate formation regulates early embryogenesis by facilitating deadenylation, protection, and mitotic allocation of m6 A-modified maternal mRNAs, and by releasing the poly(A)-less transcripts upon regulated disassembly to allow their re-polyadenylation and translation or clearance.
Collapse
Affiliation(s)
- Yue Xiao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| | - Jiehui Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Suming Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Honghua Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Lele Xie
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Xueliang Zhu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| |
Collapse
|
44
|
Hadzhiev Y, Wheatley L, Cooper L, Ansaloni F, Whalley C, Chen Z, Finaurini S, Gustincich S, Sanges R, Burgess S, Beggs A, Müller F. The miR-430 locus with extreme promoter density forms a transcription body during the minor wave of zygotic genome activation. Dev Cell 2023; 58:155-170.e8. [PMID: 36693321 PMCID: PMC9904021 DOI: 10.1016/j.devcel.2022.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/10/2022] [Accepted: 12/16/2022] [Indexed: 01/24/2023]
Abstract
In anamniote embryos, the major wave of zygotic genome activation starts during the mid-blastula transition. However, some genes escape global genome repression, are activated substantially earlier, and contribute to the minor wave of genome activation. The mechanisms underlying the minor wave of genome activation are little understood. We explored the genomic organization and cis-regulatory mechanisms of a transcription body, in which the minor wave of genome activation is first detected in zebrafish. We identified the miR-430 cluster as having excessive copy number and the highest density of Pol-II-transcribed promoters in the genome, and this is required for forming the transcription body. However, this transcription body is not essential for, nor does it encompasse, minor wave transcription globally. Instead, distinct minor-wave-specific promoter architecture suggests that promoter-autonomous mechanisms regulate the minor wave of genome activation. The minor-wave-specific features also suggest distinct transcription initiation mechanisms between the minor and major waves of genome activation.
Collapse
Affiliation(s)
- Yavor Hadzhiev
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Lucy Wheatley
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ledean Cooper
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Federico Ansaloni
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy; Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genoa, Italy
| | - Celina Whalley
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Zhelin Chen
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-2152, USA
| | - Sara Finaurini
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genoa, Italy
| | - Remo Sanges
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy; Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genoa, Italy
| | - Shawn Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-2152, USA
| | - Andrew Beggs
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ferenc Müller
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
45
|
Huang Y, Gao BQ, Meng Q, Yang LZ, Ma XK, Wu H, Pan YH, Yang L, Li D, Chen LL. CRISPR-dCas13-tracing reveals transcriptional memory and limited mRNA export in developing zebrafish embryos. Genome Biol 2023; 24:15. [PMID: 36658633 PMCID: PMC9854193 DOI: 10.1186/s13059-023-02848-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Understanding gene transcription and mRNA-protein (mRNP) dynamics in single cells in a multicellular organism has been challenging. The catalytically dead CRISPR-Cas13 (dCas13) system has been used to visualize RNAs in live cells without genetic manipulation. We optimize this system to track developmentally expressed mRNAs in zebrafish embryos and to understand features of endogenous transcription kinetics and mRNP export. RESULTS We report that zygotic microinjection of purified CRISPR-dCas13-fluorescent proteins and modified guide RNAs allows single- and dual-color tracking of developmentally expressed mRNAs in zebrafish embryos from zygotic genome activation (ZGA) until early segmentation period without genetic manipulation. Using this approach, we uncover non-synchronized de novo transcription between inter-alleles, synchronized post-mitotic re-activation in pairs of alleles, and transcriptional memory as an extrinsic noise that potentially contributes to synchronized post-mitotic re-activation. We also reveal rapid dCas13-engaged mRNP movement in the nucleus with a corralled and diffusive motion, but a wide varying range of rate-limiting mRNP export, which can be shortened by Alyref and Nxf1 overexpression. CONCLUSIONS This optimized dCas13-based toolkit enables robust spatial-temporal tracking of endogenous mRNAs and uncovers features of transcription and mRNP motion, providing a powerful toolkit for endogenous RNA visualization in a multicellular developmental organism.
Collapse
Affiliation(s)
- Youkui Huang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Bao-Qing Gao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Quan Meng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liang-Zhong Yang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Xu-Kai Ma
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Yu-Hang Pan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
46
|
Kuznetsova K, Chabot NM, Ugolini M, Wu E, Lalit M, Oda H, Sato Y, Kimura H, Jug F, Vastenhouw NL. Nanog organizes transcription bodies. Curr Biol 2023; 33:164-173.e5. [PMID: 36476751 DOI: 10.1016/j.cub.2022.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/21/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
The localization of transcriptional activity in specialized transcription bodies is a hallmark of gene expression in eukaryotic cells.1-3 How proteins of the transcriptional machinery come together to form such bodies, however, is unclear. Here, we take advantage of two large, isolated, and long-lived transcription bodies that reproducibly form during early zebrafish embryogenesis to characterize the dynamics of transcription body formation. Once formed, these transcription bodies are enriched for initiating and elongating RNA polymerase II, as well as the transcription factors Nanog and Sox19b. Analyzing the events leading up to transcription, we find that Nanog and Sox19b cluster prior to transcription. The clustering of transcription factors is sequential; Nanog clusters first, and this is required for the clustering of Sox19b and the initiation of transcription. Mutant analysis revealed that both the DNA-binding domain as well as one of the two intrinsically disordered regions of Nanog are required to organize the two bodies of transcriptional activity. Taken together, our data suggest that the clustering of transcription factors dictates the formation of transcription bodies.
Collapse
Affiliation(s)
- Ksenia Kuznetsova
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Noémie M Chabot
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Center for Integrative Genomics, University of Lausanne, Quartier Sorge, 1015 Lausanne, Switzerland
| | - Martino Ugolini
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Center for Integrative Genomics, University of Lausanne, Quartier Sorge, 1015 Lausanne, Switzerland
| | - Edlyn Wu
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Center for Integrative Genomics, University of Lausanne, Quartier Sorge, 1015 Lausanne, Switzerland
| | - Manan Lalit
- Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Haruka Oda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Yuko Sato
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Florian Jug
- Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Fondazione Human Technopole, Viale Rita Levi-Montalcini 1, Area MIND, 20157 Milano, Italy
| | - Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Center for Integrative Genomics, University of Lausanne, Quartier Sorge, 1015 Lausanne, Switzerland.
| |
Collapse
|
47
|
Shen W, Gong B, Xing C, Zhang L, Sun J, Chen Y, Yang C, Yan L, Chen L, Yao L, Li G, Deng H, Wu X, Meng A. Comprehensive maturity of nuclear pore complexes regulates zygotic genome activation. Cell 2022; 185:4954-4970.e20. [PMID: 36493774 DOI: 10.1016/j.cell.2022.11.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/23/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022]
Abstract
Nuclear pore complexes (NPCs) are channels for nucleocytoplasmic transport of proteins and RNAs. However, it remains unclear whether composition, structure, and permeability of NPCs dynamically change during the cleavage period of vertebrate embryos and affect embryonic development. Here, we report that the comprehensive NPC maturity (CNM) controls the onset of zygotic genome activation (ZGA) during zebrafish early embryogenesis. We show that more nucleoporin proteins are recruited to and assembled into NPCs with development, resulting in progressive increase of NPCs in size and complexity. Maternal transcription factors (TFs) transport into nuclei more efficiently with increasing CNM. Deficiency or dysfunction of Nup133 or Ahctf1/Elys impairs NPC assembly, maternal TFs nuclear transport, and ZGA onset, while nup133 overexpression promotes these processes. Therefore, CNM may act as a molecular timer for ZGA by controlling nuclear transport of maternal TFs that reach nuclear concentration thresholds at a given time to initiate ZGA.
Collapse
Affiliation(s)
- Weimin Shen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bo Gong
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Cencan Xing
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lin Zhang
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiawei Sun
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Changmei Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lu Yan
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Luxi Chen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Likun Yao
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guangyuan Li
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaotong Wu
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Developmental Diseases and Cancer Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Laboratory of Stem Cell Regulation, Guangzhou Laboratory, Guangzhou 510320, China.
| |
Collapse
|
48
|
Zhou JJ, Cho KWY. Epigenomic dynamics of early Xenopus Embryos. Dev Growth Differ 2022; 64:508-516. [PMID: 36168140 PMCID: PMC10550391 DOI: 10.1111/dgd.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 12/31/2022]
Abstract
How the embryonic genome regulates accessibility to transcription factors is one of the major questions in understanding the spatial and temporal dynamics of gene expression during embryogenesis. Epigenomic analyses of embryonic chromatin provide molecular insights into cell-specific gene activities and genomic architectures. In recent years, significant advances have been made to elucidate the dynamic changes behind the activation of the zygotic genome in various model organisms. Here we provide an overview of the recent epigenomic studies pertaining to early Xenopus development.
Collapse
Affiliation(s)
- Jeff Jiajing Zhou
- Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Ken W Y Cho
- Developmental and Cell Biology, University of California, Irvine, California, USA
- Center for Complex Biological Systems, University of California, Irvine, California, USA
| |
Collapse
|
49
|
Balachandra S, Sarkar S, Amodeo AA. The Nuclear-to-Cytoplasmic Ratio: Coupling DNA Content to Cell Size, Cell Cycle, and Biosynthetic Capacity. Annu Rev Genet 2022; 56:165-185. [PMID: 35977407 PMCID: PMC10165727 DOI: 10.1146/annurev-genet-080320-030537] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Though cell size varies between different cells and across species, the nuclear-to-cytoplasmic (N/C) ratio is largely maintained across species and within cell types. A cell maintains a relatively constant N/C ratio by coupling DNA content, nuclear size, and cell size. We explore how cells couple cell division and growth to DNA content. In some cases, cells use DNA as a molecular yardstick to control the availability of cell cycle regulators. In other cases, DNA sets a limit for biosynthetic capacity. Developmentally programmed variations in the N/C ratio for a given cell type suggest that a specific N/C ratio is required to respond to given physiological demands. Recent observations connecting decreased N/C ratios with cellular senescence indicate that maintaining the proper N/C ratio is essential for proper cellular functioning. Together, these findings suggest a causative, not simply correlative, role for the N/C ratio in regulating cell growth and cell cycle progression.
Collapse
Affiliation(s)
- Shruthi Balachandra
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA; ,
| | - Sharanya Sarkar
- Department of Microbiology and Immunology, Dartmouth College, Hanover, New Hampshire, USA;
| | - Amanda A Amodeo
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA; ,
| |
Collapse
|
50
|
Wang M, Chen Z, Zhang Y. CBP/p300 and HDAC activities regulate H3K27 acetylation dynamics and zygotic genome activation in mouse preimplantation embryos. EMBO J 2022; 41:e112012. [PMID: 36215692 PMCID: PMC9670200 DOI: 10.15252/embj.2022112012] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/13/2023] Open
Abstract
Epigenome reprogramming after fertilization enables transcriptionally quiescent maternal and paternal chromatin to acquire a permissive state for subsequent zygotic genome activation (ZGA). H3K27 acetylation (H3K27ac) is a well-established chromatin marker of active enhancers and promoters. However, reprogramming dynamics of H3K27ac during maternal-to-zygotic transition (MZT) in mammalian embryos are not well-studied. By profiling the allelic landscape of H3K27ac during mouse MZT, we show that H3K27ac undergoes three waves of rapid global transitions between oocyte stage and 2-cell stage. Notably, germinal vesicle oocyte and zygote chromatin are globally hyperacetylated, with noncanonical, broad H3K27ac domains that correlate with broad H3K4 trimethylation (H3K4me3) and open chromatin. H3K27ac marks genomic regions primed for activation including ZGA genes, retrotransposons, and active alleles of imprinted genes. We show that CBP/p300 and HDAC activities play important roles in regulating H3K27ac dynamics and are essential for preimplantation development. Specifically, CBP/p300 acetyltransferase broadly deposits H3K27ac in zygotes to induce the opening of condensed chromatin at putative enhancers and ensure proper ZGA. On the contrary, HDACs revert broad H3K27ac domains to canonical domains and safeguard ZGA by preventing premature expression of developmental genes. In conclusion, coordinated activities of CBP/p300 and HDACs during mouse MZT are essential for ZGA and preimplantation development.
Collapse
Affiliation(s)
- Meng Wang
- Howard Hughes Medical InstituteBoston Children's HospitalBostonMAUSA
- Program in Cellular and Molecular MedicineBoston Children's HospitalBostonMAUSA
- Division of Hematology/Oncology, Department of PediatricsBoston Children's HospitalBostonMAUSA
| | - Zhiyuan Chen
- Howard Hughes Medical InstituteBoston Children's HospitalBostonMAUSA
- Program in Cellular and Molecular MedicineBoston Children's HospitalBostonMAUSA
- Division of Hematology/Oncology, Department of PediatricsBoston Children's HospitalBostonMAUSA
| | - Yi Zhang
- Howard Hughes Medical InstituteBoston Children's HospitalBostonMAUSA
- Program in Cellular and Molecular MedicineBoston Children's HospitalBostonMAUSA
- Division of Hematology/Oncology, Department of PediatricsBoston Children's HospitalBostonMAUSA
- Department of GeneticsHarvard Medical SchoolBostonMAUSA
- Harvard Stem Cell InstituteBostonMAUSA
| |
Collapse
|