1
|
Eckert J, Viasnoff V, Yap AS. New directions in epithelial mechanoadaptation. Curr Opin Cell Biol 2025; 95:102536. [PMID: 40413856 DOI: 10.1016/j.ceb.2025.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/30/2025] [Indexed: 05/27/2025]
Abstract
Cells are active mechanical objects: they are subject to forces, exert force, and interpret changes in force as biological information. We now understand much about how this occurs at the molecular and single-cell level. We also appreciate that mechanobiology gains even greater complexity when it operates at the multicellular level of tissues and organisms. Here, cells exert forces on other cells within tissues to support morphogenesis and homeostasis; but these forces must also be accommodated to ensure that tissue integrity is preserved. Cell-cell adhesion junctions play important roles in transmitting, resisting, as well as detecting mechanical forces in coherent tissues. In this brief article we consider how epithelia adapt to mechanical stresses, focusing on recent developments in understanding the sources of force and new mechanisms for adherens junctions and desmosomes in mechanotransduction.
Collapse
Affiliation(s)
- Julia Eckert
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Virgile Viasnoff
- Centre National de la recherche Scientifique (CNRS), UMR 7325 Campus de Luminy - Case 913, 13009, Marseille, France
| | - Alpha S Yap
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia.
| |
Collapse
|
2
|
Rozema D, Maître JL. Forces Shaping the Blastocyst. Cold Spring Harb Perspect Biol 2025; 17:a041519. [PMID: 38951024 PMCID: PMC12047664 DOI: 10.1101/cshperspect.a041519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The blastocyst forms during the first days of mammalian development. The structure of the blastocyst is conserved among placental mammals and is paramount to the establishment of the first mammalian lineages. The blastocyst is composed of an extraembryonic epithelium, the trophectoderm (TE), that envelopes a fluid-filled lumen and the inner cell mass (ICM). To shape the blastocyst, embryos transit through three stages driven by forces that have been characterized in the mouse embryo over the past decade. The morphogenetically quiescent cleavage stages mask dynamic cytoskeletal remodeling. Then, during the formation of the morula, cells pull themselves together and the strongest ones internalize. Finally, the blastocyst forms after the pressurized lumen breaks the radial symmetry of the embryo before expanding in cycles of collapses and regrowth. In this review, we delineate the force patterns sculpting the blastocyst, based on our knowledge on the mouse and, to some extent, human embryos.
Collapse
Affiliation(s)
- David Rozema
- Institut Curie, Université PSL, CNRS UMR3215, INSERM U934, 75005 Paris, France
| | - Jean-Léon Maître
- Institut Curie, Université PSL, CNRS UMR3215, INSERM U934, 75005 Paris, France
| |
Collapse
|
3
|
Guo Z, Lv X, Li J, Yue S, Du J. Blastocyst Cavity Expansion Promotes Cell Polarization During Early Development of Mouse Embryos. Birth Defects Res 2025; 117:e2484. [PMID: 40347064 DOI: 10.1002/bdr2.2484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/12/2025]
Abstract
BACKGROUND Cell polarization is an important morphological process that is crucial for the formation and function of tissues and organs. The blastocyst cavity expansion is an apparent event during the second cell fate specification in mouse embryos, yet its impact on cell polarization remains unclear. In this study, we investigate the effects of blastocyst cavity expansion on cell polarization. METHODS The methods of this study involve hyperosmotic treatment or disruption of TE cortical tension by laser ablation, combined with immunofluorescence. RESULTS We found that inhibition of the blastocyst cavity expansion through hypertonic treatment or disruption of TE cortical tension by laser ablation suppresses the levels of the ζ isotype of protein kinase C (PKC ζ) which is a member of the atypical PKC subfamily involved in cell polarization. We further found that during the embryonic stages E3.5 to E4.0, the expression of extracellular signal-regulated kinase 1 (ERK1), a key upstream regulator of PKC ζ, is altered in a similar tendency to that of PKC ζ, indicating a potential regulatory function of ERK1 in cell polarization during early development of mouse embryos. CONCLUSIONS This study reveals the function of the mechanical behavior of embryos in cell polarization of early mammalian embryos. The relationship between cell polarization and blastocyst cavity expansion in early embryonic development provides a new understanding, thereby offering fresh insights for the screening and detection of indicators for normal blastocyst development.
Collapse
Affiliation(s)
- Zheng Guo
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xinxin Lv
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jianwen Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shiping Yue
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Du
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
4
|
Guo Z, Yao J, Zheng X, Cao J, Lv X, Gao Z, Guo S, Li H, Guan D, Li L, Qin D, Li D, Wang X, Tan M, Zhang J, Zhang Y, Wang B, Bu W, Li J, Zhao X, Meng F, Feng Y, Li L, Du J, Fan Y. Cavity oscillation drives pattern formation in early mammalian embryos. Cell Rep 2025; 44:115342. [PMID: 39985766 DOI: 10.1016/j.celrep.2025.115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 01/31/2025] [Indexed: 02/24/2025] Open
Abstract
During the second cell fate in mouse embryos, the inner cell mass (ICM) segregates into the spatially distinct epiblast (EPI) and primitive endoderm (PrE) layers. The mechanism driving this pattern formation, however, remains unresolved. Here, we report that, concomitant with the segregation process of EPI/PrE precursors starting from mid-blastocyst, the blastocyst cavity begins to oscillate cyclically with rapid contraction yet slow expansion, triggering a phase transition in the ICM to a fluid-like state. This asymmetric oscillation of the blastocyst cavity facilitates EPI/PrE segregation by enhancing cell-cell contact fluctuations within the ICM and initiating convergent cell flows, which induce movement of these two cell types in opposite directions, wherein PrE precursors move toward the ICM-lumen interface, whereas EPI precursors move toward the trophectoderm. Last, we found that both PDGFRα expression and YAP nuclear accumulation in PrE precursors increase in response to blastocyst cavity oscillation. This study reveals the foundational role of physical oscillation in driving embryonic pattern formation during early mammalian embryonic development.
Collapse
Affiliation(s)
- Zheng Guo
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jie Yao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xu Zheng
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jialing Cao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xinxin Lv
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Zheng Gao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Shuyu Guo
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Hangyu Li
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongshi Guan
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Dandan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dong Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoxiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Tan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jing Zhang
- Laboratory Animal Research Center, Tsinghua University, Beijing 100084, China
| | - Yanli Zhang
- Imaging Core Facility, Technology Center for Protein Science, Tsinghua University, Beijing 100084, China
| | - Bo Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning 810008, China
| | - Wanjuan Bu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jianwen Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xinbin Zhao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Fanzhe Meng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yue Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Du
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
5
|
Moghe P, Belousov R, Ichikawa T, Iwatani C, Tsukiyama T, Erzberger A, Hiiragi T. Coupling of cell shape, matrix and tissue dynamics ensures embryonic patterning robustness. Nat Cell Biol 2025; 27:408-423. [PMID: 39966670 PMCID: PMC11906357 DOI: 10.1038/s41556-025-01618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/20/2024] [Indexed: 02/20/2025]
Abstract
Tissue patterning coordinates morphogenesis, cell dynamics and fate specification. Understanding how precision in patterning is robustly achieved despite inherent developmental variability during mammalian embryogenesis remains a challenge. Here, based on cell dynamics quantification and simulation, we show how salt-and-pepper epiblast and primitive endoderm (PrE) cells pattern the inner cell mass of mouse blastocysts. Coupling cell fate and dynamics, PrE cells form apical polarity-dependent actin protrusions required for RAC1-dependent migration towards the surface of the fluid cavity, where PrE cells are trapped due to decreased tension. Concomitantly, PrE cells deposit an extracellular matrix gradient, presumably breaking the tissue-level symmetry and collectively guiding their own migration. Tissue size perturbations of mouse embryos and their comparison with monkey and human blastocysts further demonstrate that the fixed proportion of PrE/epiblast cells is optimal with respect to embryo size and tissue geometry and, despite variability, ensures patterning robustness during early mammalian development.
Collapse
Grants
- The Hiiragi laboratory was supported by the EMBL, and currently by the Hubrecht Institute, the European Research Council (ERC Advanced Grant “SelforganisingEmbryo” grant agreement 742732, ERC Advanced Grant “COORDINATION” grant agreement 101055287), Stichting LSH-TKI (LSHM21020), and Japan Society for the Promotion of Science (JSPS) KAKENHI grant numbers JP21H05038 and JP22H05166. The Erzberger laboratory is supported by the EMBL.
- European Molecular Biology Laboratory (EMBL Heidelberg)
- MEXT | Japan Society for the Promotion of Science (JSPS)
- T.I. was supported by the JSPS Overseas Research Fellowship
- The Erzberger laboratory is supported by the EMBL.
- The Hiiragi laboratory was supported by the EMBL, and currently by the Hubrecht Institute, the European Research Council (ERC Advanced Grant “SelforganisingEmbryo” grant agreement 742732, ERC Advanced Grant “COORDINATION” grant agreement 101055287), Stichting LSH-TKI (LSHM21020), and Japan Society for the Promotion of Science (JSPS) KAKENHI grant numbers JP21H05038 and JP22H05166.
Collapse
Affiliation(s)
- Prachiti Moghe
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, Netherlands
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Roman Belousov
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Takafumi Ichikawa
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chizuru Iwatani
- Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Tomoyuki Tsukiyama
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Anna Erzberger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Takashi Hiiragi
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, Netherlands.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
- Department of Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
6
|
Romero A, Walker BL, Krneta-Stankic V, Gerner-Mauro K, Youmans L, Miller RK. The dynamics of tubulogenesis in development and disease. Development 2025; 152:DEV202820. [PMID: 39959988 PMCID: PMC11883272 DOI: 10.1242/dev.202820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Tubes are crucial for the function of many organs in animals given their fundamental roles in transporting and exchanging substances to maintain homeostasis within an organism. Therefore, the development and maintenance of these tube-like structures within organs is a vital process. Tubes can form in diverse ways, and advances in our understanding of the molecular and cellular mechanisms underpinning these different modes of tubulogenesis have significant impacts in many biological contexts, including development and disease. This Review discusses recent progress in understanding developmental mechanisms underlying tube formation.
Collapse
Affiliation(s)
- Adrian Romero
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Brandy L. Walker
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX 77030, USA
| | - Vanja Krneta-Stankic
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kamryn Gerner-Mauro
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Baylor College of Medicine, Program in Development, Disease Models & Therapeutics, Houston, TX 77030, USA
| | - Lydia Youmans
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Rachel K. Miller
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX 77030, USA
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Molecular and Translational Biology, Houston, TX 77030, USA
| |
Collapse
|
7
|
Srinivas S, Watanabe T. Establishment of early embryonic lineages and the basic body plan. KAUFMAN’S ATLAS OF MOUSE DEVELOPMENT SUPPLEMENT 2025:67-77. [DOI: 10.1016/b978-0-443-23739-3.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Ramirez Sierra MA, Sokolowski TR. AI-powered simulation-based inference of a genuinely spatial-stochastic gene regulation model of early mouse embryogenesis. PLoS Comput Biol 2024; 20:e1012473. [PMID: 39541410 PMCID: PMC11614244 DOI: 10.1371/journal.pcbi.1012473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 12/03/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding how multicellular organisms reliably orchestrate cell-fate decisions is a central challenge in developmental biology, particularly in early mammalian development, where tissue-level differentiation arises from seemingly cell-autonomous mechanisms. In this study, we present a multi-scale, spatial-stochastic simulation framework for mouse embryogenesis, focusing on inner cell mass (ICM) differentiation into epiblast (EPI) and primitive endoderm (PRE) at the blastocyst stage. Our framework models key regulatory and tissue-scale interactions in a biophysically realistic fashion, capturing the inherent stochasticity of intracellular gene expression and intercellular signaling, while efficiently simulating these processes by advancing event-driven simulation techniques. Leveraging the power of Simulation-Based Inference (SBI) through the AI-driven Sequential Neural Posterior Estimation (SNPE) algorithm, we conduct a large-scale Bayesian inferential analysis to identify parameter sets that faithfully reproduce experimentally observed features of ICM specification. Our results reveal mechanistic insights into how the combined action of autocrine and paracrine FGF4 signaling coordinates stochastic gene expression at the cellular scale to achieve robust and reproducible ICM patterning at the tissue scale. We further demonstrate that the ICM exhibits a specific time window of sensitivity to exogenous FGF4, enabling lineage proportions to be adjusted based on timing and dosage, thereby extending current experimental findings and providing quantitative predictions for both mutant and wild-type ICM systems. Notably, FGF4 signaling not only ensures correct EPI-PRE lineage proportions but also enhances ICM resilience to perturbations, reducing fate-proportioning errors by 10-20% compared to a purely cell-autonomous system. Additionally, we uncover a surprising role for variability in intracellular initial conditions, showing that high gene-expression heterogeneity can improve both the accuracy and precision of cell-fate proportioning, which remains robust when fewer than 25% of the ICM population experiences perturbed initial conditions. Our work offers a comprehensive, spatial-stochastic description of the biochemical processes driving ICM differentiation and identifies the necessary conditions for its robust unfolding. It also provides a framework for future exploration of similar spatial-stochastic systems in developmental biology.
Collapse
Affiliation(s)
- Michael Alexander Ramirez Sierra
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
- Faculty of Computer Science and Mathematics, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | | |
Collapse
|
9
|
Huang H, Gao S, Bao M. Exploring Mechanical Forces Shaping Self-Organization and Morphogenesis During Early Embryo Development. Annu Rev Cell Dev Biol 2024; 40:75-96. [PMID: 38608312 DOI: 10.1146/annurev-cellbio-120123-105748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Embryonic development is a dynamic process orchestrated by a delicate interplay of biochemical and biophysical factors. While the role of genetics and biochemistry in embryogenesis has been extensively studied, recent research has highlighted the significance of mechanical regulation in shaping and guiding this intricate process. Here, we provide an overview of the current understanding of the mechanical regulation of embryo development. We explore how mechanical forces generated by cells and tissues play a crucial role in driving the development of different stages. We examine key morphogenetic processes such as compaction, blastocyst formation, implantation, and egg cylinder formation, and discuss the mechanical mechanisms and cues involved. By synthesizing the current body of literature, we highlight the emerging concepts and open questions in the field of mechanical regulation. We aim to provide an overview of the field, inspiring future investigations and fostering a deeper understanding of the mechanical aspects of embryo development.
Collapse
Affiliation(s)
- Hong Huang
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China;
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China;
| | - Min Bao
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China;
| |
Collapse
|
10
|
Schliffka MF, Dumortier JG, Pelzer D, Mukherjee A, Maître JL. Inverse blebs operate as hydraulic pumps during mouse blastocyst formation. Nat Cell Biol 2024; 26:1669-1677. [PMID: 39261717 DOI: 10.1038/s41556-024-01501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 08/05/2024] [Indexed: 09/13/2024]
Abstract
During preimplantation development, mouse embryos form a fluid-filled lumen. Pressurized fluid fractures cell-cell contacts and accumulates into pockets, which coarsen into a single lumen. How the embryo controls intercellular fluid movement during coarsening is unknown. Here we report inverse blebs growing into cells at adhesive contacts. Throughout the embryo we observed hundreds of inverse blebs, each filling with intercellular fluid and retracting within a minute. Inverse blebs grow due to pressure build-up resulting from fluid accumulation and cell-cell adhesion, which locally confines fluid. Inverse blebs retract due to actomyosin contraction, practically pushing fluid within the intercellular space. Importantly, inverse blebs occur infrequently at contacts formed by multiple cells, which effectively serve as fluid sinks. Manipulation of the embryo topology reveals that without sinks inverse blebs pump fluid into one another in futile cycles. We propose that inverse blebs operate as hydraulic pumps to promote luminal coarsening, thereby constituting an instrument used by cells to control fluid movement.
Collapse
Affiliation(s)
- Markus F Schliffka
- Institut Curie, CNRS UMR3215, INSERM U934, PSL Research University and Sorbonne Université, Paris, France
- Carl Zeiss SAS, Marly-le-Roy, France
| | - Julien G Dumortier
- Institut Curie, CNRS UMR3215, INSERM U934, PSL Research University and Sorbonne Université, Paris, France
| | - Diane Pelzer
- Institut Curie, CNRS UMR3215, INSERM U934, PSL Research University and Sorbonne Université, Paris, France
| | - Arghyadip Mukherjee
- Laboratoire de physique de l'École Normale Supérieure, CNRS UMR 8023, PSL Research University, Sorbonne Université and Université Paris Cité, Paris, France.
| | - Jean-Léon Maître
- Institut Curie, CNRS UMR3215, INSERM U934, PSL Research University and Sorbonne Université, Paris, France.
| |
Collapse
|
11
|
O’Loughlin E, Zhang Y, Chiasson-MacKenzie C, Dave P, Rheinbay E, Stott S, McClatchey AI. Distinct phenotypic consequences of cholangiocarcinoma-associated FGFR2 alterations depend on biliary epithelial maturity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610360. [PMID: 39282270 PMCID: PMC11398422 DOI: 10.1101/2024.08.30.610360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Epithelial cancers disrupt tissue architecture and are often driven by mutations in genes that normally play important roles in epithelial morphogenesis. The intrahepatic biliary system is an epithelial tubular network that forms within the developing liver via the de novo initiation and expansion of apical lumens. Intrahepatic biliary tumors are often driven by different types of mutations in the FGFR2 receptor tyrosine kinase which plays important roles in epithelial morphogenesis in other developmental settings. Using a physiologic and quantitative 3D model we have found that FGFR signaling is important for biliary morphogenesis and that oncogenic FGFR2 mutants disrupt biliary architecture. Importantly, we found that both the trafficking and signaling of normal FGFR2 and the phenotypic consequences of FGFR2 mutants are influenced by the epithelial state of the cell. Unexpectedly, we found that different tumor-driving FGFR2 mutants disrupt biliary morphogenesis in completely different and clinically relevant ways, informing our understanding of morphogenesis and tumorigenesis and highlighting the importance of convergent studies of both.
Collapse
Affiliation(s)
| | | | | | - P Dave
- MGH Krantz Family Center for Cancer Research, Charlestown, MA 02129, Harvard Medical School, Boston MA 02112
| | - E Rheinbay
- MGH Krantz Family Center for Cancer Research, Charlestown, MA 02129, Harvard Medical School, Boston MA 02112
| | - S Stott
- MGH Krantz Family Center for Cancer Research, Charlestown, MA 02129, Harvard Medical School, Boston MA 02112
| | - AI McClatchey
- MGH Krantz Family Center for Cancer Research, Charlestown, MA 02129, Harvard Medical School, Boston MA 02112
| |
Collapse
|
12
|
Piszker W, Simunovic M. The fusion of physics and biology in early mammalian embryogenesis. Curr Top Dev Biol 2024; 160:31-64. [PMID: 38937030 DOI: 10.1016/bs.ctdb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Biomechanics in embryogenesis is a dynamic field intertwining the physical forces and biological processes that shape the first days of a mammalian embryo. From the first cell fate bifurcation during blastulation to the complex symmetry breaking and tissue remodeling in gastrulation, mechanical cues appear critical in cell fate decisions and tissue patterning. Recent strides in mouse and human embryo culture, stem cell modeling of mammalian embryos, and biomaterial design have shed light on the role of cellular forces, cell polarization, and the extracellular matrix in influencing cell differentiation and morphogenesis. This chapter highlights the essential functions of biophysical mechanisms in blastocyst formation, embryo implantation, and early gastrulation where the interplay between the cytoskeleton and extracellular matrix stiffness orchestrates the intricacies of embryogenesis and placenta specification. The advancement of in vitro models like blastoids, gastruloids, and other types of embryoids, has begun to faithfully recapitulate human development stages, offering new avenues for exploring the biophysical underpinnings of early development. The integration of synthetic biology and advanced biomaterials is enhancing the precision with which we can mimic and study these processes. Looking ahead, we emphasize the potential of CRISPR-mediated genomic perturbations coupled with live imaging to uncover new mechanosensitive pathways and the application of engineered biomaterials to fine-tune the mechanical conditions conducive to embryonic development. This synthesis not only bridges the gap between experimental models and in vivo conditions to advancing fundamental developmental biology of mammalian embryogenesis, but also sets the stage for leveraging biomechanical insights to inform regenerative medicine.
Collapse
Affiliation(s)
- Walter Piszker
- Department of Chemical Engineering, Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, NY, United States; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, United States
| | - Mijo Simunovic
- Department of Chemical Engineering, Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, NY, United States; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, United States; Department of Genetics and Development, Columbia Irving Medical Center, New York, NY, United States.
| |
Collapse
|
13
|
Alasaadi DN, Mayor R. Mechanically guided cell fate determination in early development. Cell Mol Life Sci 2024; 81:242. [PMID: 38811420 PMCID: PMC11136904 DOI: 10.1007/s00018-024-05272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
Cell fate determination, a vital process in early development and adulthood, has been the focal point of intensive investigation over the past decades. Its importance lies in its critical role in shaping various and diverse cell types during embryonic development and beyond. Exploration of cell fate determination started with molecular and genetic investigations unveiling central signaling pathways and molecular regulatory networks. The molecular studies into cell fate determination yielded an overwhelming amount of information invoking the notion of the complexity of cell fate determination. However, recent advances in the framework of biomechanics have introduced a paradigm shift in our understanding of this intricate process. The physical forces and biochemical interplay, known as mechanotransduction, have been identified as a pivotal drive influencing cell fate decisions. Certainly, the integration of biomechanics into the process of cell fate pushed our understanding of the developmental process and potentially holds promise for therapeutic applications. This integration was achieved by identifying physical forces like hydrostatic pressure, fluid dynamics, tissue stiffness, and topography, among others, and examining their interplay with biochemical signals. This review focuses on recent advances investigating the relationship between physical cues and biochemical signals that control cell fate determination during early embryonic development.
Collapse
Affiliation(s)
- Delan N Alasaadi
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
14
|
Nakagawa S, Carnevali D, Tan X, Alvarez MJ, Parfitt DE, Di Vicino U, Arumugam K, Shin W, Aranda S, Normanno D, Sebastian-Perez R, Cannatá C, Cortes P, Neguembor MV, Shen MM, Califano A, Cosma MP. The Wnt-dependent master regulator NKX1-2 controls mouse pre-implantation development. Stem Cell Reports 2024; 19:689-709. [PMID: 38701778 PMCID: PMC11103935 DOI: 10.1016/j.stemcr.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Embryo size, specification, and homeostasis are regulated by a complex gene regulatory and signaling network. Here we used gene expression signatures of Wnt-activated mouse embryonic stem cell (mESC) clones to reverse engineer an mESC regulatory network. We identify NKX1-2 as a novel master regulator of preimplantation embryo development. We find that Nkx1-2 inhibition reduces nascent RNA synthesis, downregulates genes controlling ribosome biogenesis, RNA translation, and transport, and induces severe alteration of nucleolus structure, resulting in the exclusion of RNA polymerase I from nucleoli. In turn, NKX1-2 loss of function leads to chromosome missegregation in the 2- to 4-cell embryo stages, severe decrease in blastomere numbers, alterations of tight junctions (TJs), and impairment of microlumen coarsening. Overall, these changes impair the blastocoel expansion-collapse cycle and embryo cavitation, leading to altered lineage specification and developmental arrest.
Collapse
Affiliation(s)
- Shoma Nakagawa
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Davide Carnevali
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Xiangtian Tan
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Mariano J Alvarez
- Department of Systems Biology, Columbia University, New York, NY, USA; DarwinHealth Inc, New York, NY, USA
| | - David-Emlyn Parfitt
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Umberto Di Vicino
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Karthik Arumugam
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - William Shin
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Sergi Aranda
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Davide Normanno
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Institute of Human Genetics, CNRS, Montpellier, France
| | - Ruben Sebastian-Perez
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Chiara Cannatá
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Paola Cortes
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Maria Victoria Neguembor
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Michael M Shen
- Department of Systems Biology, Columbia University, New York, NY, USA; Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Chan Zuckerberg Biohub New York, New York, NY, USA.
| | - Maria Pia Cosma
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg.Lluis Companys 23, 08010 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu District, Guangzhou 510080, China.
| |
Collapse
|
15
|
Indana D, Zakharov A, Lim Y, Dunn AR, Bhutani N, Shenoy VB, Chaudhuri O. Lumen expansion is initially driven by apical actin polymerization followed by osmotic pressure in a human epiblast model. Cell Stem Cell 2024; 31:640-656.e8. [PMID: 38701758 PMCID: PMC11323070 DOI: 10.1016/j.stem.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/08/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
Post-implantation, the pluripotent epiblast in a human embryo forms a central lumen, paving the way for gastrulation. Osmotic pressure gradients are considered the drivers of lumen expansion across development, but their role in human epiblasts is unknown. Here, we study lumenogenesis in a pluripotent-stem-cell-based epiblast model using engineered hydrogels. We find that leaky junctions prevent osmotic pressure gradients in early epiblasts and, instead, forces from apical actin polymerization drive lumen expansion. Once the lumen reaches a radius of ∼12 μm, tight junctions mature, and osmotic pressure gradients develop to drive further growth. Computational modeling indicates that apical actin polymerization into a stiff network mediates initial lumen expansion and predicts a transition to pressure-driven growth in larger epiblasts to avoid buckling. Human epiblasts show transcriptional signatures consistent with these mechanisms. Thus, actin polymerization drives lumen expansion in the human epiblast and may serve as a general mechanism of early lumenogenesis.
Collapse
Affiliation(s)
- Dhiraj Indana
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Andrei Zakharov
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Youngbin Lim
- Cell Sciences Imaging Facility (CSIF), Beckman Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Nidhi Bhutani
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA; Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Chousal JN, Morey R, Srinivasan S, Lee K, Zhang W, Yeo AL, To C, Cho K, Garzo VG, Parast MM, Laurent LC, Cook-Andersen H. Molecular profiling of human blastocysts reveals primitive endoderm defects among embryos of decreased implantation potential. Cell Rep 2024; 43:113701. [PMID: 38277271 DOI: 10.1016/j.celrep.2024.113701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/12/2023] [Accepted: 01/05/2024] [Indexed: 01/28/2024] Open
Abstract
Human embryo implantation is remarkably inefficient, and implantation failure remains among the greatest obstacles in treating infertility. Gene expression data from human embryos have accumulated rapidly in recent years; however, identification of the subset of genes that determine successful implantation remains a challenge. We leverage clinical morphologic grading-known for decades to correlate with implantation potential-and transcriptome analyses of matched embryonic and abembryonic samples to identify factors and pathways enriched and depleted in human blastocysts of good and poor morphology. Unexpectedly, we discovered that the greatest difference was in the state of extraembryonic primitive endoderm (PrE) development, with relative deficiencies in poor morphology blastocysts. Our results suggest that implantation success is most strongly influenced by the embryonic compartment and that deficient PrE development is common among embryos with decreased implantation potential. Our study provides a valuable resource for those investigating the markers and mechanisms of human embryo implantation.
Collapse
Affiliation(s)
- Jennifer N Chousal
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert Morey
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Srimeenakshi Srinivasan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katherine Lee
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wei Zhang
- Reproductive Partners Fertility Center - San Diego, La Jolla, CA 92037, USA
| | - Ana Lisa Yeo
- Reproductive Partners Fertility Center - San Diego, La Jolla, CA 92037, USA
| | - Cuong To
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kyucheol Cho
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - V Gabriel Garzo
- Reproductive Partners Fertility Center - San Diego, La Jolla, CA 92037, USA
| | - Mana M Parast
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Heidi Cook-Andersen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
17
|
Fluks M, Collier R, Walewska A, Bruce AW, Ajduk A. How great thou ART: biomechanical properties of oocytes and embryos as indicators of quality in assisted reproductive technologies. Front Cell Dev Biol 2024; 12:1342905. [PMID: 38425501 PMCID: PMC10902081 DOI: 10.3389/fcell.2024.1342905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Assisted Reproductive Technologies (ART) have revolutionized infertility treatment and animal breeding, but their success largely depends on selecting high-quality oocytes for fertilization and embryos for transfer. During preimplantation development, embryos undergo complex morphogenetic processes, such as compaction and cavitation, driven by cellular forces dependent on cytoskeletal dynamics and cell-cell interactions. These processes are pivotal in dictating an embryo's capacity to implant and progress to full-term development. Hence, a comprehensive grasp of the biomechanical attributes characterizing healthy oocytes and embryos is essential for selecting those with higher developmental potential. Various noninvasive techniques have emerged as valuable tools for assessing biomechanical properties without disturbing the oocyte or embryo physiological state, including morphokinetics, analysis of cytoplasmic movement velocity, or quantification of cortical tension and elasticity using microaspiration. By shedding light on the cytoskeletal processes involved in chromosome segregation, cytokinesis, cellular trafficking, and cell adhesion, underlying oogenesis, and embryonic development, this review explores the significance of embryo biomechanics in ART and its potential implications for improving clinical IVF outcomes, offering valuable insights and research directions to enhance oocyte and embryo selection procedures.
Collapse
Affiliation(s)
- Monika Fluks
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Rebecca Collier
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Agnieszka Walewska
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Alexander W. Bruce
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Anna Ajduk
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
18
|
Schröter C, Stapornwongkul KS, Trivedi V. Local cellular interactions during the self-organization of stem cells. Curr Opin Cell Biol 2023; 85:102261. [PMID: 39491308 DOI: 10.1016/j.ceb.2023.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 11/05/2024]
Abstract
Stem cell models for early mammalian development offer new experimental opportunities to access spatio-temporal details of the cell-cell interactions that govern cell differentiation and tissue patterning. This review summarizes recent studies that have used stem cell models to investigate the spatial range of developmental cell-cell communication systems. A key message from these works is that important biochemical signals for cell differentiation in these systems, such as Nodal and fibroblast growth factors (FGFs), often act over short distances of only a few cell diameters. The formation of long-range patterns at the tissue scale associated with these signals then results from signal relays and cell rearrangements. The modular view of differentiation and patterning emerging from research on stem cell models can offer a fresh perspective on the corresponding processes in the embryo.
Collapse
Affiliation(s)
- Christian Schröter
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany.
| | - Kristina S Stapornwongkul
- Tissue Biology and Disease Modelling, European Molecular Biology Laboratory (EMBL) Barcelona, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Vikas Trivedi
- Tissue Biology and Disease Modelling, European Molecular Biology Laboratory (EMBL) Barcelona, Dr. Aiguader 88, 08003, Barcelona, Spain; Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| |
Collapse
|
19
|
Zhang Y, Li X, Gao S, Liao Y, Luo Y, Liu M, Bian Y, Xiong H, Yue Y, He A. Genetic reporter for live tracing fluid flow forces during cell fate segregation in mouse blastocyst development. Cell Stem Cell 2023; 30:1110-1123.e9. [PMID: 37541214 DOI: 10.1016/j.stem.2023.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/02/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
Mechanical forces are known to be important in mammalian blastocyst formation; however, due to limited tools, specific force inputs and how they relay to first cell fate control of inner cell mass (ICM) and/or trophectoderm (TE) remain elusive. Combining in toto live imaging and various perturbation experiments, we demonstrate and measure fluid flow forces existing in the mouse blastocyst cavity and identify Klf2(Krüppel-like factor 2) as a fluid force reporter with force-responsive enhancers. Long-term live imaging and lineage reconstructions reveal that blastomeres subject to higher fluid flow forces adopt ICM cell fates. These are reinforced by internal ferrofluid-induced flow force assays. We also utilize ex vivo fluid flow force mimicking and pharmacological perturbations to confirm mechanosensing specificity. Together, we report a genetically encoded reporter for continuously monitoring fluid flow forces and cell fate decisions and provide a live imaging framework to infer force information enriched lineage landscape during development. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Youdong Zhang
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xin Li
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shu Gao
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuanhui Liao
- School of Software and Microelectronics, Peking University, Beijing 100871, China
| | - Yingjie Luo
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Min Liu
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yunkun Bian
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Haiqing Xiong
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yanzhu Yue
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Department of Cell Fate and Diseases, Jilin Provincial Key Laboratory of Women's Reproductive Health, the First Hospital of Jilin University, Changchun, Jilin 130061, China.
| | - Aibin He
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
20
|
Hartmann J, Mayor R. Self-organized collective cell behaviors as design principles for synthetic developmental biology. Semin Cell Dev Biol 2023; 141:63-73. [PMID: 35450765 DOI: 10.1016/j.semcdb.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Over the past two decades, molecular cell biology has graduated from a mostly analytic science to one with substantial synthetic capability. This success is built on a deep understanding of the structure and function of biomolecules and molecular mechanisms. For synthetic biology to achieve similar success at the scale of tissues and organs, an equally deep understanding of the principles of development is required. Here, we review some of the central concepts and recent progress in tissue patterning, morphogenesis and collective cell migration and discuss their value for synthetic developmental biology, emphasizing in particular the power of (guided) self-organization and the role of theoretical advances in making developmental insights applicable in synthesis.
Collapse
Affiliation(s)
- Jonas Hartmann
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
21
|
Speckhart SL, Oliver MA, Ealy AD. Developmental Hurdles That Can Compromise Pregnancy during the First Month of Gestation in Cattle. Animals (Basel) 2023; 13:1760. [PMID: 37889637 PMCID: PMC10251927 DOI: 10.3390/ani13111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 10/29/2023] Open
Abstract
Several key developmental events are associated with early embryonic pregnancy losses in beef and dairy cows. These developmental problems are observed at a greater frequency in pregnancies generated from in-vitro-produced bovine embryos. This review describes critical problems that arise during oocyte maturation, fertilization, early embryonic development, compaction and blastulation, embryonic cell lineage specification, elongation, gastrulation, and placentation. Additionally, discussed are potential remediation strategies, but unfortunately, corrective actions are not available for several of the problems being discussed. Further research is needed to produce bovine embryos that have a greater likelihood of surviving to term.
Collapse
Affiliation(s)
| | | | - Alan D. Ealy
- School of Animal Science, Virginia Tech, Blacksburg, VA 24061, USA; (S.L.S.); (M.A.O.)
| |
Collapse
|
22
|
Huljev K, Shamipour S, Pinheiro D, Preusser F, Steccari I, Sommer CM, Naik S, Heisenberg CP. A hydraulic feedback loop between mesendoderm cell migration and interstitial fluid relocalization promotes embryonic axis formation in zebrafish. Dev Cell 2023; 58:582-596.e7. [PMID: 36931269 DOI: 10.1016/j.devcel.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/31/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Interstitial fluid (IF) accumulation between embryonic cells is thought to be important for embryo patterning and morphogenesis. Here, we identify a positive mechanical feedback loop between cell migration and IF relocalization and find that it promotes embryonic axis formation during zebrafish gastrulation. We show that anterior axial mesendoderm (prechordal plate [ppl]) cells, moving in between the yolk cell and deep cell tissue to extend the embryonic axis, compress the overlying deep cell layer, thereby causing IF to flow from the deep cell layer to the boundary between the yolk cell and the deep cell layer, directly ahead of the advancing ppl. This IF relocalization, in turn, facilitates ppl cell protrusion formation and migration by opening up the space into which the ppl moves and, thereby, the ability of the ppl to trigger IF relocalization by pushing against the overlying deep cell layer. Thus, embryonic axis formation relies on a hydraulic feedback loop between cell migration and IF relocalization.
Collapse
Affiliation(s)
- Karla Huljev
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Shayan Shamipour
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Diana Pinheiro
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Friedrich Preusser
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück centre for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Irene Steccari
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Suyash Naik
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | |
Collapse
|
23
|
Athanasouli P, Balli M, De Jaime-Soguero A, Boel A, Papanikolaou S, van der Veer BK, Janiszewski A, Vanhessche T, Francis A, El Laithy Y, Nigro AL, Aulicino F, Koh KP, Pasque V, Cosma MP, Verfaillie C, Zwijsen A, Heindryckx B, Nikolaou C, Lluis F. The Wnt/TCF7L1 transcriptional repressor axis drives primitive endoderm formation by antagonizing naive and formative pluripotency. Nat Commun 2023; 14:1210. [PMID: 36869101 PMCID: PMC9984534 DOI: 10.1038/s41467-023-36914-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Early during preimplantation development and in heterogeneous mouse embryonic stem cells (mESC) culture, pluripotent cells are specified towards either the primed epiblast or the primitive endoderm (PE) lineage. Canonical Wnt signaling is crucial for safeguarding naive pluripotency and embryo implantation, yet the role and relevance of canonical Wnt inhibition during early mammalian development remains unknown. Here, we demonstrate that transcriptional repression exerted by Wnt/TCF7L1 promotes PE differentiation of mESCs and in preimplantation inner cell mass. Time-series RNA sequencing and promoter occupancy data reveal that TCF7L1 binds and represses genes encoding essential naive pluripotency factors and indispensable regulators of the formative pluripotency program, including Otx2 and Lef1. Consequently, TCF7L1 promotes pluripotency exit and suppresses epiblast lineage formation, thereby driving cells into PE specification. Conversely, TCF7L1 is required for PE specification as deletion of Tcf7l1 abrogates PE differentiation without restraining epiblast priming. Taken together, our study underscores the importance of transcriptional Wnt inhibition in regulating lineage specification in ESCs and preimplantation embryo development as well as identifies TCF7L1 as key regulator of this process.
Collapse
Affiliation(s)
- Paraskevi Athanasouli
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Martina Balli
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Anchel De Jaime-Soguero
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.
| | - Annekatrien Boel
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department for Human Structure and Repair, Ghent University Hospital, 9000, Ghent, Belgium
| | - Sofia Papanikolaou
- Department of Rheumatology, Clinical Immunology, Medical School, University of Crete, 70013, Heraklion, Greece.,Computational Genomics Group, Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Athens, Greece
| | - Bernard K van der Veer
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Adrian Janiszewski
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Tijs Vanhessche
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Annick Francis
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Youssef El Laithy
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Antonio Lo Nigro
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Francesco Aulicino
- Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003, Barcelona, Spain
| | - Kian Peng Koh
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Vincent Pasque
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.,KU Leuven Institute for Single-Cell Omics (LISCO), 3000, Leuven, Belgium
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003, Barcelona, Spain.,ICREA, Pg. Lluis Companys 23, Barcelona, 08010, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Catherine Verfaillie
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - An Zwijsen
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Björn Heindryckx
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department for Human Structure and Repair, Ghent University Hospital, 9000, Ghent, Belgium
| | - Christoforos Nikolaou
- Computational Genomics Group, Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Athens, Greece
| | - Frederic Lluis
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.
| |
Collapse
|
24
|
Levic DS, Bagnat M. Polarized transport of membrane and secreted proteins during lumen morphogenesis. Semin Cell Dev Biol 2023; 133:65-73. [PMID: 35307284 PMCID: PMC9481742 DOI: 10.1016/j.semcdb.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
A ubiquitous feature of animal development is the formation of fluid-filled cavities or lumina, which transport gases and fluids across tissues and organs. Among different species, lumina vary drastically in size, scale, and complexity. However, all lumen formation processes share key morphogenetic principles that underly their development. Fundamentally, a lumen simply consists of epithelial cells that encapsulate a continuous internal space, and a common way of building a lumen is via opening and enlarging by filling it with fluid and/or macromolecules. Here, we discuss how polarized targeting of membrane and secreted proteins regulates lumen formation, mainly focusing on ion transporters in vertebrate model systems. We also discuss mechanistic differences observed among invertebrates and vertebrates and describe how the unique properties of the Na+/K+-ATPase and junctional proteins can promote polarization of immature epithelia to build lumina de novo in developing organs.
Collapse
Affiliation(s)
- Daniel S Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
25
|
De Renzis S, Sokac AM. Editorial: Membrane dynamics during tissue morphogenesis and differentiation. Semin Cell Dev Biol 2023; 133:1-2. [PMID: 35753907 DOI: 10.1016/j.semcdb.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Stefano De Renzis
- Developmental Biology Unit, European Molecular Biology Laboratory Heidelberg, 69117 Heidelberg, Germany.
| | - Anna Marie Sokac
- Department of Cell and Developmental Biology, University of Illinois at Urbana, Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
26
|
Chowdhary S, Hadjantonakis AK. Journey of the mouse primitive endoderm: from specification to maturation. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210252. [PMID: 36252215 PMCID: PMC9574636 DOI: 10.1098/rstb.2021.0252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
The blastocyst is a conserved stage and distinct milestone in the development of the mammalian embryo. Blastocyst stage embryos comprise three cell lineages which arise through two sequential binary cell fate specification steps. In the first, extra-embryonic trophectoderm (TE) cells segregate from inner cell mass (ICM) cells. Subsequently, ICM cells acquire a pluripotent epiblast (Epi) or extra-embryonic primitive endoderm (PrE, also referred to as hypoblast) identity. In the mouse, nascent Epi and PrE cells emerge in a salt-and-pepper distribution in the early blastocyst and are subsequently sorted into adjacent tissue layers by the late blastocyst stage. Epi cells cluster at the interior of the ICM, while PrE cells are positioned on its surface interfacing the blastocyst cavity, where they display apicobasal polarity. As the embryo implants into the maternal uterus, cells at the periphery of the PrE epithelium, at the intersection with the TE, break away and migrate along the TE as they mature into parietal endoderm (ParE). PrE cells remaining in association with the Epi mature into visceral endoderm. In this review, we discuss our current understanding of the PrE from its specification to its maturation. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Sayali Chowdhary
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
27
|
Biswas A, Ng BH, Prabhakaran VS, Chan CJ. Squeezing the eggs to grow: The mechanobiology of mammalian folliculogenesis. Front Cell Dev Biol 2022; 10:1038107. [PMID: 36531957 PMCID: PMC9756970 DOI: 10.3389/fcell.2022.1038107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/16/2022] [Indexed: 08/25/2023] Open
Abstract
The formation of functional eggs (oocyte) in ovarian follicles is arguably one of the most important events in early mammalian development since the oocytes provide the bulk genetic and cytoplasmic materials for successful reproduction. While past studies have identified many genes that are critical to normal ovarian development and function, recent studies have highlighted the role of mechanical force in shaping folliculogenesis. In this review, we discuss the underlying mechanobiological principles and the force-generating cellular structures and extracellular matrix that control the various stages of follicle development. We also highlight emerging techniques that allow for the quantification of mechanical interactions and follicular dynamics during development, and propose new directions for future studies in the field. We hope this review will provide a timely and useful framework for future understanding of mechano-signalling pathways in reproductive biology and diseases.
Collapse
Affiliation(s)
- Arikta Biswas
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Boon Heng Ng
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | | | - Chii Jou Chan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
28
|
Fuji K, Tanida S, Sano M, Nonomura M, Riveline D, Honda H, Hiraiwa T. Computational approaches for simulating luminogenesis. Semin Cell Dev Biol 2022; 131:173-185. [PMID: 35773151 DOI: 10.1016/j.semcdb.2022.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
Lumens, liquid-filled cavities surrounded by polarized tissue cells, are elementary units involved in the morphogenesis of organs. Theoretical modeling and computations, which can integrate various factors involved in biophysics of morphogenesis of cell assembly and lumens, may play significant roles to elucidate the mechanisms in formation of such complex tissue with lumens. However, up to present, it has not been documented well what computational approaches or frameworks can be applied for this purpose and how we can choose the appropriate approach for each problem. In this review, we report some typical lumen morphologies and basic mechanisms for the development of lumens, focusing on three keywords - mechanics, hydraulics and geometry - while outlining pros and cons of the current main computational strategies. We also describe brief guidance of readouts, i.e., what we should measure in experiments to make the comparison with the model's assumptions and predictions.
Collapse
Affiliation(s)
- Kana Fuji
- Universal Biology Institute, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sakurako Tanida
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Masaki Sano
- Institute of Natural Sciences, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Makiko Nonomura
- Department of Mathematical Information Engineering, College of Industrial Technology, Nihon University, 1-2-1 Izumicho, Narashino-shi, Chiba 275-8575, Japan
| | - Daniel Riveline
- Laboratory of Cell Physics IGBMC, CNRS, INSERM and Université de Strasbourg, Strasbourg, France
| | - Hisao Honda
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine Kobe University, Kobe, Hyogo, Japan
| | - Tetsuya Hiraiwa
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore.
| |
Collapse
|
29
|
Choudhury MI, Benson MA, Sun SX. Trans-epithelial fluid flow and mechanics of epithelial morphogenesis. Semin Cell Dev Biol 2022; 131:146-159. [PMID: 35659163 DOI: 10.1016/j.semcdb.2022.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022]
Abstract
Active fluid transport across epithelial monolayers is emerging as a major driving force of tissue morphogenesis in a variety of healthy and diseased systems, as well as during embryonic development. Cells use directional transport of ions and osmotic gradients to drive fluid flow across the cell surface, in the process also building up fluid pressure. The basic physics of this process is described by the osmotic engine model, which also underlies actin-independent cell migration. Recently, the trans-epithelial fluid flux and the hydraulic pressure gradient have been explicitly measured for a variety of cellular and tissue model systems across various species. For the kidney, it was shown that tubular epithelial cells behave as active mechanical fluid pumps: the trans-epithelial fluid flux depends on the hydraulic pressure difference across the epithelial layer. When a stall pressure is reached, the fluid flux vanishes. Hydraulic forces generated from active fluid pumping are important in tissue morphogenesis and homeostasis, and could also underlie multiple morphogenic events seen in other developmental contexts. In this review, we highlight findings that examined the role of trans-epithelial fluid flux and hydraulic pressure gradient in driving tissue-scale morphogenesis. We also review organ pathophysiology due to impaired fluid pumping and the loss of hydraulic pressure sensing at the cellular scale. Finally, we draw an analogy between cellular fluidic pumps and a connected network of water pumps in a city. The dynamics of fluid transport in an active and adaptive network is determined globally at the systemic level, and transport in such a network is best when each pump is operating at its optimal efficiency.
Collapse
Affiliation(s)
- Mohammad Ikbal Choudhury
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States; Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, United States; Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Morgan A Benson
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, United States; Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Sean X Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States; Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, United States; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218, United States.
| |
Collapse
|
30
|
Carleton AE, Duncan MC, Taniguchi K. Human epiblast lumenogenesis: From a cell aggregate to a lumenal cyst. Semin Cell Dev Biol 2022; 131:117-123. [PMID: 35637065 PMCID: PMC9529837 DOI: 10.1016/j.semcdb.2022.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
The formation of a central lumen in the human epiblast is a critical step for development. However, because the lumen forms in the epiblast coincident with implantation, the molecular and cellular events of this early lumenogenesis process cannot be studied in vivo. Recent developments using new model systems have revealed insight into the underpinnings of epiblast formation. To provide an up-to-date comprehensive review of human epiblast lumenogenesis, we highlight recent findings from human and mouse models with an emphasis on new molecular understanding of a newly described apicosome compartment, a novel 'formative' state of pluripotency that coordinates with epiblast polarization, and new evidence about the physical and polarized trafficking mechanisms contributing to lumenogenesis.
Collapse
Affiliation(s)
- Amber E. Carleton
- Departments of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin USA
| | - Mara C. Duncan
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan USA,Co-corresponding authors
| | - Kenichiro Taniguchi
- Departments of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin USA,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin USA,Co-corresponding authors
| |
Collapse
|
31
|
Chugh M, Munjal A, Megason SG. Hydrostatic pressure as a driver of cell and tissue morphogenesis. Semin Cell Dev Biol 2022; 131:134-145. [PMID: 35534334 PMCID: PMC9529827 DOI: 10.1016/j.semcdb.2022.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022]
Abstract
Morphogenesis, the process by which tissues develop into functional shapes, requires coordinated mechanical forces. Most current literature ascribes contractile forces derived from actomyosin networks as the major driver of tissue morphogenesis. Recent works from diverse species have shown that pressure derived from fluids can generate deformations necessary for tissue morphogenesis. In this review, we discuss how hydrostatic pressure is generated at the cellular and tissue level and how the pressure can cause deformations. We highlight and review findings demonstrating the mechanical roles of pressures from fluid-filled lumens and viscous gel-like components of the extracellular matrix. We also emphasise the interactions and mechanochemical feedbacks between extracellular pressures and tissue behaviour in driving tissue remodelling. Lastly, we offer perspectives on the open questions in the field that will further our understanding to uncover new principles of tissue organisation during development.
Collapse
Affiliation(s)
- Mayank Chugh
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | - Akankshi Munjal
- Department of Cell Biology, Duke University School of Medicine, Nanaline Duke Building, 307 Research Drive, Durham, NC 27710, USA.
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Chan CJ, Hirashima T. Tissue hydraulics in reproduction. Semin Cell Dev Biol 2022; 131:124-133. [PMID: 35606275 DOI: 10.1016/j.semcdb.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
The development of functional eggs and sperm are critical processes in mammalian development as they ensure successful reproduction and species propagation. While past studies have identified important genes that regulate these processes, the roles of luminal flow and fluid stress in reproductive biology remain less well understood. Here, we discuss recent evidence that support the diverse functions of luminal fluid in oogenesis, spermatogenesis and embryogenesis. We also review emerging techniques that allow for precise quantification and perturbation of tissue hydraulics in female and male reproductive systems, and propose new questions and approaches in this field. We hope this review will provide a useful resource to inspire future research in tissue hydraulics in reproductive biology and diseases.
Collapse
Affiliation(s)
- Chii Jou Chan
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore.
| | - Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; The Hakubi Center/Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan.
| |
Collapse
|
33
|
Kim YS, Bedzhov I. Mechanisms of formation and functions of the early embryonic cavities. Semin Cell Dev Biol 2022; 131:110-116. [PMID: 35513973 DOI: 10.1016/j.semcdb.2022.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/11/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022]
Abstract
As the early mouse embryo develops, fundamental steps include the sequential formation of the first lumens in the murine conceptus. The first cavity established in the pre-implantation embryo is the blastocoel, followed by the emergence of the proamniotic cavity during the peri-implantation stages. The mouse embryo is a dynamic system which switches its modes of lumenogenesis before and after implantation. The blastocoel emerges in between the basolateral membranes, whereas the proamniotic cavity is formed on the apical interface. Defects in the sculpting of these luminal spaces are associated with developmental abnormalities and embryonic lethality. Here, we review the mechanisms by which these early embryonic cavities are formed and discuss the cavities in terms of their common and stage-specific principles of lumenogenesis and their functions.
Collapse
Affiliation(s)
- Yung Su Kim
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Ivan Bedzhov
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany.
| |
Collapse
|
34
|
Abstract
During organismal development, organs and systems are built following a genetic blueprint that produces structures capable of performing specific physiological functions. Interestingly, we have learned that the physiological activities of developing tissues also contribute to their own morphogenesis. Specifically, physiological activities such as fluid secretion and cell contractility generate hydrostatic pressure that can act as a morphogenetic force. Here, we first review the role of hydrostatic pressure in tube formation during animal development and discuss mathematical models of lumen formation. We then illustrate specific roles of the notochord as a hydrostatic scaffold in anterior-posterior axis development in chordates. Finally, we cover some examples of how fluid flows influence morphogenetic processes in other developmental contexts. Understanding how fluid forces act during development will be key for uncovering the self-organizing principles that control morphogenesis.
Collapse
Affiliation(s)
- Michel Bagnat
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
| | - Bijoy Daga
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
| | - Stefano Di Talia
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
35
|
Alarcon VB, Marikawa Y. Trophectoderm formation: regulation of morphogenesis and gene expressions by RHO, ROCK, cell polarity, and HIPPO signaling. Reproduction 2022; 164:R75-R86. [PMID: 35900353 PMCID: PMC9398960 DOI: 10.1530/rep-21-0478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 07/14/2022] [Indexed: 11/08/2022]
Abstract
In brief Trophectoderm is the first tissue to differentiate in the early mammalian embryo and is essential for hatching, implantation, and placentation. This review article discusses the roles of Ras homolog family members (RHO) and RHO-associated coiled-coil containing protein kinases (ROCK) in the molecular and cellular regulation of trophectoderm formation. Abstract The trophectoderm (TE) is the first tissue to differentiate during the preimplantation development of placental mammals. It constitutes the outer epithelial layer of the blastocyst and is responsible for hatching, uterine attachment, and placentation. Thus, its formation is the key initial step that enables the viviparity of mammals. Here, we first describe the general features of TE formation at the morphological and molecular levels. Prospective TE cells form an epithelial layer enclosing an expanding fluid-filled cavity by establishing the apical-basal cell polarity, intercellular junctions, microlumen, and osmotic gradient. A unique set of genes is expressed in TE that encode the transcription factors essential for the development of trophoblasts of the placenta upon implantation. TE-specific gene expressions are driven by the inhibition of HIPPO signaling, which is dependent on the prior establishment of the apical-basal polarity. We then discuss the specific roles of RHO and ROCK as essential regulators of TE formation. RHO and ROCK modulate the actomyosin cytoskeleton, apical-basal polarity, intercellular junctions, and HIPPO signaling, thereby orchestrating the epithelialization and gene expressions in TE. Knowledge of the molecular mechanisms underlying TE formation is crucial for assisted reproductive technologies in human and farm animals, as it provides foundation to help improve procedures for embryo handling and selection to achieve better reproductive outcomes.
Collapse
Affiliation(s)
- Vernadeth B. Alarcon
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Yusuke Marikawa
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| |
Collapse
|
36
|
Abstract
Differentiation is the process by which a cell activates the expression of tissue-specific genes, downregulates the expression of potency markers, and acquires the phenotypic characteristics of its mature fate. The signals that regulate differentiation include biochemical and mechanical factors within the surrounding microenvironment. We describe recent breakthroughs in our understanding of the mechanical control mechanisms that regulate differentiation, with a specific emphasis on the differentiation events that build the early mouse embryo. Engineering approaches to reproducibly mimic the mechanical regulation of differentiation will permit new insights into early development and applications in regenerative medicine. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Celeste M Nelson
- Departments of Chemical & Biological Engineering and Molecular Biology, Princeton University, Princeton, New Jersey USA;
| |
Collapse
|
37
|
Zhang F, Pang C, Zhu H, Chen Y. Timely stimulation of early embryo promotes the acquisition of pluripotency. Cytometry A 2022; 101:682-691. [PMID: 35332996 DOI: 10.1002/cyto.a.24551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/16/2022] [Accepted: 03/15/2022] [Indexed: 11/06/2022]
Abstract
Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are both pluripotent stem cells from early embryos. Another type of pluripotent stem cells, which are similar with EpiSCs and derive from pre-implantation embryos in feeder-free and chemically defined medium containing Activin A and basic fibroblast growth factors (bFGF), is termed as AFSCs. The pluripotency and self-renewal maintenance of ESCs rely on Leukemia inhibitory factor (LIF)/STAT/BMP4/SMAD signaling, while the pluripotency and self-renewal maintenance of EpiSCs and AFSCs rely on bFGF and Activin/Nodal signaling. However, the establishment efficiency of AFSCs lines is low. In this study, we stimulated early embryos by 2i/LIF (CHIR99021 + PD0325901 + LIF) and Activin A + bFGF respectively, to change the cell fate in inner cell mass (ICM). The "fate changed embryos" by 2i/LIF can efficiently produce AFSCs in feeder-free and chemically defined medium, but the efficiency of embryos treated with Activin A + bFGF were poor. The AFSCs from fate-changed embryos share similar molecular characteristics with conventional AFSCs and EpiSCs. Our results suggest that the advanced stimulation of 2i/LIF and the premature stimulation of Activin A + bFGF contribute to capturing the pluripotent stem cells in early embryos, and the FGF/MAPK signaling dominate early embryo development. Our study provides a new approach to capturing pluripotency from pre-implantation embryos.
Collapse
Affiliation(s)
- Fengying Zhang
- Southern Medical University Central Laboratory, Southern Medical University, Guangzhou, China
| | - Changmiao Pang
- School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Haoyun Zhu
- School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yanglin Chen
- School of Basic Medical Science, Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
Fan M, Pan T, Jin W, Sun J, Zhang S, Du Y, Chen X, Chen Q, Xu W, Choo SW, Zhu G, Chen Y, Zhou J. FGF4, A New Potential Regulator in Gestational Diabetes Mellitus. Front Pharmacol 2022; 13:827617. [PMID: 35317005 PMCID: PMC8934430 DOI: 10.3389/fphar.2022.827617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Gestational diabetes mellitus (GDM) is associated with adverse maternal and neonatal outcomes, however the underlying mechanisms remain elusive. The aim of this study was to find efficient regulator of FGFs in response to the pathogenesis of GDM and explore the role of the FGFs in GDM.Methods: We performed a systematic screening of placental FGFs in GDM patients and further in two different GDM mouse models to investigate their expression changes. Significant changed FGF4 was selected, engineered, purified, and used to treat GDM mice in order to examine whether it can regulate the adverse metabolic phenotypes of the diabetic mice and protect their fetus.Results: We found FGF4 expression was elevated in GDM patients and its level was positively correlated to blood glucose, indicating a physiological relevance of FGF4 with respect to the development of GDM. Recombinant FGF4 (rFGF4) treatment could effectively normalize the adverse metabolic phenotypes in high fat diet induced GDM mice but not in STZ induced GDM mice. However, rFGF4 was highly effective in reduce of neural tube defects (NTDs) of embryos in both the two GDM models. Mechanistically, rFGF4 treatment inhibits pro-inflammatory signaling cascades and neuroepithelial cell apoptosis of both GDM models, which was independent of glucose regulation.Conclusions/interpretation: Our study provides novel insight into the important roles of placental FGF4 and suggests that it may serve as a promising diagnostic factor and therapeutic target for GDM.
Collapse
Affiliation(s)
- Miaojuan Fan
- Department of Infectious Diseases & Zhejiang Provincial Key laboratory of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Baoji Maternal and Child Health Hospital, Baoji, China
| | - Tongtong Pan
- Department of Infectious Diseases & Zhejiang Provincial Key laboratory of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Jin
- Department of Infectious Diseases & Zhejiang Provincial Key laboratory of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jian Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shujun Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yali Du
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinwei Chen
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiong Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenxin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Siew Woh Choo
- College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Guanghui Zhu
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Guanghui Zhu, ; Yongping Chen, ; Jie Zhou,
| | - Yongping Chen
- Department of Infectious Diseases & Zhejiang Provincial Key laboratory of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Guanghui Zhu, ; Yongping Chen, ; Jie Zhou,
| | - Jie Zhou
- Department of Infectious Diseases & Zhejiang Provincial Key laboratory of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Guanghui Zhu, ; Yongping Chen, ; Jie Zhou,
| |
Collapse
|
39
|
Ichikawa T, Zhang HT, Panavaite L, Erzberger A, Fabrèges D, Snajder R, Wolny A, Korotkevich E, Tsuchida-Straeten N, Hufnagel L, Kreshuk A, Hiiragi T. An ex vivo system to study cellular dynamics underlying mouse peri-implantation development. Dev Cell 2022; 57:373-386.e9. [PMID: 35063082 PMCID: PMC8826647 DOI: 10.1016/j.devcel.2021.12.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 08/23/2021] [Accepted: 12/23/2021] [Indexed: 01/09/2023]
Abstract
Upon implantation, mammalian embryos undergo major morphogenesis and key developmental processes such as body axis specification and gastrulation. However, limited accessibility obscures the study of these crucial processes. Here, we develop an ex vivo Matrigel-collagen-based culture to recapitulate mouse development from E4.5 to E6.0. Our system not only recapitulates embryonic growth, axis initiation, and overall 3D architecture in 49% of the cases, but its compatibility with light-sheet microscopy also enables the study of cellular dynamics through automatic cell segmentation. We find that, upon implantation, release of the increasing tension in the polar trophectoderm is necessary for its constriction and invagination. The resulting extra-embryonic ectoderm plays a key role in growth, morphogenesis, and patterning of the neighboring epiblast, which subsequently gives rise to all embryonic tissues. This 3D ex vivo system thus offers unprecedented access to peri-implantation development for in toto monitoring, measurement, and spatiotemporally controlled perturbation, revealing a mechano-chemical interplay between extra-embryonic and embryonic tissues.
Collapse
Affiliation(s)
- Takafumi Ichikawa
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Hui Ting Zhang
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Collaboration for PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Laura Panavaite
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Collaboration for PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Anna Erzberger
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.
| | - Dimitri Fabrèges
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Rene Snajder
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Adrian Wolny
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | | | | | - Lars Hufnagel
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Anna Kreshuk
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Takashi Hiiragi
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, 606-8501 Kyoto, Japan.
| |
Collapse
|
40
|
Sun SY, Feng XQ. Fluid-solid coupling dynamic model for oscillatory growth of multicellular lumens. J Biomech 2021; 131:110937. [PMID: 34972017 DOI: 10.1016/j.jbiomech.2021.110937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/15/2022]
Abstract
The development of multicellular lumens involves the interplay of cell proliferation, oscillation, and fluid transport. In this paper, a fluid-solid coupling dynamic model is proposed to investigate the physical mechanisms underlying the oscillatory growth of lumens. On the basis of experimental observations, the periodic oscillation of a lumen is interpreted by the fracturing-healing mechanism of cell-cell contacts, which induces a hydraulic-controlled outward flow switch. This model reproduces the oscillations of lumen sizes, in agreement with the experimental results of Hydra regeneration. It is found that the overall change trend of the lumen volume is determined by the tissue development induced by cell proliferation and the fluid transport induced by the osmotic pressure, while the outward flow due to the fracturing of cell-cell contacts regulates the oscillatory volume and the stress level in an appropriate scope. This work not only deepens our understanding of biomechanical mechanisms under the development of fluid-containing lumens, but also provides a theoretical framework to rationalize the dynamics of lumen-like tissues.
Collapse
Affiliation(s)
- Shu-Yi Sun
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; State Key Lab of Tribology, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
41
|
Ferenc J, Papasaikas P, Ferralli J, Nakamura Y, Smallwood S, Tsiairis CD. Mechanical oscillations orchestrate axial patterning through Wnt activation in Hydra. SCIENCE ADVANCES 2021; 7:eabj6897. [PMID: 34890235 PMCID: PMC8664257 DOI: 10.1126/sciadv.abj6897] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/21/2021] [Indexed: 05/25/2023]
Abstract
Mechanical input shapes cell fate decisions during development and regeneration in many systems, yet the mechanisms of this cross-talk are often unclear. In regenerating Hydra tissue spheroids, periodic osmotically driven inflation and deflation cycles generate mechanical stimuli in the form of tissue stretching. Here, we demonstrate that tissue stretching during inflation is important for the appearance of the head organizer—a group of cells that secrete the Wnt3 ligand. Exploiting time series RNA expression profiles, we identify the up-regulation of Wnt signaling as a key readout of the mechanical input. In this system, the levels of Wnt3 expression correspond to the levels of stretching, and Wnt3 overexpression alone enables successful regeneration in the absence of mechanical stimulation. Our findings enable the incorporation of mechanical signals in the framework of Hydra patterning and highlight the broad significance of mechanochemical feedback loops for patterning epithelial lumens.
Collapse
Affiliation(s)
- Jaroslav Ferenc
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Jacqueline Ferralli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Yukio Nakamura
- Institute of Medical Sciences, University of Aberdeen, AB25 2ZD Aberdeen, UK
| | - Sebastien Smallwood
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Charisios D. Tsiairis
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|
42
|
Matsuzaki S. Mechanobiology of the female reproductive system. Reprod Med Biol 2021; 20:371-401. [PMID: 34646066 PMCID: PMC8499606 DOI: 10.1002/rmb2.12404] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Mechanobiology in the field of human female reproduction has been extremely challenging technically and ethically. METHODS The present review provides the current knowledge on mechanobiology of the female reproductive system. This review focuses on the early phases of reproduction from oocyte development to early embryonic development, with an emphasis on current progress. MAIN FINDINGS RESULTS Optimal, well-controlled mechanical cues are required for female reproductive system physiology. Many important questions remain unanswered; whether and how mechanical imbalances among the embryo, decidua, and uterine muscle contractions affect early human embryonic development, whether the biomechanical properties of oocytes/embryos are potential biomarkers for selecting high-quality oocytes/embryos, whether mechanical properties differ between the two major compartments of the ovary (cortex and medulla) in normally ovulating human ovaries, whether durotaxis is involved in several processes in addition to embryonic development. Progress in mechanobiology is dependent on development of technologies that enable precise physical measurements. CONCLUSION More studies are needed to understand the roles of forces and changes in the mechanical properties of female reproductive system physiology. Recent and future technological advancements in mechanobiology research will help us understand the role of mechanical forces in female reproductive system disorders/diseases.
Collapse
Affiliation(s)
- Sachiko Matsuzaki
- CHU Clermont‐FerrandChirurgie GynécologiqueClermont‐FerrandFrance
- Université Clermont AuvergneInstitut Pascal, UMR6602, CNRS/UCA/SIGMAClermont‐FerrandFrance
| |
Collapse
|
43
|
Abstract
The cytoskeleton - comprising actin filaments, microtubules and intermediate filaments - serves instructive roles in regulating cell function and behaviour during development. However, a key challenge in cell and developmental biology is to dissect how these different structures function and interact in vivo to build complex tissues, with the ultimate aim to understand these processes in a mammalian organism. The preimplantation mouse embryo has emerged as a primary model system for tackling this challenge. Not only does the mouse embryo share many morphological similarities with the human embryo during its initial stages of life, it also permits the combination of genetic manipulations with live-imaging approaches to study cytoskeletal dynamics directly within an intact embryonic system. These advantages have led to the discovery of novel cytoskeletal structures and mechanisms controlling lineage specification, cell-cell communication and the establishment of the first forms of tissue architecture during development. Here we highlight the diverse organization and functions of each of the three cytoskeletal filaments during the key events that shape the early mammalian embryo, and discuss how they work together to perform key developmental tasks, including cell fate specification and morphogenesis of the blastocyst. Collectively, these findings are unveiling a new picture of how cells in the early embryo dynamically remodel their cytoskeleton with unique spatial and temporal precision to drive developmental processes in the rapidly changing in vivo environment.
Collapse
|
44
|
Torres-Sánchez A, Winter MK, Salbreux G. Tissue hydraulics: Physics of lumen formation and interaction. Cells Dev 2021; 168:203724. [PMID: 34339904 DOI: 10.1016/j.cdev.2021.203724] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022]
Abstract
Lumen formation plays an essential role in the morphogenesis of tissues during development. Here we review the physical principles that play a role in the growth and coarsening of lumens. Solute pumping by the cell, hydraulic flows driven by differences of osmotic and hydrostatic pressures, balance of forces between extracellular fluids and cell-generated cytoskeletal forces, and electro-osmotic effects have been implicated in determining the dynamics and steady-state of lumens. We use the framework of linear irreversible thermodynamics to discuss the relevant force, time and length scales involved in these processes. We focus on order of magnitude estimates of physical parameters controlling lumen formation and coarsening.
Collapse
Affiliation(s)
| | - Max Kerr Winter
- The Francis Crick Institute, 1 Midland Road, NW1 1AT, United Kingdom
| | - Guillaume Salbreux
- The Francis Crick Institute, 1 Midland Road, NW1 1AT, United Kingdom; University of Geneva, Quai Ernest Ansermet 30, 1205 Genève, Switzerland.
| |
Collapse
|
45
|
Bora P, Gahurova L, Hauserova A, Stiborova M, Collier R, Potěšil D, Zdráhal Z, Bruce AW. DDX21 is a p38-MAPK-sensitive nucleolar protein necessary for mouse preimplantation embryo development and cell-fate specification. Open Biol 2021; 11:210092. [PMID: 34255976 PMCID: PMC8277471 DOI: 10.1098/rsob.210092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Successful navigation of the mouse preimplantation stages of development, during which three distinct blastocyst lineages are derived, represents a prerequisite for continued development. We previously identified a role for p38-mitogen-activated kinases (p38-MAPK) regulating blastocyst inner cell mass (ICM) cell fate, specifically primitive endoderm (PrE) differentiation, that is intimately linked to rRNA precursor processing, polysome formation and protein translation regulation. Here, we develop this work by assaying the role of DEAD-box RNA helicase 21 (DDX21), a known regulator of rRNA processing, in the context of p38-MAPK regulation of preimplantation mouse embryo development. We show nuclear DDX21 protein is robustly expressed from the 16-cell stage, becoming exclusively nucleolar during blastocyst maturation, a localization dependent on active p38-MAPK. siRNA-mediated clonal Ddx21 knockdown within developing embryos is associated with profound cell-autonomous and non-autonomous proliferation defects and reduced blastocyst volume, by the equivalent peri-implantation blastocyst stage. Moreover, ICM residing Ddx21 knockdown clones express the EPI marker NANOG but rarely express the PrE differentiation marker GATA4. These data contribute further significance to the emerging importance of lineage-specific translation regulation, as identified for p38-MAPK, during mouse preimplantation development.
Collapse
Affiliation(s)
- Pablo Bora
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Lenka Gahurova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic.,Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, Rumburská 89, 27721 Liběchov, Czech Republic
| | - Andrea Hauserova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Martina Stiborova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Rebecca Collier
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Alexander W Bruce
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
46
|
Abstract
Morphogenesis is one of the most remarkable examples of biological pattern formation. Despite substantial progress in the field, we still do not understand the organizational principles responsible for the robust convergence of the morphogenesis process across scales to form viable organisms under variable conditions. Achieving large-scale coordination requires feedback between mechanical and biochemical processes, spanning all levels of organization and relating the emerging patterns with the mechanisms driving their formation. In this review, we highlight the role of mechanics in the patterning process, emphasizing the active and synergistic manner in which mechanical processes participate in developmental patterning rather than merely following a program set by biochemical signals. We discuss the value of applying a coarse-grained approach toward understanding this complex interplay, which considers the large-scale dynamics and feedback as well as complementing the reductionist approach focused on molecular detail. A central challenge in this approach is identifying relevant coarse-grained variables and developing effective theories that can serve as a basis for an integrated framework for understanding this remarkable pattern-formation process. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yonit Maroudas-Sacks
- Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel;
| | - Kinneret Keren
- Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel; .,Network Biology Research Laboratories and The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
47
|
Harmoush B, Tsikolia N, Viebahn C. Epiblast and trophoblast morphogenesis in the pre-gastrulation blastocyst of the pig. A light- and electron-microscopical study. J Morphol 2021; 282:1339-1361. [PMID: 34176156 DOI: 10.1002/jmor.21389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/31/2021] [Accepted: 06/15/2021] [Indexed: 01/18/2023]
Abstract
The epiblast of the amniote embryo is of paramount importance during early development as it gives rise to all tissues of the embryo proper. In mammals, it emerges through segregation of the hypoblast from the inner cell mass and subsequently undergoes transformation into an epithelial sheet to create the embryonic disc. In rodents and man, the epiblast cell layer is covered by the polar trophoblast which forms the placenta. In mammalian model organisms (rabbit, pig, several non-human primates), however, the placenta is formed by mural trophoblast whereas the polar trophoblast disintegrates prior to gastrulation and thus exposes the epiblast to the microenvironment of the uterine cavity. Both, polar trophoblast disintegration and epiblast epithelialization, thus pose special cell-biological requirements but these are still rather ill-understood when compared to those of gastrulation morphogenesis. This study therefore applied high-resolution light and transmission electron microscopy and three-dimensional (3D) reconstruction to 8- to 10-days-old pig embryos and defines the following steps of epiblast transformation: (1) rosette formation in the center of the ball-shaped epiblast, (2) extracellular cavity formation in the rosette center, (3) epiblast segregation into two subpopulations - addressed here as dorsal and ventral epiblast - separated by a "pro-amniotic" cavity. Ventral epiblast cells form between them a special type of desmosomes with a characteristic dense felt of microfilaments and are destined to generate the definitive epiblast. The dorsal epiblast remains a mass of non-polarized cells and closely associates with the disintegrating polar trophoblast, which shows morphological features of both apoptosis and autophagocytosis. Morphogenesis of the definitive epiblast in the pig may thus exclude a large portion of bona fide epiblast cells from contributing to the embryo proper and establishes contact de novo with the mural trophoblast at the junction between the two newly defined epiblast cell populations.
Collapse
Affiliation(s)
- Braah Harmoush
- Institute of Anatomy and Embryology, University Medical Centre Göttingen, Göttingen, Germany
| | - Nikoloz Tsikolia
- Institute of Anatomy and Embryology, University Medical Centre Göttingen, Göttingen, Germany
| | - Christoph Viebahn
- Institute of Anatomy and Embryology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
48
|
Forsyth JE, Al-Anbaki AH, de la Fuente R, Modare N, Perez-Cortes D, Rivera I, Seaton Kelly R, Cotter S, Plusa B. IVEN: A quantitative tool to describe 3D cell position and neighbourhood reveals architectural changes in FGF4-treated preimplantation embryos. PLoS Biol 2021; 19:e3001345. [PMID: 34310594 PMCID: PMC8341705 DOI: 10.1371/journal.pbio.3001345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/05/2021] [Accepted: 07/01/2021] [Indexed: 11/30/2022] Open
Abstract
Architectural changes at the cellular and organism level are integral and necessary to successful development and growth. During mammalian preimplantation development, cells reduce in size and the architecture of the embryo changes significantly. Such changes must be coordinated correctly to ensure continued development of the embryo and, ultimately, a successful pregnancy. However, the nature of such transformations is poorly defined during mammalian preimplantation development. In order to quantitatively describe changes in cell environment and organism architecture, we designed Internal Versus External Neighbourhood (IVEN). IVEN is a user-interactive, open-source pipeline that classifies cells into different populations based on their position and quantifies the number of neighbours of every cell within a dataset in a 3D environment. Through IVEN-driven analyses, we show how transformations in cell environment, defined here as changes in cell neighbourhood, are related to changes in embryo geometry and major developmental events during preimplantation mammalian development. Moreover, we demonstrate that modulation of the FGF pathway alters spatial relations of inner cells and neighbourhood distributions, leading to overall changes in embryo architecture. In conjunction with IVEN-driven analyses, we uncover differences in the dynamic of cell size changes over the preimplantation period and determine that cells within the mammalian embryo initiate growth phase only at the time of implantation.
Collapse
Affiliation(s)
- Jessica E. Forsyth
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
- School of Mathematics, Alan Turing Building, University of Manchester, Manchester, United Kingdom
| | - Ali H. Al-Anbaki
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Roberto de la Fuente
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Nikkinder Modare
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Diego Perez-Cortes
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Isabel Rivera
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Rowena Seaton Kelly
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Simon Cotter
- School of Mathematics, Alan Turing Building, University of Manchester, Manchester, United Kingdom
| | - Berenika Plusa
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
49
|
p38-MAPK-mediated translation regulation during early blastocyst development is required for primitive endoderm differentiation in mice. Commun Biol 2021; 4:788. [PMID: 34172827 PMCID: PMC8233355 DOI: 10.1038/s42003-021-02290-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Successful specification of the two mouse blastocyst inner cell mass (ICM) lineages (the primitive endoderm (PrE) and epiblast) is a prerequisite for continued development and requires active fibroblast growth factor 4 (FGF4) signaling. Previously, we identified a role for p38 mitogen-activated protein kinases (p38-MAPKs) during PrE differentiation, but the underlying mechanisms have remained unresolved. Here, we report an early blastocyst window of p38-MAPK activity that is required to regulate ribosome-related gene expression, rRNA precursor processing, polysome formation and protein translation. We show that p38-MAPK inhibition-induced PrE phenotypes can be partially rescued by activating the translational regulator mTOR. However, similar PrE phenotypes associated with extracellular signal-regulated kinase (ERK) pathway inhibition targeting active FGF4 signaling are not affected by mTOR activation. These data indicate a specific role for p38-MAPKs in providing a permissive translational environment during mouse blastocyst PrE differentiation that is distinct from classically reported FGF4-based mechanisms.
Collapse
|
50
|
Zhu M, Zernicka-Goetz M. Principles of Self-Organization of the Mammalian Embryo. Cell 2021; 183:1467-1478. [PMID: 33306953 DOI: 10.1016/j.cell.2020.11.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Early embryogenesis is a conserved and self-organized process. In the mammalian embryo, the potential for self-organization is manifested in its extraordinary developmental plasticity, allowing a correctly patterned embryo to arise despite experimental perturbation. The underlying mechanisms enabling such regulative development have long been a topic of study. In this Review, we summarize our current understanding of the self-organizing principles behind the regulative nature of the early mammalian embryo. We argue that geometrical constraints, feedback between mechanical and biochemical factors, and cellular heterogeneity are all required to ensure the developmental plasticity of mammalian embryo development.
Collapse
Affiliation(s)
- Meng Zhu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; Present address: Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|