1
|
Bauer VA, Koppers M. Multi-organelle-mediated mRNA localization in neurons and links to disease. Curr Opin Genet Dev 2025; 92:102332. [PMID: 40056482 DOI: 10.1016/j.gde.2025.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/10/2025]
Abstract
Brain function requires precise spatiotemporal regulation of the neuronal proteome. To allow adaptation of the proteome in distal outposts of neurons, mRNAs are transported into neurites for localized translation. This mRNA localization and local translation is crucial for neuron function and maintenance, and dysregulation of these processes can contribute to neurological disease. Recently, organelles have emerged as key players in regulating mRNA localization and local translation in dendrites and axons. In this review, we discuss the current evidence and open questions for this organelle-mediated mRNA localization. We highlight an emerging model in which multiple organelles create and orchestrate a subcellular microenvironment that can support precise mRNA localization and selective translation. This seems essential for maintaining organellar and neuronal function and health, as mutations in many of the involved proteins lead to various neurological disorders.
Collapse
Affiliation(s)
- Vivienne Aline Bauer
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam 1081HZ, the Netherlands
| | - Max Koppers
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam 1081HZ, the Netherlands.
| |
Collapse
|
2
|
Kelley FM, Ani A, Pinlac EG, Linders B, Favetta B, Barai M, Ma Y, Singh A, Dignon GL, Gu Y, Schuster BS. Controlled and orthogonal partitioning of large particles into biomolecular condensates. Nat Commun 2025; 16:3521. [PMID: 40229261 PMCID: PMC11997106 DOI: 10.1038/s41467-025-58900-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 04/03/2025] [Indexed: 04/16/2025] Open
Abstract
Partitioning of client molecules into biomolecular condensates is critical for regulating the composition and function of condensates. Previous studies suggest that client size limits partitioning. Here, we ask whether large clients, such as macromolecular complexes and nanoparticles, can partition into condensates based on particle-condensate interactions. We seek to discover the fundamental biophysical principles that govern particle inclusion in or exclusion from condensates, using polymer nanoparticles surface-functionalized with biotin or oligonucleotides. Based on our experiments, coarse-grained molecular dynamics simulations, and theory, we conclude that arbitrarily large particles can controllably partition into condensates given sufficiently strong condensate-particle interactions. Remarkably, we also observe that beads with distinct surface chemistries partition orthogonally into immiscible condensates. These findings may provide insights into how various cellular processes are achieved based on partitioning of large clients into biomolecular condensates, and they offer design principles for drug delivery systems that selectively target disease-related condensates.
Collapse
Affiliation(s)
- Fleurie M Kelley
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Anas Ani
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Emily G Pinlac
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Bridget Linders
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Bruna Favetta
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Mayur Barai
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yuchen Ma
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Arjun Singh
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Gregory L Dignon
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Yuwei Gu
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Benjamin S Schuster
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
3
|
Dumas L, Shin S, Rigaud Q, Cargnello M, Hernández-Suárez B, Herviou P, Saint-Laurent N, Leduc M, Le Gall M, Monchaud D, Dassi E, Cammas A, Millevoi S. RNA G-quadruplexes control mitochondria-localized mRNA translation and energy metabolism. Nat Commun 2025; 16:3292. [PMID: 40195294 PMCID: PMC11977240 DOI: 10.1038/s41467-025-58118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/12/2025] [Indexed: 04/09/2025] Open
Abstract
Cancer cells rely on mitochondria for their bioenergetic supply and macromolecule synthesis. Central to mitochondrial function is the regulation of mitochondrial protein synthesis, which primarily depends on the cytoplasmic translation of nuclear-encoded mitochondrial mRNAs whose protein products are imported into mitochondria. Despite the growing evidence that mitochondrial protein synthesis contributes to the onset and progression of cancer, and can thus offer new opportunities for cancer therapy, knowledge of the underlying molecular mechanisms remains limited. Here, we show that RNA G-quadruplexes (RG4s) regulate mitochondrial function by modulating cytoplasmic mRNA translation of nuclear-encoded mitochondrial proteins. Our data support a model whereby the RG4 folding dynamics, under the control of oncogenic signaling and modulated by small molecule ligands or RG4-binding proteins, modifies mitochondria-localized cytoplasmic protein synthesis. Ultimately, this impairs mitochondrial functions, affecting energy metabolism and consequently cancer cell proliferation.
Collapse
Affiliation(s)
- Leïla Dumas
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Sauyeun Shin
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Quentin Rigaud
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Marie Cargnello
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Beatriz Hernández-Suárez
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Pauline Herviou
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Nathalie Saint-Laurent
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Marjorie Leduc
- Proteom'IC facility, Université Paris Cité, CNRS, INSERM Institut Cochin, Paris, France
| | - Morgane Le Gall
- Proteom'IC facility, Université Paris Cité, CNRS, INSERM Institut Cochin, Paris, France
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), UBFC Dijon CNRS UMR6302, Dijon, France
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, TN, Italy.
| | - Anne Cammas
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France.
| | - Stefania Millevoi
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France.
| |
Collapse
|
4
|
Leon-Diaz F, Chamontin C, Lainé S, Socol M, Bertrand E, Mougel M. Translation of unspliced retroviral genomic RNA in the host cell is regulated in both space and time. J Cell Biol 2025; 224:e202405075. [PMID: 39868815 PMCID: PMC11775842 DOI: 10.1083/jcb.202405075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/06/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025] Open
Abstract
Retroviruses carry a genomic intron-containing RNA with a long structured 5'-untranslated region, which acts either as a genome encapsidated in the viral progeny or as an mRNA encoding the key structural protein, Gag. We developed a single-molecule microscopy approach to simultaneously visualize the viral mRNA and the nascent Gag protein during translation directly in the cell. We found that a minority of the RNA molecules serve as mRNA and that they are translated in a fast and efficient process. Surprisingly, viral polysomes were also observed at the cell periphery, indicating that translation is regulated in both space and time. Virus translation near the plasma membrane may benefit from reduced competition for ribosomes with most cellular cytoplasmic mRNAs. In addition, local and efficient translation must spare energy to produce Gag proteins, where they accumulate to assemble new viral particles, potentially allowing the virus to evade the host's antiviral defenses.
Collapse
Affiliation(s)
- Felipe Leon-Diaz
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France
| | - Célia Chamontin
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France
| | - Sébastien Lainé
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France
| | - Marius Socol
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France
| | - Edouard Bertrand
- IGH UMR 9002 CNRS, Université de Montpellier, Montpellier, France
| | - Marylène Mougel
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
5
|
Jin Q, Feng X, Hong M, Wang K, Chen X, Cheng J, Kuang Y, Si X, Xu M, Huang X, Guang S, Zhu C. Peri-centrosomal localization of small interfering RNAs in C. elegans. SCIENCE CHINA. LIFE SCIENCES 2025; 68:895-911. [PMID: 39825209 DOI: 10.1007/s11427-024-2818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
The centrosome is the microtubule-organizing center and a crucial part of cell division. Centrosomal RNAs (cnRNAs) have been reported to enable precise spatiotemporal control of gene expression during cell division in many species. Whether and how cnRNAs exist in C. elegans are unclear. Here, using the nuclear RNAi Argonaute protein NRDE-3 as a reporter, we observed potential peri-centrosome localized small interfering (si)RNAs in C. elegans. NRDE-3 was previously shown to associate with pre-mRNAs and pre-rRNAs via a process involving the presence of complementary siRNAs. We generated a GFP-NRDE-3 knock-in transgene through CRISPR/Cas9 technology and observed that NRDE-3 formed peri-centrosomal foci neighboring the tubulin protein TBB-2, other centriole proteins and pericentriolar material (PCM) components in C. elegans embryos. The peri-centrosomal accumulation of NRDE-3 depends on RNA-dependent RNA polymerase (RdRP)-synthesized 22G siRNAs and the PAZ domain of NRDE-3, which is essential for siRNA binding. Mutation of eri-1, ergo-1, or drh-3 significantly increased the percentage of pericentrosome-enriched NRDE-3. At the metaphase of the cell cycle, NRDE-3 was enriched in both the peri-centrosomal region and the spindle. Moreover, the integrity of centriole proteins and pericentriolar material (PCM) components is also required for the peri-centrosomal accumulation of NRDE-3. Therefore, we concluded that siRNAs could accumulate in the pericentrosomal region in C. elegans and suggested that the peri-centrosomal region may also be a platform for RNAi-mediated gene regulation.
Collapse
Affiliation(s)
- Qile Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Xuezhu Feng
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Minjie Hong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Jiewei Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Yan Kuang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Xiaoyue Si
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Mingjing Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
6
|
Wang G, Li M, Zou P. Enzyme-mediated proximity labeling reveals the co-translational targeting of DLGAP5 mRNA to the centrosome during mitosis. RSC Chem Biol 2025:d4cb00155a. [PMID: 40248433 PMCID: PMC12002336 DOI: 10.1039/d4cb00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 03/24/2025] [Indexed: 04/19/2025] Open
Abstract
Subcellular RNA localization is a conserved mechanism in eukaryotic cells and plays critical roles in diverse physiological processes including cell proliferation, differentiation, and embryo development. Nevertheless, the characterization of centrosome-localized mRNAs remains underexplored due to technical difficulties. In this study, we utilize APEX2-mediated proximity labeling to map the centrosome-proximal transcriptome, identifying DLGAP5 mRNA as a novel centrosome-localized transcript during mitosis. Using a combination of drug perturbation, truncation, deletion, and mutagenesis, we demonstrate that microtubule binding of nascent MBD1 polypeptides is required for centrosomal transport of DLGAP5 mRNA. Our data also reveal that mRNA targeting efficiency is tightly linked to the coding sequence (CDS) length. Thus, our study provides a transcriptomic resource for future investigation of centrosome-localized RNAs and sheds light on mechanisms underlying mRNA centrosomal localization.
Collapse
Affiliation(s)
- Gang Wang
- Academy for Advanced Interdisciplinary Studies, PKU-Tsinghua Center for Life Science, Peking University Beijing 100871 China
| | - Mo Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital Beijing 100191 China
| | - Peng Zou
- Academy for Advanced Interdisciplinary Studies, PKU-Tsinghua Center for Life Science, Peking University Beijing 100871 China
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, PKU-IDG/McGovern Institute for Brain Research, Peking University Beijing 100871 China
- Chinese Institute for Brain Research (CIBR) Beijing 102206 China
| |
Collapse
|
7
|
Martinez‐Salas E, Abellan S, Francisco‐Velilla R. Understanding GEMIN5 Interactions: From Structural and Functional Insights to Selective Translation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70008. [PMID: 40176294 PMCID: PMC11965781 DOI: 10.1002/wrna.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 04/04/2025]
Abstract
GEMIN5 is a predominantly cytoplasmic protein, initially identified as a member of the survival of motor neurons (SMN) complex. In addition, this abundant protein modulates diverse aspects of RNA-dependent processes, executing its functions through the formation of multi-component complexes. The modular organization of structural domains present in GEMIN5 enables this protein to perform various functions through its interaction with distinct partners. The protein is responsible for the recognition of small nuclear (sn)RNAs through its N-terminal region, and therefore for snRNP assembly. Beyond its role in spliceosome assembly, GEMIN5 regulates translation through the interaction with either RNAs or proteins. In the central region, a robust dimerization domain acts as a hub for protein-protein interaction, while a non-canonical RNA-binding site is located towards the C-terminus. Interestingly, GEMIN5 regulates the partitioning of mRNAs into polysomes, likely due to its RNA-binding capacity and its ability to bind native ribosomes. Understanding the functional and structural organization of the protein has brought an increasing interest in the last years with important implications in human disease. Patients carrying GEMIN5 biallelic variants suffer from neurodevelopmental delay, hypotonia, and cerebellar ataxia. This review discusses recent relevant works aimed at understanding the molecular mechanisms of GEMIN5 activity in gene expression, and also the challenges to discover new functions.
Collapse
|
8
|
Garin S, Levavi L, Gerst JE. EASI-ORC: A pipeline for the efficient analysis and segmentation of smFISH images for organelle-RNA colocalization measurements in yeast. Commun Biol 2025; 8:242. [PMID: 39955363 PMCID: PMC11829984 DOI: 10.1038/s42003-025-07682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Analysis of single-molecule fluorescent in situ hybridization (smFISH) images is important to translate cellular image data into a quantifiable format. Although smFISH is the gold standard for RNA localization measurements, there are no freely available, user-friendly applications for assaying messenger RNA (mRNA) localization to organelles. EASI-ORC (Efficient Analysis and Segmentation of smFISH Images for Organelle-RNA Colocalization) is a novel pipeline for the automated analysis of multiple smFISH images of yeast cells. EASI-ORC automates the segmentation of cells and organelles, identifies bona fide smFISH signals, and measures mRNA-organelle colocalization. EASI-ORC is efficient, unbiased, and plots the colocalization data and statistical analyses. EASI-ORC utilizes existing ImageJ plugins and original scripts, thus allowing for free access and ease-of-use. To circumvent technical literacy issues, a step-by-step user guide is provided. EASI-ORC offers a robust solution to smFISH image analysis - one that saves time, effort and provides consistent measurements of mRNA-organelle colocalization in yeast.
Collapse
Affiliation(s)
- Shahar Garin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Liav Levavi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Jeffrey E Gerst
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
9
|
Dawar P, Adhikari I, Mandal SN, Jayee B. RNA Metabolism and the Role of Small RNAs in Regulating Multiple Aspects of RNA Metabolism. Noncoding RNA 2024; 11:1. [PMID: 39846679 PMCID: PMC11755482 DOI: 10.3390/ncrna11010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
RNA metabolism is focused on RNA molecules and encompasses all the crucial processes an RNA molecule may or will undergo throughout its life cycle. It is an essential cellular process that allows all cells to function effectively. The transcriptomic landscape of a cell is shaped by the processes such as RNA biosynthesis, maturation (RNA processing, folding, and modification), intra- and inter-cellular transport, transcriptional and post-transcriptional regulation, modification, catabolic decay, and retrograde signaling, all of which are interconnected and are essential for cellular RNA homeostasis. In eukaryotes, sRNAs, typically 20-31 nucleotides in length, are a class of ncRNAs found to function as nodes in various gene regulatory networks. sRNAs are known to play significant roles in regulating RNA population at the transcriptional, post-transcriptional, and translational levels. Along with sRNAs, such as miRNAs, siRNAs, and piRNAs, new categories of ncRNAs, i.e., lncRNAs and circRNAs, also contribute to RNA metabolism regulation in eukaryotes. In plants, various genetic screens have demonstrated that sRNA biogenesis mutants, as well as RNA metabolism pathway mutants, exhibit similar growth and development defects, misregulated primary and secondary metabolism, as well as impaired stress response. In addition, sRNAs are both the "products" and the "regulators" in broad RNA metabolism networks; gene regulatory networks involving sRNAs form autoregulatory loops that affect the expression of both sRNA and the respective target. This review examines the interconnected aspects of RNA metabolism with sRNA regulatory pathways in plants. It also explores the potential conservation of these pathways across different kingdoms, particularly in plants and animals. Additionally, the review highlights how cellular RNA homeostasis directly impacts adaptive responses to environmental changes as well as different developmental aspects in plants.
Collapse
Affiliation(s)
- Pranav Dawar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - Indra Adhikari
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | | | - Bhumika Jayee
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA;
| |
Collapse
|
10
|
Mason DE, Madsen TD, Gasparski AN, Jiwnani N, Lechler T, Weigert R, Iglesias-Bartolome R, Mili S. Control of Epithelial Tissue Organization by mRNA Localization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626432. [PMID: 39677649 PMCID: PMC11643025 DOI: 10.1101/2024.12.02.626432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
mRNA localization to specific subcellular regions is common in mammalian cells but poorly understood in terms of its physiological roles1-6,7. This study demonstrates the functional importance of Net1 mRNA, which we find prominently localized at the dermal-epidermal junction (DEJ) in stratified squamous epithelia. Net1 mRNA accumulates at DEJ protrusion-like structures that interact with the basement membrane and connect to a mechanosensitive network of microfibrils. Disrupting Net1 mRNA localization in mouse epithelium alters DEJ morphology and keratinocyte-matrix connections, affecting tissue homeostasis. mRNA localization dictates Net1 protein distribution and its function as a RhoA GTPase exchange factor (GEF). Altered RhoA activity is in turn sufficient to alter the ultrastructure of the DEJ. This study provides a high-resolution in vivo view of mRNA targeting in a physiological context. It further demonstrates how the subcellular localization of a single mRNA can significantly influence mammalian epithelial tissue organization, thus revealing an unappreciated level of post-transcriptional regulation that controls tissue physiology.
Collapse
Affiliation(s)
- Devon E. Mason
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Thomas D. Madsen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Alexander N. Gasparski
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Neal Jiwnani
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Terry Lechler
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
11
|
Li Y, Xu W, Cheng Y, Djenoune L, Zhuang C, Cox AL, Britto CJ, Yuan S, Wang S, Sun Z. Cotranslational molecular condensation of cochaperones and assembly factors facilitates axonemal dynein biogenesis. Proc Natl Acad Sci U S A 2024; 121:e2402818121. [PMID: 39541357 PMCID: PMC11588059 DOI: 10.1073/pnas.2402818121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Axonemal dynein, the macromolecular machine that powers ciliary motility, assembles in the cytosol with the help of dynein axonemal assembly factors (DNAAFs). These DNAAFs localize in cytosolic foci thought to form via liquid-liquid phase separation. However, the functional significance of DNAAF foci formation and how the production and assembly of multiple components are so efficiently coordinated, at such enormous scale, remain unclear. Here, we unveil an axonemal dynein production and assembly hub enriched with translating heavy chains (HCs) and DNAAFs. We show that mRNAs encoding interacting HCs of outer dynein arms colocalize in cytosolic foci, along with nascent HCs. The formation of these mRNA foci and their colocalization relies on HC translation. We observe that a previously identified DNAAF assembly, containing the DNAAF Lrrc6 and cochaperones Ruvbl1 and Ruvbl2, colocalizes with these HC foci, and is also dependent on HC translation. We additionally show that Ruvbl1 is required for the recruitment of Lrrc6 into the HC foci and that both proteins function cotranslationally. We propose that these DNAAF foci are anchored by stable interactions between translating HCs, ribosomes, and encoding mRNAs, followed by cotranslational molecular condensation of cochaperones and assembly factors, providing a potential mechanism that coordinates HC translation, folding, and assembly at scale.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| | - Wenyan Xu
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| | - Yubao Cheng
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| | - Lydia Djenoune
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Chuzhi Zhuang
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| | - Andrew Lee Cox
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| | - Clemente J. Britto
- Division of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT06520
| | - Shiaulou Yuan
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Siyuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
| | - Zhaoxia Sun
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| |
Collapse
|
12
|
Safieddine A, Benassy MN, Bonte T, Slimani F, Pourcelot O, Kress M, Ernoult-Lange M, Courel M, Coleno E, Imbert A, Laine A, Godebert AM, Vinit A, Blugeon C, Chevreux G, Gautheret D, Walter T, Bertrand E, Bénard M, Weil D. Cell-cycle-dependent mRNA localization in P-bodies. Mol Cell 2024; 84:4191-4208.e7. [PMID: 39368464 DOI: 10.1016/j.molcel.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/05/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Understanding the dynamics of RNA targeting to membraneless organelles is essential to disentangle their functions. Here, we investigate how P-bodies (PBs) evolve during cell-cycle progression in HEK293 cells. PB purification across the cell cycle uncovers widespread changes in their RNA content, partly uncoupled from cell-cycle-dependent changes in RNA expression. Single-molecule fluorescence in situ hybridization (FISH) shows various mRNA localization patterns in PBs peaking in G1, S, or G2, with examples illustrating the timely capture of mRNAs in PBs when their encoded protein becomes dispensable. Rather than directly reflecting absence of translation, cyclic mRNA localization in PBs can be controlled by RBPs, such as HuR in G2, and by RNA features. Indeed, while PB mRNAs are AU rich at all cell-cycle phases, they are specifically longer in G1, possibly related to post-mitotic PB reassembly. Altogether, our study supports a model where PBs are more than a default location for excess untranslated mRNAs.
Collapse
Affiliation(s)
- Adham Safieddine
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France.
| | - Marie-Noëlle Benassy
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Thomas Bonte
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, 75006 Paris, France; Institut Curie, PSL University, 75005 Paris, France; INSERM, U900, 75005 Paris, France
| | - Floric Slimani
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34090 Montpellier, France
| | - Oriane Pourcelot
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34090 Montpellier, France
| | - Michel Kress
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Michèle Ernoult-Lange
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Maïté Courel
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Emeline Coleno
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34090 Montpellier, France
| | - Arthur Imbert
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, 75006 Paris, France
| | - Antoine Laine
- Institute for Integrative Biology of the Cell, UMR 9198, CEA, CNRS, Université Paris-Saclay, 91190 Gif-Sur-Yvette, France
| | - Annie Munier Godebert
- Research Center Saint-Antoine (CRSA), CISA Flow Cytometry Facility, UMRS 938, Sorbonne University, F-75012 Paris, France
| | - Angelique Vinit
- Research Center Saint-Antoine (CRSA), CISA Flow Cytometry Facility, UMRS 938, Sorbonne University, F-75012 Paris, France
| | - Corinne Blugeon
- GenomiqueENS, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Guillaume Chevreux
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Daniel Gautheret
- Institute for Integrative Biology of the Cell, UMR 9198, CEA, CNRS, Université Paris-Saclay, 91190 Gif-Sur-Yvette, France
| | - Thomas Walter
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, 75006 Paris, France; Institut Curie, PSL University, 75005 Paris, France; INSERM, U900, 75005 Paris, France
| | - Edouard Bertrand
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34090 Montpellier, France
| | - Marianne Bénard
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France.
| |
Collapse
|
13
|
Bellec M, Chen R, Dhayni J, Trullo A, Avinens D, Karaki H, Mazzarda F, Lenden-Hasse H, Favard C, Lehmann R, Bertrand E, Lagha M, Dufourt J. Boosting the toolbox for live imaging of translation. RNA (NEW YORK, N.Y.) 2024; 30:1374-1394. [PMID: 39060168 PMCID: PMC11404453 DOI: 10.1261/rna.080140.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024]
Abstract
Live imaging of translation based on tag recognition by a single-chain antibody is a powerful technique to assess translation regulation in living cells. However, this approach is challenging and requires optimization in terms of expression level and detection sensitivity of the system, especially in a multicellular organism. Here, we improved existing fluorescent tools and developed new ones to image and quantify nascent translation in the living Drosophila embryo and in mammalian cells. We tested and characterized five different green fluorescent protein variants fused to the single-chain fragment variable (scFv) and uncovered photobleaching, aggregation, and intensity disparities. Using different strengths of germline and somatic drivers, we determined that the availability of the scFv is critical in order to detect translation throughout development. We introduced a new translation imaging method based on a nanobody/tag system named ALFA-array, allowing the sensitive and simultaneous detection of the translation of several distinct mRNA species. Finally, we developed a largely improved RNA imaging system based on an MCP-tdStaygold fusion.
Collapse
Affiliation(s)
- Maëlle Bellec
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Ruoyu Chen
- Vilcek Institute of Graduate Studies, NYU School of Medicine, New York 10016, USA
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Jana Dhayni
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34396 Montpellier, France
| | - Antonello Trullo
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
| | - Damien Avinens
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR 9004, University of Montpellier, Montpellier, 34293 Cedex 5, France
| | - Hussein Karaki
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34396 Montpellier, France
| | - Flavia Mazzarda
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34396 Montpellier, France
| | - Helene Lenden-Hasse
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
| | - Cyril Favard
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR 9004, University of Montpellier, Montpellier, 34293 Cedex 5, France
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Edouard Bertrand
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34396 Montpellier, France
| | - Mounia Lagha
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
| | - Jeremy Dufourt
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR 9004, University of Montpellier, Montpellier, 34293 Cedex 5, France
| |
Collapse
|
14
|
Dufourt J, Bellec M. Shedding light on the unseen: how live imaging of translation could unlock new insights in developmental biology. C R Biol 2024; 347:87-93. [PMID: 39258401 DOI: 10.5802/crbiol.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024]
Abstract
Recent advances in live imaging technologies have refined our understanding of protein synthesis in living cells. Among the various approaches to live imaging of translation, this perspective highlights the use of antibody-based nascent peptide detection, a method that enables visualization of single-molecule translation in vivo. We examine how these advances improve our understanding of biological processes, particularly in developing organisms. In addition, we discuss technological advances in this field and suggest further improvements. Finally, we review some examples of how this method could lead to future scientific breakthroughs in the study of translation and its regulation in whole organisms.
Collapse
|
15
|
Zein-Sabatto H, Brockett JS, Jin L, Husbands CA, Lee J, Fang J, Buehler J, Bullock SL, Lerit DA. Centrocortin potentiates co-translational localization of its mRNA to the centrosome via dynein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607365. [PMID: 39149256 PMCID: PMC11326273 DOI: 10.1101/2024.08.09.607365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Centrosomes rely upon proteins within the pericentriolar material to nucleate and organize microtubules. Several mRNAs also reside at centrosomes, although less is known about how and why they accumulate there. We previously showed that local Centrocortin (Cen) mRNA supports centrosome separation, microtubule organization, and viability in Drosophila embryos. Here, using Cen mRNA as a model, we examine mechanisms of centrosomal mRNA localization. We find that while the Cen N'-terminus is sufficient for protein enrichment at centrosomes, multiple domains cooperate to concentrate Cen mRNA at this location. We further identify an N'-terminal motif within Cen that is conserved among dynein cargo adaptor proteins and test its contribution to RNA localization. Our results support a model whereby Cen protein enables the accumulation of its own mRNA to centrosomes through a mechanism requiring active translation, microtubules, and the dynein motor complex. Taken together, our data uncover the basis of translation-dependent localization of a centrosomal RNA required for mitotic integrity.
Collapse
Affiliation(s)
- Hala Zein-Sabatto
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Jovan S. Brockett
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Li Jin
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Jina Lee
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322
- Present Address: University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104
| | - Junnan Fang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Joseph Buehler
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Simon L. Bullock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
- co-corresponding authors
| | - Dorothy A. Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
- co-corresponding authors
| |
Collapse
|
16
|
Geng Q, Keya JJ, Hotta T, Verhey KJ. The kinesin-3 KIF1C undergoes liquid-liquid phase separation for accumulation of specific transcripts at the cell periphery. EMBO J 2024; 43:3192-3213. [PMID: 38898313 PMCID: PMC11294625 DOI: 10.1038/s44318-024-00147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
In cells, mRNAs are transported to and positioned at subcellular areas to locally regulate protein production. Recent studies have identified the kinesin-3 family member motor protein KIF1C as an RNA transporter. However, it is not clear how KIF1C interacts with RNA molecules. Here, we show that the KIF1C C-terminal tail domain contains an intrinsically disordered region (IDR) that drives liquid-liquid phase separation (LLPS). KIF1C forms dynamic puncta in cells that display physical properties of liquid condensates and incorporate RNA molecules in a sequence-selective manner. Endogenous KIF1C forms condensates in cellular protrusions, where mRNAs are enriched in an IDR-dependent manner. Purified KIF1C tail constructs undergo LLPS in vitro at near-endogenous nM concentrations and in the absence of crowding agents and can directly recruit RNA molecules. Overall, our work uncovers an intrinsic correlation between the LLPS activity of KIF1C and its role in mRNA positioning. In addition, the LLPS activity of KIF1C's tail represents a new mode of motor-cargo interaction that extends our current understanding of cytoskeletal motor proteins.
Collapse
Affiliation(s)
- Qi Geng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jakia Jannat Keya
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Kelley FM, Ani A, Pinlac EG, Linders B, Favetta B, Barai M, Ma Y, Singh A, Dignon GL, Gu Y, Schuster BS. Controlled and orthogonal partitioning of large particles into biomolecular condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603072. [PMID: 39071308 PMCID: PMC11275771 DOI: 10.1101/2024.07.11.603072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Biomolecular condensates arising from liquid-liquid phase separation contribute to diverse cellular processes, such as gene expression. Partitioning of client molecules into condensates is critical to regulating the composition and function of condensates. Previous studies suggest that client size limits partitioning, with dextrans >5 nm excluded from condensates. Here, we asked whether larger particles, such as macromolecular complexes, can partition into condensates based on particle-condensate interactions. We sought to discover the biophysical principles that govern particle inclusion in or exclusion from condensates using polymer nanoparticles with tailored surface chemistries as models of macromolecular complexes. Particles coated with polyethylene glycol (PEG) did not partition into condensates. We next leveraged the PEGylated particles as an inert platform to which we conjugated specific adhesive moieties. Particles functionalized with biotin partitioned into condensates containing streptavidin, driven by high-affinity biotin-streptavidin binding. Oligonucleotide-decorated particles exhibited varying degrees of partitioning into condensates, depending on condensate composition. Partitioning of oligonucleotide-coated particles was tuned by altering salt concentration, oligonucleotide length, and oligonucleotide surface density. Remarkably, beads with distinct surface chemistries partitioned orthogonally into immiscible condensates. Based on our experiments, we conclude that arbitrarily large particles can controllably partition into biomolecular condensates given sufficiently strong condensate-particle interactions, a conclusion also supported by our coarse-grained molecular dynamics simulations and theory. These findings may provide insights into how various cellular processes are achieved based on partitioning of large clients into biomolecular condensates, as well as offer design principles for the development of drug delivery systems that selectively target disease-related biomolecular condensates.
Collapse
Affiliation(s)
- Fleurie M. Kelley
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Anas Ani
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Emily G. Pinlac
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Bridget Linders
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Bruna Favetta
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Mayur Barai
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Yuchen Ma
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Arjun Singh
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Gregory L. Dignon
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Yuwei Gu
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Benjamin S. Schuster
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
18
|
Chekulaeva M. Mechanistic insights into the basis of widespread RNA localization. Nat Cell Biol 2024; 26:1037-1046. [PMID: 38956277 DOI: 10.1038/s41556-024-01444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
The importance of subcellular mRNA localization is well established, but the underlying mechanisms mostly remain an enigma. Early studies suggested that specific mRNA sequences recruit RNA-binding proteins (RBPs) to regulate mRNA localization. However, despite the observation of thousands of localized mRNAs, only a handful of these sequences and RBPs have been identified. This suggests the existence of alternative, and possibly predominant, mechanisms for mRNA localization. Here I re-examine currently described mRNA localization mechanisms and explore alternative models that could account for its widespread occurrence.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
19
|
Abstract
The translation of messenger RNA (mRNA) into proteins represents the culmination of gene expression. Recent technological advances have revolutionized our ability to investigate this process with unprecedented precision, enabling the study of translation at the single-molecule level in real time within live cells. In this review, we provide an overview of single-mRNA translation reporters. We focus on the core technology, as well as the rapid development of complementary probes, tags, and accessories that enable the visualization and quantification of a wide array of translation dynamics. We then highlight notable studies that have utilized these reporters in model systems to address key biological questions. The high spatiotemporal resolution of these studies is shedding light on previously unseen phenomena, uncovering the full heterogeneity and complexity of translational regulation.
Collapse
Affiliation(s)
- Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
| | - O'Neil Wiggan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
- Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
20
|
Crawford RA, Eastham M, Pool MR, Ashe MP. Orchestrated centers for the production of proteins or "translation factories". WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1867. [PMID: 39048533 DOI: 10.1002/wrna.1867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
The mechanics of how proteins are generated from mRNA is increasingly well understood. However, much less is known about how protein production is coordinated and orchestrated within the crowded intracellular environment, especially in eukaryotic cells. Recent studies suggest that localized sites exist for the coordinated production of specific proteins. These sites have been termed "translation factories" and roles in protein complex formation, protein localization, inheritance, and translation regulation have been postulated. In this article, we review the evidence supporting the translation of mRNA at these sites, the details of their mechanism of formation, and their likely functional significance. Finally, we consider the key uncertainties regarding these elusive structures in cells. This article is categorized under: Translation Translation > Mechanisms RNA Export and Localization > RNA Localization Translation > Regulation.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Matthew Eastham
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Martin R Pool
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Mark P Ashe
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
21
|
Lee M, Moon HC, Jeong H, Kim DW, Park HY, Shin Y. Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions. Nat Commun 2024; 15:3216. [PMID: 38622120 PMCID: PMC11018775 DOI: 10.1038/s41467-024-47442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Biomolecular condensates, often assembled through phase transition mechanisms, play key roles in organizing diverse cellular activities. The material properties of condensates, ranging from liquid droplets to solid-like glasses or gels, are key features impacting the way resident components associate with one another. However, it remains unclear whether and how different material properties would influence specific cellular functions of condensates. Here, we combine optogenetic control of phase separation with single-molecule mRNA imaging to study relations between phase behaviors and functional performance of condensates. Using light-activated condensation, we show that sequestering target mRNAs into condensates causes translation inhibition. Orthogonal mRNA imaging reveals highly transient nature of interactions between individual mRNAs and condensates. Tuning condensate composition and material property towards more solid-like states leads to stronger translational repression, concomitant with a decrease in molecular mobility. We further demonstrate that β-actin mRNA sequestration in neurons suppresses spine enlargement during chemically induced long-term potentiation. Our work highlights how the material properties of condensates can modulate functions, a mechanism that may play a role in fine-tuning the output of condensate-driven cellular activities.
Collapse
Affiliation(s)
- Min Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea
| | - Hyungseok C Moon
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
| | - Hyeonjeong Jeong
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, USA
| | - Dong Wook Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea.
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, USA.
| | - Yongdae Shin
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea.
- Department of Mechanical Engineering, Seoul National University, Seoul, Korea.
| |
Collapse
|
22
|
Mah CK, Ahmed N, Lopez NA, Lam DC, Pong A, Monell A, Kern C, Han Y, Prasad G, Cesnik AJ, Lundberg E, Zhu Q, Carter H, Yeo GW. Bento: a toolkit for subcellular analysis of spatial transcriptomics data. Genome Biol 2024; 25:82. [PMID: 38566187 PMCID: PMC11289963 DOI: 10.1186/s13059-024-03217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
The spatial organization of molecules in a cell is essential for their functions. While current methods focus on discerning tissue architecture, cell-cell interactions, and spatial expression patterns, they are limited to the multicellular scale. We present Bento, a Python toolkit that takes advantage of single-molecule information to enable spatial analysis at the subcellular scale. Bento ingests molecular coordinates and segmentation boundaries to perform three analyses: defining subcellular domains, annotating localization patterns, and quantifying gene-gene colocalization. We demonstrate MERFISH, seqFISH + , Molecular Cartography, and Xenium datasets. Bento is part of the open-source Scverse ecosystem, enabling integration with other single-cell analysis tools.
Collapse
Affiliation(s)
- Clarence K Mah
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center, La Jolla, CA, USA
| | - Noorsher Ahmed
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center, La Jolla, CA, USA
| | - Nicole A Lopez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Dylan C Lam
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Avery Pong
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Alexander Monell
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Colin Kern
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Yuanyuan Han
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Gino Prasad
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Anthony J Cesnik
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Emma Lundberg
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Quan Zhu
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Sanford Stem Cell Institute Innovation Center, La Jolla, CA, USA.
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
23
|
Emanuelson C, Bardhan A, Deiters A. DNA Logic Gates for Small Molecule Activation Circuits in Cells. ACS Synth Biol 2024; 13:538-545. [PMID: 38306634 PMCID: PMC10877608 DOI: 10.1021/acssynbio.3c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/04/2024]
Abstract
DNA-based devices such as DNA logic gates self-assemble into supramolecular structures, as dictated by the sequences of the constituent oligonucleotides and their predictable Watson-Crick base pairing interactions. The programmable nature of DNA-based devices permits the design and implementation of DNA circuits that interact in a dynamic and sequential manner capable of spatially arranging disparate DNA species. Here, we report the application of an activatable fluorescence reporter based on a proximity-driven inverse electron demand Diels-Alder (IEDDA) reaction and its robust integration with DNA strand displacement circuits. In response to specific DNA input patterns, sequential strand displacement reactions are initiated and culminate in the hybridization of two modified DNA strands carrying probes capable of undergoing an IEDDA reaction between a vinyl-ether-caged fluorophore and its reactive partner tetrazine, leading to the activation of fluorescence. This approach provides a major advantage for DNA computing in mammalian cells since circuit degradation does not induce fluorescence, in contrast to traditional fluorophore-quencher designs. We demonstrate the robustness and sensitivity of the reporter by testing its ability to serve as a readout for DNA logic circuits of varying complexity inside cells.
Collapse
Affiliation(s)
- Cole Emanuelson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Anirban Bardhan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
24
|
Bernardini A, Tora L. Co-translational Assembly Pathways of Nuclear Multiprotein Complexes Involved in the Regulation of Gene Transcription. J Mol Biol 2024; 436:168382. [PMID: 38061625 DOI: 10.1016/j.jmb.2023.168382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023]
Abstract
Most factors that regulate gene transcription in eukaryotic cells are multimeric, often large, protein complexes. The understanding of the biogenesis pathways of such large and heterogeneous protein assemblies, as well as the dimerization partner choice among transcription factors, is crucial to interpret and control gene expression programs and consequent cell fate decisions. Co-translational assembly (Co-TA) is thought to play key roles in the biogenesis of protein complexes by directing complex formation during protein synthesis. In this review we discuss the principles of Co-TA with a special focus for the assembly of transcription regulatory complexes. We outline the expected molecular advantages of establishing co-translational interactions, pointing at the available, or missing, evidence for each of them. We hypothesize different molecular mechanisms based on Co-TA to explain the allocation "dilemma" of paralog proteins and subunits shared by different transcription complexes. By taking as a paradigm the different assembly pathways employed by three related transcription regulatory complexes (TFIID, SAGA and ATAC), we discuss alternative Co-TA strategies for nuclear multiprotein complexes and the widespread - yet specific - use of Co-TA for the formation of nuclear complexes involved in gene transcription. Ultimately, we outlined a series of open questions which demand well-defined lines of research to investigate the principles of gene regulation that rely on the coordinated assembly of protein complexes.
Collapse
Affiliation(s)
- Andrea Bernardini
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964 Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964 Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
25
|
Bhatter N, Dmitriev SE, Ivanov P. Cell death or survival: Insights into the role of mRNA translational control. Semin Cell Dev Biol 2024; 154:138-154. [PMID: 37357122 PMCID: PMC10695129 DOI: 10.1016/j.semcdb.2023.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Cellular stress is an intrinsic part of cell physiology that underlines cell survival or death. The ability of mammalian cells to regulate global protein synthesis (aka translational control) represents a critical, yet underappreciated, layer of regulation during the stress response. Various cellular stress response pathways monitor conditions of cell growth and subsequently reshape the cellular translatome to optimize translational outputs. On the molecular level, such translational reprogramming involves an intricate network of interactions between translation machinery, RNA-binding proteins, mRNAs, and non-protein coding RNAs. In this review, we will discuss molecular mechanisms, signaling pathways, and targets of translational control that contribute to cellular adaptation to stress and to cell survival or death.
Collapse
Affiliation(s)
- Nupur Bhatter
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Harvard Initiative for RNA Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
26
|
Lo HYG, Pearson CG, Taliaferro JM. Differential subcellular localization of ASPM RNA and protein. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001080. [PMID: 38344067 PMCID: PMC10853820 DOI: 10.17912/micropub.biology.001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 09/25/2024]
Abstract
RNAs encoding some centrosomal components are trafficked to the organelle during mitosis. Some RNAs, including ASPM , localize to the centrosome co-translationally. However, the relative position of these RNAs and their protein after trafficking to centrosomes remained unclear. We find that mislocalization of ASPM RNA from the centrosome does not affect the localization of ASPM protein. Further, ASPM RNA and ASPM protein reside in two physically close yet distinct subcellular spaces, with ASPM RNA on the astral side of the centrosome and ASPM protein on the spindle side. This suggests subtly distinct locations of ASPM RNA translation and ASPM protein function.
Collapse
Affiliation(s)
- Hei-Yong G Lo
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
27
|
Villanueva E, Smith T, Pizzinga M, Elzek M, Queiroz RML, Harvey RF, Breckels LM, Crook OM, Monti M, Dezi V, Willis AE, Lilley KS. System-wide analysis of RNA and protein subcellular localization dynamics. Nat Methods 2024; 21:60-71. [PMID: 38036857 PMCID: PMC10776395 DOI: 10.1038/s41592-023-02101-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Although the subcellular dynamics of RNA and proteins are key determinants of cell homeostasis, their characterization is still challenging. Here we present an integrative framework to simultaneously interrogate the dynamics of the transcriptome and proteome at subcellular resolution by combining two methods: localization of RNA (LoRNA) and a streamlined density-based localization of proteins by isotope tagging (dLOPIT) to map RNA and protein to organelles (nucleus, endoplasmic reticulum and mitochondria) and membraneless compartments (cytosol, nucleolus and cytosolic granules). Interrogating all RNA subcellular locations at once enables system-wide quantification of the proportional distribution of RNA. We obtain a cell-wide overview of localization dynamics for 31,839 transcripts and 5,314 proteins during the unfolded protein response, revealing that endoplasmic reticulum-localized transcripts are more efficiently recruited to cytosolic granules than cytosolic RNAs, and that the translation initiation factor eIF3d is key to sustaining cytoskeletal function. Overall, we provide the most comprehensive overview so far of RNA and protein subcellular localization dynamics.
Collapse
Affiliation(s)
- Eneko Villanueva
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tom Smith
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Mariavittoria Pizzinga
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Structural Biology Research Centre, Human Technopole, Milan, Italy
| | - Mohamed Elzek
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Rayner M L Queiroz
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Lisa M Breckels
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Oliver M Crook
- Department of Statistics, University of Oxford, Oxford, UK
| | - Mie Monti
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Veronica Dezi
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK.
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
28
|
Atta-Ur-Rahman. Protein Folding and Molecular Basis of Memory: Molecular Vibrations and Quantum Entanglement as Basis of Consciousness. Curr Med Chem 2024; 31:258-265. [PMID: 37424348 DOI: 10.2174/0929867331666230707123345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Affiliation(s)
- Atta-Ur-Rahman
- Kings College, University of Cambridge, Cambridge CB2 1st, United Kingdom
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
29
|
Penzo A, Palancade B. Puzzling out nuclear pore complex assembly. FEBS Lett 2023; 597:2705-2727. [PMID: 37548888 DOI: 10.1002/1873-3468.14713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
Nuclear pore complexes (NPCs) are sophisticated multiprotein assemblies embedded within the nuclear envelope and controlling the exchanges of molecules between the cytoplasm and the nucleus. In this review, we summarize the mechanisms by which these elaborate complexes are built from their subunits, the nucleoporins, based on our ever-growing knowledge of NPC structural organization and on the recent identification of additional features of this process. We present the constraints faced during the production of nucleoporins, their gathering into oligomeric complexes, and the formation of NPCs within nuclear envelopes, and review the cellular strategies at play, from co-translational assembly to the enrolment of a panel of cofactors. Remarkably, the study of NPCs can inform our perception of the biogenesis of multiprotein complexes in general - and vice versa.
Collapse
Affiliation(s)
- Arianna Penzo
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Benoit Palancade
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| |
Collapse
|
30
|
Otis JP, Mowry KL. Hitting the mark: Localization of mRNA and biomolecular condensates in health and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1807. [PMID: 37393916 PMCID: PMC10758526 DOI: 10.1002/wrna.1807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
Subcellular mRNA localization is critical to a multitude of biological processes such as development of cellular polarity, embryogenesis, tissue differentiation, protein complex formation, cell migration, and rapid responses to environmental stimuli and synaptic depolarization. Our understanding of the mechanisms of mRNA localization must now be revised to include formation and trafficking of biomolecular condensates, as several biomolecular condensates that transport and localize mRNA have recently been discovered. Disruptions in mRNA localization can have catastrophic effects on developmental processes and biomolecular condensate biology and have been shown to contribute to diverse diseases. A fundamental understanding of mRNA localization is essential to understanding how aberrations in this biology contribute the etiology of numerous cancers though support of cancer cell migration and biomolecular condensate dysregulation, as well as many neurodegenerative diseases, through misregulation of mRNA localization and biomolecular condensate biology. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jessica P. Otis
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| | - Kimberly L. Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| |
Collapse
|
31
|
Geng Q, Keya JJ, Hotta T, Verhey KJ. KIF1C, an RNA transporting kinesin-3, undergoes liquid-liquid phase separation through its C-terminal disordered domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563538. [PMID: 37961614 PMCID: PMC10634753 DOI: 10.1101/2023.10.23.563538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The spatial distribution of mRNA is critical for local control of protein production. Recent studies have identified the kinesin-3 family member KIF1C as an RNA transporter. However, it is not clear how KIF1C interacts with RNA molecules. Here, we show that KIF1C's C-terminal tail domain is an intrinsically disordered region (IDR) containing a prion-like domain (PLD) that is unique compared to the C-terminal tails of other kinesin family members. In cells, KIF1C constructs undergo reversible formation of dynamic puncta that display physical properties of liquid condensates and incorporate RNA molecules in a sequence-selective manner. The IDR is necessary and sufficient for driving liquid-liquid phase separation (LLPS) but the condensate properties can be modulated by adjacent coiled-coil segments. The purified KIF1C IDR domain undergoes LLPS in vitro at near-endogenous nM concentrations in a salt-dependent manner. Deletion of the IDR abolished the ability of KIF1C to undergo LLPS and disrupted the distribution of mRNA cargoes to the cell periphery. Our work thus uncovers an intrinsic correlation between the LLPS activity of KIF1C and its role as an RNA transporter. In addition, as the first kinesin motor reported to undergo LLPS, our work reveals a previously uncharacterized mode of motor-cargo interaction that extends our understanding of the behavior of cytoskeletal motor proteins.
Collapse
Affiliation(s)
- Qi Geng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jakia Jannat Keya
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
32
|
Cochard A, Safieddine A, Combe P, Benassy M, Weil D, Gueroui Z. Condensate functionalization with microtubule motors directs their nucleation in space and allows manipulating RNA localization. EMBO J 2023; 42:e114106. [PMID: 37724036 PMCID: PMC10577640 DOI: 10.15252/embj.2023114106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023] Open
Abstract
The localization of RNAs in cells is critical for many cellular processes. Whereas motor-driven transport of ribonucleoprotein (RNP) condensates plays a prominent role in RNA localization in cells, their study remains limited by the scarcity of available tools allowing to manipulate condensates in a spatial manner. To fill this gap, we reconstitute in cellula a minimal RNP transport system based on bioengineered condensates, which were functionalized with kinesins and dynein-like motors, allowing for their positioning at either the cell periphery or centrosomes. This targeting mostly occurs through the active transport of the condensate scaffolds, which leads to localized nucleation of phase-separated condensates. Then, programming the condensates to recruit specific mRNAs is able to shift the localization of these mRNAs toward the cell periphery or the centrosomes. Our method opens novel perspectives for examining the role of RNA localization as a driver of cellular functions.
Collapse
Affiliation(s)
- Audrey Cochard
- Department of Chemistry, École Normale SupérieurePSL University, Sorbonne Université, CNRSParisFrance
- Sorbonne Université, CNRS, Institut de Biologie Paris‐Seine (IBPS), Laboratoire de Biologie du DéveloppementParisFrance
| | - Adham Safieddine
- Sorbonne Université, CNRS, Institut de Biologie Paris‐Seine (IBPS), Laboratoire de Biologie du DéveloppementParisFrance
| | - Pauline Combe
- Department of Chemistry, École Normale SupérieurePSL University, Sorbonne Université, CNRSParisFrance
| | - Marie‐Noëlle Benassy
- Sorbonne Université, CNRS, Institut de Biologie Paris‐Seine (IBPS), Laboratoire de Biologie du DéveloppementParisFrance
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris‐Seine (IBPS), Laboratoire de Biologie du DéveloppementParisFrance
| | - Zoher Gueroui
- Department of Chemistry, École Normale SupérieurePSL University, Sorbonne Université, CNRSParisFrance
| |
Collapse
|
33
|
Bodin A, Greibill L, Gouju J, Letournel F, Pozzi S, Julien JP, Renaud L, Bohl D, Millecamps S, Verny C, Cassereau J, Lenaers G, Chevrollier A, Tassin AM, Codron P. Transactive response DNA-binding protein 43 is enriched at the centrosome in human cells. Brain 2023; 146:3624-3633. [PMID: 37410912 PMCID: PMC10473568 DOI: 10.1093/brain/awad228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/14/2023] [Accepted: 06/03/2023] [Indexed: 07/08/2023] Open
Abstract
The centrosome, as the main microtubule organizing centre, plays key roles in cell polarity, genome stability and ciliogenesis. The recent identification of ribosomes, RNA-binding proteins and transcripts at the centrosome suggests local protein synthesis. In this context, we hypothesized that TDP-43, a highly conserved RNA binding protein involved in the pathophysiology of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, could be enriched at this organelle. Using dedicated high magnification sub-diffraction microscopy on human cells, we discovered a novel localization of TDP-43 at the centrosome during all phases of the cell cycle. These results were confirmed on purified centrosomes by western blot and immunofluorescence microscopy. In addition, the co-localization of TDP-43 and pericentrin suggested a pericentriolar enrichment of the protein, leading us to hypothesize that TDP-43 might interact with local mRNAs and proteins. Supporting this hypothesis, we found four conserved centrosomal mRNAs and 16 centrosomal proteins identified as direct TDP-43 interactors. More strikingly, all the 16 proteins are implicated in the pathophysiology of TDP-43 proteinopathies, suggesting that TDP-43 dysfunction in this organelle contributes to neurodegeneration. This first description of TDP-43 centrosomal enrichment paves the way for a more comprehensive understanding of TDP-43 physiology and pathology.
Collapse
Affiliation(s)
- Alexia Bodin
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
| | - Logan Greibill
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Julien Gouju
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
| | - Franck Letournel
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
| | - Silvia Pozzi
- Department of Psychiatry and Neuroscience, University of Laval, Québec City, Qc G1V 0A6, Canada
- CERVO Brain Research Centre, Québec, Qc G1E 1T2, Canada
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, University of Laval, Québec City, Qc G1V 0A6, Canada
- CERVO Brain Research Centre, Québec, Qc G1E 1T2, Canada
| | - Laurence Renaud
- Département de Neurosciences, Université de Montréal, Montréal, Qc H3C 3J7, Canada
- Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Qc H3C 3J7, Canada
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Stéphanie Millecamps
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Christophe Verny
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| | - Julien Cassereau
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| | - Guy Lenaers
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| | - Arnaud Chevrollier
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
| | - Anne-Marie Tassin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Philippe Codron
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| |
Collapse
|
34
|
Das S, Lituma PJ, Castillo PE, Singer RH. Maintenance of a short-lived protein required for long-term memory involves cycles of transcription and local translation. Neuron 2023; 111:2051-2064.e6. [PMID: 37100055 PMCID: PMC10330212 DOI: 10.1016/j.neuron.2023.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/03/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023]
Abstract
Activity-dependent expression of immediate early genes (IEGs) is critical for long-term synaptic remodeling and memory. It remains unknown how IEGs are maintained for memory despite rapid transcript and protein turnover. To address this conundrum, we monitored Arc, an IEG essential for memory consolidation. Using a knockin mouse where endogenous Arc alleles were fluorescently tagged, we performed real-time imaging of Arc mRNA dynamics in individual neurons in cultures and brain tissue. Unexpectedly, a single burst stimulation was sufficient to induce cycles of transcriptional reactivation in the same neuron. Subsequent transcription cycles required translation, whereby new Arc proteins engaged in autoregulatory positive feedback to reinduce transcription. The ensuing Arc mRNAs preferentially localized at sites marked by previous Arc protein, assembling a "hotspot" of translation, and consolidating "hubs" of dendritic Arc. These cycles of transcription-translation coupling sustain protein expression and provide a mechanism by which a short-lived event may support long-term memory.
Collapse
Affiliation(s)
- Sulagna Das
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Program in RNA Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| | - Pablo J Lituma
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Robert H Singer
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Program in RNA Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| |
Collapse
|
35
|
Busselez J, Uzbekov RE, Franco B, Pancione M. New insights into the centrosome-associated spliceosome components as regulators of ciliogenesis and tissue identity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1776. [PMID: 36717357 DOI: 10.1002/wrna.1776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 02/01/2023]
Abstract
Biomolecular condensates are membrane-less assemblies of proteins and nucleic acids. Centrosomes are biomolecular condensates that play a crucial role in nuclear division, cytoskeletal remodeling, and cilia formation in animal cells. Spatial omics technology is providing new insights into the dynamic exchange of spliceosome components between the nucleus and the centrosome/cilium. Intriguingly, centrosomes are emerging as cytoplasmic sites for information storage, enriched with RNA molecules and RNA-processing proteins. Furthermore, growing evidence supports the view that nuclear spliceosome components assembled at the centrosome function as potential coordinators of splicing subprograms, pluripotency, and cell differentiation. In this article, we first discuss the current understanding of the centrosome/cilium complex, which controls both stem cell differentiation and pluripotency. We next explore the molecular mechanisms that govern splicing factor assembly and disassembly around the centrosome and examine how RNA processing pathways contribute to ciliogenesis. Finally, we discuss numerous unresolved compelling questions regarding the centrosome-associated spliceosome components and transcript variants within the cytoplasm as sources of RNA-based secondary messages in the regulation of cell identity and cell fate determination. This article is categorized under: RNA-Based Catalysis > RNA Catalysis in Splicing and Translation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > RNA Processing.
Collapse
Affiliation(s)
- Johan Busselez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
| | - Rustem E Uzbekov
- Faculté de Médecine, Université de Tours, Tours, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medicine, Medical Genetics, University of Naples "Federico II", Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University Madrid, Madrid, Spain
| |
Collapse
|
36
|
Badonyi M, Marsh JA. Buffering of genetic dominance by allele-specific protein complex assembly. SCIENCE ADVANCES 2023; 9:eadf9845. [PMID: 37256959 PMCID: PMC10413657 DOI: 10.1126/sciadv.adf9845] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
Protein complex assembly often occurs while subunits are being translated, resulting in complexes whose subunits were translated from the same mRNA in an allele-specific manner. It has thus been hypothesized that such cotranslational assembly may counter the assembly-mediated dominant-negative effect, whereby co-assembly of mutant and wild-type subunits "poisons" complex activity. Here, we show that cotranslationally assembling subunits are much less likely to be associated with autosomal dominant relative to recessive disorders, and that subunits with dominant-negative disease mutations are significantly depleted in cotranslational assembly compared to those associated with loss-of-function mutations. We also find that complexes with known dominant-negative effects tend to expose their interfaces late during translation, lessening the likelihood of cotranslational assembly. Finally, by combining complex properties with other features, we trained a computational model for predicting proteins likely to be associated with non-loss-of-function disease mechanisms, which we believe will be of considerable utility for protein variant interpretation.
Collapse
Affiliation(s)
- Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
37
|
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, Gingeras TR, Guttman M, Hirose T, Huarte M, Johnson R, Kanduri C, Kapranov P, Lawrence JB, Lee JT, Mendell JT, Mercer TR, Moore KJ, Nakagawa S, Rinn JL, Spector DL, Ulitsky I, Wan Y, Wilusz JE, Wu M. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 2023; 24:430-447. [PMID: 36596869 PMCID: PMC10213152 DOI: 10.1038/s41580-022-00566-8] [Citation(s) in RCA: 929] [Impact Index Per Article: 464.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia.
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia.
| | - Paulo P Amaral
- INSPER Institute of Education and Research, São Paulo, Brazil
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling-Ling Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra, Pamplona, Spain
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen, China
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joshua T Mendell
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Timothy R Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Kathryn J Moore
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - David L Spector
- Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, USA
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yue Wan
- Laboratory of RNA Genomics and Structure, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Atmakuru PS, Dhawan J. The cilium-centrosome axis in coupling cell cycle exit and cell fate. J Cell Sci 2023; 136:308872. [PMID: 37144419 DOI: 10.1242/jcs.260454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
The centrosome is an evolutionarily conserved, ancient organelle whose role in cell division was first described over a century ago. The structure and function of the centrosome as a microtubule-organizing center, and of its extracellular extension - the primary cilium - as a sensory antenna, have since been extensively studied, but the role of the cilium-centrosome axis in cell fate is still emerging. In this Opinion piece, we view cellular quiescence and tissue homeostasis from the vantage point of the cilium-centrosome axis. We focus on a less explored role in the choice between distinct forms of mitotic arrest - reversible quiescence and terminal differentiation, which play distinct roles in tissue homeostasis. We outline evidence implicating the centrosome-basal body switch in stem cell function, including how the cilium-centrosome complex regulates reversible versus irreversible arrest in adult skeletal muscle progenitors. We then highlight exciting new findings in other quiescent cell types that suggest signal-dependent coupling of nuclear and cytoplasmic events to the centrosome-basal body switch. Finally, we propose a framework for involvement of this axis in mitotically inactive cells and identify future avenues for understanding how the cilium-centrosome axis impacts central decisions in tissue homeostasis.
Collapse
Affiliation(s)
- Priti S Atmakuru
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Jyotsna Dhawan
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
39
|
Birnbaum R, Biswas J, Singer RH, Sharp DJ. mRNA Localization and Local Translation of the Microtubule Severing Enzyme, Fidgetin-Like 2, in Polarization, Migration and Outgrowth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537087. [PMID: 37131812 PMCID: PMC10153175 DOI: 10.1101/2023.04.17.537087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell motility requires strict spatiotemporal control of protein expression. During cell migration, mRNA localization and local translation in subcellular areas like the leading edge and protrusions are particularly advantageous for regulating the reorganization of the cytoskeleton. Fidgetin-Like 2 (FL2), a microtubule severing enzyme (MSE) that restricts migration and outgrowth, localizes to the leading edge of protrusions where it severs dynamic microtubules. FL2 is primarily expressed during development but in adulthood, is spatially upregulated at the leading edge minutes after injury. Here, we show mRNA localization and local translation in protrusions of polarized cells are responsible for FL2 leading edge expression after injury. The data suggests that the RNA binding protein IMP1 is involved in the translational regulation and stabilization of FL2 mRNA, in competition with the miRNA let-7. These data exemplify the role of local translation in microtubule network reorganization during migration and elucidate an unexplored MSE protein localization mechanism.
Collapse
Affiliation(s)
- Rayna Birnbaum
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jeetayu Biswas
- Present address: Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10021, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert H. Singer
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David J. Sharp
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Microcures, Inc., Research and Development, Bronx, NY, 10461, USA
| |
Collapse
|
40
|
Sarfraz N, Braselmann E. It's complicated: the interplay of Kif1c mRNA localization in cell protrusions, assembly of protein binding partners on the KIF1C protein, and cell migration. Genes Dev 2023; 37:137-139. [PMID: 36889919 PMCID: PMC10111868 DOI: 10.1101/gad.350538.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Distinct subcellular localizations of mRNAs have been described across a wide variety of cell types. While common themes emerge for neuronal cells, functional roles of mRNA localization in space and time are much less understood in nonneuronal cells. Emerging areas of interest are cell models with protrusions, often linked with cell mobility in cancer systems. In this issue of Genes & Development, Norris and Mendell (pp. 191-203) systematically investigate a link between mRNA localization to cell protrusions in a mouse melanoma cell system and a mechanistic link to downstream consequences for cell mobility. The study first identifies a model mRNA of interest in an unbiased way that exhibits a set of phenotypes associated with cell mobility. The candidate mRNA that fulfills all requirements is Kif1c mRNA. Further systematic investigation links Kif1c mRNA localization to assembly of a protein-protein network on the KIF1C protein itself. What's clear is that this work will inspire a further mechanistic dissection of the Kif1c mRNA/KIF1C protein interplay in this important nonneuronal model cell system. More broadly, this work suggests that a broad set of model mRNAs should be investigated to understand mRNA dynamics and downstream functional consequences across a variety of cell models.
Collapse
Affiliation(s)
- Nadia Sarfraz
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, USA
| | - Esther Braselmann
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, USA
| |
Collapse
|
41
|
Bourke AM, Schwarz A, Schuman EM. De-centralizing the Central Dogma: mRNA translation in space and time. Mol Cell 2023; 83:452-468. [PMID: 36669490 DOI: 10.1016/j.molcel.2022.12.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023]
Abstract
As our understanding of the cell interior has grown, we have come to appreciate that most cellular operations are localized, that is, they occur at discrete and identifiable locations or domains. These cellular domains contain enzymes, machines, and other components necessary to carry out and regulate these localized operations. Here, we review these features of one such operation: the localization and translation of mRNAs within subcellular compartments observed across cell types and organisms. We describe the conceptual advantages and the "ingredients" and mechanisms of local translation. We focus on the nature and features of localized mRNAs, how they travel and get localized, and how this process is regulated. We also evaluate our current understanding of protein synthesis machines (ribosomes) and their cadre of regulatory elements, that is, the translation factors.
Collapse
Affiliation(s)
- Ashley M Bourke
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Andre Schwarz
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany.
| |
Collapse
|
42
|
Stark M, Levin M, Ulitsky I, Assaraf YG. Folylpolyglutamate synthetase mRNA G-quadruplexes regulate its cell protrusion localization and enhance a cancer cell invasive phenotype upon folate repletion. BMC Biol 2023; 21:13. [PMID: 36721160 PMCID: PMC9889130 DOI: 10.1186/s12915-023-01525-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Folates are crucial for the biosynthesis of nucleotides and amino acids, essential for cell proliferation and development. Folate deficiency induces DNA damage, developmental defects, and tumorigenicity. The obligatory enzyme folylpolyglutamate synthetase (FPGS) mediates intracellular folate retention via cytosolic and mitochondrial folate polyglutamylation. Our previous paper demonstrated the association of the cytosolic FPGS (cFPGS) with the cytoskeleton and various cell protrusion proteins. Based on these recent findings, the aim of the current study was to investigate the potential role of cFPGS at cell protrusions. RESULTS Here we uncovered a central role for two G-quadruplex (GQ) motifs in the 3'UTR of FPGS mediating the localization of cFPGS mRNA and protein at cell protrusions. Using the MBSV6-loop reporter system and fluorescence microscopy, we demonstrate that following folate deprivation, cFPGS mRNA is retained in the endoplasmic reticulum, whereas upon 15 min of folate repletion, this mRNA is rapidly translocated to cell protrusions in a 3'UTR- and actin-dependent manner. The actin dependency of this folate-induced mRNA translocation is shown by treatment with Latrunculin B and inhibitors of the Ras homolog family member A (RhoA) pathway. Upon folate repletion, the FPGS 3'UTR GQs induce an amoeboid/mesenchymal hybrid cell phenotype during migration and invasion through a collagen gel matrix. Targeted disruption of the 3'UTR GQ motifs by introducing point mutations or masking them by antisense oligonucleotides abrogated cell protrusion targeting of cFPGS mRNA. CONCLUSIONS Collectively, the GQ motifs within the 3'UTR of FPGS regulate its transcript and protein localization at cell protrusions in response to a folate cue, inducing cancer cell invasive phenotype. These novel findings suggest that the 3'UTR GQ motifs of FPGS constitute an attractive druggable target aimed at inhibition of cancer invasion and metastasis.
Collapse
Affiliation(s)
- Michal Stark
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - May Levin
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel ,grid.507132.2Present address: May Levin, MeMed Diagnostics Ltd, Tirat Carmel, Israel
| | - Igor Ulitsky
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yehuda G. Assaraf
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| |
Collapse
|
43
|
HT-smFISH: a cost-effective and flexible workflow for high-throughput single-molecule RNA imaging. Nat Protoc 2023; 18:157-187. [PMID: 36280749 DOI: 10.1038/s41596-022-00750-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/04/2022] [Indexed: 01/14/2023]
Abstract
The ability to visualize RNA in its native subcellular environment by using single-molecule fluorescence in situ hybridization (smFISH) has reshaped our understanding of gene expression and cellular functions. A major hindrance of smFISH is the difficulty to perform systematic experiments in medium- or high-throughput formats, principally because of the high cost of generating the individual fluorescent probe sets. Here, we present high-throughput smFISH (HT-smFISH), a simple and cost-efficient method for imaging hundreds to thousands of single endogenous RNA molecules in 96-well plates. HT-smFISH uses RNA probes transcribed in vitro from a large pool of unlabeled oligonucleotides. This allows the generation of individual probes for many RNA species, replacing commercial DNA probe sets. HT-smFISH thus reduces costs per targeted RNA compared with many smFISH methods and is easily scalable and flexible in design. We provide a protocol that combines oligo pool design, probe set generation, optimized hybridization conditions and guidelines for image acquisition and analysis. The pipeline requires knowledge of standard molecular biology tools, cell culture and fluorescence microscopy. It is achievable in ~20 d. In brief, HT-smFISH is tailored for medium- to high-throughput screens that image RNAs at single-molecule sensitivity.
Collapse
|
44
|
Pibuel MA, Poodts D, Molinari Y, Díaz M, Amoia S, Byrne A, Hajos S, Lompardía S, Franco P. The importance of RHAMM in the normal brain and gliomas: physiological and pathological roles. Br J Cancer 2023; 128:12-20. [PMID: 36207608 PMCID: PMC9814267 DOI: 10.1038/s41416-022-01999-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 01/27/2023] Open
Abstract
Although the literature about the functions of hyaluronan and the CD44 receptor in the brain and brain tumours is extensive, the role of the receptor for hyaluronan-mediated motility (RHAMM) in neural stem cells and gliomas remain poorly explored. RHAMM is considered a multifunctional receptor which performs various biological functions in several normal tissues and plays a significant role in cancer development and progression. RHAMM was first identified for its ability to bind to hyaluronate, the extracellular matrix component associated with cell motility control. Nevertheless, additional functions of this protein imply the interaction with different partners or cell structures to regulate other biological processes, such as mitotic-spindle assembly, gene expression regulation, cell-cycle control and proliferation. In this review, we summarise the role of RHAMM in normal brain development and the adult brain, focusing on the neural stem and progenitor cells, and discuss the current knowledge on RHAMM involvement in glioblastoma progression, the most aggressive glioma of the central nervous system. Understanding the implications of RHAMM in the brain could be useful to design new therapeutic approaches to improve the prognosis and quality of life of glioblastoma patients.
Collapse
Affiliation(s)
- Matías A Pibuel
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Microbiología, Inmunología y Biotecnología; Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Capital Federal (1113), Buenos Aires, Argentina.
| | - Daniela Poodts
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Microbiología, Inmunología y Biotecnología; Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Yamila Molinari
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Química Biológica. Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Mariángeles Díaz
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET, Universidad de Buenos Aires, Capital Federal (1113), Buenos Aires, Argentina
| | - Sofía Amoia
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Microbiología, Inmunología y Biotecnología; Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Agustín Byrne
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Química Biológica. Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Silvia Hajos
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Microbiología, Inmunología y Biotecnología; Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Silvina Lompardía
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Microbiología, Inmunología y Biotecnología; Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Paula Franco
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Química Biológica. Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| |
Collapse
|
45
|
Winkenbach LP, Parker DM, Williams RTP, Nishimura EO. The ERM-1 membrane-binding domain directs erm-1 mRNA localization to the plasma membrane in the C. elegans embryo. Development 2022; 149:279335. [PMID: 36314842 PMCID: PMC9793419 DOI: 10.1242/dev.200930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
mRNA localization and transport are integral in regulating gene expression. In Caenorhabditis elegans embryos, the maternally inherited mRNA erm-1 (Ezrin/Radixin/Moesin) becomes concentrated in anterior blastomeres. erm-1 mRNA localizes within those blastomeres to the plasma membrane where the essential ERM-1 protein, a membrane-actin linker, is also found. We demonstrate that the localization of erm-1 mRNA to the plasma membrane is translation dependent and requires its encoded N-terminal, membrane-binding (FERM) domain. By perturbing translation through multiple methods, we found that erm-1 mRNA localization at the plasma membrane persisted only if the nascent peptide remained in complex with the translating mRNA. Indeed, re-coding the erm-1 mRNA coding sequence while preserving the encoded amino acid sequence did not disrupt erm-1 mRNA localization, corroborating that the information directing mRNA localization resides within its membrane-binding protein domain. A single-molecule inexpensive fluorescence in situ hybridization screen of 17 genes encoding similar membrane-binding domains identified three plasma membrane-localized mRNAs in the early embryo. Ten additional transcripts showed potential membrane localization later in development. These findings point to a translation-dependent pathway for localization of mRNAs encoding membrane-associated proteins.
Collapse
Affiliation(s)
- Lindsay P. Winkenbach
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Dylan M. Parker
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA,Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80303, USA
| | - Robert T. P. Williams
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA,Author for correspondence ()
| |
Collapse
|
46
|
Han Y, Wennersten SA, Wright JM, Ludwig RW, Lau E, Lam MPY. Proteogenomics reveals sex-biased aging genes and coordinated splicing in cardiac aging. Am J Physiol Heart Circ Physiol 2022; 323:H538-H558. [PMID: 35930447 PMCID: PMC9448281 DOI: 10.1152/ajpheart.00244.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 01/24/2023]
Abstract
The risks of heart diseases are significantly modulated by age and sex, but how these factors influence baseline cardiac gene expression remains incompletely understood. Here, we used RNA sequencing and mass spectrometry to compare gene expression in female and male young adult (4 mo) and early aging (20 mo) mouse hearts, identifying thousands of age- and sex-dependent gene expression signatures. Sexually dimorphic cardiac genes are broadly distributed, functioning in mitochondrial metabolism, translation, and other processes. In parallel, we found over 800 genes with differential aging response between male and female, including genes in cAMP and PKA signaling. Analysis of the sex-adjusted aging cardiac transcriptome revealed a widespread remodeling of exon usage patterns that is largely independent from differential gene expression, concomitant with upstream changes in RNA-binding protein and splice factor transcripts. To evaluate the impact of the splicing events on cardiac proteoform composition, we applied an RNA-guided proteomics computational pipeline to analyze the mass spectrometry data and detected hundreds of putative splice variant proteins that have the potential to rewire the cardiac proteome. Taken together, the results here suggest that cardiac aging is associated with 1) widespread sex-biased aging genes and 2) a rewiring of RNA splicing programs, including sex- and age-dependent changes in exon usages and splice patterns that have the potential to influence cardiac protein structure and function. These changes contribute to the emerging evidence for considerable sexual dimorphism in the cardiac aging process that should be considered in the search for disease mechanisms.NEW & NOTEWORTHY Han et al. used proteogenomics to compare male and female mouse hearts at 4 and 20 mo. Sex-biased cardiac genes function in mitochondrial metabolism, translation, autophagy, and other processes. Hundreds of cardiac genes show sex-by-age interactions, that is, sex-biased aging genes. Cardiac aging is accompanied with a remodeling of exon usage in functionally coordinated genes, concomitant with differential expression of RNA-binding proteins and splice factors. These features represent an underinvestigated aspect of cardiac aging that may be relevant to the search for disease mechanisms.
Collapse
Grants
- R21-HL150456 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00-HL144829 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00 HL127302 NHLBI NIH HHS
- R03-OD032666 HHS | NIH | NIH Office of the Director (OD)
- R01 HL141278 NHLBI NIH HHS
- F32 HL149191 NHLBI NIH HHS
- F32-HL149191 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00-HL127302 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R21 HL150456 NHLBI NIH HHS
- R03 OD032666 NIH HHS
- R00 HL144829 NHLBI NIH HHS
- R01-HL141278 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- University of Colorado
- University of Colorado School of Medicine, Anschutz Medical Campus
Collapse
Affiliation(s)
- Yu Han
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| | - Sara A Wennersten
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| | - Julianna M Wright
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| | - R W Ludwig
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Maggie P Y Lam
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
47
|
Hibbard JVK, Vázquez N, Wallingford JB. Cilia proteins getting to work - how do they commute from the cytoplasm to the base of cilia? J Cell Sci 2022; 135:jcs259444. [PMID: 36073764 PMCID: PMC9482345 DOI: 10.1242/jcs.259444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cilia are multifunctional organelles that originated with the last eukaryotic common ancestor and play central roles in the life cycles of diverse organisms. The motile flagella that move single cells like sperm or unicellular organisms, the motile cilia on animal multiciliated cells that generate fluid flow in organs, and the immotile primary cilia that decorate nearly all cells in animals share many protein components in common, yet each also requires specialized proteins to perform their specialized functions. Despite a now-advanced understanding of how such proteins are transported within cilia, we still know very little about how they are transported from their sites of synthesis through the cytoplasm to the ciliary base. Here, we review the literature concerning this underappreciated topic in ciliary cell biology. We discuss both general mechanisms, as well as specific examples of motor-driven active transport and passive transport via diffusion-and-capture. We then provide deeper discussion of specific, illustrative examples, such as the diverse array of protein subunits that together comprise the intraflagellar transport (IFT) system and the multi-protein axonemal dynein motors that drive beating of motile cilia. We hope this Review will spur further work, shedding light not only on ciliogenesis and ciliary signaling, but also on intracellular transport in general.
Collapse
Affiliation(s)
| | | | - John B. Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, TX 78751, USA
| |
Collapse
|
48
|
Morales-Polanco F, Lee JH, Barbosa NM, Frydman J. Cotranslational Mechanisms of Protein Biogenesis and Complex Assembly in Eukaryotes. Annu Rev Biomed Data Sci 2022; 5:67-94. [PMID: 35472290 PMCID: PMC11040709 DOI: 10.1146/annurev-biodatasci-121721-095858] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The formation of protein complexes is crucial to most biological functions. The cellular mechanisms governing protein complex biogenesis are not yet well understood, but some principles of cotranslational and posttranslational assembly are beginning to emerge. In bacteria, this process is favored by operons encoding subunits of protein complexes. Eukaryotic cells do not have polycistronic mRNAs, raising the question of how they orchestrate the encounter of unassembled subunits. Here we review the constraints and mechanisms governing eukaryotic co- and posttranslational protein folding and assembly, including the influence of elongation rate on nascent chain targeting, folding, and chaperone interactions. Recent evidence shows that mRNAs encoding subunits of oligomeric assemblies can undergo localized translation and form cytoplasmic condensates that might facilitate the assembly of protein complexes. Understanding the interplay between localized mRNA translation and cotranslational proteostasis will be critical to defining protein complex assembly in vivo.
Collapse
Affiliation(s)
| | - Jae Ho Lee
- Department of Biology, Stanford University, Stanford, California, USA;
| | - Natália M Barbosa
- Department of Biology, Stanford University, Stanford, California, USA;
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California, USA;
- Department of Genetics, Stanford University, Stanford, California, USA
| |
Collapse
|
49
|
Kogan GL, Mikhaleva EA, Olenkina OM, Ryazansky SS, Galzitskaya OV, Abramov YA, Leinsoo TA, Akulenko NV, Lavrov SA, Gvozdev VA. Extended disordered regions of ribosome-associated NAC proteins paralogs belong only to the germline in Drosophila melanogaster. Sci Rep 2022; 12:11191. [PMID: 35778515 PMCID: PMC9249742 DOI: 10.1038/s41598-022-15233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022] Open
Abstract
The nascent polypeptide-associated complex (NAC) consisting of α- and β-subunits is an essential ribosome-associated protein conserved in eukaryotes. NAC is a ubiquitously expressed co-translational regulator of nascent protein folding and sorting providing for homeostasis of cellular proteins. Here we report on discovering the germline-specific NACαβ paralogs (gNACs), whose β-subunits, non-distinguishable by ordinary immunodetection, are encoded by five highly homologous gene copies, while the α-subunit is encoded by a single αNAC gene. The gNAC expression is detected in the primordial embryonic and adult gonads via immunostaining. The germline-specific α and β subunits differ from the ubiquitously expressed paralogs by the extended intrinsically disordered regions (IDRs) acquired at the N- and C-termini of the coding regions, predicted to be phosphorylated. The presence of distinct phosphorylated isoforms of gNAC-β subunits is confirmed by comparing of their profiles by 2D-isoeletrofocusing resolution before and after phosphatase treatment of testis ribosomes. We revealed that the predicted S/T sites of phosphorylation in the individual orthologous IDRs of gNAC-β sequences of Drosophila species are positionally conserved despite these disordered regions are drastically different. We propose the IDR-dependent molecular crowding and specific coordination of NAC and other proteostasis regulatory factors at the ribosomes of germinal cells. Our findings imply that there may be a functional crosstalk between the germinal and ubiquitous α- and β-subunits based on assessing their depletion effects on the fly viability and gonad development.
Collapse
Affiliation(s)
- Galina L Kogan
- NRC "Kurchatov Institute"-Institute of Molecular Genetics, 123182, Moscow, Russia
| | - Elena A Mikhaleva
- NRC "Kurchatov Institute"-Institute of Molecular Genetics, 123182, Moscow, Russia
| | - Oxana M Olenkina
- NRC "Kurchatov Institute"-Institute of Molecular Genetics, 123182, Moscow, Russia
| | - Sergei S Ryazansky
- NRC "Kurchatov Institute"-Institute of Molecular Genetics, 123182, Moscow, Russia
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Yuri A Abramov
- NRC "Kurchatov Institute"-Institute of Molecular Genetics, 123182, Moscow, Russia
| | - Toomas A Leinsoo
- NRC "Kurchatov Institute"-Institute of Molecular Genetics, 123182, Moscow, Russia
| | - Natalia V Akulenko
- NRC "Kurchatov Institute"-Institute of Molecular Genetics, 123182, Moscow, Russia
| | - Sergey A Lavrov
- NRC "Kurchatov Institute"-Institute of Molecular Genetics, 123182, Moscow, Russia
| | - Vladimir A Gvozdev
- NRC "Kurchatov Institute"-Institute of Molecular Genetics, 123182, Moscow, Russia.
| |
Collapse
|
50
|
Fang J, Lerit DA. Orb-dependent polyadenylation contributes to PLP expression and centrosome scaffold assembly. Development 2022; 149:dev200426. [PMID: 35661190 PMCID: PMC9340551 DOI: 10.1242/dev.200426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/25/2022] [Indexed: 12/17/2024]
Abstract
As the microtubule-organizing centers of most cells, centrosomes engineer the bipolar mitotic spindle required for error-free mitosis. Drosophila Pericentrin-like protein (PLP) directs formation of a pericentriolar material (PCM) scaffold required for PCM organization and microtubule-organizing center function. Here, we investigate the post-transcriptional regulation of Plp mRNA. We identify conserved binding sites for cytoplasmic polyadenylation element binding (CPEB) proteins within the Plp 3'-untranslated region and examine the role of the CPEB ortholog Oo18 RNA-binding protein (Orb) in Plp mRNA regulation. Our data show that Orb interacts biochemically with Plp mRNA to promote polyadenylation and PLP protein expression. Loss of orb, but not orb2, diminishes PLP levels in embryonic extracts. Consequently, PLP localization to centrosomes and its function in PCM scaffolding are compromised in orb mutant embryos, resulting in genomic instability and embryonic lethality. Moreover, we find that PLP overexpression restores centrosome scaffolding and rescues the cell division defects caused by orb depletion. Our data suggest that Orb modulates PLP expression at the level of Plp mRNA polyadenylation and demonstrates that the post-transcriptional regulation of core, conserved centrosomal mRNAs is crucial for centrosome function.
Collapse
Affiliation(s)
| | - Dorothy A. Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|