1
|
Zhu D, Pan Y, Yang Y, Wang S. Regulation of the Cilia as a Potential Treatment for Senescence and Tumors: A Review. J Cell Physiol 2025; 240:e31499. [PMID: 39660388 DOI: 10.1002/jcp.31499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
Millions of people worldwide die from malignant tumors every year, and the current clinical treatment is still based on radiotherapy and chemotherapy. Immunotherapy-adjuvant chemotherapy is widely applied, yet resistance to various factors persists in the management of advanced malignancies. Recently researchers have gradually discovered that the integrity of primary cilia is closely related to many diseases. The phenotypic changes in primary cilia are found in some cases of progeria, tumorigenesis, and drug resistance. Primary cilia seem to mediate signaling during these diseases. Hedgehog inhibitors have emerged in recent years to treat tumors by controlling signaling proteins on primary cilia. There is evidence for the use of anti-tumor drugs to treat senescence-related disease. Considering the close relationship between aging and obesity, as well as the obesity is the phenotype of many ciliopathies. Therefore, we speculate that some anti-tumor or anti-aging drugs can treat ciliopathies. Additionally, there is evidence suggesting that anti-aging drugs for tumor treatment, in which the process may be mediated by cilia. This review elucidates for the first time that cilia may be involved in the regulation of senescence, metabolic, tumorigenesis, and tumor resistance and hypothesizes that cilia can be regulated to treat these diseases in the future.
Collapse
Affiliation(s)
- Danping Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqin Pan
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong Yang
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shukui Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Wloga D, Joachimiak E, Osinka A, Ahmadi S, Majhi S. Motile Cilia in Female and Male Reproductive Tracts and Fertility. Cells 2024; 13:1974. [PMID: 39682722 PMCID: PMC11639810 DOI: 10.3390/cells13231974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Motile cilia are evolutionarily conserved organelles. In humans, multiciliated cells (MCCs), assembling several hundred motile cilia on their apical surface, are components of the monolayer epithelia lining lower and upper airways, brain ventricles, and parts of the reproductive tracts, the fallopian tube and uterus in females, and efferent ductules in males. The coordinated beating of cilia generates a force that enables a shift of the tubular fluid, particles, or cells along the surface of the ciliated epithelia. Uncoordinated or altered cilia motion or cilia immotility may result in subfertility or even infertility. Here, we summarize the current knowledge regarding the localization and function of MCCs in the human reproductive tracts, discuss how cilia and cilia beating-generated fluid flow directly and indirectly contribute to the processes in these organs, and how lack or improper functioning of cilia influence human fertility.
Collapse
Affiliation(s)
- Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (E.J.); (A.O.); (S.A.); (S.M.)
| | | | | | | | | |
Collapse
|
3
|
Augière C, Campolina-Silva G, Vijayakumaran A, Medagedara O, Lavoie-Ouellet C, Joly Beauparlant C, Droit A, Barrachina F, Ottino K, Battistone MA, Narayan K, Hess R, Mennella V, Belleannée C. ARL13B controls male reproductive tract physiology through primary and Motile Cilia. Commun Biol 2024; 7:1318. [PMID: 39397107 PMCID: PMC11471856 DOI: 10.1038/s42003-024-07030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
ARL13B is a small regulatory GTPase that controls ciliary membrane composition in both motile cilia and non-motile primary cilia. In this study, we investigated the role of ARL13B in the efferent ductules, tubules of the male reproductive tract essential to male fertility in which primary and motile cilia co-exist. We used a genetically engineered mouse model to delete Arl13b in efferent ductule epithelial cells, resulting in compromised primary and motile cilia architecture and functions. This deletion led to disturbances in reabsorptive/secretory processes and triggered an inflammatory response. The observed male reproductive phenotype showed significant variability linked to partial infertility, highlighting the importance of ARL13B in maintaining a proper physiological balance in these small ducts. These results emphasize the dual role of both motile and primary cilia functions in regulating efferent duct homeostasis, offering deeper insights into how cilia related diseases affect the male reproductive system.
Collapse
Affiliation(s)
- Céline Augière
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada.
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| | - Gabriel Campolina-Silva
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aaran Vijayakumaran
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Odara Medagedara
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Camille Lavoie-Ouellet
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | | | - Arnaud Droit
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
| | - Ferran Barrachina
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Kiera Ottino
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Maria Agustina Battistone
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rex Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, IL, USA
| | - Vito Mennella
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
- Department of Pathology, 10 Tennis Court Road, University of Cambridge, Cambridge, UK
| | - Clémence Belleannée
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada.
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
4
|
Morone N, Martin MG, Goggin P, Czymmek KJ, Mennella V, Gonzalez JL. A Novel Sandwich Method for Serial Block Face SEM Imaging of Airway Multiciliated Epithelium. Methods Mol Biol 2024; 2725:121-129. [PMID: 37856021 DOI: 10.1007/978-1-0716-3507-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Volume electron microscopy technologies such as serial block face scanning electron microscopy (SBF-SEM) allow the characterization of tissue organization and cellular content in three dimensions at nanoscale resolution. Here, we describe the procedure to process and image an air-liquid interface culture of human or mouse airway epithelial cells for visualization of the multiciliated epithelium by SBF-SEM in vertical or horizontal cross section.
Collapse
Affiliation(s)
- Nobuhiro Morone
- Electron Microscopy and Ultrastructural Pathology Facility, Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK.
| | - Maria Guerra Martin
- Electron Microscopy and Ultrastructural Pathology Facility, Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Patricia Goggin
- Biomedical Imaging Facility, Laboratory and Pathology Block, Southampton General Hospital, Southampton, UK
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, Department of Biology, Saint Louis University, Saint Louis, MO, USA
| | - Vito Mennella
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Jaime Llodra Gonzalez
- Electron Microscopy and Ultrastructural Pathology Facility, Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Thirugnanam K, Gupta A, Nunez F, Prabhudesai S, Pan AY, Nauli SM, Ramchandran R. Brain microvascular endothelial cells possess a second cilium that arises from the daughter centriole. Front Mol Biosci 2023; 10:1250016. [PMID: 38028541 PMCID: PMC10657992 DOI: 10.3389/fmolb.2023.1250016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Primary cilia from the brain microvascular endothelial cells (ECs) are specialized cell-surface organelles involved in mediating sensory perception, cell signaling, and vascular stability. Immunofluorescence (IF) analysis of human primary brain microvascular ECs reveals two cilia per cell. To confirm the in vitro observation of the two-cilia phenotype in human primary brain ECs, ECs isolated from mouse brain were cultured and stained for cilium. Indeed, brain ECs from a ciliopathic mouse (polycystic kidney disease or Pkd2 -/-) also possess more than one cilium. Primary cilium emerges from the mother centriole. Centriole analysis by IF suggests that in brain ECs, markers for the mother and daughter centrioles stain both cilia, suggesting that the second cilium in brain ECs arises from the daughter centriole. Further quantification of cilia size in brain ECs revealed that cilia arising from the mother centriole are bigger in size compared with cilia from the daughter centriole. Cell cycle analyses using immunoblotting and flow cytometry suggest that the ciliary proteins ARL13B and IFT88 involved in brain EC ciliogenesis are highly expressed only in the G0/G1 and S phases of the cell cycle. The IF analyses of cells arrested at different cell cycle stages indicate that the two-cilia phenotype is highly specific to the G0/G1 phase. Our findings suggest that in addition to the mother centriole, the daughter centriole also plays a role in ciliogenesis in primary cultured ECs.
Collapse
Affiliation(s)
- Karthikeyan Thirugnanam
- Department of Pediatrics, Division of Neonatology, Developmental Vascular Biology Program, Medical College of Wisconsin, Children’s Research Institute (CRI), Milwaukee, WI, United States
| | - Ankan Gupta
- Department of Pediatrics, Division of Neonatology, Developmental Vascular Biology Program, Medical College of Wisconsin, Children’s Research Institute (CRI), Milwaukee, WI, United States
| | - Francisco Nunez
- Department of Pharmaceutical Sciences, Chapman University, Irvine, CA, United States
| | - Shubhangi Prabhudesai
- Department of Pediatrics, Division of Neonatology, Developmental Vascular Biology Program, Medical College of Wisconsin, Children’s Research Institute (CRI), Milwaukee, WI, United States
| | - Amy Y. Pan
- Department of Pediatrics, Division of Quantitative Health Sciences, Medical College of Wisconsin, Children’s Research Institute, Milwaukee, WI, United States
| | - Surya M. Nauli
- Department of Pharmaceutical Sciences, Chapman University, Irvine, CA, United States
| | - Ramani Ramchandran
- Department of Pediatrics, Division of Neonatology, Developmental Vascular Biology Program, Medical College of Wisconsin, Children’s Research Institute (CRI), Milwaukee, WI, United States
| |
Collapse
|
6
|
Mill P, Christensen ST, Pedersen LB. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat Rev Genet 2023; 24:421-441. [PMID: 37072495 PMCID: PMC7615029 DOI: 10.1038/s41576-023-00587-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
Primary cilia, antenna-like sensory organelles protruding from the surface of most vertebrate cell types, are essential for regulating signalling pathways during development and adult homeostasis. Mutations in genes affecting cilia cause an overlapping spectrum of >30 human diseases and syndromes, the ciliopathies. Given the immense structural and functional diversity of the mammalian cilia repertoire, there is a growing disconnect between patient genotype and associated phenotypes, with variable severity and expressivity characteristic of the ciliopathies as a group. Recent technological developments are rapidly advancing our understanding of the complex mechanisms that control biogenesis and function of primary cilia across a range of cell types and are starting to tackle this diversity. Here, we examine the structural and functional diversity of primary cilia, their dynamic regulation in different cellular and developmental contexts and their disruption in disease.
Collapse
Affiliation(s)
- Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | | | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Wickramanayake JS, Czymmek KJ. A conventional fixation volume electron microscopy protocol for plants. Methods Cell Biol 2023; 177:83-99. [PMID: 37451777 DOI: 10.1016/bs.mcb.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Volume electron microscopy techniques play an important role in plant research from understanding organelles and unicellular forms to developmental studies, environmental effects and microbial interactions with large plant structures, to name a few. Due to large air voids central vacuole, cell wall and waxy cuticle, many plant tissues pose challenges when trying to achieve high quality morphology, metal staining and adequate conductivity for high-resolution volume EM studies. Here, we applied a robust conventional chemical fixation strategy to address the special challenges of plant samples and suitable for, but not limited to, serial block-face and focused ion beam scanning electron microscopy. The chemistry of this protocol was modified from an approach developed for improved and uniform staining of large brain volumes. Briefly, primary fixation was in paraformaldehyde and glutaraldehyde with malachite green followed by secondary fixation with osmium tetroxide, potassium ferrocyanide, thiocarbohydrazide, osmium tetroxide and finally uranyl acetate and lead aspartate staining. Samples were then dehydrated in acetone with a propylene oxide transition and embedded in a hard formulation Quetol 651 resin. The samples were trimmed and mounted with silver epoxy, metal coated and imaged via serial block-face scanning electron microscopy and focal charge compensation for charge suppression. High-contrast plant tobacco and duckweed leaf cellular structures were readily visible including mitochondria, Golgi, endoplasmic reticulum and nuclear envelope membranes, as well as prominent chloroplast thylakoid membranes and individual lamella in grana stacks. This sample preparation protocol serves as a reliable starting point for routine plant volume electron microscopy.
Collapse
Affiliation(s)
- Janithri S Wickramanayake
- Donald Danforth Plant Science Center, Saint Louis, MO, United States; Advanced Bioimaging Laboratory, Donald Danforth Plant Science Center, Saint Louis, MO, United States
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, Saint Louis, MO, United States; Advanced Bioimaging Laboratory, Donald Danforth Plant Science Center, Saint Louis, MO, United States.
| |
Collapse
|
8
|
Weiss LE, Love JF, Yoon J, Comerci CJ, Milenkovic L, Kanie T, Jackson PK, Stearns T, Gustavsson AK. Single-molecule imaging in the primary cilium. Methods Cell Biol 2023; 176:59-83. [PMID: 37164543 PMCID: PMC10509820 DOI: 10.1016/bs.mcb.2023.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The primary cilium is an important signaling organelle critical for normal development and tissue homeostasis. Its small dimensions and complexity necessitate advanced imaging approaches to uncover the molecular mechanisms behind its function. Here, we outline how single-molecule fluorescence microscopy can be used for tracking molecular dynamics and interactions and for super-resolution imaging of nanoscale structures in the primary cilium. Specifically, we describe in detail how to capture and quantify the 2D dynamics of individual transmembrane proteins PTCH1 and SMO and how to map the 3D nanoscale distributions of the inversin compartment proteins INVS, ANKS6, and NPHP3. This protocol can, with minor modifications, be adapted for studies of other proteins and cell lines to further elucidate the structure and function of the primary cilium at the molecular level.
Collapse
Affiliation(s)
- Lucien E Weiss
- Department of Engineering Physics, Polytechnique Montréal, Montreal, QC, Canada.
| | - Julia F Love
- Department of Chemistry, Rice University, Houston, TX, United States
| | | | - Colin J Comerci
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | | | - Tomoharu Kanie
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States; Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA, United States; Rockefeller University, New York City, NY, United States
| | - Anna-Karin Gustavsson
- Department of Chemistry, Rice University, Houston, TX, United States; Department of BioSciences, Rice University, Houston, TX, United States; Institute of Biosciences and Bioengineering, Rice University, Houston, TX, United States; Smalley-Curl Institute, Rice University, Houston, TX, United States.
| |
Collapse
|
9
|
Turner KA, Kluczynski DF, Hefner RJ, Moussa RB, Slogar JN, Thekkethottiyil JB, Prine HD, Crossley ER, Flanagan LJ, LaBoy MM, Moran MB, Boyd TG, Kujawski BA, Ruble K, Pap JM, Jaiswal A, Shah TA, Sindhwani P, Avidor-Reiss T. Tubulin posttranslational modifications modify the atypical spermatozoon centriole. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000678. [PMID: 36444375 PMCID: PMC9700210 DOI: 10.17912/micropub.biology.000678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 01/25/2023]
Abstract
Sperm cells are transcriptionally and translationally silent. Therefore, they may use one of the remaining mechanisms to respond to stimuli in their environment, the post-translational modification of their proteins. Here we examined three post-translational modifications, acetylation, glutamylation, and glycylation of the protein tubulin in human and cattle sperm. Tubulin is the monomer that makes up microtubules, and microtubules constitute the core component of both the sperm centrioles and the axoneme. We found that the sperm of both species were labeled by antibodies against acetylated tubulin and glutamylated tubulin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Tomer Avidor-Reiss
- The University of Toledo, Toledo, Ohio, USA.
,
Correspondence to: Tomer Avidor-Reiss (
)
| |
Collapse
|
10
|
Song T, Yang Y, Zhou P, Ran J, Zhang L, Wu X, Xie W, Zhong T, Liu H, Liu M, Li D, Zhao H, Zhou J. ENKD1 promotes CP110 removal through competing with CEP97 to initiate ciliogenesis. EMBO Rep 2022; 23:e54090. [PMID: 35301795 PMCID: PMC9066061 DOI: 10.15252/embr.202154090] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the importance of cilia in cell signaling and motility, the molecular mechanisms regulating cilium formation remain incompletely understood. Herein, we characterize enkurin domain-containing protein 1 (ENKD1) as a novel centrosomal protein that mediates the removal of centriolar coiled-coil protein 110 (CP110) from the mother centriole to promote ciliogenesis. We show that Enkd1 knockout mice possess ciliogenesis defects in multiple organs. Super-resolution microscopy reveals that ENKD1 is a stable component of the centrosome throughout the ciliogenesis process. Simultaneous knockdown of ENKD1 and CP110 significantly reverses the ciliogenesis defects induced by ENKD1 depletion. Protein interaction analysis shows that ENKD1 competes with centrosomal protein 97 (CEP97) in binding to CP110. Depletion of ENKD1 enhances the CP110-CEP97 interaction and detains CP110 at the mother centriole. These findings thus identify ENKD1 as a centrosomal protein and uncover a novel mechanism controlling CP110 removal from the mother centriole for the initiation of ciliogenesis.
Collapse
Affiliation(s)
- Ting Song
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Yunfan Yang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Jie Ran
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Liang Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Xiaofan Wu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecology, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wei Xie
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Tao Zhong
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Hongbin Liu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecology, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Huijie Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China.,State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecology, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
11
|
Ching K, Wang JT, Stearns T. Long-range migration of centrioles to the apical surface of the olfactory epithelium. eLife 2022; 11:e74399. [PMID: 35420544 PMCID: PMC9064291 DOI: 10.7554/elife.74399] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/13/2022] [Indexed: 02/07/2023] Open
Abstract
Olfactory sensory neurons (OSNs) in vertebrates detect odorants using multiple cilia, which protrude from the end of the dendrite and require centrioles for their formation. In mouse olfactory epithelium, the centrioles originate in progenitor cells near the basal lamina, often 50-100 μm from the apical surface. It is unknown how centrioles traverse this distance or mature to form cilia. Using high-resolution expansion microscopy, we found that centrioles migrate together, with multiple centrioles per group and multiple groups per OSN, during dendrite outgrowth. Centrioles were found by live imaging to migrate slowly, with a maximum rate of 0.18 µm/minute. Centrioles in migrating groups were associated with microtubule nucleation factors, but acquired rootletin and appendages only in mature OSNs. The parental centriole had preexisting appendages, formed a single cilium before other centrioles, and retained its unique appendage configuration in the mature OSN. We developed an air-liquid interface explant culture system for OSNs and used it to show that centriole migration can be perturbed ex vivo by stabilizing microtubules. We consider these results in the context of a comprehensive model for centriole formation, migration, and maturation in this important sensory cell type.
Collapse
Affiliation(s)
- Kaitlin Ching
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Jennifer T Wang
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Tim Stearns
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Genetics, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
12
|
Mennella V, Liu Z. Nanometer-Scale Molecular Mapping by Super-resolution Fluorescence Microscopy. Methods Mol Biol 2022; 2440:305-326. [PMID: 35218547 DOI: 10.1007/978-1-0716-2051-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The structural organization of macromolecules and their association in assemblies and organelles is key to understand cellular function. Super-resolution fluorescence microscopy has expanded our toolbox for examining such nanometer-scale cellular structures, by enabling positional mapping of proteins in situ. Here, we detail the workflow to build nanometer-scale maps focusing on two complementary super-resolution modalities: structured illumination microscopy (SIM) and stochastic optical reconstruction microscopy (STORM).
Collapse
Affiliation(s)
- Vito Mennella
- MRC Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK.
| | - Zhen Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
13
|
Frikstad KA, Schink K, Gilani S, Pedersen L, Patzke S. 3D-Structured Illumination Microscopy of Centrosomes in Human Cell Lines. Bio Protoc 2022; 12:e4360. [DOI: 10.21769/bioprotoc.4360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 11/02/2022] Open
|
14
|
Hyland RM, Brody SL. Impact of Motile Ciliopathies on Human Development and Clinical Consequences in the Newborn. Cells 2021; 11:125. [PMID: 35011687 PMCID: PMC8750550 DOI: 10.3390/cells11010125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Motile cilia are hairlike organelles that project outward from a tissue-restricted subset of cells to direct fluid flow. During human development motile cilia guide determination of the left-right axis in the embryo, and in the fetal and neonatal periods they have essential roles in airway clearance in the respiratory tract and regulating cerebral spinal fluid flow in the brain. Dysregulation of motile cilia is best understood through the lens of the genetic disorder primary ciliary dyskinesia (PCD). PCD encompasses all genetic motile ciliopathies resulting from over 60 known genetic mutations and has a unique but often underrecognized neonatal presentation. Neonatal respiratory distress is now known to occur in the majority of patients with PCD, laterality defects are common, and very rarely brain ventricle enlargement occurs. The developmental function of motile cilia and the effect and pathophysiology of motile ciliopathies are incompletely understood in humans. In this review, we will examine the current understanding of the role of motile cilia in human development and clinical considerations when assessing the newborn for suspected motile ciliopathies.
Collapse
Affiliation(s)
- Rachael M. Hyland
- Department of Pediatrics, Division of Newborn Medicine, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110,USA;
| | - Steven L. Brody
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
15
|
Varma R, Marin‐Araujo AE, Rostami S, Waddell TK, Karoubi G, Haykal S. Short-Term Preclinical Application of Functional Human Induced Pluripotent Stem Cell-Derived Airway Epithelial Patches. Adv Healthc Mater 2021; 10:e2100957. [PMID: 34569180 DOI: 10.1002/adhm.202100957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/15/2021] [Indexed: 12/17/2022]
Abstract
Airway pathologies including cancer, trauma, and stenosis lack effective treatments, meanwhile airway transplantation and available tissue engineering approaches fail due to epithelial dysfunction. Autologous progenitors do not meet the clinical need for regeneration due to their insufficient expansion and differentiation, for which human induced pluripotent stem cells (hiPSCs) are promising alternatives. Airway epithelial patches are engineered by differentiating hiPSC-derived airway progenitors into physiological proportions of ciliated (73.9 ± 5.5%) and goblet (2.1 ± 1.4%) cells on a silk fibroin-collagen vitrigel membrane (SF-CVM) composite biomaterial for transplantation in porcine tracheal defects ex vivo and in vivo. Evaluation of ex vivo tracheal repair using hiPSC-derived SF-CVM patches demonstrate native-like tracheal epithelial metabolism and maintenance of mucociliary epithelium to day 3. In vivo studies demonstrate SF-CVM integration and maintenance of airway patency, showing 80.8 ± 3.6% graft coverage with an hiPSC-derived pseudostratified epithelium and 70.7 ± 2.3% coverage with viable cells, 3 days postoperatively. The utility of bioengineered, hiPSC-derived epithelial patches for airway repair is demonstrated in a short-term preclinical survival model, providing a significant leap for airway reconstruction approaches.
Collapse
Affiliation(s)
- Ratna Varma
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
- Institute of Biomedical Engineering (BME) University of Toronto 164 College St Toronto ON M5S 3G9 Canada
| | - Alba E. Marin‐Araujo
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
| | - Sara Rostami
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
| | - Thomas K. Waddell
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
- Institute of Biomedical Engineering (BME) University of Toronto 164 College St Toronto ON M5S 3G9 Canada
- Institute of Medical Sciences University of Toronto 27 King's College Cir Toronto ON M5S 1A8 Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
- Department of Mechanical and Industrial Engineering University of Toronto 5 King's College Circle Toronto ON M5S 3G8 Canada
- Department of Laboratory Medicine and Pathobiology University of Toronto 1 King's College Circle Toronto ON M5S 1A8 Canada
| | - Siba Haykal
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
- Institute of Medical Sciences University of Toronto 27 King's College Cir Toronto ON M5S 1A8 Canada
- Division of Plastic and Reconstructive Surgery Department of Surgery University of Toronto 200 Elizabeth Street 8N‐869 Toronto ON M5G2P7 Canada
| |
Collapse
|
16
|
Ancel J, Belgacemi R, Diabasana Z, Perotin JM, Bonnomet A, Dewolf M, Launois C, Mulette P, Deslée G, Polette M, Dormoy V. Impaired Ciliary Beat Frequency and Ciliogenesis Alteration during Airway Epithelial Cell Differentiation in COPD. Diagnostics (Basel) 2021; 11:diagnostics11091579. [PMID: 34573921 PMCID: PMC8469815 DOI: 10.3390/diagnostics11091579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a frequent respiratory disease. However, its pathophysiology remains partially elucidated. Epithelial remodeling including alteration of the cilium is a major hallmark of COPD, but specific assessments of the cilium have been rarely investigated as a diagnostic tool in COPD. Here we explore the dysregulation of the ciliary function (ciliary beat frequency (CBF)) and differentiation (multiciliated cells formation in air-liquid interface cultures) of bronchial epithelial cells from COPD (n = 17) and non-COPD patients (n = 15). CBF was decreased by 30% in COPD (11.15 +/- 3.37 Hz vs. 7.89 +/- 3.39 Hz, p = 0.037). Ciliary differentiation was altered during airway epithelial cell differentiation from COPD patients. While the number of multiciliated cells decreased (p < 0.005), the number of primary ciliated cells increased (p < 0.05) and primary cilia were shorter (p < 0.05). Altogether, we demonstrate that COPD can be considered as a ciliopathy through both primary non-motile cilia modifications (related to airway epithelial cell repair and remodeling) and motile cilia function impairment (associated with decrease sputum clearance and clinical respiratory symptoms). These observations encourage considering cilia-associated features in the complex COPD physiopathology and highlight the potential of cilia-derived biomarkers for diagnosis.
Collapse
Affiliation(s)
- Julien Ancel
- Inserm UMR-S1250, P3Cell, Université de Reims Champagne Ardenne, SFR CAP-SANTE, 51092 Reims, France; (J.A.); (R.B.); (Z.D.); (J.-M.P.); (A.B.); (P.M.); (G.D.); (M.P.)
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France; (M.D.); (C.L.)
| | - Randa Belgacemi
- Inserm UMR-S1250, P3Cell, Université de Reims Champagne Ardenne, SFR CAP-SANTE, 51092 Reims, France; (J.A.); (R.B.); (Z.D.); (J.-M.P.); (A.B.); (P.M.); (G.D.); (M.P.)
| | - Zania Diabasana
- Inserm UMR-S1250, P3Cell, Université de Reims Champagne Ardenne, SFR CAP-SANTE, 51092 Reims, France; (J.A.); (R.B.); (Z.D.); (J.-M.P.); (A.B.); (P.M.); (G.D.); (M.P.)
| | - Jeanne-Marie Perotin
- Inserm UMR-S1250, P3Cell, Université de Reims Champagne Ardenne, SFR CAP-SANTE, 51092 Reims, France; (J.A.); (R.B.); (Z.D.); (J.-M.P.); (A.B.); (P.M.); (G.D.); (M.P.)
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France; (M.D.); (C.L.)
| | - Arnaud Bonnomet
- Inserm UMR-S1250, P3Cell, Université de Reims Champagne Ardenne, SFR CAP-SANTE, 51092 Reims, France; (J.A.); (R.B.); (Z.D.); (J.-M.P.); (A.B.); (P.M.); (G.D.); (M.P.)
- Platform of Cellular and Tissular Imaging (PICT), Université de Reims Champagne Ardenne, 51097 Reims, France
| | - Maxime Dewolf
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France; (M.D.); (C.L.)
| | - Claire Launois
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France; (M.D.); (C.L.)
| | - Pauline Mulette
- Inserm UMR-S1250, P3Cell, Université de Reims Champagne Ardenne, SFR CAP-SANTE, 51092 Reims, France; (J.A.); (R.B.); (Z.D.); (J.-M.P.); (A.B.); (P.M.); (G.D.); (M.P.)
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France; (M.D.); (C.L.)
| | - Gaëtan Deslée
- Inserm UMR-S1250, P3Cell, Université de Reims Champagne Ardenne, SFR CAP-SANTE, 51092 Reims, France; (J.A.); (R.B.); (Z.D.); (J.-M.P.); (A.B.); (P.M.); (G.D.); (M.P.)
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France; (M.D.); (C.L.)
| | - Myriam Polette
- Inserm UMR-S1250, P3Cell, Université de Reims Champagne Ardenne, SFR CAP-SANTE, 51092 Reims, France; (J.A.); (R.B.); (Z.D.); (J.-M.P.); (A.B.); (P.M.); (G.D.); (M.P.)
- Department of Biopathology, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Valérian Dormoy
- Inserm UMR-S1250, P3Cell, Université de Reims Champagne Ardenne, SFR CAP-SANTE, 51092 Reims, France; (J.A.); (R.B.); (Z.D.); (J.-M.P.); (A.B.); (P.M.); (G.D.); (M.P.)
- Correspondence:
| |
Collapse
|
17
|
Abstract
To gain a holistic understanding of cellular function, we must understand not just the role of individual organelles, but also how multiple macromolecular assemblies function collectively. Centrioles produce fundamental cellular processes through their ability to organise cytoskeletal fibres. In addition to nucleating microtubules, centrioles form lesser-known polymers, termed rootlets. Rootlets were identified over a 100 years ago and have been documented morphologically since by electron microscopy in different eukaryotic organisms. Rootlet-knockout animals have been created in various systems, providing insight into their physiological functions. However, the precise structure and function of rootlets is still enigmatic. Here, I consider common themes of rootlet function and assembly across diverse cellular systems. I suggest that the capability of rootlets to form physical links from centrioles to other cellular structures is a general principle unifying their functions in diverse cells and serves as an example of how cellular function arises from collective organellar activity.
Collapse
Affiliation(s)
- Robert Mahen
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| |
Collapse
|
18
|
Hazan R, Mori M, Danielian PS, Guen VJ, Rubin SM, Cardoso WV, Lees JA. E2F4's cytoplasmic role in multiciliogenesis is mediated via an N-terminal domain that binds two components of the centriole replication machinery, Deup1 and SAS6. Mol Biol Cell 2021; 32:ar1. [PMID: 34260288 PMCID: PMC8684742 DOI: 10.1091/mbc.e21-01-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Multiciliated cells play critical roles in the airway, reproductive organs, and brain. Generation of multiple cilia requires both activation of a specialized transcriptional program and subsequent massive amplification of centrioles within the cytoplasm. The E2F4 transcription factor is required for both roles and consequently for multiciliogenesis. Here we establish that E2F4 associates with two distinct components of the centriole replication machinery, Deup1 and SAS6, targeting nonhomologous domains in these proteins. We map Deup1 and SAS6 binding to E2F4’s N-terminus and show that this domain is sufficient to mediate E2F4’s cytoplasmic role in multiciliogenesis. This sequence is highly conserved across the E2F family, but the ability to bind Deup1 and SAS6 is specific to E2F4 and E2F5, consistent with their shared roles in multiciliogenesis. By generating E2F4/E2F1 chimeras, we identify a six-residue motif that is critical for Deup1 and SAS6 binding. We propose that the ability of E2F4 and E2F5 to recruit Deup1 and/or SAS6, and enable centriole replication, contributes to their cytoplasmic roles in multiciliogenesis.
Collapse
Affiliation(s)
- Renin Hazan
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
| | - Munemasa Mori
- Columbia Center for Human Development and Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Paul S Danielian
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
| | - Vincent J Guen
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Wellington V Cardoso
- Columbia Center for Human Development and Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Columbia University Irving Medical Center, New York City, NY 10032, USA.,Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Jacqueline A Lees
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
| |
Collapse
|
19
|
Belgacemi R, Diabasana Z, Hoarau A, Dubernard X, Mérol JC, Ruaux C, Polette M, Perotin JM, Deslée G, Dormoy V. Primary ciliogenesis is a crucial step for multiciliated cell determinism in the respiratory epithelium. J Cell Mol Med 2021; 25:7575-7579. [PMID: 34170075 PMCID: PMC8335676 DOI: 10.1111/jcmm.16729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 02/01/2023] Open
Abstract
The alteration of the mucociliary clearance is a major hallmark of respiratory diseases related to structural and functional cilia abnormalities such as chronic obstructive pulmonary diseases (COPD), asthma and cystic fibrosis. Primary cilia and motile cilia are the two principal organelles involved in the control of cell fate in the airways. We tested the effect of primary cilia removal in the establishment of a fully differentiated respiratory epithelium. Epithelial barrier integrity was not altered while multiciliated cells were decreased and mucous-secreting cells were increased. Primary cilia homeostasis is therefore paramount for airway epithelial cell differentiation. Primary cilia-associated pathophysiologic implications require further investigations in the context of respiratory diseases.
Collapse
Affiliation(s)
- Randa Belgacemi
- Université de Reims Champagne-Ardenne, Inserm, UMR-S1250, SFR CAP-SANTE, Reims, France
| | - Zania Diabasana
- Université de Reims Champagne-Ardenne, Inserm, UMR-S1250, SFR CAP-SANTE, Reims, France
| | - Antony Hoarau
- Université de Reims Champagne-Ardenne, Inserm, UMR-S1250, SFR CAP-SANTE, Reims, France
| | - Xavier Dubernard
- Department of otorhinolaryngology, CHU Reims, Hôpital Robert Debré, Reims, France
| | - Jean-Claude Mérol
- Université de Reims Champagne-Ardenne, Inserm, UMR-S1250, SFR CAP-SANTE, Reims, France.,Department of otorhinolaryngology, CHU Reims, Hôpital Robert Debré, Reims, France
| | - Christophe Ruaux
- Department of otorhinolaryngology, Clinique Mutualiste La Sagesse, Rennes, France
| | - Myriam Polette
- Université de Reims Champagne-Ardenne, Inserm, UMR-S1250, SFR CAP-SANTE, Reims, France.,Department of biopathology, CHU Reims, Hôpital Maison Blanche, Reims, France
| | - Jeanne-Marie Perotin
- Université de Reims Champagne-Ardenne, Inserm, UMR-S1250, SFR CAP-SANTE, Reims, France.,Department of respiratory diseases, CHU of Reims, Hôpital Maison Blanche, Reims, France
| | - Gaëtan Deslée
- Université de Reims Champagne-Ardenne, Inserm, UMR-S1250, SFR CAP-SANTE, Reims, France.,Department of respiratory diseases, CHU of Reims, Hôpital Maison Blanche, Reims, France
| | - Valérian Dormoy
- Université de Reims Champagne-Ardenne, Inserm, UMR-S1250, SFR CAP-SANTE, Reims, France
| |
Collapse
|
20
|
Fewell RM, Dutcher SK. Basal Feet: Walking to the Discovery of a Novel Hybrid Cilium. Dev Cell 2020; 55:115-117. [PMID: 33108752 DOI: 10.1016/j.devcel.2020.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cilia are important cell structures found on nearly all cells. In this issue of Developmental Cell, Mennella and colleagues investigate the molecular architecture of basal foot proteins in cells with primary or motile cilia and discover a hybrid cilium with a unique assembly that regulates polarity in multiciliated cells.
Collapse
Affiliation(s)
- Rachael M Fewell
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|