1
|
Deolal P, Scholz J, Ren K, Bragulat-Teixidor H, Otsuka S. Sculpting nuclear envelope identity from the endoplasmic reticulum during the cell cycle. Nucleus 2024; 15:2299632. [PMID: 38238284 PMCID: PMC10802211 DOI: 10.1080/19491034.2023.2299632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
The nuclear envelope (NE) regulates nuclear functions, including transcription, nucleocytoplasmic transport, and protein quality control. While the outer membrane of the NE is directly continuous with the endoplasmic reticulum (ER), the NE has an overall distinct protein composition from the ER, which is crucial for its functions. During open mitosis in higher eukaryotes, the NE disassembles during mitotic entry and then reforms as a functional territory at the end of mitosis to reestablish nucleocytoplasmic compartmentalization. In this review, we examine the known mechanisms by which the functional NE reconstitutes from the mitotic ER in the continuous ER-NE endomembrane system during open mitosis. Furthermore, based on recent findings indicating that the NE possesses unique lipid metabolism and quality control mechanisms distinct from those of the ER, we explore the maintenance of NE identity and homeostasis during interphase. We also highlight the potential significance of membrane junctions between the ER and NE.
Collapse
Affiliation(s)
- Pallavi Deolal
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| | - Julia Scholz
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Kaike Ren
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Helena Bragulat-Teixidor
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Shotaro Otsuka
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| |
Collapse
|
2
|
Fare CM, Rothstein JD. Nuclear pore dysfunction and disease: a complex opportunity. Nucleus 2024; 15:2314297. [PMID: 38383349 PMCID: PMC10883112 DOI: 10.1080/19491034.2024.2314297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
The separation of genetic material from bulk cytoplasm has enabled the evolution of increasingly complex organisms, allowing for the development of sophisticated forms of life. However, this complexity has created new categories of dysfunction, including those related to the movement of material between cellular compartments. In eukaryotic cells, nucleocytoplasmic trafficking is a fundamental biological process, and cumulative disruptions to nuclear integrity and nucleocytoplasmic transport are detrimental to cell survival. This is particularly true in post-mitotic neurons, where nuclear pore injury and errors to nucleocytoplasmic trafficking are strongly associated with neurodegenerative disease. In this review, we summarize the current understanding of nuclear pore biology in physiological and pathological contexts and discuss potential therapeutic approaches for addressing nuclear pore injury and dysfunctional nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Charlotte M Fare
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey D Rothstein
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Doyle CA, Busey GW, Iobst WH, Kiessling V, Renken C, Doppalapudi H, Stremska ME, Manjegowda MC, Arish M, Wang W, Naphade S, Kennedy J, Bloyet LM, Thompson CE, Rothlauf PW, Stipes EJ, Whelan SPJ, Tamm LK, Kreutzberger AJB, Sun J, Desai BN. Endosomal fusion of pH-dependent enveloped viruses requires ion channel TRPM7. Nat Commun 2024; 15:8479. [PMID: 39353909 PMCID: PMC11445543 DOI: 10.1038/s41467-024-52773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
The majority of viruses classified as pandemic threats are enveloped viruses which enter the cell through receptor-mediated endocytosis and take advantage of endosomal acidification to activate their fusion machinery. Here we report that the endosomal fusion of low pH-requiring viruses is highly dependent on TRPM7, a widely expressed TRP channel that is located on the plasma membrane and in intracellular vesicles. Using several viral infection systems expressing the envelope glycoproteins of various viruses, we find that loss of TRPM7 protects cells from infection by Lassa, LCMV, Ebola, Influenza, MERS, SARS-CoV-1, and SARS-CoV-2. TRPM7 ion channel activity is intrinsically necessary to acidify virus-laden endosomes but is expendable for several other endosomal acidification pathways. We propose a model wherein TRPM7 ion channel activity provides a countercurrent of cations from endosomal lumen to cytosol necessary to sustain the pumping of protons into these virus-laden endosomes. This study demonstrates the possibility of developing a broad-spectrum, TRPM7-targeting antiviral drug to subvert the endosomal fusion of low pH-dependent enveloped viruses.
Collapse
Affiliation(s)
- Catherine A Doyle
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Gregory W Busey
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Wesley H Iobst
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Chloe Renken
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Hansa Doppalapudi
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Marta E Stremska
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University, St. Louis, MO, USA
| | - Mohan C Manjegowda
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Mohd Arish
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Weiming Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Nikegen Inc., Shanghai, China
| | - Shardul Naphade
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Joel Kennedy
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cassandra E Thompson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Eric J Stipes
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Alex J B Kreutzberger
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Jie Sun
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Bimal N Desai
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Funakoshi T, Imamoto N. Reconstitution of nuclear envelope subdomain formation on mitotic chromosomes in semi-intact cells. Cell Struct Funct 2024; 49:31-46. [PMID: 38839376 PMCID: PMC11926407 DOI: 10.1247/csf.24003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
In metazoans, the nuclear envelope (NE) disassembles during the prophase and reassembles around segregated chromatids during the telophase. The process of NE formation has been extensively studied using live-cell imaging. At the early step of NE reassembly in human cells, specific pattern-like localization of inner nuclear membrane (INM) proteins, connected to the nuclear pore complex (NPC), was observed in the so-called "core" region and "noncore" region on telophase chromosomes, which corresponded to the "pore-free" region and the "pore-rich" region, respectively, in the early G1 interphase nucleus. We refer to these phenomena as NE subdomain formation. To biochemically investigate this process, we aimed to develop an in vitro NE reconstitution system using digitonin-permeabilized semi-intact mitotic human cells coexpressing two INM proteins, emerin and lamin B receptor, which were labeled with fluorescent proteins. The targeting and accumulation of INM proteins to chromosomes before and after anaphase onset in semi-intact cells were observed using time-lapse imaging. Our in vitro NE reconstitution system recapitulated the formation of the NE subdomain, as in living cells, although chromosome segregation and cytokinesis were not observed. This in vitro NE reconstitution required the addition of a mitotic cytosolic fraction supplemented with a cyclin-dependent kinase inhibitor and energy sources. The cytoplasmic soluble factor(s) dependency of INM protein targeting differed among the segregation states of chromosomes. Furthermore, the NE reconstituted on segregated chromosomes exhibited active nucleocytoplasmic transport competency. These results indicate that the chromosome status changes after anaphase onset for recruiting NPC components.
Collapse
Affiliation(s)
- Tomoko Funakoshi
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research
- Graduate School of Medical Safety Management, Jikei University of Health Care Sciences
| |
Collapse
|
5
|
Tveriakhina L, Scanavachi G, Egan ED, Da Cunha Correia RB, Martin AP, Rogers JM, Yodh JS, Aster JC, Kirchhausen T, Blacklow SC. Temporal dynamics and stoichiometry in human Notch signaling from Notch synaptic complex formation to nuclear entry of the Notch intracellular domain. Dev Cell 2024; 59:1425-1438.e8. [PMID: 38574735 DOI: 10.1016/j.devcel.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/10/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
Mammalian Notch signaling occurs when the binding of Delta or Jagged to Notch stimulates the proteolytic release of the Notch intracellular domain (NICD), which enters the nucleus to control target gene expression. To determine the temporal dynamics of events associated with Notch signaling under native conditions, we fluorescently tagged Notch and Delta at their endogenous genomic loci and visualized them upon pairing of receiver (Notch) and sender (Delta) cells as a function of time after cell contact. At contact sites, Notch and Delta immediately accumulated at 1:1 stoichiometry in synapses, which resolved by 15-20 min after contact. Synapse formation preceded the entrance of the Notch extracellular domain into the sender cell and accumulation of NICD in the nucleus of the receiver cell, which approached a maximum after ∼45 min and was prevented by chemical and genetic inhibitors of signaling. These findings directly link Notch-Delta synapse dynamics to NICD production with spatiotemporal precision.
Collapse
Affiliation(s)
- Lena Tveriakhina
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gustavo Scanavachi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Emily D Egan
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ricardo Bango Da Cunha Correia
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alexandre P Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Julia M Rogers
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy S Yodh
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
6
|
Li Y, Bertozzi A, Mann MRW, Kühn B. Interdependent changes of nuclear lamins, nuclear pore complexes, and ploidy regulate cellular regeneration and stress response in the heart. Nucleus 2023; 14:2246310. [PMID: 37606283 PMCID: PMC10446781 DOI: 10.1080/19491034.2023.2246310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
In adult mammals, many heart muscle cells (cardiomyocytes) are polyploid, do not proliferate (post-mitotic), and, consequently, cannot contribute to heart regeneration. In contrast, fetal and neonatal heart muscle cells are diploid, proliferate, and contribute to heart regeneration. We have identified interdependent changes of the nuclear lamina, nuclear pore complexes, and DNA-content (ploidy) in heart muscle cell maturation. These results offer new perspectives on how cells alter their nuclear transport and, with that, their gene regulation in response to extracellular signals. We present how changes of the nuclear lamina alter nuclear pore complexes in heart muscle cells. The consequences of these changes for cellular regeneration and stress response in the heart are discussed.
Collapse
Affiliation(s)
- Yao Li
- Division of Pediatric Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alberto Bertozzi
- Division of Pediatric Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mellissa RW Mann
- Department of Obstetrics, Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Bernhard Kühn
- Division of Pediatric Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Yang Y, Guo L, Chen L, Gong B, Jia D, Sun Q. Nuclear transport proteins: structure, function, and disease relevance. Signal Transduct Target Ther 2023; 8:425. [PMID: 37945593 PMCID: PMC10636164 DOI: 10.1038/s41392-023-01649-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, China.
| |
Collapse
|
8
|
Penzo A, Palancade B. Puzzling out nuclear pore complex assembly. FEBS Lett 2023; 597:2705-2727. [PMID: 37548888 DOI: 10.1002/1873-3468.14713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
Nuclear pore complexes (NPCs) are sophisticated multiprotein assemblies embedded within the nuclear envelope and controlling the exchanges of molecules between the cytoplasm and the nucleus. In this review, we summarize the mechanisms by which these elaborate complexes are built from their subunits, the nucleoporins, based on our ever-growing knowledge of NPC structural organization and on the recent identification of additional features of this process. We present the constraints faced during the production of nucleoporins, their gathering into oligomeric complexes, and the formation of NPCs within nuclear envelopes, and review the cellular strategies at play, from co-translational assembly to the enrolment of a panel of cofactors. Remarkably, the study of NPCs can inform our perception of the biogenesis of multiprotein complexes in general - and vice versa.
Collapse
Affiliation(s)
- Arianna Penzo
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Benoit Palancade
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| |
Collapse
|
9
|
Mich-Basso JD, Kühn B. Protocol to image and quantify nuclear pore complexes using high-resolution laser scanning confocal microscopy. STAR Protoc 2023; 4:102552. [PMID: 37651236 PMCID: PMC10495640 DOI: 10.1016/j.xpro.2023.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/13/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
Nuclear pore complexes are pathways for nuclear-cytoplasmic communication that participate in chromatin organization. Here, we present a protocol to image and quantify the number of nuclear pore complexes in cells. We describe steps for cell plating and culture, immunofluorescence detection, and confocal microscopy visualization of nuclear pore complexes. We then detail quantification and 3D data analysis. This protocol utilizes digital thresholding under human supervision for quantification of nuclear pore complexes. For complete details on the use and execution of this protocol, please refer to Han et al.1.
Collapse
Affiliation(s)
- Jocelyn D Mich-Basso
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Bernhard Kühn
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
10
|
Gandhimathi R, Pinotsi D, Köhler M, Mansfeld J, Ashiono C, Kleele T, Pawar S, Kutay U. Super-resolution microscopy reveals focal organization of ER-associated Y-complexes in mitosis. EMBO Rep 2023; 24:e56766. [PMID: 37469276 PMCID: PMC10481662 DOI: 10.15252/embr.202356766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
During mitotic entry of vertebrate cells, nuclear pore complexes (NPCs) are rapidly disintegrated. NPC disassembly is initiated by hyperphosphorylation of linker nucleoporins (Nups), which leads to the dissociation of FG repeat Nups and relaxation of the nuclear permeability barrier. However, less is known about disintegration of the huge nuclear and cytoplasmic rings, which are formed by annular assemblies of Y-complexes that are dissociated from NPCs as intact units. Surprisingly, we observe that Y-complex Nups display slower dissociation kinetics compared with other Nups during in vitro NPC disassembly, indicating a mechanistic difference in the disintegration of Y-based rings. Intriguingly, biochemical experiments reveal that a fraction of Y-complexes remains associated with mitotic ER membranes, supporting recent microscopic observations. Visualization of mitotic Y-complexes by super-resolution microscopy demonstrates that they form two classes of higher order assemblies: large clusters at kinetochores and small, focal ER-associated assemblies. These, however, lack features qualifying them as persisting ring-shaped subassemblies previously proposed to serve as structural templates for NPC reassembly during mitotic exit, which helps to refine current models of nuclear reassembly.
Collapse
Affiliation(s)
- Rojapriyadharshini Gandhimathi
- Department of Biology, Institute of BiochemistryETH ZurichZurichSwitzerland
- Molecular Life Sciences Ph.D. ProgramZurichSwitzerland
| | | | - Mario Köhler
- Department of Biology, Institute of BiochemistryETH ZurichZurichSwitzerland
| | - Jörg Mansfeld
- Department of Biology, Institute of BiochemistryETH ZurichZurichSwitzerland
- The Institute of Cancer ResearchLondonUK
| | - Caroline Ashiono
- Department of Biology, Institute of BiochemistryETH ZurichZurichSwitzerland
| | - Tatjana Kleele
- Department of Biology, Institute of BiochemistryETH ZurichZurichSwitzerland
| | - Sumit Pawar
- Department of Biology, Institute of BiochemistryETH ZurichZurichSwitzerland
- Present address:
Myllia BiotechnologyViennaAustria
| | - Ulrike Kutay
- Department of Biology, Institute of BiochemistryETH ZurichZurichSwitzerland
| |
Collapse
|
11
|
Ye X, Guan M, Guo Y, Liu X, Wang K, Chen T, Zhao S, Chen L. Live-cell super-resolution imaging unconventional dynamics and assemblies of nuclear pore complexes. BIOPHYSICS REPORTS 2023; 9:206-214. [PMID: 38516621 PMCID: PMC10951474 DOI: 10.52601/bpr.2023.230010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/21/2023] [Indexed: 03/23/2024] Open
Abstract
Super-resolution microscopy has promoted the development of cell biology, but imaging proteins with low copy numbers in cellular structures remains challenging. The limited number of designated proteins within nuclear pore complexes (NPCs) impedes continuous observation in live cells, although they are often used as a standard for evaluating various SR methods. To address this issue, we tagged POM121 with Halo-SiR and imaged it using structured illumination microscopy with sparse deconvolution (Sparse-SIM). Remarkably, POM121-SiR exhibited more than six-fold fluorescence intensity and four-fold enhanced contrast compared to the same protein labeled with tandem-linked mCherry, while showing negligible photo-bleaching during SR imaging for 200 frames. Using this technique, we discovered various types of NPCs, including ring-like and cluster-like structures, and observed dynamic remodeling along with the sequential appearance of different Nup compositions. Overall, Halo-SiR with Sparse-SIM is a potent tool for extended SR imaging of dynamic structures of NPCs in live cells, and it may also help visualize proteins with limited numbers in general.
Collapse
Affiliation(s)
- Xianxin Ye
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Minzhu Guan
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yaorong Guo
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiang Liu
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Kunhao Wang
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Tongsheng Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Shiqun Zhao
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Liangyi Chen
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| |
Collapse
|
12
|
Zhao G, Liu S, Arun S, Renda F, Khodjakov A, Pellman D. A tubule-sheet continuum model for the mechanism of nuclear envelope assembly. Dev Cell 2023; 58:847-865.e10. [PMID: 37098350 PMCID: PMC10205699 DOI: 10.1016/j.devcel.2023.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/25/2023] [Accepted: 04/01/2023] [Indexed: 04/27/2023]
Abstract
Nuclear envelope (NE) assembly defects cause chromosome fragmentation, cancer, and aging. However, major questions about the mechanism of NE assembly and its relationship to nuclear pathology are unresolved. In particular, how cells efficiently assemble the NE starting from vastly different, cell type-specific endoplasmic reticulum (ER) morphologies is unclear. Here, we identify a NE assembly mechanism, "membrane infiltration," that defines one end of a continuum with another NE assembly mechanism, "lateral sheet expansion," in human cells. Membrane infiltration involves the recruitment of ER tubules or small sheets to the chromatin surface by mitotic actin filaments. Lateral sheet expansion involves actin-independent envelopment of peripheral chromatin by large ER sheets that then extend over chromatin within the spindle. We propose a "tubule-sheet continuum" model that explains the efficient NE assembly from any starting ER morphology, the cell type-specific patterns of nuclear pore complex (NPC) assembly, and the obligatory NPC assembly defect of micronuclei.
Collapse
Affiliation(s)
- Gengjing Zhao
- Howard Hughes Medical Institute, Chevy Chase, MD, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Shiwei Liu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sanjana Arun
- Howard Hughes Medical Institute, Chevy Chase, MD, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Fioranna Renda
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - David Pellman
- Howard Hughes Medical Institute, Chevy Chase, MD, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Gallusser B, Maltese G, Di Caprio G, Vadakkan TJ, Sanyal A, Somerville E, Sahasrabudhe M, O’Connor J, Weigert M, Kirchhausen T. Deep neural network automated segmentation of cellular structures in volume electron microscopy. J Cell Biol 2023; 222:e202208005. [PMID: 36469001 PMCID: PMC9728137 DOI: 10.1083/jcb.202208005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Volume electron microscopy is an important imaging modality in contemporary cell biology. Identification of intracellular structures is a laborious process limiting the effective use of this potentially powerful tool. We resolved this bottleneck with automated segmentation of intracellular substructures in electron microscopy (ASEM), a new pipeline to train a convolutional neural network to detect structures of a wide range in size and complexity. We obtained dedicated models for each structure based on a small number of sparsely annotated ground truth images from only one or two cells. Model generalization was improved with a rapid, computationally effective strategy to refine a trained model by including a few additional annotations. We identified mitochondria, Golgi apparatus, endoplasmic reticulum, nuclear pore complexes, caveolae, clathrin-coated pits, and vesicles imaged by focused ion beam scanning electron microscopy. We uncovered a wide range of membrane-nuclear pore diameters within a single cell and derived morphological metrics from clathrin-coated pits and vesicles, consistent with the classical constant-growth assembly model.
Collapse
Affiliation(s)
- Benjamin Gallusser
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Giorgio Maltese
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
| | - Giuseppe Di Caprio
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Tegy John Vadakkan
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
| | - Anwesha Sanyal
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Elliott Somerville
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
| | - Mihir Sahasrabudhe
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Université Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes, Gif-sur-Yvette, France
| | - Justin O’Connor
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Martin Weigert
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tom Kirchhausen
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| |
Collapse
|
14
|
Nuclear envelope assembly and dynamics during development. Semin Cell Dev Biol 2023; 133:96-106. [PMID: 35249812 DOI: 10.1016/j.semcdb.2022.02.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 01/22/2023]
Abstract
The nuclear envelope (NE) protects but also organizes the eukaryotic genome. In this review we will discuss recent literature on how the NE disassembles and reassembles, how it varies in surface area and protein composition and how this translates into chromatin organization and gene expression in the context of animal development.
Collapse
|
15
|
Sing TL, Brar GA, Ünal E. Gametogenesis: Exploring an Endogenous Rejuvenation Program to Understand Cellular Aging and Quality Control. Annu Rev Genet 2022; 56:89-112. [PMID: 35878627 PMCID: PMC9712276 DOI: 10.1146/annurev-genet-080320-025104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gametogenesis is a conserved developmental program whereby a diploid progenitor cell differentiates into haploid gametes, the precursors for sexually reproducing organisms. In addition to ploidy reduction and extensive organelle remodeling, gametogenesis naturally rejuvenates the ensuing gametes, leading to resetting of life span. Excitingly, ectopic expression of the gametogenesis-specific transcription factor Ndt80 is sufficient to extend life span in mitotically dividing budding yeast, suggesting that meiotic rejuvenation pathways can be repurposed outside of their natural context. In this review, we highlight recent studies of gametogenesis that provide emerging insight into natural quality control, organelle remodeling, and rejuvenation strategies that exist within a cell. These include selective inheritance, programmed degradation, and de novo synthesis, all of which are governed by the meiotic gene expression program entailing many forms of noncanonical gene regulation. Finally, we highlight critical questions that remain in the field and provide perspective on the implications of gametogenesis research on human health span.
Collapse
Affiliation(s)
- Tina L Sing
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Gloria A Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| |
Collapse
|
16
|
Han L, Mich-Basso JD, Li Y, Ammanamanchi N, Xu J, Bargaje AP, Liu H, Wu L, Jeong JH, Franks J, Stolz DB, Wu YL, Rajasundaram D, Liu Y, Kühn B. Changes in nuclear pore numbers control nuclear import and stress response of mouse hearts. Dev Cell 2022; 57:2397-2411.e9. [PMID: 36283391 PMCID: PMC9614572 DOI: 10.1016/j.devcel.2022.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/24/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
Abstract
Nuclear pores are essential for nuclear-cytoplasmic transport. Whether and how cells change nuclear pores to alter nuclear transport and cellular function is unknown. Here, we show that rat heart muscle cells (cardiomyocytes) undergo a 63% decrease in nuclear pore numbers during maturation, and this changes their responses to extracellular signals. The maturation-associated decline in nuclear pore numbers is associated with lower nuclear import of signaling proteins such as mitogen-activated protein kinase (MAPK). Experimental reduction of nuclear pore numbers decreased nuclear import of signaling proteins, resulting in decreased expression of immediate-early genes. In a mouse model of high blood pressure, reduction of nuclear pore numbers improved adverse heart remodeling and reduced progression to lethal heart failure. The decrease in nuclear pore numbers in cardiomyocyte maturation and resulting functional changes demonstrate how terminally differentiated cells permanently alter their handling of information flux across the nuclear envelope and, with that, their behavior.
Collapse
Affiliation(s)
- Lu Han
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Jocelyn D Mich-Basso
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Yao Li
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Niyatie Ammanamanchi
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Jianquan Xu
- Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anita P Bargaje
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Honghai Liu
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Liwen Wu
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jong-Hyeon Jeong
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jonathan Franks
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Donna B Stolz
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yijen L Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Yang Liu
- Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bernhard Kühn
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219-3110, USA.
| |
Collapse
|
17
|
Kreutzberger AJB, Sanyal A, Saminathan A, Bloyet LM, Stumpf S, Liu Z, Ojha R, Patjas MT, Geneid A, Scanavachi G, Doyle CA, Somerville E, Correia RBDC, Di Caprio G, Toppila-Salmi S, Mäkitie A, Kiessling V, Vapalahti O, Whelan SPJ, Balistreri G, Kirchhausen T. SARS-CoV-2 requires acidic pH to infect cells. Proc Natl Acad Sci U S A 2022; 119:e2209514119. [PMID: 36048924 PMCID: PMC9499588 DOI: 10.1073/pnas.2209514119] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cell entry starts with membrane attachment and ends with spike (S) protein-catalyzed membrane fusion depending on two cleavage steps, namely, one usually by furin in producing cells and the second by TMPRSS2 on target cells. Endosomal cathepsins can carry out both. Using real-time three-dimensional single-virion tracking, we show that fusion and genome penetration require virion exposure to an acidic milieu of pH 6.2 to 6.8, even when furin and TMPRSS2 cleavages have occurred. We detect the sequential steps of S1-fragment dissociation, fusion, and content release from the cell surface in TMPRRS2-overexpressing cells only when exposed to acidic pH. We define a key role of an acidic environment for successful infection, found in endosomal compartments and at the surface of TMPRSS2-expressing cells in the acidic milieu of the nasal cavity.
Collapse
Affiliation(s)
- Alex J. B. Kreutzberger
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
| | - Anwesha Sanyal
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
| | - Anand Saminathan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University in Saint Louis, St. Louis, MO 63110
| | - Spencer Stumpf
- Department of Molecular Microbiology, Washington University in Saint Louis, St. Louis, MO 63110
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University in Saint Louis, St. Louis, MO 63110
| | - Ravi Ojha
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, 00290 Finland
| | - Markku T. Patjas
- Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, 00290 Finland
| | - Ahmed Geneid
- Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, 00290 Finland
| | - Gustavo Scanavachi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
| | - Catherine A. Doyle
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903
| | - Elliott Somerville
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
| | - Ricardo Bango Da Cunha Correia
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
| | - Giuseppe Di Caprio
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Sanna Toppila-Salmi
- Department of Allergy, University of Helsinki and Helsinki University Hospital, Helsinki, 00290 Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, 00290 Finland
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, 00290 Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, 00290 Finland
- Virology and Immunology, Helsinki University Hospital Diagnostic Center, Helsinki, 00290 Finland
| | - Sean P. J. Whelan
- Department of Molecular Microbiology, Washington University in Saint Louis, St. Louis, MO 63110
| | - Giuseppe Balistreri
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, 00290 Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, 00290 Finland
- The Queensland Brain Institute, University of Queensland, Brisbane, 4072 Australia
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
18
|
SARS-CoV-2 requires acidic pH to infect cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022. [PMID: 35702155 PMCID: PMC9196115 DOI: 10.1101/2022.06.09.495472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SARS-CoV-2 cell entry starts with membrane attachment and ends with spike-protein (S) catalyzed membrane fusion depending on two cleavage steps, one usually by furin in producing cells and the second by TMPRSS2 on target cells. Endosomal cathepsins can carry out both. Using real-time 3D single virion tracking, we show fusion and genome penetration requires virion exposure to an acidic milieu of pH 6.2-6.8, even when furin and TMPRSS2 cleavages have occurred. We detect the sequential steps of S1-fragment dissociation, fusion, and content release from the cell surface in TMPRRS2 overexpressing cells only when exposed to acidic pH. We define a key role of an acidic environment for successful infection, found in endosomal compartments and at the surface of TMPRSS2 expressing cells in the acidic milieu of the nasal cavity. Significance Statement Infection by SARS-CoV-2 depends upon the S large spike protein decorating the virions and is responsible for receptor engagement and subsequent fusion of viral and cellular membranes allowing release of virion contents into the cell. Using new single particle imaging tools, to visualize and track the successive steps from virion attachment to fusion, combined with chemical and genetic perturbations of the cells, we provide the first direct evidence for the cellular uptake routes of productive infection in multiple cell types and their dependence on proteolysis of S by cell surface or endosomal proteases. We show that fusion and content release always require the acidic environment from endosomes, preceded by liberation of the S1 fragment which depends on ACE2 receptor engagement. One sentence summary Detailed molecular snapshots of the productive infectious entry pathway of SARS-CoV-2 into cells.
Collapse
|
19
|
Dultz E, Wojtynek M, Medalia O, Onischenko E. The Nuclear Pore Complex: Birth, Life, and Death of a Cellular Behemoth. Cells 2022; 11:1456. [PMID: 35563762 PMCID: PMC9100368 DOI: 10.3390/cells11091456] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/01/2023] Open
Abstract
Nuclear pore complexes (NPCs) are the only transport channels that cross the nuclear envelope. Constructed from ~500-1000 nucleoporin proteins each, they are among the largest macromolecular assemblies in eukaryotic cells. Thanks to advances in structural analysis approaches, the construction principles and architecture of the NPC have recently been revealed at submolecular resolution. Although the overall structure and inventory of nucleoporins are conserved, NPCs exhibit significant compositional and functional plasticity even within single cells and surprising variability in their assembly pathways. Once assembled, NPCs remain seemingly unexchangeable in post-mitotic cells. There are a number of as yet unresolved questions about how the versatility of NPC assembly and composition is established, how cells monitor the functional state of NPCs or how they could be renewed. Here, we review current progress in our understanding of the key aspects of NPC architecture and lifecycle.
Collapse
Affiliation(s)
- Elisa Dultz
- Institute of Biochemistry, Department of Biology, ETHZ Zurich, 8093 Zurich, Switzerland;
| | - Matthias Wojtynek
- Institute of Biochemistry, Department of Biology, ETHZ Zurich, 8093 Zurich, Switzerland;
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Evgeny Onischenko
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
20
|
Mauro MS, Celma G, Zimyanin V, Magaj MM, Gibson KH, Redemann S, Bahmanyar S. Ndc1 drives nuclear pore complex assembly independent of membrane biogenesis to promote nuclear formation and growth. eLife 2022; 11:75513. [PMID: 35852146 PMCID: PMC9296133 DOI: 10.7554/elife.75513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 06/15/2022] [Indexed: 01/19/2023] Open
Abstract
The nuclear envelope (NE) assembles and grows from bilayer lipids produced at the endoplasmic reticulum (ER). How ER membrane incorporation coordinates with assembly of nuclear pore complexes (NPCs) to generate a functional NE is not well understood. Here, we use the stereotypical first division of the early C. elegans embryo to test the role of the membrane-associated nucleoporin Ndc1 in coupling NPC assembly to NE formation and growth. 3D-EM tomography of reforming and expanded NEs establishes that Ndc1 determines NPC density. Loss of ndc1 results in faster turnover of the outer scaffold nucleoporin Nup160 at the NE, providing an explanation for how Ndc1 controls NPC number. NE formation fails in the absence of both Ndc1 and the inner ring component Nup53, suggesting partially redundant roles in NPC assembly. Importantly, upregulation of membrane synthesis restored the slow rate of nuclear growth resulting from loss of ndc1 but not from loss of nup53. Thus, membrane biogenesis can be decoupled from Ndc1-mediated NPC assembly to promote nuclear growth. Together, our data suggest that Ndc1 functions in parallel with Nup53 and membrane biogenesis to control NPC density and nuclear size.
Collapse
Affiliation(s)
- Michael Sean Mauro
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Gunta Celma
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Vitaly Zimyanin
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States,Department of Molecular Physiology and Biological Physics, University of Virginia, School of MedicineCharlottesvilleUnited States
| | - Magdalena M Magaj
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States,Department of Molecular Physiology and Biological Physics, University of Virginia, School of MedicineCharlottesvilleUnited States
| | - Kimberley H Gibson
- Center for Cellular and Molecular Imaging: Electron Microscopy, Department of Cell Biology, Yale School of MedicineNew HavenUnited States
| | - Stefanie Redemann
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States,Department of Molecular Physiology and Biological Physics, University of Virginia, School of MedicineCharlottesvilleUnited States,Department of Cell Biology, University of VirginiaCharlottesvilleUnited States
| | - Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| |
Collapse
|
21
|
Hamed M, Antonin W. Dunking into the Lipid Bilayer: How Direct Membrane Binding of Nucleoporins Can Contribute to Nuclear Pore Complex Structure and Assembly. Cells 2021; 10:3601. [PMID: 34944108 PMCID: PMC8700311 DOI: 10.3390/cells10123601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Nuclear pore complexes (NPCs) mediate the selective and highly efficient transport between the cytoplasm and the nucleus. They are embedded in the two membrane structure of the nuclear envelope at sites where these two membranes are fused to pores. A few transmembrane proteins are an integral part of NPCs and thought to anchor these complexes in the nuclear envelope. In addition, a number of nucleoporins without membrane spanning domains interact with the pore membrane. Here we review our current knowledge of how these proteins interact with the membrane and how this interaction can contribute to NPC assembly, stability and function as well as shaping of the pore membrane.
Collapse
Affiliation(s)
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
22
|
Kutay U, Jühlen R, Antonin W. Mitotic disassembly and reassembly of nuclear pore complexes. Trends Cell Biol 2021; 31:1019-1033. [PMID: 34294532 DOI: 10.1016/j.tcb.2021.06.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022]
Abstract
Nuclear pore complexes (NPCs) are huge protein assemblies within the nuclear envelope (NE) that serve as selective gates for macromolecular transport between nucleus and cytoplasm. When higher eukaryotic cells prepare for division, they rapidly disintegrate NPCs during NE breakdown such that nuclear and cytoplasmic components mix to enable the formation of a cytoplasmic mitotic spindle. At the end of mitosis, reassembly of NPCs is coordinated with the establishment of the NE around decondensing chromatin. We review recent progress on mitotic NPC disassembly and reassembly, focusing on vertebrate cells. We highlight novel mechanistic insights into how NPCs are rapidly disintegrated into conveniently reusable building blocks, and put divergent models of (post-)mitotic NPC assembly into a spatial and temporal context.
Collapse
Affiliation(s)
- Ulrike Kutay
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland.
| | - Ramona Jühlen
- Institute of Biochemistry and Molecular Cell Biology, Medical School, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.
| |
Collapse
|