1
|
Xiao Q, Chen X, Wang C, He Y, Deng D, Sun B. Mechanistic insights into proton-coupled substrate translocation of nucleoside proton symporters. J Biol Chem 2025; 301:108357. [PMID: 40015637 PMCID: PMC11979927 DOI: 10.1016/j.jbc.2025.108357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/06/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025] Open
Abstract
The nucleoside proton symporter (NHS) family proteins are part of the major facilitator superfamily and are responsible for transporting nucleosides from the extracellular environment into the cell. Structural and biochemical analysis of NupG, a prototypical NHS member, have pinpointed the critical residues involved in substrate binding. However, the proton-coupled mechanism diving substrate translocation in NHS proteins has remained elusive. In previous research, we identified Asp323 in NupG as a potential protonation site. In this study, using X-ray crystallography, molecular dynamics simulations, and biochemical assays, we discovered that the deprotonation of Asp323 in NupG, or the equivalent Asp315 in YegT, (another NHS family member) triggers a local conformational change in the TM10 region of NHS transporters. Notably, this protonation site is part of a novel motif (GXXXD) located in the middle of the TM10 transmembrane helix in NHS proteins. Further biochemical studies suggest that this local conformational change in the GXXXD motif plays a role in coordinating substrate release, ultimately facilitating substrate translocation. Our findings provide valuable insights into the molecular mechanism of nucleoside transport and expand the understanding of the diverse transport mechanisms within the major facilitator superfamily.
Collapse
Affiliation(s)
- Qingjie Xiao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Xinyi Chen
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Chen Wang
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yingying He
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Dong Deng
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China; NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China.
| | - Bo Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Liu C, Yuan L, Zhang J, He H, Sun J, Chen Y, Zhen J, Liu G, He Q, Yang X, Li X, Wang X. EPS-8 regulates human malignant melanoma development by activating the Hedgehog pathway via degradation of Ptch1. Int Immunopharmacol 2025; 150:114231. [PMID: 39978252 DOI: 10.1016/j.intimp.2025.114231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/05/2025] [Accepted: 02/02/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND The epidermal growth factor receptor pathway substrate 8 (EPS-8) is a tumor-associated antigen that is frequently overexpressed in various types of human solid tumors and is associated with aggressiveness and poor prognosis. The role of EPS-8 in cutaneous malignant melanoma and its potential mechanism remains unknown. METHODS EPS-8 expression, mutation immune infiltration, and the tumor microenvironment in melanoma were analyzed using various databases. Clinical samples were collected and melanoma cell viability, apoptosis and protein levels were detected using cell counting kit-8, colony formation, Hoechst 33258 staining, and Western blot. Meanwhile, xenograft tumor models in nude mice were produced to evaluate the effect of EPS-8 on malignant melanoma in vivo. RESULTS EPS-8 levels were highly expressed in melanoma and correlated with immune-infiltrating cells, immune-related scores, and immunotherapy. Additionally, in clinical malignant melanoma samples, the EPS-8 level was significantly higher in the malignant melanoma samples compared with adjacent normal tissue, and patients with a high expression of EPS-8 had significantly poor tumor differentiation and a high clinical stage. The overexpression of EPS-8 promoted the proliferation but inhibited the apoptosis of malignant melanoma cells. The knockdown of EPS-8 markedly inhibited the activation of the Hedgehog (Hh) pathway. Notably, the knockdown of Patched-1 (Ptch1) could attenuate the changes in proteins and mRNA level, cell proliferation, apoptosis, and tumor growth induced by the knockdown of EPS-8. CONCLUSION The overexpression of EPS-8 had impacts on the proliferation and apoptosis of cutaneous malignant melanoma cells. The degradation of Ptch1 contributed to the activation of the Hh pathway induced by EPS-8.
Collapse
Affiliation(s)
- Chuan Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei Province, China
| | - Lin Yuan
- Department of Gastroenterology, Hubei General Hospital Medical Conjoined Wuhan Jihe Hospital, Wuhan 430199 Hubei Province, China
| | - Jixiang Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei Province, China
| | - Haodong He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei Province, China
| | - Jiayi Sun
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei Province, China
| | - Ying Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei Province, China
| | - Junhai Zhen
- Department of General Practice, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei Province, China
| | - Guisheng Liu
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an 710068 Shaanxi Province, China
| | - Qingmin He
- Department of Gastroenterology, Ankang Central Hospital, Ankang 725000 Shaanxi Province, China
| | - Xiaocui Yang
- Department of Gastroenterology, Ankang Central Hospital, Ankang 725000 Shaanxi Province, China
| | - Xinshu Li
- Department of Clinical Medicine, Xi'an Medical of University, Xi'an 710068 Shaanxi Province, China
| | - Xiaoli Wang
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei Province, China.
| |
Collapse
|
3
|
Franks NE, Allen BL. Hedgehog-dependent and hedgehog-independent roles for growth arrest specific 1 in mammalian kidney morphogenesis. Development 2024; 151:dev203012. [PMID: 39629522 PMCID: PMC11795293 DOI: 10.1242/dev.203012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024]
Abstract
Growth arrest specific 1 (GAS1) is a key regulator of mammalian embryogenesis, best known for its role in hedgehog (HH) signaling, but with additional described roles in the FGF, RET, and NOTCH pathways. Previous work indicated a later role for GAS1 in kidney development through FGF pathway modulation. Here, we demonstrate that GAS1 is essential for both mesonephrogenesis and metanephrogenesis - most notably, Gas1 deletion in mice results in renal agenesis in a genetic background-dependent fashion. Mechanistically, GAS1 promotes mesonephrogenesis in a HH-dependent fashion, performing a unique co-receptor function, while promoting metanephrogenesis in a HH-independent fashion, acting as a putative secreted RET co-receptor. Our data indicate that Gas1 deletion leads to renal agenesis through a transient reduction in metanephric mesenchyme proliferation - a phenotype that can be rescued by exogenous RET pathway stimulation. Overall, this study indicates that GAS1 contributes to early kidney development through the integration of multiple different signaling pathways.
Collapse
Affiliation(s)
- Nicole E. Franks
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Shi T, Yue S, Xie C, Li X, Yang D, Hu L, Zhong Y, Zhang Y, Liu W. MMP-2-mediated Scube2 degradation promotes blood-brain barrier disruption by blocking the interaction between astrocytes and endothelial cells via inhibiting Sonic hedgehog pathway during early cerebral ischemia. J Neurochem 2024; 168:1877-1894. [PMID: 38148633 DOI: 10.1111/jnc.16021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 09/22/2023] [Accepted: 11/04/2023] [Indexed: 12/28/2023]
Abstract
We have previously demonstrated a rapid secretion of matrix metalloproteinase-2 (MMP-2) in the ischemic brain. Since Scube2 can interact with Sonic hedgehog (Shh) to maintain blood-brain barrier (BBB) integrity via regulating the interaction between brain capillary endothelial cells (ECs) and perivascular astrocytes, and it is also a substrate of MMP-2, we hypothesized that the secreted MMP-2 could degrade Scube2 and contribute to ischemic BBB disruption. Using an in vitro ischemic model of 90-min oxygen-glucose deprivation/3-h reoxygenation (OGD/R) and an in vivo mouse stroke model of 90-min middle cerebral artery occlusion (MCAO) with 3-h reperfusion, we established an important role of MMP-2-mediated Scube2 degradation in early ischemic BBB disruption. Exposure of C8-D1A cells and bEnd.3 cells to OGD/R increased MMP secretion in both cells, and C8-D1A cells appeared to secrete more MMPs than bEnd.3 cells. Co-IP and double-immunostaining revealed that Scube2 co-localized well with MMP-2 in C8-D1A cells and could be pulled down by MMP-2 antibodies. In MCAO mice, Scube2 protein showed a drastic reduction in ischemic brain tissue, which was accompanied by suppressed expression of Shh and its downstream molecules. Of note, specific knockdown of astrocytic Scube2 with AAV-shScube2 augmented MCAO-induced Shh suppression and exacerbated BBB leakage and inflammatory reactions in the ischemic brain. Last, incubation of bEnd.3 cells with conditioned medium derived from OGD-treated C8-D1A cells led to a significant inhibition of the Shh pathway in bEnd.3 cells and degradation of VE-cadherin and ZO-1. Inhibition of MMP-2 with SB-3CT or over-expression of Scube2 with plasmids in C8-D1A cells alleviated the above effect of C8-D1A cells-derived conditioned medium. Taken together, our data indicate that ischemia-induced secretion of MMP-2 may contribute to early BBB disruption in ischemic stroke via interrupting the shared Scube2-Shh pathway between brain capillary ECs and perivascular astrocytes.
Collapse
Affiliation(s)
- Tengrui Shi
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Shiqin Yue
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Cong Xie
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, China
| | - Xiaofeng Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Dexin Yang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Linghui Hu
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, China
| | - Yunxue Zhong
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Graduate Collaborative Training Base of Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Hengyang Medical School, University of South China, Shenzhen, China
| | - Yuan Zhang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wenlan Liu
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
5
|
Smith-Byrne K, Hedman Å, Dimitriou M, Desai T, Sokolov AV, Schioth HB, Koprulu M, Pietzner M, Langenberg C, Atkins J, Penha RC, McKay J, Brennan P, Zhou S, Richards BJ, Yarmolinsky J, Martin RM, Borlido J, Mu XJ, Butterworth A, Shen X, Wilson J, Assimes TL, Hung RJ, Amos C, Purdue M, Rothman N, Chanock S, Travis RC, Johansson M, Mälarstig A. Identifying therapeutic targets for cancer among 2074 circulating proteins and risk of nine cancers. Nat Commun 2024; 15:3621. [PMID: 38684708 PMCID: PMC11059161 DOI: 10.1038/s41467-024-46834-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 03/05/2024] [Indexed: 05/02/2024] Open
Abstract
Circulating proteins can reveal key pathways to cancer and identify therapeutic targets for cancer prevention. We investigate 2,074 circulating proteins and risk of nine common cancers (bladder, breast, endometrium, head and neck, lung, ovary, pancreas, kidney, and malignant non-melanoma) using cis protein Mendelian randomisation and colocalization. We conduct additional analyses to identify adverse side-effects of altering risk proteins and map cancer risk proteins to drug targets. Here we find 40 proteins associated with common cancers, such as PLAUR and risk of breast cancer [odds ratio per standard deviation increment: 2.27, 1.88-2.74], and with high-mortality cancers, such as CTRB1 and pancreatic cancer [0.79, 0.73-0.85]. We also identify potential adverse effects of protein-altering interventions to reduce cancer risk, such as hypertension. Additionally, we report 18 proteins associated with cancer risk that map to existing drugs and 15 that are not currently under clinical investigation. In sum, we identify protein-cancer links that improve our understanding of cancer aetiology. We also demonstrate that the wider consequence of any protein-altering intervention on well-being and morbidity is required to interpret any utility of proteins as potential future targets for therapeutic prevention.
Collapse
Affiliation(s)
- Karl Smith-Byrne
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, UK.
| | - Åsa Hedman
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Marios Dimitriou
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Trishna Desai
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, UK
| | - Alexandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schioth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Mine Koprulu
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare Institute, Queen Mary University of London, London, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare Institute, Queen Mary University of London, London, UK
| | - Joshua Atkins
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, UK
| | - Ricardo Cortez Penha
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - James McKay
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Sirui Zhou
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Brent J Richards
- Departments of Medicine (Endocrinology), Human Genetics, Epidemiology and Biostatistics, McGill University, Montréal, QC, Canada
| | - James Yarmolinsky
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Richard M Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol, UK
| | - Joana Borlido
- Cancer Immunology Discovery, Pfizer Worldwide Research and Development Medicine, Pfizer Inc, San Diego, USA
| | - Xinmeng J Mu
- Oncology Research Unit, Pfizer Worldwide Research and Development Medicine, Pfizer Inc, San Diego, USA
| | - Adam Butterworth
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Xia Shen
- Usher Institute, MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Jim Wilson
- Usher Institute, MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Themistocles L Assimes
- Division of Cardiovascular Medicine and the Cardiovascular Institute, School of Medicine, Stanford University, Stanford, USA
| | - Rayjean J Hung
- Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, Canada
| | - Christopher Amos
- Department of Medicine, Epidemiology Section, Institute for Clinical and Translational Research, Baylor Medical College, Houston, USA
| | - Mark Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Ruth C Travis
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, UK
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Anders Mälarstig
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
6
|
de Almeida Magalhaes T, Liu J, Chan C, Borges KS, Zhang J, Kane AJ, Wierbowski BM, Ge Y, Liu Z, Mannam P, Zeve D, Weiss R, Breault DT, Huang P, Salic A. Extracellular carriers control lipid-dependent secretion, delivery, and activity of WNT morphogens. Dev Cell 2024; 59:244-261.e6. [PMID: 38154460 PMCID: PMC10872876 DOI: 10.1016/j.devcel.2023.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/29/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
WNT morphogens trigger signaling pathways fundamental for embryogenesis, regeneration, and cancer. WNTs are modified with palmitoleate, which is critical for binding Frizzled (FZD) receptors and activating signaling. However, it is unknown how WNTs are released and spread from cells, given their strong lipid-dependent membrane attachment. We demonstrate that secreted FZD-related proteins and WNT inhibitory factor 1 are WNT carriers, potently releasing lipidated WNTs and forming active soluble complexes. WNT release occurs by direct handoff from the membrane protein WNTLESS to the carriers. In turn, carriers donate WNTs to glypicans and FZDs involved in WNT reception and to the NOTUM hydrolase, which antagonizes WNTs by lipid moiety removal. WNT transfer from carriers to FZDs is greatly facilitated by glypicans that serve as essential co-receptors in Wnt signaling. Thus, an extracellular network of carriers dynamically controls secretion, posttranslational regulation, and delivery of WNT morphogens, with important practical implications for regenerative medicine.
Collapse
Affiliation(s)
| | - Jingjing Liu
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Charlene Chan
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kleiton Silva Borges
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jiuchun Zhang
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew J Kane
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bradley M Wierbowski
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yunhui Ge
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhiwen Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Prabhath Mannam
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Daniel Zeve
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ron Weiss
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Pengxiang Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adrian Salic
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Ogłodek EA, Grzesińska A, Paraniak-Gieszczyk B, Woźny-Rasała I. Embryological Significance of Glial cells in the Central Nervous System. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2024; 52:739-743. [PMID: 39951643 DOI: 10.36740/merkur202406118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Glial cells are essential for the proper functioning of the nervous system, categorized into two groups: macroglial and microglia. Traditionally viewed as passive entities involved in nutrition, support, and insulation, recent insights reveal their crucial role in brain function and plasticity. They serve as key regulators of synaptic activity, influencing information transmission between neurons and impacting processes like learning. Glial cells are vital for maintaining neuronal network integrity and functionality; disruptions in their function can lead to neuronal dysfunction and death. Our review aims to underscore the embryological importance of glial cells in nervous system function. Systematic searches of major electronic medical databases were conducted, including PubMed, Web of Science, Scopus, and Google Scholar, up to February 15, 2024. Our findings indicate that abnormalities in glial cell function contribute to various human conditions such as Alzheimer's disease, depression, generalized anxiety disorder, panic disorders, fibromyalgia, and schizophrenia.
Collapse
Affiliation(s)
- Ewa Alicja Ogłodek
- DEPARTMENT OF MEDICAL SCIENCES, DR. W. BIEGANSKI COLLEGIUM MEDICUM, JAN DLUGOSZ UNIVERSITY IN CZESTOCHOWA, CZESTOCHOWA, POLAND
| | - Anna Grzesińska
- DEPARTMENT OF MEDICAL SCIENCES, DR. W. BIEGANSKI COLLEGIUM MEDICUM, JAN DLUGOSZ UNIVERSITY IN CZESTOCHOWA, CZESTOCHOWA, POLAND
| | - Barbara Paraniak-Gieszczyk
- DEPARTMENT OF MEDICAL SCIENCES, DR. W. BIEGANSKI COLLEGIUM MEDICUM, JAN DLUGOSZ UNIVERSITY IN CZESTOCHOWA, CZESTOCHOWA, POLAND
| | - Izabela Woźny-Rasała
- DEPARTMENT OF MEDICAL SCIENCES, DR. W. BIEGANSKI COLLEGIUM MEDICUM, JAN DLUGOSZ UNIVERSITY IN CZESTOCHOWA, CZESTOCHOWA, POLAND
| |
Collapse
|
8
|
Zhang Y, Beachy PA. Cellular and molecular mechanisms of Hedgehog signalling. Nat Rev Mol Cell Biol 2023; 24:668-687. [PMID: 36932157 DOI: 10.1038/s41580-023-00591-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/19/2023]
Abstract
The Hedgehog signalling pathway has crucial roles in embryonic tissue patterning, postembryonic tissue regeneration, and cancer, yet aspects of Hedgehog signal transmission and reception have until recently remained unclear. Biochemical and structural studies surprisingly reveal a central role for lipids in Hedgehog signalling. The signal - Hedgehog protein - is modified by cholesterol and palmitate during its biogenesis, thereby necessitating specialized proteins such as the transporter Dispatched and several lipid-binding carriers for cellular export and receptor engagement. Additional lipid transactions mediate response to the Hedgehog signal, including sterol activation of the transducer Smoothened. Access of sterols to Smoothened is regulated by the apparent sterol transporter and Hedgehog receptor Patched, whose activity is blocked by Hedgehog binding. Alongside these lipid-centric mechanisms and their relevance to pharmacological pathway modulation, we discuss emerging roles of Hedgehog pathway activity in stem cells or their cellular niches, with translational implications for regeneration and restoration of injured or diseased tissues.
Collapse
Affiliation(s)
- Yunxiao Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute and Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Philip A Beachy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Ansell TB, Corey RA, Viti LV, Kinnebrew M, Rohatgi R, Siebold C, Sansom MSP. The energetics and ion coupling of cholesterol transport through Patched1. SCIENCE ADVANCES 2023; 9:eadh1609. [PMID: 37611095 PMCID: PMC10446486 DOI: 10.1126/sciadv.adh1609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
Patched1 (PTCH1) is a tumor suppressor protein of the mammalian Hedgehog (HH) signaling pathway, implicated in embryogenesis and tissue homeostasis. PTCH1 inhibits the G protein-coupled receptor Smoothened (SMO) via a debated mechanism involving modulating ciliary cholesterol accessibility. Using extensive molecular dynamics simulations and free energy calculations to evaluate cholesterol transport through PTCH1, we find an energetic barrier of ~15 to 20 kilojoule per mole for cholesterol export. In silico data are coupled to in vivo biochemical assays of PTCH1 mutants to probe coupling between cation binding sites, transmembrane motions, and PTCH1 activity. Using complementary simulations of Dispatched1, we find that transition between "inward-open" and solvent "occluded" states is accompanied by Na+-induced pinching of intracellular helical segments. Thus, our findings illuminate the energetics and ion coupling stoichiometries of PTCH1 transport mechanisms, whereby one to three Na+ or two to three K+ couple to cholesterol export, and provide the first molecular description of transitions between distinct transport states.
Collapse
Affiliation(s)
- T Bertie Ansell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- School of Physiology, Pharmacology and Neuroscience, Bristol University, Bristol BS8 1TD, UK
| | - Lucrezia Vittoria Viti
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Maia Kinnebrew
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
10
|
Song L, Zhang Y, Wang Y, Xia Q, Guo D, Cao J, Xin X, Cheng H, Liu C, Jia X, Li F. Detection of various fusion genes by one-step RT-PCR and the association with clinicopathological features in 242 cases of soft tissue tumor. Front Cell Dev Biol 2023; 11:1214262. [PMID: 37621777 PMCID: PMC10446835 DOI: 10.3389/fcell.2023.1214262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/26/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction: Over the past decades, an increasing number of chromosomal translocations have been found in different STSs, which not only has value for clinical diagnosis but also suggests the pathogenesis of STS. Fusion genes can be detected by FISH, RT-PCR, and next-generation sequencing. One-step RT-PCR is a convenient method to detect fusion genes with higher sensitivity and lower cost. Method: In this study, 242 cases of soft tissue tumors were included, which were detected by one-step RT-PCR in multicenter with seven types of tumors: rhabdomyosarcoma (RMS), peripheral primitive neuroectodermal tumor (pPNET), synovial sarcoma (SS), myxoid liposarcomas (MLPS), alveolar soft part sarcoma (ASPS), dermatofibrosarcoma protuberans (DFSP), and soft tissue angiofibroma (AFST). 18 cases detected by one-step RT-PCR were further tested by FISH. One case with novel fusion gene detected by RNA-sequencing was further validated by one-step RT-PCR. Results: The total positive rate of fusion genes was 60% (133/213) in the 242 samples detected by one-step RT-PCR, in which 29 samples could not be evaluated because of poor RNA quality. The positive rate of PAX3-FOXO1 was 88.6% (31/35) in alveolar rhabdomyosarcoma, EWSR1-FLI1 was 63% (17/27) in pPNET, SYT-SSX was 95.4% in SS (62/65), ASPSCR1-TFE3 was 100% in ASPS (10/10), FUS-DDIT3 was 80% in MLPS (4/5), and COL1A1-PDGFB was 66.7% in DFSP (8/12). For clinicopathological parameters, fusion gene status was correlated with age and location in 213 cases. The PAX3-FOXO1 fusion gene status was correlated with lymph node metastasis and distant metastasis in RMS. Furthermore, RMS patients with positive PAX3-FOXO1 fusion gene had a significantly shorter overall survival time than those patients with the negative fusion gene. Among them, the FISH result of 18 cases was concordant with one-step RT-PCR. As detected as the most common fusion types of AHRR-NCOA2 in one case of AFST were detected as negative by one-step RT-PCR. RNA-sequencing was used to determine the fusion genes, and a novel fusion gene PTCH1-PLAG1 was found. Moreover, the fusion gene was confirmed by one-step RT-PCR. Conclusion: Our study indicates that one-step RT-PCR displays a reliable tool to detect fusion genes with the advantage of high accuracy and low cost. Moreover, it is a great tool to identify novel fusion genes. Overall, it provides useful information for molecular pathological diagnosis and improves the diagnosis rate of STSs.
Collapse
Affiliation(s)
- Lingxie Song
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Yuanyuan Wang
- Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Qingxin Xia
- Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Dandan Guo
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiachen Cao
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xin Xin
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Haoyue Cheng
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Chunxia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingyuan Jia
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Feng Li
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
11
|
Liu G, Bu C, Guo G, Zhang Z, Sheng Z, Deng K, Wu S, Xu S, Bu Y, Gao Y, Wang M, Liu G, Kong L, Li T, Li M, Bu X. Genomic alterations of oligodendrogliomas at distant recurrence. Cancer Med 2023; 12:17171-17183. [PMID: 37533228 PMCID: PMC10501240 DOI: 10.1002/cam4.6327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Oligodendroglioma is known for its relatively better prognosis and responsiveness to radiotherapy and chemotherapy. However, little is known about the evolution of genetic changes as oligodendroglioma progresses. METHODS In this study, we evaluated gene evolution invivo during tumor progression based on deep whole-genome sequencing data (ctDNA). We analyzed longitudinal genomic data from six patients during tumor evolution, of which five patients developed distant recurrence. RESULTS Whole-exome sequencing demonstrated that the rate of shared mutations between the primary and recurrent samples was relatively low. In two cases, even well-known major driver mutations in CIC and FUBP1 that were detected in primary tumors were not detected in the relapse samples. Among these cases, two patients had a conversion from the IDH mutation in the originating state to the IDH1 wild state during the process of gene evolution under chemotherapy treatment, indicating that the cell phenotype and genetic characteristics of oligodendroglioma may change during tumor evolution. Two patients received long-term temozolomide (TMZ) treatment before the operation, and we found that recurrence tumors harbored mutations in the PI3K/AKT and Sonic hedgehog (SHh) signaling pathways. Hypermutation occurred with mutations in MMR genes in one patient, contributing to the rapid progression of the tumor. CONCLUSION Oligodendroglioma displayed great spatial and temporal heterogeneity during tumor evolution. The PI3K/AKT and SHh signaling pathways may play an important role in promoting treatment resistance and distant relapse during oligodendroglioma evolution. In addition, there was a tendency to increase the degree of tumor malignancy during evolution. Distant recurrence may be a later event duringoligodendroglioma progression. CLINICALTRIALS gov, Identifier: NCT05512325.
Collapse
Affiliation(s)
- Guanzheng Liu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Chaojie Bu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Guangzhong Guo
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Zhiyue Zhang
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Zhiyuan Sheng
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Kaiyuan Deng
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Shuang Wu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Sensen Xu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Yage Bu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Yushuai Gao
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Meiyun Wang
- Department of RadiologyHenan Provincial People's HospitalZhengzhouChina
| | - Gang Liu
- Department of Center for Clinical Single Cell Biomedicine, Department of Oncology, Clinical Research Center, Henan Provincial People's HospitalZhengzhou University People's HospitalZhengzhouChina
| | - Lingfei Kong
- Department of PathologyHenan Provincial People's HospitalZhengzhouChina
| | - Tianxiao Li
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Ming Li
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Xingyao Bu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| |
Collapse
|
12
|
Abstract
Ligands of the Hedgehog (HH) pathway are paracrine signaling molecules that coordinate tissue development in metazoans. A remarkable feature of HH signaling is the repeated use of cholesterol in steps spanning ligand biogenesis, secretion, dispersal, and reception on target cells. A cholesterol molecule covalently attached to HH ligands is used as a molecular baton by transfer proteins to guide their secretion, spread, and reception. On target cells, a signaling circuit composed of a cholesterol transporter and sensor regulates transmission of HH signals across the plasma membrane to the cytoplasm. The repeated use of cholesterol in signaling supports the view that the HH pathway likely evolved by coopting ancient systems to regulate the abundance or organization of sterol-like lipids in membranes.
Collapse
Affiliation(s)
- Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom;
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, California, USA;
| |
Collapse
|
13
|
Lin YC, Sahoo BK, Gau SS, Yang RB. The biology of SCUBE. J Biomed Sci 2023; 30:33. [PMID: 37237303 PMCID: PMC10214685 DOI: 10.1186/s12929-023-00925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The SCUBE [Signal peptide-Complement C1r/C1s, Uegf, Bmp1 (CUB)-Epithelial growth factor domain-containing protein] family consists of three proteins in vertebrates, SCUBE1, 2 and 3, which are highly conserved in zebrafish, mice and humans. Each SCUBE gene encodes a polypeptide of approximately 1000 amino acids that is organized into five modular domains: (1) an N-terminal signal peptide sequence, (2) nine tandem epidermal growth factor (EGF)-like repeats, (3) a large spacer region, (4) three cysteine-rich (CR) motifs, and (5) a CUB domain at the C-terminus. Murine Scube genes are expressed individually or in combination during the development of various tissues, including those in the central nervous system and the axial skeleton. The cDNAs of human SCUBE orthologs were originally cloned from vascular endothelial cells, but SCUBE expression has also been found in platelets, mammary ductal epithelium and osteoblasts. Both soluble and membrane-associated SCUBEs have been shown to play important roles in physiology and pathology. For instance, upregulation of SCUBEs has been reported in acute myeloid leukemia, breast cancer and lung cancer. In addition, soluble SCUBE1 is released from activated platelets and can be used as a clinical biomarker for acute coronary syndrome and ischemic stroke. Soluble SCUBE2 enhances distal signaling by facilitating the secretion of dual-lipidated hedgehog from nearby ligand-producing cells in a paracrine manner. Interestingly, the spacer regions and CR motifs can increase or enable SCUBE binding to cell surfaces via electrostatic or glycan-lectin interactions. As such, membrane-associated SCUBEs can function as coreceptors that enhance the signaling activity of various serine/threonine kinase or tyrosine kinase receptors. For example, membrane-associated SCUBE3 functions as a coreceptor that promotes signaling in bone morphogenesis. In humans, SCUBE3 mutations are linked to abnormalities in growth and differentiation of both bones and teeth. In addition to studies on human SCUBE function, experimental results from genetically modified mouse models have yielded important insights in the field of systems biology. In this review, we highlight novel molecular discoveries and critical directions for future research on SCUBE proteins in the context of cancer, skeletal disease and cardiovascular disease.
Collapse
Affiliation(s)
- Yuh-Charn Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Binay K Sahoo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shiang-Shin Gau
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan.
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
14
|
Ansell TB, Corey RA, Viti LV, Kinnebrew M, Rohatgi R, Siebold C, Sansom MSP. The Energetics and Ion Coupling of Cholesterol Transport Through Patched1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528445. [PMID: 36824746 PMCID: PMC9949057 DOI: 10.1101/2023.02.14.528445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Patched1 (PTCH1) is the principal tumour suppressor protein of the mammalian Hedgehog (HH) signalling pathway, implicated in embryogenesis and tissue homeostasis. PTCH1 inhibits the Class F G protein-coupled receptor Smoothened (SMO) via a debated mechanism involving modulating accessible cholesterol levels within ciliary membranes. Using extensive molecular dynamics (MD) simulations and free energy calculations to evaluate cholesterol transport through PTCH1, we find an energetic barrier of ~15-20 kJ mol -1 for cholesterol export. In simulations we identify cation binding sites within the PTCH1 transmembrane domain (TMD) which may provide the energetic impetus for cholesterol transport. In silico data are coupled to in vivo biochemical assays of PTCH1 mutants to probe coupling between transmembrane motions and PTCH1 activity. Using complementary simulations of Dispatched1 (DISP1) we find that transition between 'inward-open' and solvent 'occluded' states is accompanied by Na + induced pinching of intracellular helical segments. Thus, our findings illuminate the energetics and ion-coupling stoichiometries of PTCH1 transport mechanisms, whereby 1-3 Na + or 2-3 K + couple to cholesterol export, and provide the first molecular description of transitions between distinct transport states.
Collapse
Affiliation(s)
- T. Bertie Ansell
- Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, UK
| | - Robin A. Corey
- Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, UK
| | - Lucrezia Vittoria Viti
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Maia Kinnebrew
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | | |
Collapse
|
15
|
Douceau S, Deutsch Guerrero T, Ferent J. Establishing Hedgehog Gradients during Neural Development. Cells 2023; 12:225. [PMID: 36672161 PMCID: PMC9856818 DOI: 10.3390/cells12020225] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/07/2023] Open
Abstract
A morphogen is a signaling molecule that induces specific cellular responses depending on its local concentration. The concept of morphogenic gradients has been a central paradigm of developmental biology for decades. Sonic Hedgehog (Shh) is one of the most important morphogens that displays pleiotropic functions during embryonic development, ranging from neuronal patterning to axon guidance. It is commonly accepted that Shh is distributed in a gradient in several tissues from different origins during development; however, how these gradients are formed and maintained at the cellular and molecular levels is still the center of a great deal of research. In this review, we first explored all of the different sources of Shh during the development of the nervous system. Then, we detailed how these sources can distribute Shh in the surrounding tissues via a variety of mechanisms. Finally, we addressed how disrupting Shh distribution and gradients can induce severe neurodevelopmental disorders and cancers. Although the concept of gradient has been central in the field of neurodevelopment since the fifties, we also describe how contemporary leading-edge techniques, such as organoids, can revisit this classical model.
Collapse
Affiliation(s)
- Sara Douceau
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Tanya Deutsch Guerrero
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Julien Ferent
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| |
Collapse
|
16
|
Biou V. Lipid-membrane protein interaction visualised by cryo-EM: A review. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184068. [PMID: 36216098 DOI: 10.1016/j.bbamem.2022.184068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Membrane proteins reside at interfaces between aqueous and lipid media and solving their molecular structure relies most of the time on removing them from the membrane using detergent. Luckily, this solubilization process does not strip them from all the associated lipids and single-particle cryo-transmission electron microscopy (SP-TEM) has proved a very good tool to visualise both protein high-resolution structure and, often, many of its associated lipids. In this review, we observe membrane protein structures from the Protein DataBank and their associated maps in the Electron Microscopy DataBase and determine how the SP-TEM maps allow lipid visualization, the type of binding sites, the influence of symmetry, resolution and other factors. We illustrate lipid visualization around and inside the protein core, show that some lipid bilayers in the core can be shifted with respect to the membrane and how some proteins can actively bend the lipid bilayer that binds to them. We conclude that resolution improvement in SP-TEM will likely enable many more discoveries regarding the role of lipids bound to proteins.
Collapse
Affiliation(s)
- Valérie Biou
- Université de Paris, CNRS, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique, F-75005 Paris, France.
| |
Collapse
|
17
|
Schonbrun AR, Resh MD. Hedgehog acyltransferase catalyzes a random sequential reaction and utilizes multiple fatty acyl-CoA substrates. J Biol Chem 2022; 298:102422. [PMID: 36030053 PMCID: PMC9513256 DOI: 10.1016/j.jbc.2022.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Sonic hedgehog (Shh) signaling is a key component of embryonic development and is a driving force in several cancers. Hedgehog acyltransferase (Hhat), a member of the membrane-bound O-acyltransferase family of enzymes, catalyzes the attachment of palmitate to the N-terminal cysteine of Shh, a posttranslation modification critical for Shh signaling. The activity of Hhat has been assayed in cells and in vitro, and cryo-EM structures of Hhat have been reported, yet several unanswered questions remain regarding the enzyme’s reaction mechanism, substrate specificity, and the impact of the latter on Shh signaling. Here, we present an in vitro acylation assay with purified Hhat that directly monitors attachment of a fluorescently tagged fatty acyl chain to Shh. Our kinetic analyses revealed that the reaction catalyzed by Hhat proceeds through a random sequential mechanism. We also determined that Hhat can utilize multiple fatty acyl-CoA substrates for fatty acid transfer to Shh, with comparable affinities and turnover rates for myristoyl-CoA, palmitoyl-CoA, palmitoleoyl-CoA, and oleoyl-CoA. Furthermore, we investigated the functional consequence of differential fatty acylation of Shh in a luciferase-based Shh reporter system. We found that the potency of the signaling response in cells was higher for Shh acylated with saturated fatty acids compared to monounsaturated fatty acids. These findings demonstrate that Hhat can attach fatty acids other than palmitate to Shh and suggest that heterogeneous fatty acylation has the potential to impact Shh signaling in the developing embryo and/or cancer cells.
Collapse
Affiliation(s)
- Adina R Schonbrun
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY; Gerstner Sloan Kettering Graduate School
| | - Marilyn D Resh
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY; Gerstner Sloan Kettering Graduate School; Biochemistry, Cell Biology and Molecular Biology Graduate Program, Weill-Cornell Graduate School of Medical Sciences, New York, NY.
| |
Collapse
|