1
|
Zhang H, Liu S, Su W, Xie X, Yu J, Dao F, Yang M, Lyu H, Lin H. NeuroScale: evolutional scale-based protein language models enable prediction of neuropeptides. BMC Biol 2025; 23:142. [PMID: 40437538 PMCID: PMC12121104 DOI: 10.1186/s12915-025-02243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 05/12/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Neuropeptides (NPs) are critical signaling molecules involved in various physiological and behavioral processes, including development, metabolism, and memory. They function within both the nervous and endocrine systems and have emerged as promising therapeutic targets for a range of diseases. Despite their significance, the accurate identification of NPs remains a challenge, necessitating the development of more effective computational approaches. RESULTS In this study, we introduce NeuroScale, a multi-channel neural network model leveraging evolutionary scale modeling (ESM) for the precise prediction of NPs. By integrating the GoogLeNet framework, NeuroScale effectively captures multi-scale NP features, enabling robust and accurate classification. Extensive benchmarking demonstrates its superior performance, consistently achieving an area under the receiver operating characteristic curve (AUC) exceeding 0.97. Additionally, we systematically analyzed the impact of protein sequence similarity thresholds and multi-scale sequence lengths on model performance, further validating NeuroScale's robustness and generalizability. CONCLUSIONS NeuroScale represents a significant advancement in neuropeptide prediction, offering both high accuracy and adaptability to diverse sequence characteristics. Its ability to generalize across different sequence similarity thresholds and lengths underscores its potential as a reliable tool for neuropeptide discovery and peptide-based drug development. By providing a scalable and efficient deep learning framework, NeuroScale paves the way for future research in neuropeptide function, disease mechanisms, and therapeutic applications.
Collapse
Affiliation(s)
- Hongqi Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Shanghua Liu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Wei Su
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Xueqin Xie
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Junwen Yu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Fuying Dao
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Mi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| | - Hao Lyu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| | - Hao Lin
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
2
|
Marczak H, Krenke K, Griese M, Carlens J, Seidl E, Gilbert C, Emiralioglu N, Torrent-Vernetta A, Willemse B, Epaud R, Delestrain C, Louvrier C, Koucký V, Nathan N. An update on diagnosis and treatments of childhood interstitial lung diseases. Breathe (Sheff) 2025; 21:250004. [PMID: 40365093 PMCID: PMC12070201 DOI: 10.1183/20734735.0004-2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/05/2025] [Indexed: 05/15/2025] Open
Abstract
Childhood interstitial lung diseases (chILDs) are rare and heterogeneous disorders associated with significant morbidity and mortality. The clinical presentation of chILD typically includes chronic or recurrent respiratory signs and symptoms with diffuse radiographic abnormalities on chest imaging. Diagnosis requires a structured, multi-step approach. Treatment options are limited, with disease-specific therapies available only in selected cases and management relying primarily on supportive care. Awareness of chILDs has been steadily increasing. New diagnoses, advanced diagnostic tests, and novel treatments are emerging each year, highlighting the importance of collaborative, multidisciplinary teams in providing comprehensive care for children and families affected by these complex conditions. On behalf of the European Respiratory Society Clinical Research Collaboration for chILD (ERS CRC chILD-EU), this review provides an updated overview of the diagnostic approach and management strategies for chILDs.
Collapse
Affiliation(s)
- Honorata Marczak
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Krenke
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Matthias Griese
- Department of Paediatric Pneumology, Dr von Hauner Children's Hospital, German Centre for Lung Research, University of Munich, Munich, Germany
| | - Julia Carlens
- Clinic for Pediatric Pneumology, Hannover Medical School, Hannover, Germany
| | - Elias Seidl
- Division of Respiratory Medicine, University Children's Hospital Zurich, Zurich, Switzerland
| | - Carlee Gilbert
- Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Nagehan Emiralioglu
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alba Torrent-Vernetta
- Pediatric Allergy and Pulmonology Section, Department of Pediatrics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Brigitte Willemse
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ralph Epaud
- Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Centre de référence des maladies respiratoires rares, Créteil, France
- University Paris Est Créteil, INSERM, IMRB, Créteil, France
| | - Celine Delestrain
- Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Centre de référence des maladies respiratoires rares, Créteil, France
- University Paris Est Créteil, INSERM, IMRB, Créteil, France
| | - Camille Louvrier
- Department of Molecular Genetics, Armand Trousseau Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
- Laboratory of Childhood Genetic Diseases, Inserm UMR_S933, Sorbonne University, Armand Trousseau Hospital, Paris, France
| | - Václav Koucký
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Nadia Nathan
- Laboratory of Childhood Genetic Diseases, Inserm UMR_S933, Sorbonne University, Armand Trousseau Hospital, Paris, France
- Pediatric Pulmonology Department and Reference centre for rare lung diseases RespiRare, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
3
|
Li C, Zang N, Liu E. Neuropeptides or their receptors in pathogenesis of lung diseases and therapeutic potentials. Neuropeptides 2024; 108:102482. [PMID: 39520945 DOI: 10.1016/j.npep.2024.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
There are complex interactions between the immune system and the nervous system in the lung. The nervous system perceives environmental stimuli and transmits these signals to immune cells via neurotransmitters, which is essential for effective immunity and environmental balance. Neuropeptides are important neurotransmitters in the lung, where they regulate immune responses through direct and indirect mechanisms, affecting the occurrence and development of lung diseases. In this review, we emphasize the role of neuropeptides in the pathogeneis of lung diseases and their potential therapeutic value for lung diseases.
Collapse
Affiliation(s)
- Changgen Li
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Na Zang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing, China.
| |
Collapse
|
4
|
Molinari F, Franco GA, Tranchida N, Di Paola R, Cordaro M. Molecular Mechanism of Action of Endocrine-Disrupting Chemicals on the Respiratory System. Int J Mol Sci 2024; 25:12540. [PMID: 39684250 DOI: 10.3390/ijms252312540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are a growing health hazard for humankind and respiratory health in particular. Such chemical compounds are present in the environment and food and may interfere with physiological processes through interference with functions of the endocrine system, making humans more susceptible to various types of diseases. This review aims to discuss the effects of EDCs on the respiratory system. Exposure to EDCs during fetal development and adulthood increases susceptibility to respiratory diseases such as asthma, COPD, and pulmonary fibrosis. EDCs are both multiple and complex in the ways they can act. Indeed, these chemicals may induce oxidative stress, modify cell proliferation and differentiation, interfere with tissue repair, and modulate the inflammatory response. Moreover, EDCs may also break the integrity of the blood-air barrier, allowing noxious substances to penetrate into the lung and thus enhancing the opportunity for infection. In conclusion, the scientific evidence available tends to indicate that EDCs exposure is strongly linked to the initiation of respiratory disease. Further research will be important in discovering the underlying molecular mechanisms and devising preventive and therapeutic measures.
Collapse
Affiliation(s)
- Francesco Molinari
- Department of Veterinary Sciences, University of Messina, Viale SS Annunziata, 98168 Messina, Italy
| | - Gianluca Antonio Franco
- Department of Veterinary Sciences, University of Messina, Viale SS Annunziata, 98168 Messina, Italy
| | - Nicla Tranchida
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Viale SS Annunziata, 98168 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|
5
|
Schäfer A, Leist SR, Powers JM, Baric RS. Animal models of Long Covid: A hit-and-run disease. Sci Transl Med 2024; 16:eado2104. [PMID: 39536118 DOI: 10.1126/scitranslmed.ado2104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2) pandemic has caused more than 7 million deaths globally. Despite the presence of infection- and vaccine-induced immunity, SARS-CoV-2 infections remain a major global health concern because of the emergence of SARS-CoV-2 variants that can cause severe acute coronavirus disease 2019 (COVID-19) or enhance Long Covid disease phenotypes. About 5 to 10% of SARS-CoV-2-infected individuals develop Long Covid, which, similar to acute COVID 19, often affects the lung. However, Long Covid can also affect other peripheral organs, especially the brain. The causal relationships between acute disease phenotypes, long-term symptoms, and involvement of multiple organ systems remain elusive, and animal model systems mimicking both acute and post-acute phases are imperative. Here, we review the current state of Long Covid animal models, including current and possible future applications.
Collapse
Affiliation(s)
- Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Marczak H, Peradzyńska J, Paplińska-Goryca M, Misiukiewicz-Stępień P, Proboszcz M, Krenke K. Serum biomarkers in neuroendocrine cell hyperplasia of infancy. Pediatr Pulmonol 2024; 59:2885-2890. [PMID: 38934775 DOI: 10.1002/ppul.27148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Neuroendocrine cell hyperplasia of infancy (NEHI) is a form of childhood interstitial lung disease of unknown origin associated with hyperplasia of pulmonary neuroendocrine cells (PNECs). Diagnosis is based on the characteristic clinical picture and typical radiological imaging, and, in some cases, on lung biopsies. To date, no biochemical indicators of the disease have been identified. AIM We aimed to determine biomarkers that could be useful in the management of children diagnosed with NEHI. METHODS Patients with NEHI and healthy children were enrolled. Concentrations of serum biomarkers secreted by PNECs (calcitonin gene-related peptide and gastrin-releasing peptide) and biomarkers of the destruction of alveolar capillary membrane (surfactant proteins A and D [SP-A and SP-D]; glycoprotein Krebs von den Lungen-6 [KL-6]; metalloproteinases 7 and 9 [MMP-7 and MMP-9]; tissue inhibitor of metalloprotease 1) were measured. RESULTS Fifty-two children with NEHI and 23 healthy children were included in the study. The median age of children with NEHI was 3.9 years. There were no differences in serum levels of biomarkers secreted by PNECs between groups. KL-6 levels were significantly higher in children with NEHI than in healthy ones (median 119.6 vs. 92.1 U/mL, p = 0.003); however, concentrations of KL-6 were low in both groups. No significant differences existed between groups for the remaining biomarkers associated with the destruction of the alveolar-capillary membrane. CONCLUSIONS Measurement of serum biomarkers released by PNECs and those associated with the destruction of the alveolar-capillary membrane does not appear to be useful in the management of children with NEHI.
Collapse
Affiliation(s)
- Honorata Marczak
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Peradzyńska
- Department of Epidemiology and Biostatistics, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Paplińska-Goryca
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | | | - Małgorzata Proboszcz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Krenke
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Li R, Sone N, Gotoh S, Sun X, Hagood JS. Contemporary and emerging technologies for research in children's rare and interstitial lung disease. Pediatr Pulmonol 2024; 59:2349-2359. [PMID: 37204232 DOI: 10.1002/ppul.26490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Although recent decades have seen the identification, classification and discovery of the genetic basis of many children's interstitial and rare lung disease (chILD) disorders, detailed understanding of pathogenesis and specific therapies are still lacking for most of them. Fortunately, a revolution of technological advancements has created new opportunities to address these critical knowledge gaps. High-throughput sequencing has facilitated analysis of transcription of thousands of genes in thousands of single cells, creating tremendous breakthroughs in understanding normal and diseased cellular biology. Spatial techniques allow analysis of transcriptomes and proteomes at the subcellular level in the context of tissue architecture, in many cases even in formalin-fixed, paraffin-embedded specimens. Gene editing techniques allow creation of "humanized" animal models in a shorter time frame, for improved knowledge and preclinical therapeutic testing. Regenerative medicine approaches and bioengineering advancements facilitate the creation of patient-derived induced pluripotent stem cells and their differentiation into tissue-specific cell types which can be studied in multicellular "organoids" or "organ-on-a-chip" approaches. These technologies, singly and in combination, are already being applied to gain new biological insights into chILD disorders. The time is ripe to systematically apply these technologies to chILD, together with sophisticated data science approaches, to improve both biological understanding and disease-specific therapy.
Collapse
Affiliation(s)
- Rongbo Li
- Department of Pediatrics, Division of Respiratory Medicine, UC-San Diego, La Jolla, California, USA
| | - Naoyuki Sone
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Shimpei Gotoh
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Xin Sun
- Department of Pediatrics, Division of Respiratory Medicine, UC-San Diego, La Jolla, California, USA
| | - James S Hagood
- Department of Pediatrics, Pulmonology Division, Program for Rare and Interstitial Lung Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Casey A, Fiorino EK, Wambach J. Innovations in Childhood Interstitial and Diffuse Lung Disease. Clin Chest Med 2024; 45:695-715. [PMID: 39069332 PMCID: PMC11366208 DOI: 10.1016/j.ccm.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Children's interstitial and diffuse lung diseases (chILDs) are a heterogenous and diverse group of lung disorders presenting during childhood. Infants and children with chILD disorders present with respiratory signs and symptoms as well as diffuse lung imaging abnormalities. ChILD disorders are associated with significant health care resource utilization and high morbidity and mortality. The care of patients with chILD has been improved through multidisciplinary care, multicenter collaboration, and the establishment of patient research networks in the United Stated and abroad. This review details past and current innovations in the diagnosis and clinical care of children with chILD.
Collapse
Affiliation(s)
- Alicia Casey
- Department of Pediatrics, Division of Pulmonary Medicine, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Elizabeth K Fiorino
- Department of Science Education and Pediatrics, Donald and Barabara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Jennifer Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Jin L, Wei W. It Is Time to Get to Know the Neuroendocrine Cell Hyperplasia of Infancy. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13827. [PMID: 39138819 PMCID: PMC11322232 DOI: 10.1111/crj.13827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 02/25/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
In the two decades that have elapsed since the initial proposal of neuroendocrine cell hyperplasia of infancy (NEHI), several hundred cases have been reported and researched. However, a comprehensive analysis of research progress remains absent from the literature. The present article endeavors to evaluate the current progress of NEHI research and offer a reference for the clinical management of this condition.
Collapse
Affiliation(s)
- Long Jin
- Department of Respiratory MedicineAnhui Provincial Children's HospitalHefeiAnhuiChina
| | - Wen Wei
- Department of Respiratory MedicineAnhui Provincial Children's HospitalHefeiAnhuiChina
| |
Collapse
|
10
|
Seeholzer LF, Julius D. Neuroendocrine cells initiate protective upper airway reflexes. Science 2024; 384:295-301. [PMID: 38669574 PMCID: PMC11407116 DOI: 10.1126/science.adh5483] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 02/21/2024] [Indexed: 04/28/2024]
Abstract
Airway neuroendocrine (NE) cells have been proposed to serve as specialized sensory epithelial cells that modulate respiratory behavior by communicating with nearby nerve endings. However, their functional properties and physiological roles in the healthy lung, trachea, and larynx remain largely unknown. In this work, we show that murine NE cells in these compartments have distinct biophysical properties but share sensitivity to two commonly aspirated noxious stimuli, water and acid. Moreover, we found that tracheal and laryngeal NE cells protect the airways by releasing adenosine 5'-triphosphate (ATP) to activate purinoreceptive sensory neurons that initiate swallowing and expiratory reflexes. Our work uncovers the broad molecular and biophysical diversity of NE cells across the airways and reveals mechanisms by which these specialized excitable cells serve as sentinels for activating protective responses.
Collapse
Affiliation(s)
- Laura F. Seeholzer
- Department of Physiology, University of California, San Francisco; San Francisco, 94143, USA
| | - David Julius
- Department of Physiology, University of California, San Francisco; San Francisco, 94143, USA
| |
Collapse
|
11
|
Granton E, Brown L, Defaye M, Moazen P, Almblad H, Randall TE, Rich JD, Geppert A, Abdullah NS, Hassanabad MF, Hiroki CH, Farias R, Nguyen AP, Schubert C, Lou Y, Andonegui G, Iftinca M, Raju D, Vargas MA, Howell PL, Füzesi T, Bains J, Kurrasch D, Harrison JJ, Altier C, Yipp BG. Biofilm exopolysaccharides alter sensory-neuron-mediated sickness during lung infection. Cell 2024; 187:1874-1888.e14. [PMID: 38518773 DOI: 10.1016/j.cell.2024.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/04/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.
Collapse
Affiliation(s)
- Elise Granton
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luke Brown
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Manon Defaye
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Parisa Moazen
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Henrik Almblad
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Trevor E Randall
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jacquelyn D Rich
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Andrew Geppert
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Nasser S Abdullah
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Mortaza F Hassanabad
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carlos H Hiroki
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Raquel Farias
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Angela P Nguyen
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Courtney Schubert
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yuefei Lou
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Graciela Andonegui
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mircea Iftinca
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deepa Raju
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mario A Vargas
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tamás Füzesi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Cumming School of Medicine Optogenetics Core Facility, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jaideep Bains
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| | - Deborah Kurrasch
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Joe Jonathan Harrison
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
| | - Christophe Altier
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Bryan G Yipp
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
12
|
Gupta S, Viotti A, Eichwald T, Roger A, Kaufmann E, Othman R, Ghasemlou N, Rafei M, Foster SL, Talbot S. Navigating the blurred path of mixed neuroimmune signaling. J Allergy Clin Immunol 2024; 153:924-938. [PMID: 38373475 DOI: 10.1016/j.jaci.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Evolution has created complex mechanisms to sense environmental danger and protect tissues, with the nervous and immune systems playing pivotal roles. These systems work together, coordinating local and systemic reflexes to restore homeostasis in response to tissue injury and infection. By sharing receptors and ligands, they influence the pathogenesis of various diseases. Recently, a less-explored aspect of neuroimmune communication has emerged: the release of neuropeptides from immune cells and cytokines/chemokines from sensory neurons. This article reviews evidence of this unique neuroimmune interplay and its impact on the development of allergy, inflammation, itch, and pain. We highlight the effects of this neuroimmune signaling on vital processes such as host defense, tissue repair, and inflammation resolution, providing avenues for exploration of the underlying mechanisms and therapeutic potential of this signaling.
Collapse
Affiliation(s)
- Surbhi Gupta
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Alice Viotti
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Tuany Eichwald
- Department of Pharmacology and Physiology, Karolinska Institutet, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Anais Roger
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Aix-Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Eva Kaufmann
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Rahmeh Othman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, University of Montréal, Montréal, Québec, Canada
| | - Simmie L Foster
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Sebastien Talbot
- Department of Pharmacology and Physiology, Karolinska Institutet, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
13
|
Schappe MS, Brinn PA, Joshi NR, Greenberg RS, Min S, Alabi AA, Zhang C, Liberles SD. A vagal reflex evoked by airway closure. Nature 2024; 627:830-838. [PMID: 38448588 PMCID: PMC10972749 DOI: 10.1038/s41586-024-07144-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Airway integrity must be continuously maintained throughout life. Sensory neurons guard against airway obstruction and, on a moment-by-moment basis, enact vital reflexes to maintain respiratory function1,2. Decreased lung capacity is common and life-threatening across many respiratory diseases, and lung collapse can be acutely evoked by chest wall trauma, pneumothorax or airway compression. Here we characterize a neuronal reflex of the vagus nerve evoked by airway closure that leads to gasping. In vivo vagal ganglion imaging revealed dedicated sensory neurons that detect airway compression but not airway stretch. Vagal neurons expressing PVALB mediate airway closure responses and innervate clusters of lung epithelial cells called neuroepithelial bodies (NEBs). Stimulating NEBs or vagal PVALB neurons evoked gasping in the absence of airway threats, whereas ablating NEBs or vagal PVALB neurons eliminated gasping in response to airway closure. Single-cell RNA sequencing revealed that NEBs uniformly express the mechanoreceptor PIEZO2, and targeted knockout of Piezo2 in NEBs eliminated responses to airway closure. NEBs were dispensable for the Hering-Breuer inspiratory reflex, which indicated that discrete terminal structures detect airway closure and inflation. Similar to the involvement of Merkel cells in touch sensation3,4, NEBs are PIEZO2-expressing epithelial cells and, moreover, are crucial for an aspect of lung mechanosensation. These findings expand our understanding of neuronal diversity in the airways and reveal a dedicated vagal pathway that detects airway closure to help preserve respiratory function.
Collapse
Affiliation(s)
- Michael S Schappe
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Philip A Brinn
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Narendra R Joshi
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Rachel S Greenberg
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Soohong Min
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - AbdulRasheed A Alabi
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Chuchu Zhang
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Stephen D Liberles
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Barber AT, Liptzin DR, Gower WA, Hinds DM. Pediatric Pulmonology 2022 year in review: Rare and diffuse lung disease. Pediatr Pulmonol 2023; 58:2719-2724. [PMID: 37493100 DOI: 10.1002/ppul.26603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
The field of rare and diffuse pediatric lung disease continues to evolve and expand rapidly as clinicians and researchers make advancements in the diagnosis and treatment of children's interstitial and diffuse lung disease, non-cystic fibrosis bronchiectasis, and primary ciliary dyskinesia. Papers published on these topics in Pediatric Pulmonology and other journals in 2022 describe newly recognized disorders, elucidate disease mechanisms and courses, explore potential biomarkers, and assess novel treatments. In this review, we will discuss these important advancements and place them in the context of existing literature.
Collapse
Affiliation(s)
- Andrew T Barber
- Department of Pediatrics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Deborah R Liptzin
- School of Public and Community Health Sciences, University of Montana, Missoula, Montana, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - William A Gower
- Division of Pediatric Pulmonology and Program for Rare and Interstitial Lung Disease, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Daniel M Hinds
- Department of Pediatrics, University of Iowa School of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
15
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Marczak H, Peradzyńska J, Lange J, Bogusławski S, Krenke K. Pulmonary function in children with persistent tachypnea of infancy. Pediatr Pulmonol 2023; 58:81-87. [PMID: 36177553 DOI: 10.1002/ppul.26162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Data on the prevalence and type of lung function impairment in preschool and school-aged children previously diagnosed with persistent tachypnea of infancy (PTI) are scarce. Therefore, this study aims to assess pulmonary function in this age group. METHODS Children diagnosed with PTI over 3 years old were admitted for follow-up visits and healthy controls were enrolled. The study group included children who were able to complete pulmonary function tests (PFTs). Medical history, physical examination, and pulmonary function (spirometry, body plethysmography, impulse oscillometry, nitrogen multiple breath washout test, diffusing capacity for carbon monoxide [DLCO ]) were assessed. RESULTS Thirty-seven children (26 boys, 11 girls; median age: 5.6 years) diagnosed with PTI and 37 healthy controls were recruited. Forced expiratory volume in 1 s and forced vital capacity were significantly lower (-1.12 vs. 0.48, p = 0.002 and -0.83 vs. 0.31, p = 0.009, respectively); respiratory resistance at 5 Hz (0.06 vs. -0.62, p = 0.003), resonant frequency (1.86 vs. 1.36, p = 0.04), residual volume (RV) (2.34 vs. -1.2, p < 0.0001), RV%TLC (total lung capacity) (2.63 vs. -0.72, p < 0.0001), and specific airway resistance (5.4 vs. 2.59, p = 0.04) were significantly higher in PTI patients as compared with controls (data were presented as median z-score). Air trapping was found in 60.0%, and abnormally high lung clearance index and DLCO were found in 73.3% and 90.9% of PTI patients, respectively. CONCLUSIONS This study demonstrated that lung function is affected in most children with PTI. PFTs showed that peripheral airways are the major zone of functional impairment.
Collapse
Affiliation(s)
- Honorata Marczak
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Peradzyńska
- Department of Epidemiology and Biostatistics, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Lange
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Stanisław Bogusławski
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Krenke
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
17
|
Gárate G, Pascual M, Rivero M, Toriello M, Pérez-Pereda S, González-Quintanilla V, Madera J, Gutiérrez-Cuadra M, Fariñas MDC, Hernández JL, Olmos JM, Pascual J. Serum Calcitonin Gene-Related Peptide α and β Levels are Increased in COVID-19 Inpatients. Arch Med Res 2023; 54:56-63. [PMID: 36588002 PMCID: PMC9801185 DOI: 10.1016/j.arcmed.2022.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/25/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Vasoactive peptides play an important role in a wide range of physiological and pathological conditions. Due to its known functions, the calcitonin gene-related peptide (CGRP) has been suggested as a possible modulator of the hyperimmune response in COVID-19 and thus, blocking its action may lessen the pulmonary effects of COVID-19. AIM OF THE STUDY To compare the circulating levels of CGRPα and CGRPβ in healthy controls compared to hospitalized COVID-19 patients. The study also analyzed how different comorbidities and treatments may affect these concentrations in cases of COVID-19 infection with pulmonary involvement METHODS: Serum samples were collected from the antecubital vein of 51 control subjects (mean age = 55 ± 14 years; range = 26-77; 56.9% female) and 52 patients hospitalized with COVID-19 infection (mean age = 55 ± 13; range = 23-77; 55.8% female) from December 2020 to May 2021. Enzyme-linked immunosorbent assays (ELISAs) were used for CGRPα (Abbexa, UK) and CGRPβ (CUSABIO, China) measurements. Comorbidities, symptoms, and treatments of infection were listed. RESULTS The results showed that the serum levels of both isoforms of CGRP were significantly higher in patients with COVID-19 (α: 57.9 ± 35.8 pg/mL; β: 6.1 ± 2.6 pg/mL) compared to controls (α: 41.8 ± 25.4 pg/mL; β: 4.5 ± 2.4 pg/mL) (p <0.01). Also, the presence of arterial hypertension (HT), obesity, or corticosteroid treatment significantly alter the serum concentration of CGRPα in the subgroups compared to controls. CONCLUSION The elevated serum CGRP levels found in our COVID-19 group compared to controls may suggest that CGRP plays a role in the pathophysiology of the disease, more specifically, in the cytokine storm and in the pulmonary involvement. Future studies should focus on the source of this CGRP elevation.
Collapse
Affiliation(s)
- Gabriel Gárate
- Service of Neurology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - Marta Pascual
- Service of Gastroenterology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - Montserrat Rivero
- Service of Gastroenterology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - María Toriello
- Service of Neurology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - Sara Pérez-Pereda
- Service of Neurology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - Vicente González-Quintanilla
- Service of Neurology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - Jorge Madera
- Service of Neurology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - Manuel Gutiérrez-Cuadra
- Service of Infectious Diseases, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - María Del Carmen Fariñas
- Service of Infectious Diseases, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - José Luis Hernández
- Service of Internal Medicine, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - José Manuel Olmos
- Service of Internal Medicine, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - Julio Pascual
- Service of Neurology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain.
| |
Collapse
|
18
|
Pulmonary neuroendocrine cells sense succinate to stimulate myoepithelial cell contraction. Dev Cell 2022; 57:2221-2236.e5. [PMID: 36108628 DOI: 10.1016/j.devcel.2022.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022]
Abstract
Pulmonary neuroendocrine cells (PNECs) are rare airway cells with potential sensory capacity linked to vagal neurons and immune cells. How PNECs sense and respond to external stimuli remains poorly understood. We discovered PNECs located within pig and human submucosal glands, a tissue that produces much of the mucus that defends the lung. These PNECs sense succinate, an inflammatory molecule in liquid lining the airway surface. The results indicate that succinate migrates down the submucosal gland duct to the acinus, where it triggers apical succinate receptors, causing PNECs to release ATP. The short-range ATP signal stimulates the contraction of myoepithelial cells wrapped tightly around the submucosal glands. Succinate-triggered gland contraction may complement the action of neurotransmitters that induce mucus release but not gland contraction to promote mucus ejection onto the airway surface. These findings identify a local circuit in which rare PNECs within submucosal glands sense an environmental cue to orchestrate the function of airway glands.
Collapse
|
19
|
Altamura C, Brunelli N, Marcosano M, Fofi L, Vernieri F. Gepants - a long way to cure: a narrative review. Neurol Sci 2022; 43:5697-5708. [PMID: 35650458 PMCID: PMC9159895 DOI: 10.1007/s10072-022-06184-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/28/2022] [Indexed: 01/01/2023]
Abstract
Calcitonin gene-related peptide (CGRP) is probably the most potent vasodilator in cerebral circulation. Forty years after its discovery, the new CGRP-targeted therapy monoclonal antibodies, and the small molecule gepants, are now available for clinical practice. While randomized controlled trials and real-world experience consistently demonstrated the high efficacy and tolerability of monoclonal antibodies, limited evidence is available to characterize gepants fully. Depending on pharmacokinetics, these CGRP receptor antagonists can be used for acute (ubrogepant, rimegepant, and the not yet approved zavegepant) or preventive (atogepant and rimegepant) migraine treatment. Randomized placebo-controlled trials demonstrated gepants efficacy in treating acute attacks to obtain 2 h pain freedom in about 20% of patients and pain relief in about 60%, while up to 60% of treated patients with episodic migraine may experience a 50% reduction in monthly migraine days. The most common treatment-related emergent adverse events were gastrointestinal (nausea, constipation) for the acute or preventive use. No vascular or hepatic concerns have emerged so far. More studies are ongoing to investigate gepant tolerability and safety also if associated with monoclonal antibodies targeting CGRP and other therapeutic classes. Gepants are also under investigation to treat other painful and non-painful conditions. Real-life studies are necessary to confirm the trials’ findings and investigate more practical clinical aspects.
Collapse
Affiliation(s)
- Claudia Altamura
- Headache and Neurosonology Unit, Neurology, Fondazione Policlinico Universitario Campus Bio-Medico Di Roma, 00128, Rome, Italy.
| | - Nicoletta Brunelli
- Headache and Neurosonology Unit, Neurology, Fondazione Policlinico Universitario Campus Bio-Medico Di Roma, 00128, Rome, Italy
| | - Marilena Marcosano
- Headache and Neurosonology Unit, Neurology, Fondazione Policlinico Universitario Campus Bio-Medico Di Roma, 00128, Rome, Italy
| | - Luisa Fofi
- Headache and Neurosonology Unit, Neurology, Fondazione Policlinico Universitario Campus Bio-Medico Di Roma, 00128, Rome, Italy
| | - Fabrizio Vernieri
- Headache and Neurosonology Unit, Neurology, Fondazione Policlinico Universitario Campus Bio-Medico Di Roma, 00128, Rome, Italy
| |
Collapse
|
20
|
Xiong H, Yang J, Guo J, Ma A, Wang B, Kang Y. Mechanosensitive Piezo channels mediate the physiological and pathophysiological changes in the respiratory system. Respir Res 2022; 23:196. [PMID: 35906615 PMCID: PMC9338466 DOI: 10.1186/s12931-022-02122-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/22/2022] [Indexed: 02/08/2023] Open
Abstract
Mechanosensitive Piezo ion channels were first reported in 2010 in a mouse neuroblastoma cell line, opening up a new field for studying the composition and function of eukaryotic mechanically activated channels. During the past decade, Piezo ion channels were identified in many species, such as bacteria, Drosophila, and mammals. In mammals, basic life activities, such as the sense of touch, proprioception, hearing, vascular development, and blood pressure regulation, depend on the activation of Piezo ion channels. Cumulative evidence suggests that Piezo ion channels play a major role in lung vascular development and function and diseases like pneumonia, pulmonary hypertension, apnea, and other lung-related diseases. In this review, we focused on studies that reported specific functions of Piezos in tissues and emphasized the physiological and pathological effects of their absence or functional mutations on the respiratory system.
Collapse
Affiliation(s)
- Huaiyu Xiong
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 17, Section 3, Renmin South Road, Wuhou District, Chengdu, 610000, Sichuan, China
| | - Jing Yang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 17, Section 3, Renmin South Road, Wuhou District, Chengdu, 610000, Sichuan, China
| | - Jun Guo
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 17, Section 3, Renmin South Road, Wuhou District, Chengdu, 610000, Sichuan, China
| | - Aijia Ma
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 17, Section 3, Renmin South Road, Wuhou District, Chengdu, 610000, Sichuan, China
| | - Bo Wang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 17, Section 3, Renmin South Road, Wuhou District, Chengdu, 610000, Sichuan, China.
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 17, Section 3, Renmin South Road, Wuhou District, Chengdu, 610000, Sichuan, China.
| |
Collapse
|
21
|
VanHook AM. Neuropeptides promote respiratory distress. Sci Signal 2022; 15:eabq6327. [PMID: 35471942 DOI: 10.1126/scisignal.abq6327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Increased neuropeptidergic signaling underlies lung dysfunction in a rare pediatric disease and may contribute to ARDS.
Collapse
|
22
|
The elusive pulmonary neuroendocrine cell: How rare diseases may help solving common diseases. Dev Cell 2022; 57:837-838. [PMID: 35413234 DOI: 10.1016/j.devcel.2022.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this issue of Developmental Cell, Xu et al. (2022) describe a transgenic mouse mimicking neuroendocrine cell hyperplasia of infancy, a rare pediatric disease. The mice have excess lung fluid and increased pulmonary neuroendocrine cells with increased endothelium permeability. Acute respiratory distress syndrome is similar, so this rare disease may provide solutions for common diseases.
Collapse
|