1
|
Nelson KA, Lenhart KF, Anllo L, DiNardo S. The Drosophila hematopoietic niche assembles through collective cell migration controlled by neighbor tissues and Slit-Robo signaling. eLife 2025; 13:RP100455. [PMID: 39750120 PMCID: PMC11698496 DOI: 10.7554/elife.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established. To address this, we investigated the formation of a genetically tractable niche, the Drosophila Posterior Signaling Center (PSC), the assembly of which had not been previously explored. This niche controls hematopoietic progenitors of the lymph gland (LG). PSC cells were previously shown to be specified laterally in the embryo, but ultimately reside dorsally, at the LG posterior. Here, using live-imaging, we show that PSC cells migrate as a tight collective and associate with multiple tissues during their trajectory to the LG posterior. We find that Slit emanating from two extrinsic sources, visceral mesoderm and cardioblasts, is required for the PSC to remain a collective, and for its attachment to cardioblasts during migration. Without proper Slit-Robo signaling, PSC cells disperse, form aberrant contacts, and ultimately fail to reach their stereotypical position near progenitors. Our work characterizes a novel example of niche formation and identifies an extrinsic signaling relay that controls precise niche positioning.
Collapse
Affiliation(s)
- Kara A Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Institute for Regenerative Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Kari F Lenhart
- Department of Biology, Drexel UniversityPhiladelphiaUnited States
| | - Lauren Anllo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Institute for Regenerative Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Stephen DiNardo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Institute for Regenerative Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
2
|
Vida GS, Botto E, DiNardo S. Maintenance of niche architecture requires actomyosin and enables proper stem cell signaling and oriented division in the Drosophila testis. Development 2025; 152:dev204498. [PMID: 39620974 PMCID: PMC11795290 DOI: 10.1242/dev.204498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024]
Abstract
Stem cells are essential to repair and regenerate tissues, and often reside in a niche that controls their behavior. Here, we use the Drosophila testis niche, a paradigm for niche-stem cell interactions, to address the cell biological features that maintain niche structure and function during its steady-state operation. We report enrichment of Myosin II (MyoII) and a key regulator of actomyosin contractility (AMC), Rho Kinase (ROK), within the niche cell cortex at the interface with germline stem cells (GSCs). Compromising MyoII and ROK disrupts niche architecture, suggesting that AMC in niche cells is important to maintain its reproducible structure. Furthermore, defects in niche architecture disrupt GSC function. Our data suggest that the niche signals less robustly to adjacent germ cells yet permits increased numbers of cells to respond to the signal. Finally, compromising MyoII in niche cells leads to increased misorientation of centrosomes in GSCs as well as defects in the centrosome orientation checkpoint. Ultimately, this work identifies a crucial role for AMC-dependent maintenance of niche structure to ensure a proper complement of stem cells that correctly execute divisions.
Collapse
Affiliation(s)
- Gabriela S. Vida
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, USA
- The Penn Institute for Regenerative Medicine, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | - Elizabeth Botto
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, USA
- The Penn Institute for Regenerative Medicine, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | - Stephen DiNardo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, USA
- The Penn Institute for Regenerative Medicine, 421 Curie Blvd, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Nelson KA, Lenhart KF, Anllo L, DiNardo S. The Drosophila hematopoietic niche assembles through collective cell migration controlled by neighbor tissues and Slit-Robo signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600069. [PMID: 38979182 PMCID: PMC11230208 DOI: 10.1101/2024.06.21.600069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established. To address this, we investigated the formation of a genetically tractable niche, the Drosophila Posterior Signaling Center (PSC), the assembly of which had not been previously explored. This niche controls hematopoietic progenitors of the lymph gland (LG). PSC cells were previously shown to be specified laterally in the embryo, but ultimately reside dorsally, at the LG posterior. Here, using live-imaging, we show that PSC cells migrate as a tight collective and associate with multiple tissues during their trajectory to the LG posterior. We find that Slit emanating from two extrinsic sources, visceral mesoderm and cardioblasts, is required for the PSC to remain a collective, and for its attachment to cardioblasts during migration. Without proper Slit-Robo signaling, PSC cells disperse, form aberrant contacts, and ultimately fail to reach their stereotypical position near progenitors. Our work characterizes a novel example of niche formation and identifies an extrinsic signaling relay that controls precise niche positioning.
Collapse
Affiliation(s)
- Kara A Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd. Philadelphia, PA 19104, United States
- Institute for Regenerative Medicine at the University of Pennsylvania, 3400 Civic Center Blvd. Philadelphia, PA 19104, United States
| | - Kari F Lenhart
- Department of Biology, Drexel University, 3245 Chestnut St. Philadelphia, PA 19104, United States
| | - Lauren Anllo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd. Philadelphia, PA 19104, United States
- Institute for Regenerative Medicine at the University of Pennsylvania, 3400 Civic Center Blvd. Philadelphia, PA 19104, United States
- Present address: Department of Biology, East Carolina University, 458 Science & Tech Bldg. Greenville, NC 27858, United States
| | - Stephen DiNardo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd. Philadelphia, PA 19104, United States
- Institute for Regenerative Medicine at the University of Pennsylvania, 3400 Civic Center Blvd. Philadelphia, PA 19104, United States
| |
Collapse
|
4
|
Warder BN, Nelson KA, Sui J, Anllo L, DiNardo S. An actomyosin network organizes niche morphology and responds to feedback from recruited stem cells. Curr Biol 2024; 34:3917-3930.e6. [PMID: 39137785 PMCID: PMC11387155 DOI: 10.1016/j.cub.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/18/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024]
Abstract
Stem cells often rely on signals from a niche, which in many tissues adopts a precise morphology. What remains elusive is how niches are formed and how morphology impacts function. To address this, we leverage the Drosophila gonadal niche, which affords genetic tractability and live-imaging. We have previously shown mechanisms dictating niche cell migration to their appropriate position within the gonad and the resultant consequences on niche function. Here, we show that once positioned, niche cells robustly polarize filamentous actin (F-actin) and non-muscle myosin II (MyoII) toward neighboring germ cells. Actomyosin tension along the niche periphery generates a highly reproducible smoothened contour. Without contractility, niches are misshapen and exhibit defects in their ability to regulate germline stem cell behavior. We additionally show that germ cells aid in polarizing MyoII within niche cells and that extrinsic input is required for niche morphogenesis and function. Our work reveals a feedback mechanism where stem cells shape the niche that guides their behavior.
Collapse
Affiliation(s)
- Bailey N Warder
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kara A Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin Sui
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren Anllo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen DiNardo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Warder BN, Nelson KA, Sui J, Anllo L, DiNardo S. An actomyosin network organizes niche morphology and responds to feedback from recruited stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.08.556877. [PMID: 38746236 PMCID: PMC11092431 DOI: 10.1101/2023.09.08.556877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Stem cells often rely on signals from a niche, which in many tissues adopts a precise morphology. What remains elusive is how niches are formed, and how morphology impacts function. To address this, we leverage the Drosophila gonadal niche, which affords genetic tractability and live-imaging. We have previously shown mechanisms dictating niche cell migration to their appropriate position within the gonad, and the resultant consequences on niche function. Here, we show that once positioned, niche cells robustly polarize filamentous actin (F-actin) and Non-muscle Myosin II (MyoII) towards neighboring germ cells. Actomyosin tension along the niche periphery generates a highly reproducible smoothened contour. Without contractility, niches are misshapen and exhibit defects in their ability to regulate germline stem cell behavior. We additionally show that germ cells aid in polarizing MyoII within niche cells, and that extrinsic input is required for niche morphogenesis and function. Our work reveals a feedback mechanism where stem cells shape the niche that guides their behavior.
Collapse
Affiliation(s)
- Bailey N. Warder
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kara A. Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin Sui
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren Anllo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen DiNardo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Sreejith P, Kim C. Lin28 is Required for Single Niche Development in the Drosophila Male Gonad. Dev Reprod 2023; 27:221-226. [PMID: 38292237 PMCID: PMC10824566 DOI: 10.12717/dr.2023.27.4.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/22/2023] [Accepted: 11/23/2023] [Indexed: 02/01/2024]
Abstract
A stem cell niche provides an environment that governs stem cell maintenance and division. Thus, the development of a proper niche is of prime importance to stem cell behaviors. Mechanisms of niche development are beginning to be revealed in the Drosophila male gonad. Niche cells are initially dispersed throughout the gonad, then assemble at its apical tip through the anterior migration of posteriorly located niche cells. The molecular mechanisms of this migration and assembly are still poorly understood. Here we show evidence suggesting that Lin28, an RNA-binding protein and regulator of let7 genesis, might be an intrinsic factor for the anterior migration of niche cells. We found that a dispersed, ectopic niche, a phenotype observed with anterior migration defects, occurs in lin28 mutant gonads. This phenotype is rescued by expression of lin28 in the niche cells. These findings suggest that Lin28 might be required for the anterior migration of niche cells.
Collapse
Affiliation(s)
- Perinthottathil Sreejith
- Department of Biomedical Genetics,
University of Rochester Medical Center, Rochester,
NY 14642, USA
| | - Changsoo Kim
- School of Biological Sciences and
Technology, Chonnam National University, Gwangju
61186, Korea
| |
Collapse
|
7
|
Raz AA, Vida GS, Stern SR, Mahadevaraju S, Fingerhut JM, Viveiros JM, Pal S, Grey JR, Grace MR, Berry CW, Li H, Janssens J, Saelens W, Shao Z, Hu C, Yamashita YM, Przytycka T, Oliver B, Brill JA, Krause H, Matunis EL, White-Cooper H, DiNardo S, Fuller MT. Emergent dynamics of adult stem cell lineages from single nucleus and single cell RNA-Seq of Drosophila testes. eLife 2023; 12:e82201. [PMID: 36795469 PMCID: PMC9934865 DOI: 10.7554/elife.82201] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
Proper differentiation of sperm from germline stem cells, essential for production of the next generation, requires dramatic changes in gene expression that drive remodeling of almost all cellular components, from chromatin to organelles to cell shape itself. Here, we provide a single nucleus and single cell RNA-seq resource covering all of spermatogenesis in Drosophila starting from in-depth analysis of adult testis single nucleus RNA-seq (snRNA-seq) data from the Fly Cell Atlas (FCA) study. With over 44,000 nuclei and 6000 cells analyzed, the data provide identification of rare cell types, mapping of intermediate steps in differentiation, and the potential to identify new factors impacting fertility or controlling differentiation of germline and supporting somatic cells. We justify assignment of key germline and somatic cell types using combinations of known markers, in situ hybridization, and analysis of extant protein traps. Comparison of single cell and single nucleus datasets proved particularly revealing of dynamic developmental transitions in germline differentiation. To complement the web-based portals for data analysis hosted by the FCA, we provide datasets compatible with commonly used software such as Seurat and Monocle. The foundation provided here will enable communities studying spermatogenesis to interrogate the datasets to identify candidate genes to test for function in vivo.
Collapse
Affiliation(s)
- Amelie A Raz
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical InstituteCambridgeUnited States
| | - Gabriela S Vida
- Department of Cell and Developmental Biology, The Perelman School of Medicine and The Penn Institute for Regenerative MedicinePhiladelphiaUnited States
| | - Sarah R Stern
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
| | - Sharvani Mahadevaraju
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Jaclyn M Fingerhut
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical InstituteCambridgeUnited States
| | - Jennifer M Viveiros
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Soumitra Pal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Jasmine R Grey
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Mara R Grace
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Cameron W Berry
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
| | - Hongjie Li
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Jasper Janssens
- JVIB Center for Brain & Disease Research, and the Department of Human Genetics, KU LeuvenLeuvenBelgium
| | - Wouter Saelens
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, and Department of Applied Mathematics, Computer Science and Statistics, Ghent UniversityGhentBelgium
| | - Zhantao Shao
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Chun Hu
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical InstituteCambridgeUnited States
| | - Teresa Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Brian Oliver
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick ChildrenTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
- Institute of Medical Science, University of TorontoTorontoCanada
| | - Henry Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Erika L Matunis
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | | | - Stephen DiNardo
- Department of Cell and Developmental Biology, The Perelman School of Medicine and The Penn Institute for Regenerative MedicinePhiladelphiaUnited States
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
- Department of Genetics, Stanford UniversityStanfordUnited States
| |
Collapse
|
8
|
Prasad AR, Lago-Baldaia I, Bostock MP, Housseini Z, Fernandes VM. Differentiation signals from glia are fine-tuned to set neuronal numbers during development. eLife 2022; 11:78092. [PMID: 36094172 PMCID: PMC9507125 DOI: 10.7554/elife.78092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/11/2022] [Indexed: 11/13/2022] Open
Abstract
Neural circuit formation and function require that diverse neurons are specified in appropriate numbers. Known strategies for controlling neuronal numbers involve regulating either cell proliferation or survival. We used the Drosophila visual system to probe how neuronal numbers are set. Photoreceptors from the eye-disc induce their target field, the lamina, such that for every unit eye there is a corresponding lamina unit (column). Although each column initially contains ~6 post-mitotic lamina precursors, only 5 differentiate into neurons, called L1-L5; the 'extra' precursor, which is invariantly positioned above the L5 neuron in each column, undergoes apoptosis. Here, we showed that a glial population called the outer chiasm giant glia (xgO), which resides below the lamina, secretes multiple ligands to induce L5 differentiation in response to EGF from photoreceptors. By forcing neuronal differentiation in the lamina, we uncovered that though fated to die, the 'extra' precursor is specified as an L5. Therefore, two precursors are specified as L5s but only one differentiates during normal development. We found that the row of precursors nearest to xgO differentiate into L5s and, in turn, antagonise differentiation signalling to prevent the 'extra' precursors from differentiating, resulting in their death. Thus, an intricate interplay of glial signals and feedback from differentiating neurons defines an invariant and stereotyped pattern of neuronal differentiation and programmed cell death to ensure that lamina columns each contain exactly one L5 neuron.
Collapse
Affiliation(s)
- Anadika R Prasad
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Inês Lago-Baldaia
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Matthew P Bostock
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Zaynab Housseini
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Vilaiwan M Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|