1
|
Straube P, Beckers A, Jany UWH, Bergmann F, Lüdtke THW, Rudat C, Trowe MO, Peters I, Klopf MG, Mamo TM, Kispert A. Interplay of SHH, WNT and BMP4 signaling regulates the development of the lamina propria in the murine ureter. Development 2025; 152:DEV204214. [PMID: 39817691 PMCID: PMC11829765 DOI: 10.1242/dev.204214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/31/2024] [Indexed: 01/18/2025]
Abstract
In mammalian ureters, the lamina propria presents as a prominent layer of connective tissue underneath the urothelium. Despite its important structural and signaling functions, little is known how the lamina propria develops. Here, we show that in the murine ureter the lamina propria arises at late fetal stages and massively increases by fibrocyte proliferation and collagen deposition after birth. WNT, SHH, BMP4 and retinoic acid signaling are all active in the common mesenchymal progenitor of smooth muscle cells and lamina propria fibrocytes. However, around birth, the lamina propria becomes a target for epithelial WNT and SHH signals and a source of BMP4 and retinoic acid. SHH and WNT signaling promote lamina propria and smooth muscle cell differentiation and proliferation at fetal and early postnatal stages, whereas BMP4 signaling is required for early smooth muscle cell differentiation but not for its later maintenance. Our findings suggest that, in the presence of SHH and WNT signaling, it is the modulation of BMP4 signaling which is the major determinant for the segregation of lamina propria and smooth muscle cells.
Collapse
Affiliation(s)
- Philipp Straube
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Anja Beckers
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich W. H. Jany
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Florian Bergmann
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Timo H.-W. Lüdtke
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Carsten Rudat
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Mark-Oliver Trowe
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Imke Peters
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Maximilian G. Klopf
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Tamrat M. Mamo
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
2
|
Santo B, Fink EE, Krylova AE, Lin YC, Eltemamy M, Wee A, Wessely O, Lee BH, Ting AH. Exploring the utility of snRNA-seq in profiling human bladder tissue: A comprehensive comparison with scRNA-seq. iScience 2025; 28:111628. [PMID: 39850354 PMCID: PMC11754086 DOI: 10.1016/j.isci.2024.111628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/01/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Single cell sequencing technologies have revolutionized our understanding of biology by mapping cell diversity and gene expression in healthy and diseased tissues. While single-cell RNA sequencing (scRNA-seq) has been widely used, interest in single-nucleus RNA sequencing (snRNA-seq) is growing due to its benefits, including the ability to analyze archival tissues and capture rare cell types that are challenging to dissociate. However, comparative studies across tissues have yielded mixed results, with some reporting enhanced cell type retention using snRNA-seq while others finding cell type identification to be challenging in snRNA-seq data. The GUDMAP consortium aims to construct a molecular atlas of the lower urinary tract (LUT); thus, we set out to determine the strengths and limitations of each approach in characterizing LUT cell types. Using the human bladder, we determined that scRNA-seq offered more discriminative gene sets for identification while snRNA-seq could facilitate capture of previously underrepresented cell types.
Collapse
Affiliation(s)
- Briana Santo
- Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, Houston, TX 77054, USA
| | - Emily E. Fink
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Charles River Laboratories, Garfield Heights, OH 44128, USA
| | - Alexandra E. Krylova
- Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, Houston, TX 77054, USA
| | - Yi-Chia Lin
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mohamed Eltemamy
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alvin Wee
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Oliver Wessely
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Byron H. Lee
- Department of Urology, M.D. Anderson Cancer Center, Houston, TX 77054, USA
| | - Angela H. Ting
- Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
3
|
Hu D, Guan R, Liang K, Yu H, Quan H, Zhao Y, Liu X, He K. scEGG: an exogenous gene-guided clustering method for single-cell transcriptomic data. Brief Bioinform 2024; 25:bbae483. [PMID: 39344711 PMCID: PMC11440090 DOI: 10.1093/bib/bbae483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
In recent years, there has been significant advancement in the field of single-cell data analysis, particularly in the development of clustering methods. Despite these advancements, most algorithms continue to focus primarily on analyzing the provided single-cell matrix data. However, within medical contexts, single-cell data often encompasses a wealth of exogenous information, such as gene networks. Overlooking this aspect could result in information loss and produce clustering outcomes lacking significant clinical relevance. To address this limitation, we introduce an innovative deep clustering method for single-cell data that leverages exogenous gene information to generate discriminative cell representations. Specifically, an attention-enhanced graph autoencoder has been developed to efficiently capture topological signal patterns among cells. Concurrently, a random walk on an exogenous protein-protein interaction network enabled the acquisition of the gene's embeddings. Ultimately, the clustering process entailed integrating and reconstructing gene-cell cooperative embeddings, which yielded a discriminative representation. Extensive experiments have demonstrated the effectiveness of the proposed method. This research provides enhanced insights into the characteristics of cells, thus laying the foundation for the early diagnosis and treatment of diseases. The datasets and code can be publicly accessed in the repository at https://github.com/DayuHuu/scEGG.
Collapse
Affiliation(s)
- Dayu Hu
- School of Computer, National University of Defense Technology, No. 109 Deya Road, 410073 Changsha, Hunan, China
| | - Renxiang Guan
- School of Computer, National University of Defense Technology, No. 109 Deya Road, 410073 Changsha, Hunan, China
| | - Ke Liang
- School of Computer, National University of Defense Technology, No. 109 Deya Road, 410073 Changsha, Hunan, China
| | - Hao Yu
- School of Computer, National University of Defense Technology, No. 109 Deya Road, 410073 Changsha, Hunan, China
| | - Hao Quan
- College of Medicine and Biological Information Engineering, Northeastern University, No.195 Chuangxin Road, 110169 Shenyang, Liaoning, China
| | - Yawei Zhao
- Medical Big Data Research Center, Chinese PLA General Hospital, No. 28 Fuxing Road, 100853 Beijing, China
| | - Xinwang Liu
- School of Computer, National University of Defense Technology, No. 109 Deya Road, 410073 Changsha, Hunan, China
| | - Kunlun He
- Medical Big Data Research Center, Chinese PLA General Hospital, No. 28 Fuxing Road, 100853 Beijing, China
| |
Collapse
|
4
|
Peng L, Chen JW, Chen YZ, Zhang C, Shen SH, Liu MZ, Fan Y, Yang SQ, Zhang XZ, Wang W, Gao XS, Di XP, Ma YC, Zeng X, Shen H, Jin X, Luo DY. UPK3A + umbrella cell damage mediated by TLR3-NR2F6 triggers programmed destruction of urothelium in Hunner-type interstitial cystitis/painful bladder syndrome. J Pathol 2024; 263:203-216. [PMID: 38551071 DOI: 10.1002/path.6275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 05/12/2024]
Abstract
Urothelial damage and barrier dysfunction emerge as the foremost mechanisms in Hunner-type interstitial cystitis/bladder pain syndrome (HIC). Although treatments aimed at urothelial regeneration and repair have been employed, their therapeutic effectiveness remains limited due to the inadequate understanding of specific cell types involved in damage and the lack of specific molecular targets within these mechanisms. Therefore, we harnessed single-cell RNA sequencing to elucidate the heterogeneity and developmental trajectory of urothelial cells within HIC bladders. Through reclustering, we identified eight distinct clusters of urothelial cells. There was a significant reduction in UPK3A+ umbrella cells and a simultaneous increase in progenitor-like pluripotent cells (PPCs) within the HIC bladder. Pseudotime analysis of the urothelial cells in the HIC bladder revealed that cells faced challenges in differentiating into UPK3A+ umbrella cells, while PPCs exhibited substantial proliferation to compensate for the loss of UPK3A+ umbrella cells. The urothelium in HIC remains unrepaired, despite the substantial proliferation of PPCs. Thus, we propose that inhibiting the pivotal signaling pathways responsible for the injury to UPK3A+ umbrella cells is paramount for restoring the urothelial barrier and alleviating lower urinary tract symptoms in HIC patients. Subsequently, we identified key molecular pathways (TLR3 and NR2F6) associated with the injury of UPK3A+ umbrella cells in HIC urothelium. Finally, we conducted in vitro and in vivo experiments to confirm the potential of the TLR3-NR2F6 axis as a promising therapeutic target for HIC. These findings hold the potential to inhibit urothelial injury, providing promising clues for early diagnosis and functional bladder self-repair strategies for HIC patients. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Liao Peng
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Jia-Wei Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yuan-Zhuo Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Chi Zhang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Si-Hong Shen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Meng-Zhu Liu
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yang Fan
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Shi-Qin Yang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xiu-Zhen Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Wei Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xiao-Shuai Gao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xing-Peng Di
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yu-Cheng Ma
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xiao Zeng
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Hong Shen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xi Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - De-Yi Luo
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
- Pelvic Floor Diseases Center, West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|
5
|
Lee S, Bondaruk J, Wang Y, Chen H, Lee JG, Majewski T, Mullen RD, Cogdell D, Chen J, Wang Z, Yao H, Kus P, Jeong J, Lee I, Choi W, Navai N, Guo C, Dinney C, Baggerly K, Mendelsohn C, McConkey D, Behringer RR, Kimmel M, Wei P, Czerniak B. Loss of LPAR6 and CAB39L dysregulates the basal-to-luminal urothelial differentiation program, contributing to bladder carcinogenesis. Cell Rep 2024; 43:114146. [PMID: 38676926 PMCID: PMC11265536 DOI: 10.1016/j.celrep.2024.114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/19/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
We describe a strategy that combines histologic and molecular mapping that permits interrogation of the chronology of changes associated with cancer development on a whole-organ scale. Using this approach, we present the sequence of alterations around RB1 in the development of bladder cancer. We show that RB1 is not involved in initial expansion of the preneoplastic clone. Instead, we found a set of contiguous genes that we term "forerunner" genes whose silencing is associated with the development of plaque-like field effects initiating carcinogenesis. Specifically, we identified five candidate forerunner genes (ITM2B, LPAR6, MLNR, CAB39L, and ARL11) mapping near RB1. Two of these genes, LPAR6 and CAB39L, are preferentially downregulated in the luminal and basal subtypes of bladder cancer, respectively. Their loss of function dysregulates urothelial differentiation, sensitizing the urothelium to N-butyl-N-(4-hydroxybutyl)nitrosamine-induced cancers, which recapitulate the luminal and basal subtypes of human bladder cancer.
Collapse
Affiliation(s)
- Sangkyou Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jolanta Bondaruk
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yishan Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huiqin Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - June Goo Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tadeusz Majewski
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rachel D Mullen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Cogdell
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiansong Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ziqiao Wang
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hui Yao
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pawel Kus
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Joon Jeong
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ilkyun Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Woonyoung Choi
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Neema Navai
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Colin Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Keith Baggerly
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cathy Mendelsohn
- Department of Urology, Genetics & Development and Pathology, Columbia University, New York, NY 10032, USA
| | - David McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Richard R Behringer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marek Kimmel
- Department of Statistics, Rice University, Houston, TX 77005, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Li H, Li D, Ledru N, Xuanyuan Q, Wu H, Asthana A, Byers LN, Tullius SG, Orlando G, Waikar SS, Humphreys BD. Transcriptomic, epigenomic, and spatial metabolomic cell profiling redefines regional human kidney anatomy. Cell Metab 2024; 36:1105-1125.e10. [PMID: 38513647 PMCID: PMC11081846 DOI: 10.1016/j.cmet.2024.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
A large-scale multimodal atlas that includes major kidney regions is lacking. Here, we employed simultaneous high-throughput single-cell ATAC/RNA sequencing (SHARE-seq) and spatially resolved metabolomics to profile 54 human samples from distinct kidney anatomical regions. We generated transcriptomes of 446,267 cells and chromatin accessibility profiles of 401,875 cells and developed a package to analyze 408,218 spatially resolved metabolomes. We find that the same cell type, including thin limb, thick ascending limb loop of Henle and principal cells, display distinct transcriptomic, chromatin accessibility, and metabolomic signatures, depending on anatomic location. Surveying metabolism-associated gene profiles revealed non-overlapping metabolic signatures between nephron segments and dysregulated lipid metabolism in diseased proximal tubule (PT) cells. Integrating multimodal omics with clinical data identified PLEKHA1 as a disease marker, and its in vitro knockdown increased gene expression in PT differentiation, suggesting possible pathogenic roles. This study highlights previously underrepresented cellular heterogeneity underlying the human kidney anatomy.
Collapse
Affiliation(s)
- Haikuo Li
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Dian Li
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicolas Ledru
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Qiao Xuanyuan
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Amish Asthana
- Department of Surgery, Atrium Health Wake Forest Baptist, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Lori N Byers
- Department of Surgery, Atrium Health Wake Forest Baptist, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Stefan G Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Giuseppe Orlando
- Department of Surgery, Atrium Health Wake Forest Baptist, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Sushrut S Waikar
- Section of Nephrology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
7
|
Fu M, Shu S, Peng Z, Liu X, Chen X, Zeng Z, Yang Y, Cui H, Zhao R, Wang X, Du L, Wu M, Feng W, Song J. Single-Cell RNA Sequencing of Coronary Perivascular Adipose Tissue From End-Stage Heart Failure Patients Identifies SPP1+ Macrophage Subpopulation as a Target for Alleviating Fibrosis. Arterioscler Thromb Vasc Biol 2023; 43:2143-2164. [PMID: 37706320 PMCID: PMC10597444 DOI: 10.1161/atvbaha.123.319828] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Perivascular adipose tissue (PVAT) is vital for vascular homeostasis, and PVAT dysfunction is associated with increased atherosclerotic plaque burden. But the mechanisms underlining coronary PVAT dysfunction in coronary atherosclerosis remain elusive. METHODS We performed single-cell RNA sequencing of the stromal vascular fraction of coronary PVAT from 3 groups of heart transplant recipients with end-stage heart failure, including 3 patients with nonobstructive coronary atherosclerosis, 3 patients with obstructive coronary artery atherosclerosis, and 4 nonatherosclerosis control subjects. Bioinformatics was used to annotate the cellular populations, depict the cellular developmental trajectories and interactions, and explore the differences among 3 groups of coronary PVAT at the cellular and molecular levels. Pathological staining, quantitative real-time polymerase chain reaction, and in vitro studies were performed to validate the key findings. RESULTS Ten cell types were identified among 67 936 cells from human coronary PVAT. Several cellular subpopulations, including SPP1+ (secreted phosphoprotein 1) macrophages and profibrotic fibroadipogenic progenitor cells, were accumulated in PVAT surrounding atherosclerotic coronary arteries compared with nonatherosclerosis coronary arteries. The fibrosis percentage was increased in PVAT surrounding atherosclerotic coronary arteries, and it was positively associated with the grade of coronary artery stenosis. Cellular interaction analysis suggested OPN (osteopontin) secreted by SPP1+ macrophages interacted with CD44 (cluster of differentiation 44)/integrin on fibroadipogenic progenitor cells. Strikingly, correlation analyses uncovered that higher level of SPP1 in PVAT correlates with a more severe fibrosis degree and a higher coronary stenosis grade. In vitro studies showed that conditioned medium from atherosclerotic coronary PVAT promoted the migration and proliferation of fibroadipogenic progenitor cells, while such effect was prevented by blocking CD44 or integrin. CONCLUSIONS SPP1+ macrophages accumulated in the PVAT surrounding atherosclerotic coronary arteries, and they promoted the migration and proliferation of fibroadipogenic progenitor cells via OPN-CD44/integrin interaction and thus aggravated the fibrosis of coronary PVAT, which was positively correlated to the coronary stenosis burden. Therefore, SPP1+ macrophages in coronary PVAT may participate in the progression of coronary atherosclerosis.
Collapse
Affiliation(s)
- Mengxia Fu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Galactophore Department, Galactophore Center, Beijing Shijitan Hospital (M.F., M.W.), Capital Medical University, China
| | - Songren Shu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Cardiomyopathy Research Group at Fuwai Hospital, China (S.S., X.L., X.C., H.C., R.Z., X.W., J.S.)
| | - Zhiming Peng
- Department of Orthopedics, Peking Union Medical College Hospital (Z.P.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaorui Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Cardiomyopathy Research Group at Fuwai Hospital, China (S.S., X.L., X.C., H.C., R.Z., X.W., J.S.)
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Cardiomyopathy Research Group at Fuwai Hospital, China (S.S., X.L., X.C., H.C., R.Z., X.W., J.S.)
| | - Zhiwei Zeng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yicheng Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Cui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Cardiomyopathy Research Group at Fuwai Hospital, China (S.S., X.L., X.C., H.C., R.Z., X.W., J.S.)
| | - Ruojin Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Cardiomyopathy Research Group at Fuwai Hospital, China (S.S., X.L., X.C., H.C., R.Z., X.W., J.S.)
| | - Xiaohu Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Cardiomyopathy Research Group at Fuwai Hospital, China (S.S., X.L., X.C., H.C., R.Z., X.W., J.S.)
| | - Leilei Du
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital (L.D.), Capital Medical University, China
| | - Min Wu
- Galactophore Department, Galactophore Center, Beijing Shijitan Hospital (M.F., M.W.), Capital Medical University, China
| | - Wei Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases (W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases (W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Cardiomyopathy Research Group at Fuwai Hospital, China (S.S., X.L., X.C., H.C., R.Z., X.W., J.S.)
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, China (J.S.)
| |
Collapse
|
8
|
Sona S, Bradley M, Ting AH. Protocols for single-cell RNA-seq and spatial gene expression integration and interactive visualization. STAR Protoc 2023; 4:102047. [PMID: 36853708 PMCID: PMC9871342 DOI: 10.1016/j.xpro.2023.102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/06/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
There is a wealth of software that utilizes single-cell RNA-seq (scRNA-seq) data to deconvolve spatial transcriptomic spots, which currently are not yet at single-cell resolution. Here we provide protocols for implementing Seurat and Giotto packages to elucidate cell-type distribution in our example human ureter scRNA-seq dataset. We also describe how to create a stand-alone interactive web application using Seurat libraries to visualize and share our results. For complete details on the use and execution of this protocol, please refer to Fink et al. (2022).1.
Collapse
Affiliation(s)
- Surbhi Sona
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Matthew Bradley
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Angela H Ting
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
9
|
Fink EE, Sona S, Lee BH, Ting AH. Processing and cryopreservation of human ureter tissues for single-cell and spatial transcriptomics assays. STAR Protoc 2022; 3:101854. [PMID: 36595885 PMCID: PMC9668730 DOI: 10.1016/j.xpro.2022.101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
Characterizing the cellular heterogeneity of human ureter tissues using single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics provides a detailed atlas of cell types, signaling networks, and potential cell-cell cross talk underlying developmental and regenerative pathways. We describe an optimized protocol for generating, cryopreserving, and thawing single-cell suspensions from ureter tissues isolated post-cystectomy for scRNA-seq. In addition, we describe an optimized protocol for cryopreserving human ureter tissues for 10x Genomics Visium spatial gene expression platform. For complete details on the use and execution of this protocol, please refer to Fink et al. (2022).1.
Collapse
Affiliation(s)
- Emily E. Fink
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA,Corresponding author
| | - Surbhi Sona
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA,Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Byron H. Lee
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA,Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Angela H. Ting
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA,Corresponding author
| |
Collapse
|