1
|
McNamara HM, Guyer AM, Jia BZ, Parot VJ, Dobbs CD, Schier AF, Cohen AE, Lord ND. Optogenetic control of Nodal signaling patterns. Development 2025; 152:dev204506. [PMID: 40145591 PMCID: PMC12070070 DOI: 10.1242/dev.204506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/20/2025] [Indexed: 03/28/2025]
Abstract
A crucial step in early embryogenesis is the establishment of spatial patterns of signaling activity. Tools to perturb morphogen signals with high resolution in space and time can help reveal how embryonic cells decode these signals to make appropriate fate decisions. Here, we present new optogenetic reagents and an experimental pipeline for creating designer Nodal signaling patterns in live zebrafish embryos. Nodal receptors were fused to the light-sensitive heterodimerizing pair Cry2/CIB1N, and the type II receptor was sequestered to the cytosol. The improved optoNodal2 reagents eliminate dark activity and improve response kinetics, without sacrificing dynamic range. We adapted an ultra-widefield microscopy platform for parallel light patterning in up to 36 embryos, and demonstrated precise spatial control over Nodal signaling activity and downstream gene expression. Patterned Nodal activation drove precisely controlled internalization of endodermal precursors. Furthermore, we used patterned illumination to generate synthetic signaling patterns in Nodal signaling mutants, rescuing several characteristic developmental defects. This study establishes an experimental toolkit for systematic exploration of Nodal signaling patterns in live embryos.
Collapse
Affiliation(s)
| | - Alison M. Guyer
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bill Z. Jia
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Vicente J. Parot
- Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile
| | - Caleb D. Dobbs
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Adam E. Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Nathan D. Lord
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
2
|
Raj N, Karmakar A, Narayan G, Thummer RP. Small Molecules and Epigenetic Modifiers in Facilitating Pancreatic β-cell Formation: A Comprehensive Insight. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40178799 DOI: 10.1007/5584_2025_859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Diabetes mellitus, arising due to inadequate insulin release or insulin resistance, can be addressed through β-cell replacement therapy. Given the limited availability of islet cadaveric donors, alternative strategies such as differentiation of stem cells into pancreatic β-cells or direct reprogramming of somatic cells into pancreatic β-cells are emerging as viable options. This chapter elucidates the pivotal role of small molecules and associated signaling pathways in in vivo pancreatic organogenesis, allowing their emulation in vitro to facilitate pancreatic development. Small molecules exhibit distinct advantages, such as cell-permeability and non-immunogenic properties, thereby generating efficient functional β-like cells. Recent investigations highlight alterations in epigenetic marks unique to pancreatic β-cells during cellular reprogramming and diabetes pathogenesis. The study further delineates the distinctive histone modifications and DNA methylation within pancreatic β-cells, underscoring their contributions to pancreas development.
Collapse
Affiliation(s)
- Naveen Raj
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Asmita Karmakar
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
3
|
Zhang R, Li G, Zhang Q, Wang Z, Xiang D, Zhang X, Chen J, Hutchins A, Qin D, Su H, Pei D, Li D. c-JUN: a chromatin repressor that limits mesoderm differentiation in human pluripotent stem cells. Nucleic Acids Res 2025; 53:gkaf001. [PMID: 39876710 PMCID: PMC11760979 DOI: 10.1093/nar/gkaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025] Open
Abstract
Cell fate determination at the chromatin level is not fully comprehended. Here, we report that c-JUN acts on chromatin loci to limit mesoderm cell fate specification as cells exit pluripotency. Although c-JUN is widely expressed across various cell types in early embryogenesis, it is not essential for maintaining pluripotency. Instead, it functions as a repressor to constrain mesoderm development while having a negligible impact on ectoderm differentiation. c-JUN interacts with MBD3-NuRD complex, which helps maintain chromatin in a low accessibility state at mesoderm-related genes during the differentiation of human pluripotent stem cells into mesoderm. Furthermore, c-JUN specifically inhibits the activation of key mesoderm factors, such as EOMES and GATA4. Knocking out c-JUN or inhibiting it with a JNK inhibitor can alleviate this suppression, promoting mesoderm cell differentiation. Consistently, knockdown of MBD3 enhances mesoderm generation, whereas MBD3 overexpression impedes it. Overexpressing c-JUN redirects differentiation toward a fibroblast-like lineage. Collectively, our findings suggest that c-JUN acts as a chromatin regulator to restrict the mesoderm cell fate.
Collapse
Affiliation(s)
- Ran Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, 999078, China
| | - Guihuan Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510799, China
| | - Qi Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510799, China
| | - Zhenhua Wang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510799, China
| | - Dan Xiang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, China
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510799, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, 999078, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, No. 600 Dunyu Road, Xihu District, Hangzhou, 310024, China
| | - Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510799, China
- Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research&Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, No. 3 Xueyuan Road, Longhua District, Haikou, Hainan, 571101, China
| |
Collapse
|
4
|
Yeung TJ, Wilkinson DG. Short-range Fgf signalling patterns hindbrain progenitors to induce the neurogenesis-to-oligodendrogenesis switch. Development 2024; 151:dev204256. [PMID: 39575980 DOI: 10.1242/dev.204256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
In the vertebrate nervous system, neurogenesis generally precedes gliogenesis. The mechanisms driving the switch in cell type production and generation of the correct proportion of cell types remain unclear. Here, we show that Fgf20 signalling patterns progenitors to induce the switch from neurogenesis to oligodendrogenesis in the zebrafish hindbrain. Fgf20 emanating from earlier-born neurons signals at a short range to downregulate proneural gene expression in the segment centre with high spatial precision along both anterior-posterior and dorsal-ventral axes. This signal induces oligodendrocytes in the segment centre by upregulating olig2 and sox10 expression in pre-patterned competent progenitors. We show that the magnitude of proneural gene downregulation and the quantity of oligodendrocyte precursor cells specified is dependent on the extent of Fgf20 signalling. Overexpression of fgf20a induces precocious specification and differentiation of oligodendrocytes among olig2+ progenitors, resulting in an increase in oligodendrocytes at the expense of neurogenesis. Thus, Fgf20 signalling defines the proportion of each cell type produced. Taken together, Fgf20 signalling from earlier-born neurons patterns hindbrain segments spatially and temporally to induce the neurogenesis-to-oligodendrogenesis switch.
Collapse
Affiliation(s)
- Tim J Yeung
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | |
Collapse
|
5
|
Deichmann U. Contrasting philosophical and scientific views in the long history of studying the generation of form in development. Biosystems 2024; 242:105260. [PMID: 38925338 DOI: 10.1016/j.biosystems.2024.105260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Focusing on the opposing ways of thinking of philosophers and scientists to explain the generation of form in biological development, I show that today's controversies over explanations of early development bear fundamental similarities to the dichotomy of preformation theory versus epigenesis in Greek antiquity. They are related to the acceptance or rejection of the idea of a physical form of what today would be called information for the generating of the embryo as a necessary pre-requisite for specific development and heredity. As a recent example, I scrutinize the dichotomy of genomic causality versus self-organization in 20th and 21st century theories of the generation of form. On the one hand, the generation of patterns and form, as well as the constant outcome in development, are proposed to be causally related to something that is "preformed" in the germ cells, the nucleus of germ cells, or the genome. On the other hand, it is proposed that there is no pre-existing form or information, and development is seen as a process where genuinely new characters emerge from formless matter, either by immaterial "forces of life," or by physical-chemical processes of self-organization. I also argue that these different ways of thinking and the research practices associated with them are not equivalent, and maintain that it is impossible to explain the generation of form and constant outcome of development without the assumption of the transmission of pre-existing information in the form of DNA sequences in the genome. Only in this framework of "preformed" information can "epigenesis" in the form of physical and chemical processes of self-organization play an important role.
Collapse
Affiliation(s)
- Ute Deichmann
- Jacques Loeb Centre for the History and Philosophy of Science, Ben-Gurion University of the Negev, Beer Sheva, 8410500, Israel.
| |
Collapse
|
6
|
Yang Y, Li S, Luo L. Responses of organ precursors to correct and incorrect inductive signals. Trends Cell Biol 2024; 34:484-495. [PMID: 37739814 DOI: 10.1016/j.tcb.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 09/24/2023]
Abstract
During embryonic development, the inductive molecules produced by local origins normally arrive at their target tissues in a nondirectional, diffusion manner. The target organ precursor cells must correctly interpret these inductive signals to ensure proper specification/differentiation, which is dependent on two prerequisites: (i) obtaining cell-intrinsic competence; and (ii) receiving correct inductive signals while resisting incorrect ones. Gain of intrinsic competence could avoid a large number of misinductions because the incompetent cells are nonresponsive to inductive signals. However, in cases of different precursor cells with similar competence and located in close proximity, resistance to incorrect inductive signals is essential for accurate determination of cell fate. Here we outline the mechanisms of how organ precursors respond to correct and incorrect inductive signals.
Collapse
Affiliation(s)
- Yun Yang
- Institute of Development Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Shuang Li
- Institute of Development Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Lingfei Luo
- Institute of Development Biology and Regenerative Medicine, Southwest University, Chongqing, China; School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Camacho-Aguilar E, Yoon ST, Ortiz-Salazar MA, Du S, Guerra MC, Warmflash A. Combinatorial interpretation of BMP and WNT controls the decision between primitive streak and extraembryonic fates. Cell Syst 2024; 15:445-461.e4. [PMID: 38692274 PMCID: PMC11231731 DOI: 10.1016/j.cels.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/10/2023] [Accepted: 04/10/2024] [Indexed: 05/03/2024]
Abstract
BMP signaling is essential for mammalian gastrulation, as it initiates a cascade of signals that control self-organized patterning. As development is highly dynamic, it is crucial to understand how time-dependent combinatorial signaling affects cellular differentiation. Here, we show that BMP signaling duration is a crucial control parameter that determines cell fates upon the exit from pluripotency through its interplay with the induced secondary signal WNT. BMP signaling directly converts cells from pluripotent to extraembryonic fates while simultaneously upregulating Wnt signaling, which promotes primitive streak and mesodermal specification. Using live-cell imaging of signaling and cell fate reporters together with a simple mathematical model, we show that this circuit produces a temporal morphogen effect where, once BMP signal duration is above a threshold for differentiation, intermediate and long pulses of BMP signaling produce specification of mesoderm and extraembryonic fates, respectively. Our results provide a systems-level picture of how these signaling pathways control the landscape of early human development.
Collapse
Affiliation(s)
| | - Sumin T Yoon
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | | | - Siqi Du
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - M Cecilia Guerra
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
8
|
Raju A, Siggia ED. A geometrical model of cell fate specification in the mouse blastocyst. Development 2024; 151:dev202467. [PMID: 38563517 PMCID: PMC11112346 DOI: 10.1242/dev.202467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
The lineage decision that generates the epiblast and primitive endoderm from the inner cell mass (ICM) is a paradigm for cell fate specification. Recent mathematics has formalized Waddington's landscape metaphor and proven that lineage decisions in detailed gene network models must conform to a small list of low-dimensional stereotypic changes called bifurcations. The most plausible bifurcation for the ICM is the so-called heteroclinic flip that we define and elaborate here. Our re-analysis of recent data suggests that there is sufficient cell movement in the ICM so the FGF signal, which drives the lineage decision, can be treated as spatially uniform. We thus extend the bifurcation model for a single cell to the entire ICM by means of a self-consistently defined time-dependent FGF signal. This model is consistent with available data and we propose additional dynamic experiments to test it further. This demonstrates that simplified, quantitative and intuitively transparent descriptions are possible when attention is shifted from specific genes to lineages. The flip bifurcation is a very plausible model for any situation where the embryo needs control over the relative proportions of two fates by a morphogen feedback.
Collapse
Affiliation(s)
- Archishman Raju
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Eric D. Siggia
- Center for Studies in Physics and Biology, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
9
|
McNamara HM, Jia BZ, Guyer A, Parot VJ, Dobbs C, Schier AF, Cohen AE, Lord ND. Optogenetic control of Nodal signaling patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.588875. [PMID: 38645239 PMCID: PMC11030342 DOI: 10.1101/2024.04.11.588875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
A crucial step in early embryogenesis is the establishment of spatial patterns of signaling activity. Tools to perturb morphogen signals with high resolution in space and time can help reveal how embryonic cells decode these signals to make appropriate fate decisions. Here, we present new optogenetic reagents and an experimental pipeline for creaHng designer Nodal signaling patterns in live zebrafish embryos. Nodal receptors were fused to the light-sensitive heterodimerizing pair Cry2/CIB1N, and the Type II receptor was sequestered to the cytosol. The improved optoNodal2 reagents eliminate dark activity and improve response kinetics, without sacrificing dynamic range. We adapted an ultra-widefield microscopy platform for parallel light patterning in up to 36 embryos and demonstrated precise spatial control over Nodal signaling activity and downstream gene expression. Patterned Nodal activation drove precisely controlled internalization of endodermal precursors. Further, we used patterned illumination to generate synthetic signaling patterns in Nodal signaling mutants, rescuing several characteristic developmental defects. This study establishes an experimental toolkit for systematic exploration of Nodal signaling patterns in live embryos.
Collapse
Affiliation(s)
| | - Bill Z. Jia
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Alison Guyer
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vicente J. Parot
- Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Caleb Dobbs
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Adam E. Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Nathan D. Lord
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
10
|
Wilcockson SG, Guglielmi L, Araguas Rodriguez P, Amoyel M, Hill CS. An improved Erk biosensor detects oscillatory Erk dynamics driven by mitotic erasure during early development. Dev Cell 2023; 58:2802-2818.e5. [PMID: 37714159 PMCID: PMC7615346 DOI: 10.1016/j.devcel.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/02/2023] [Accepted: 08/15/2023] [Indexed: 09/17/2023]
Abstract
Extracellular signal-regulated kinase (Erk) signaling dynamics elicit distinct cellular responses in a variety of contexts. The early zebrafish embryo is an ideal model to explore the role of Erk signaling dynamics in vivo, as a gradient of activated diphosphorylated Erk (P-Erk) is induced by fibroblast growth factor (Fgf) signaling at the blastula margin. Here, we describe an improved Erk-specific biosensor, which we term modified Erk kinase translocation reporter (modErk-KTR). We demonstrate the utility of this biosensor in vitro and in developing zebrafish and Drosophila embryos. Moreover, we show that Fgf/Erk signaling is dynamic and coupled to tissue growth during both early zebrafish and Drosophila development. Erk activity is rapidly extinguished just prior to mitosis, which we refer to as mitotic erasure, inducing periods of inactivity, thus providing a source of heterogeneity in an asynchronously dividing tissue. Our modified reporter and transgenic lines represent an important resource for interrogating the role of Erk signaling dynamics in vivo.
Collapse
Affiliation(s)
- Scott G Wilcockson
- Developmental Signalling Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Pablo Araguas Rodriguez
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
11
|
Richardson L, Wilcockson SG, Guglielmi L, Hill CS. Context-dependent TGFβ family signalling in cell fate regulation. Nat Rev Mol Cell Biol 2023; 24:876-894. [PMID: 37596501 DOI: 10.1038/s41580-023-00638-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/20/2023]
Abstract
The transforming growth factor-β (TGFβ) family are a large group of evolutionarily conserved cytokines whose signalling modulates cell fate decision-making across varying cellular contexts at different stages of life. Here we discuss new findings in early embryos that reveal how, in contrast to our original understanding of morphogen interpretation, robust cell fate specification can originate from a noisy combination of signalling inputs and a broad range of signalling levels. We compare this evidence with novel findings on the roles of TGFβ family signalling in tissue maintenance and homeostasis during juvenile and adult life, spanning the skeletal, haemopoietic and immune systems. From these comparisons, it emerges that in contrast to robust developing systems, relatively small perturbations in TGFβ family signalling have detrimental effects at later stages in life, leading to aberrant cell fate specification and disease, for example in cancer or congenital disorders. Finally, we highlight novel strategies to target and amend dysfunction in signalling and discuss how gleaning knowledge from different fields of biology can help in the development of therapeutics for aberrant TGFβ family signalling in disease.
Collapse
Affiliation(s)
- Louise Richardson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Scott G Wilcockson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
12
|
Ho EK, Oatman HR, McFann SE, Yang L, Johnson HE, Shvartsman SY, Toettcher JE. Dynamics of an incoherent feedforward loop drive ERK-dependent pattern formation in the early Drosophila embryo. Development 2023; 150:dev201818. [PMID: 37602510 PMCID: PMC10482391 DOI: 10.1242/dev.201818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Positional information in development often manifests as stripes of gene expression, but how stripes form remains incompletely understood. Here, we use optogenetics and live-cell biosensors to investigate the posterior brachyenteron (byn) stripe in early Drosophila embryos. This stripe depends on interpretation of an upstream ERK activity gradient and the expression of two target genes, tailless (tll) and huckebein (hkb), that exert antagonistic control over byn. We find that high or low doses of ERK signaling produce transient or sustained byn expression, respectively. Although tll transcription is always rapidly induced, hkb converts graded ERK inputs into a variable time delay. Nuclei thus interpret ERK amplitude through the relative timing of tll and hkb transcription. Antagonistic regulatory paths acting on different timescales are hallmarks of an incoherent feedforward loop, which is sufficient to explain byn dynamics and adds temporal complexity to the steady-state model of byn stripe formation. We further show that 'blurring' of an all-or-none stimulus through intracellular diffusion non-locally produces a byn stripe. Overall, we provide a blueprint for using optogenetics to dissect developmental signal interpretation in space and time.
Collapse
Affiliation(s)
- Emily K. Ho
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Harrison R. Oatman
- Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sarah E. McFann
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Liu Yang
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Heath E. Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Stanislav Y. Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, NY 10010, USA
| | - Jared E. Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
13
|
Čapek D, Safroshkin M, Morales-Navarrete H, Toulany N, Arutyunov G, Kurzbach A, Bihler J, Hagauer J, Kick S, Jones F, Jordan B, Müller P. EmbryoNet: using deep learning to link embryonic phenotypes to signaling pathways. Nat Methods 2023; 20:815-823. [PMID: 37156842 PMCID: PMC10250202 DOI: 10.1038/s41592-023-01873-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/05/2023] [Indexed: 05/10/2023]
Abstract
Evolutionarily conserved signaling pathways are essential for early embryogenesis, and reducing or abolishing their activity leads to characteristic developmental defects. Classification of phenotypic defects can identify the underlying signaling mechanisms, but this requires expert knowledge and the classification schemes have not been standardized. Here we use a machine learning approach for automated phenotyping to train a deep convolutional neural network, EmbryoNet, to accurately identify zebrafish signaling mutants in an unbiased manner. Combined with a model of time-dependent developmental trajectories, this approach identifies and classifies with high precision phenotypic defects caused by loss of function of the seven major signaling pathways relevant for vertebrate development. Our classification algorithms have wide applications in developmental biology and robustly identify signaling defects in evolutionarily distant species. Furthermore, using automated phenotyping in high-throughput drug screens, we show that EmbryoNet can resolve the mechanism of action of pharmaceutical substances. As part of this work, we freely provide more than 2 million images that were used to train and test EmbryoNet.
Collapse
Affiliation(s)
- Daniel Čapek
- Systems Biology of Development, University of Konstanz, Konstanz, Germany
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | | | - Hernán Morales-Navarrete
- Systems Biology of Development, University of Konstanz, Konstanz, Germany
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany
| | - Nikan Toulany
- Systems Biology of Development, University of Konstanz, Konstanz, Germany
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | | | - Anica Kurzbach
- Systems Biology of Development, University of Konstanz, Konstanz, Germany
| | - Johanna Bihler
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Julia Hagauer
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Sebastian Kick
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Felicity Jones
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Ben Jordan
- Systems Biology of Development, University of Konstanz, Konstanz, Germany
| | - Patrick Müller
- Systems Biology of Development, University of Konstanz, Konstanz, Germany.
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany.
| |
Collapse
|
14
|
Ho EK, Oatman HR, McFann SE, Yang L, Johnson HE, Shvartsman SY, Toettcher JE. Dynamics of an incoherent feedforward loop drive ERK-dependent pattern formation in the early Drosophila embryo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531972. [PMID: 36945584 PMCID: PMC10028984 DOI: 10.1101/2023.03.09.531972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Positional information in developing tissues often takes the form of stripes of gene expression that mark the boundaries of a particular cell type or morphogenetic process. How stripes form is still in many cases poorly understood. Here we use optogenetics and live-cell biosensors to investigate one such pattern: the posterior stripe of brachyenteron (byn) expression in the early Drosophila embryo. This byn stripe depends on interpretation of an upstream signal - a gradient of ERK kinase activity - and the expression of two target genes tailless (tll) and huckebein (hkb) that exert antagonistic control over byn . We find that high or low doses of ERK signaling produce either transient or sustained byn expression, respectively. These ERK stimuli also regulate tll and hkb expression with distinct dynamics: tll transcription is rapidly induced under both low and high stimuli, whereas hkb transcription converts graded ERK inputs into an output switch with a variable time delay. Antagonistic regulatory paths acting on different timescales are hallmarks of an incoherent feedforward loop architecture, which is sufficient to explain transient or sustained byn dynamics and adds temporal complexity to the steady-state model of byn stripe formation. We further show that an all-or-none stimulus can be 'blurred' through intracellular diffusion to non-locally produce a stripe of byn gene expression. Overall, our study provides a blueprint for using optogenetic inputs to dissect developmental signal interpretation in space and time.
Collapse
Affiliation(s)
- Emily K Ho
- Department of Molecular Biology Princeton University, Princeton NJ 08544
| | - Harrison R Oatman
- Program in Quantitative and Computational Biology Princeton University, Princeton NJ 08544
| | - Sarah E McFann
- Department of Chemical & Biological Engineering Princeton University, Princeton NJ 08544
| | - Liu Yang
- Lewis Sigler Institute for Integrative Genomics Princeton University, Princeton NJ 08544
| | - Heath E Johnson
- Department of Molecular Biology Princeton University, Princeton NJ 08544
| | - Stanislav Y Shvartsman
- Department of Molecular Biology Princeton University, Princeton NJ 08544
- Lewis Sigler Institute for Integrative Genomics Princeton University, Princeton NJ 08544
- Flatiron Institute, New York, NY 10010
| | - Jared E Toettcher
- Department of Molecular Biology Princeton University, Princeton NJ 08544
| |
Collapse
|