1
|
Grata A, Levayer R. Epithelial cell extrusion at a glance. J Cell Sci 2025; 138:jcs263786. [PMID: 40270445 DOI: 10.1242/jcs.263786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
The robustness and plasticity of epithelial tissues rely on the capacity of such tissues to eliminate cells without affecting their sealing. This is achieved by epithelial cell extrusion - a well-orchestrated series of remodelling steps involving the eliminated cell and its neighbours - which ensures the constant maintenance of mechanical and chemical barrier properties while allowing cell expulsion. In this Cell Science at a Glance and the accompanying poster, we describe the remodelling steps that take place within dying or extruding cells, as well as neighbouring cells, outlining the commonalities and variations between tissues and organisms. These steps include reorganization of the cytoskeleton and remodelling of cell-cell junctions that alters their contribution to mechanical coupling and mechanotransduction. We also discuss larger-scale coordination between cells and the contribution of cell extrusion to tissue morphogenesis, epithelial surveillance mechanisms, and pathologies such as cancer and chronic inflammation. Altogether, we outline the complexity and plasticity of this minimalist morphogenetic process.
Collapse
Affiliation(s)
- Aline Grata
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France
| | - Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
2
|
Chen S, Bao Q, Xu W, Zhai X. Extracellular particles: emerging insights into central nervous system diseases. J Nanobiotechnology 2025; 23:263. [PMID: 40170148 PMCID: PMC11960037 DOI: 10.1186/s12951-025-03354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025] Open
Abstract
Extracellular particles (EPs), including extracellular vesicles (EVs) and non-vesicular extracellular particles (NVEPs), are multimolecular biomaterials released by cells that play a crucial role in intercellular communication. Recently, new subtypes of EPs associated with central nervous system (CNS), such as exophers and supermeres have been identified. These EPs provide new perspectives for understanding the pathological progression of CNS disorders and confer potential diagnostic value for liquid biopsies in neurodegenerative diseases (NDs). Moreover, EPs have emerged as promising drug delivery vehicles and targeted platforms for CNS-specific therapies. In this review, we delineate the landscape of EP subtypes and their roles in the pathophysiology of CNS diseases. We also review the recent advances of EP-based diagnosis in NDs and highlight the importance of analytical platforms with single-particle resolution in the exploitation of potential biomarkers. Furthermore, we summarize the application of engineered EVs in the treatment of CNS diseases and outline the underexplored potential of NVEPs as novel therapeutic agents.
Collapse
Affiliation(s)
- Shenyuan Chen
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, 215600, China
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Qinghua Bao
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, 215600, China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, 215600, China.
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Xiao Zhai
- Department of Orthopedics, Shanghai Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
3
|
Arnould S, Benassayag C, Merle T, Monier B, Montemurro M, Suzanne M. Epithelial apoptosis: A back-and-forth mechanical interplay between the dying cell and its surroundings. Semin Cell Dev Biol 2025; 168:1-12. [PMID: 39986249 DOI: 10.1016/j.semcdb.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Apoptosis is an essential cellular process corresponding to a programmed cell suicide. It has long been considered as a cell-autonomous process, supposed to have no particular impact on the surrounding tissue. However, it has become clear in the last 15 years that epithelial apoptotic cells interact mechanically and biochemically with their environment. Here, we explore recent literature on apoptotic mechanics from an individual dying cell to the back-and-forth interplay with the neighboring epithelial tissue. Finally, we discuss how caspases, key regulators of apoptosis, appear to have a dual function as a cytoskeleton regulator favoring either cytoskeleton degradation or dynamics independently of their apoptotic or non-apoptotic role.
Collapse
Affiliation(s)
- Stéphanie Arnould
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Corinne Benassayag
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Tatiana Merle
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Bruno Monier
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Marianne Montemurro
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Magali Suzanne
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
4
|
Hirata M, Nomura T, Inoue YH. Anti-Tumor Effects of Cecropin A and Drosocin Incorporated into Macrophage-like Cells Against Hematopoietic Tumors in Drosophila mxc Mutants. Cells 2025; 14:389. [PMID: 40136638 PMCID: PMC11940895 DOI: 10.3390/cells14060389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Five major antimicrobial peptides (AMPs) in Drosophila are induced in multiple sex combs (mxc) mutant larvae harboring lymph gland (LG) tumors, and they exhibit anti-tumor effects. The effects of other well-known AMPs, Cecropin A and Drosocin, remain unexplored. We investigated the tumor-elimination mechanism of these AMPs. A half-dose reduction in either the Toll or Imd gene reduced the induction of these AMPs and enhanced tumor growth in mxcmbn1 mutant larvae, indicating that their anti-tumor effects depend on the innate immune pathway. Overexpression of these AMPs in the fat body suppressed tumor growth without affecting cell proliferation. Apoptosis was promoted in the mutant but not in normal LGs. Conversely, knockdown of them inhibited apoptosis and enhanced tumor growth; therefore, they inhibit LG tumor growth by inducing apoptosis. The AMPs from the fat body were incorporated into the hemocytes of mutant but not normal larvae. Another AMP, Drosomycin, was taken up via phagocytosis factors. Enhanced phosphatidylserine signals were observed on the tumor surface. Inhibition of the signals exposed on the cell surface enhanced tumor growth. AMPs may target phosphatidylserine in tumors to induce apoptosis and execute their tumor-specific effects. AMPs could be beneficial anti-cancer drugs with minimal side effects for clinical development.
Collapse
Affiliation(s)
- Marina Hirata
- Biomedical Research Center, Kyoto Institute of Technology, Kyoto 606-0962, Japan (T.N.)
- Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Tadashi Nomura
- Biomedical Research Center, Kyoto Institute of Technology, Kyoto 606-0962, Japan (T.N.)
- Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yoshihiro H. Inoue
- Biomedical Research Center, Kyoto Institute of Technology, Kyoto 606-0962, Japan (T.N.)
| |
Collapse
|
5
|
Yao S, Wang Y, Tang Q, Yin Y, Geng Y, Xu L, Liang S, Xiang J, Fan J, Tang J, Liu J, Shao S, Shen Y. A plug-and-play monofunctional platform for targeted degradation of extracellular proteins and vesicles. Nat Commun 2024; 15:7237. [PMID: 39174543 PMCID: PMC11341853 DOI: 10.1038/s41467-024-51720-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
Existing strategies use bifunctional chimaeras to mediate extracellular protein degradation. However, these strategies rely on specific lysosome-trafficking receptors to facilitate lysosomal delivery, which may raise resistance concerns due to intrinsic cell-to-cell variation in receptor expression and mutations or downregulation of the receptors. Another challenge is establishing a universal platform applicable in multiple scenarios. Here, we develop MONOTAB (MOdified NanOparticle with TArgeting Binders), a plug-and-play monofunctional degradation platform that can drag extracellular targets into lysosomes for degradation. MONOTAB harnesses the inherent lysosome-targeting ability of certain nanoparticles to obviate specific receptor dependency and the hook effect. To achieve high modularity and programmable target specificity, we utilize the streptavidin-biotin interaction to immobilize antibodies or other targeting molecules on nanoparticles, through an antibody mounting approach or by direct binding. Our study reveals that MONOTAB can induce efficient degradation of diverse therapeutic targets, including membrane proteins, secreted proteins, and even extracellular vesicles.
Collapse
Affiliation(s)
- Shasha Yao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China
| | - Yi Wang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China
| | - Qian Tang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, Zhejiang, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Yujie Yin
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China
| | - Yu Geng
- The Fourth Affiliated Hospital Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, China
| | - Lei Xu
- The Fourth Affiliated Hospital Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, China
| | - Shifu Liang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| | - Jiaqi Fan
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China
| | - Jian Liu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, Zhejiang, China.
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
- Biomedical and Heath Translational Research Center of Zhejiang Province, 314400, Haining, Zhejiang, China.
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China.
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Sui B, Wang R, Chen C, Kou X, Wu D, Fu Y, Lei F, Wang Y, Liu Y, Chen X, Xu H, Liu Y, Kang J, Liu H, Kwok RTK, Tang BZ, Yan H, Wang M, Xiang L, Yan X, Zhang X, Ma L, Shi S, Jin Y. Apoptotic Vesicular Metabolism Contributes to Organelle Assembly and Safeguards Liver Homeostasis and Regeneration. Gastroenterology 2024; 167:343-356. [PMID: 38342194 DOI: 10.1053/j.gastro.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND & AIMS Apoptosis generates plenty of membrane-bound nanovesicles, the apoptotic vesicles (apoVs), which show promise for biomedical applications. The liver serves as a significant organ for apoptotic material removal. Whether and how the liver metabolizes apoptotic vesicular products and contributes to liver health and disease is unrecognized. METHODS apoVs were labeled and traced after intravenous infusion. Apoptosis-deficient mice by Fas mutant (Fasmut) and Caspase-3 knockout (Casp3-/-) were used with apoV replenishment to evaluate the physiological apoV function. Combinations of morphologic, biochemical, cellular, and molecular assays were applied to assess the liver while hepatocyte analysis was performed. Partial hepatectomy and acetaminophen liver failure models were established to investigate liver regeneration and disease recovery. RESULTS We discovered that the liver is a major metabolic organ of circulatory apoVs, in which apoVs undergo endocytosis by hepatocytes via a sugar recognition system. Moreover, apoVs play an indispensable role to counteract hepatocellular injury and liver impairment in apoptosis-deficient mice upon replenishment. Surprisingly, apoVs form a chimeric organelle complex with the hepatocyte Golgi apparatus through the soluble N-ethylmaleimide-sensitive factor attachment protein receptor machinery, which preserves Golgi integrity, promotes microtubule acetylation by regulating α-tubulin N-acetyltransferase 1, and consequently facilitates hepatocyte cytokinesis for liver recovery. The assembly of the apoV-Golgi complex is further revealed to contribute to liver homeostasis, regeneration, and protection against acute liver failure. CONCLUSIONS These findings establish a previously unrecognized functional and mechanistic framework that apoptosis through vesicular metabolism safeguards liver homeostasis and regeneration, which holds promise for hepatic disease therapeutics.
Collapse
Affiliation(s)
- Bingdong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania
| | - Runci Wang
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania
| | - Chider Chen
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania
| | - Xiaoxing Kou
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania; Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Di Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Yu Fu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Fangcao Lei
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Yijing Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), Singapore, Singapore
| | - Hui Xu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yingying Liu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Junjun Kang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haixiang Liu
- Department of Chemical and Biological Engineering, Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan Tsz Kin Kwok
- Department of Chemical and Biological Engineering, Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Hexin Yan
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Minjun Wang
- Department of Cell Biology, Center for Stem Cell and Medicine, The Second Military Medical University, Shanghai, China
| | - Lei Xiang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Xutong Yan
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Xiao Zhang
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania
| | - Lan Ma
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania; Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Songtao Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania; Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China.
| | - Yan Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Nayak AN, Hirashima T. Tug-of-war via ERK signaling pathway for tissue organization - ERK activation to force generation. Curr Opin Cell Biol 2023; 85:102249. [PMID: 37783032 DOI: 10.1016/j.ceb.2023.102249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Extracellular signal-regulated kinase (ERK) plays a crucial role in regulating collective cell behaviors observed in diverse biological phenomena. Emerging studies have shed light on the involvement of the ERK signaling pathway in the reception and generation of mechanical forces, thereby governing local mechanical interactions within multicellular tissues. Although limited in number, studies have provided insights into how ERK-mediated mechanical interactions contribute to multicellular organization. Here we explore the impact of ERK-mediated mechanical interactions on tissue morphogenesis, cell extrusion in homeostasis, and their interplay with the physical microenvironments of the extracellular matrix. We conclude that the coupling system of ERK activity with mechanical forces offers a promising avenue to unravel the emergent collective dynamics underlying tissue organization.
Collapse
Affiliation(s)
| | - Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
8
|
Liu J, He Z, Zhong Y, Zhu L, Yan M, Mou N, Qu K, Qin X, Wang G, Zhang K, Yang W, Wu W. Reactive Oxygen Species-Responsive Sequentially Targeted AIE Fluorescent Probe for Precisely Identifying the Atherosclerotic Plaques. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47381-47393. [PMID: 37769171 DOI: 10.1021/acsami.3c09573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The formation of atherosclerosis is the root cause of various cardiovascular diseases (CVDs). Therefore, effective CVD interventions call for precise identification of the plaques to aid in clinical treatment of such diseases. Herein, a reactive oxygen species (ROS)-responsive sequentially targeted fluorescent probe is developed for atherosclerotic plaque recognition. An aggregation-induced emission active fluorophore is linked to maleimide (polyethylene glycol) hydroxyl with a ROS-responsive cleavable bond, which is further functionalized with CLIKKPF peptide (TPAMCF) for specifically binding to phosphatidylserine of the foam cells. After being assembled in aqueous medium, TPAMCF nanoparticles can efficiently accumulate in the plaques through the high affinity of CLIKKPF to the externalized phosphatidylserine of the foam cells. Activated by the locally accumulated ROS in foam cells, the nanoparticles are interrupted, and then TPA can be released and subsequently identify the lipid droplets inside the foam cells to achieve fluorescence imaging of the plaques. Such nanoprobes have the favorable ROS response performance and exhibit a special target binding to the foam cells in vitro. In addition, nanoprobe-based fluorescence imaging permitted the high-contrast and precise detection of atherosclerosis specimens ex vivo. Therefore, as a promising fluorescent probe, TPAMCF is capable of being a potential candidate for the detection of atherosclerotic plaque.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Zhigui He
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Meng Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Nianlian Mou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Xian Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Weihu Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| |
Collapse
|