1
|
Chen YJ, Lee CI, Tsai PY, Tam HL, Su MT. Aspirin reverses the inhibitory effect of soluble fms-like tyrosine kinase-1 on trophoblast invasiveness and ciliogenesis through Sonic hedgehog signaling in preeclampsia. Biochem Pharmacol 2025; 238:116975. [PMID: 40339344 DOI: 10.1016/j.bcp.2025.116975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/18/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Soluble Flt-1 (sFlt-1) is upregulated in preeclamptic patients and is a predictive biomarker for preeclampsia risk and progression. Aspirin is an effective agent used to prevent preeclampsia and has been shown to suppress sFlt-1 production in trophoblasts; however, the underlying mechanism is not fully understood. Here, we demonstrated that sFlt-1 production was upregulated under hypoxia in two trophoblastic cells (HTR-8/SVneo and JAR). The effects of sFlt-1 and underlying pathways on trophoblast biology and cilia formation were investigated in sFlt-1-pretreated, FLT-1-knockdown HTR-8/SVneo cells under hypoxic conditions and in a preeclampsia mouse model. In the present study, sFlt-1 was shown to inhibit trophoblast invasion and migration under hypoxia, and this inhibitory effect occurred through downregulating ZEB1/2, MMP 2/9, and the Sonic hedgehog (SHH) signaling pathway. Ciliary number and length of trophoblasts were inhibited by sFlt-1 treatment and were enhanced after FLT-1 knockdown. Aspirin was found to reverse the sFlt-1-mediated inhibitory effect on trophoblast invasion/migration, ciliogenesis, and SHH signaling in HTR-8/SVneo cells. Moreover, plasma and placental sFlt-1 protein levels were upregulated in the preeclampsia mouse model, whereas primary cilia formation and SHH-related expression were impaired in the mouse placenta. Aspirin-fed mice presented with reduced sFlt-1 expression, and their placental ciliogenesis and SHH expression were improved in the preeclamptic mouse model. In conclusion, sFlt-1 impairs trophoblast motility and ciliogenesis through SHH signaling under hypoxia. Aspirin exerts its suppressive effect on sFlt-1 upregulation and sFlt-1-mediated cell function and signaling in vitro and in vivo.
Collapse
Affiliation(s)
- Yu-Jen Chen
- Department of Obstetrics and Gynecology, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Chih-I Lee
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Pei-Yin Tsai
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hoi-Lam Tam
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Mei-Tsz Su
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Obstetrics and Gynecology, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan.
| |
Collapse
|
2
|
Wang L, Pan M, Dong J, He Z, Wang W, Shu J, Wang T, Wang Y. Investigating cigarette smoke-induced airway inflammation and sperm activity impairment in rats based on cilia-associated proteins. 3 Biotech 2025; 15:136. [PMID: 40260407 PMCID: PMC12009257 DOI: 10.1007/s13205-025-04302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/02/2025] [Indexed: 04/23/2025] Open
Abstract
The aim of this study was to investigate the mechanism of smoking-induced chronic obstructive pulmonary disease (COPD) and its impact on reproductive function in male rats and its relationship with chronic lung inflammation. The study used various methodologies including lung function tests, sperm quality assessment, serum hormone level measurement, and ultrastructural observations of airway cilia and sperm flagella to elucidate the effects of smoking on the reproductive and respiratory systems of rats. The results showed that smoking significantly induced lung damage and reduced sperm quality in rats, and the trend of lung damage and decreased sperm quality became more obvious with the increased duration of smoking. Transmission electron microscopy revealed that smoking exposure led to structural abnormalities of airway cilia and sperm flagella, and exposure after a period of three months showed significant damage to cilia and flagellar structures. Western blot and immunohistochemistry results indicated that the relative expression of NE proteins was significantly higher in the rats of the CS group, whereas the expression of FOXJ1 and SPAG6 proteins was notably lower in these rats after three months of smoking. In summary, smoke causes damage to the respiratory and reproductive systems of male rats, and the mechanism may be related to the destruction of airway cilia and sperm flagellar structures and the down-regulation of the expression of key ciliary proteins by smoke.
Collapse
Affiliation(s)
- Lei Wang
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012 China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230061 China
| | - Min Pan
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Jinhui Dong
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Zengyang He
- Technology Center of China Tobacco Anhui Industrial Co., LTD, Hefei, 230088 China
| | - Wenbin Wang
- Technology Center of China Tobacco Anhui Industrial Co., LTD, Hefei, 230088 China
| | - Junsheng Shu
- Technology Center of China Tobacco Anhui Industrial Co., LTD, Hefei, 230088 China
| | - Tongsheng Wang
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Yajuan Wang
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012 China
| |
Collapse
|
3
|
Wang CE, Ogden SK. G Protein-Coupled Receptor Signal Intersection at the Primary Cilium. Bioessays 2025:e70015. [PMID: 40277275 DOI: 10.1002/bies.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
Primary cilia are singular projections that extend from the surface of most vertebrate cell types. The surface area of the primary cilium (PC) is estimated to represent only 1/100th of the total membrane surface of an average cell. Despite this, the PC provides essential contributions to inter- and intracellular communication by housing receptors and downstream effectors for myriad cell-signaling cascades. G protein-coupled receptors (GPCRs) commonly enrich along ciliary membranes to control a diverse range of cellular behaviors by signaling through a shared pool of downstream effectors. This suggests the hypothesis that the PC provides an environment that is conducive to complementary or competitive GPCR Signal Crosstalk. In this Hypothesis Bio Essay, we use the Sonic Hedgehog (SHH) pathway as a case study to inform models of how GPCR signals could intersect in primary cilia and suggest general strategies to test each model.
Collapse
Affiliation(s)
- Christina E Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
4
|
Barabino A, Katbe A, Hanna R, Freedman BS, Bernier G. Pharmaceutical inhibition of the Chk2 kinase mitigates cone photoreceptor degeneration in an iPSC model of Bardet-Biedl syndrome. iScience 2025; 28:112130. [PMID: 40151639 PMCID: PMC11937680 DOI: 10.1016/j.isci.2025.112130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/05/2024] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Bardet-Biedl syndrome (BBS) is a syndromic ciliopathy leading to progressive blindness starting in childhood, but the mechanism of photoreceptor degeneration remains unclear. The basal body of the photoreceptor primary cilium originates from the centrosome's mother centriole, and BBS-related proteins form a complex at basal body. Centrosomes also organize microtubules of the mitotic spindle. We show here that photoreceptors from Bbs10 -/- mouse pups present a DNA damage response (DDR) that becomes persistent and localizes to the basal body. In patient-derived induced pluripotent stem cells (iPSCs) carrying BBS10 mutations, BBS retinal progenitor cells (RPCs) present a DDR that correlates with activation of the mitotic spindle checkpoint. Pharmaceutical inhibition of the Chk2 kinase in BBS RPCs mitigates cell death and genomic instability and restores the phospho-proteome. Drug treatment of BBS retinal organoids improves tissue organization, cone survival, and outer segment maturation, thus opening a possible therapeutic avenue to delay photoreceptor degeneration in BBS.
Collapse
Affiliation(s)
- Andrea Barabino
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. L’Assomption, Montréal, QC H1T 2M4, Canada
| | - Alisar Katbe
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. L’Assomption, Montréal, QC H1T 2M4, Canada
| | - Roy Hanna
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. L’Assomption, Montréal, QC H1T 2M4, Canada
| | - Benjamin S. Freedman
- Division of Nephrology, Department of Medicine, Kidney Research Institute, and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Gilbert Bernier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. L’Assomption, Montréal, QC H1T 2M4, Canada
- Faculty of Medicine, Department of Neurosciences, University of Montreal, 2960 de la Tour Road, Suite 111, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
5
|
Itabashi T, Hosoba K, Morita T, Kimura S, Yamaoka K, Hirosawa M, Kobayashi D, Kishi H, Kume K, Itoh H, Kawakami H, Hashimoto K, Yamamoto T, Miyamoto T. Cholesterol ensures ciliary polycystin-2 localization to prevent polycystic kidney disease. Life Sci Alliance 2025; 8:e202403063. [PMID: 39900437 PMCID: PMC11791027 DOI: 10.26508/lsa.202403063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/05/2025] Open
Abstract
The plasma membrane covering the primary cilium has a diverse accumulation of receptors and channels. To ensure the sensor function of the cilia, the ciliary membrane has higher cholesterol content than other cell membrane regions. A peroxisomal biogenesis disorder, Zellweger syndrome, characterized by polycystic kidney, is associated with a reduced level of ciliary cholesterol in cells. However, the etiological mechanism by which ciliary cholesterol lowering causes polycystic kidney disease remains unclear. Here, we demonstrated that lowering ciliary cholesterol by either pharmacological treatment or genetic depletion of peroxisomes impairs the localization of a ciliary ion channel polycystin-2. We also generated cultured renal medullary cells and mice carrying a missense variant in the cholesterol-binding site of polycystin-2 detected in the patient database of autosomal dominant polycystic kidney disease. This missense protein showed normal channel activity but decreased localization to the ciliary membrane. The homozygous mice exhibited embryonic lethality and the ciliopathy spectrum conditions of situs inversus and polycystic kidney. Our results suggest that cholesterol controls the ciliary localization of polycystin-2 to prevent polycystic kidney disease.
Collapse
Affiliation(s)
- Takeshi Itabashi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Division of Advanced Genome Editing Therapy, Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| | - Kosuke Hosoba
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Program of Mathematical and Life Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tomoka Morita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Division of Advanced Genome Editing Therapy, Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| | - Sotai Kimura
- Department of Molecular Pathology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Anatomic Pathology, Hirosaki University Hospital, Aomori, Japan
| | - Kenji Yamaoka
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Moe Hirosawa
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Division of Advanced Genome Editing Therapy, Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| | - Daigo Kobayashi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroko Kishi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Kodai Kume
- Department of Molecular Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Itoh
- Department of Molecular Pathology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hideshi Kawakami
- Department of Molecular Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Yamamoto
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Program of Mathematical and Life Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tatsuo Miyamoto
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Division of Advanced Genome Editing Therapy, Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
6
|
Wang W, Xing J, Zhang X, Liu H, Liu X, Jiang H, Xu C, Zhao X, Hu Z. Control of ciliary transcriptional programs during spermatogenesis by antagonistic transcription factors. eLife 2025; 13:RP94754. [PMID: 40009443 PMCID: PMC11864758 DOI: 10.7554/elife.94754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Existence of cilia in the last eukaryotic common ancestor raises a fundamental question in biology: how the transcriptional regulation of ciliogenesis has evolved? One conceptual answer to this question is by an ancient transcription factor regulating ciliary gene expression in both uni- and multicellular organisms, but examples of such transcription factors in eukaryotes are lacking. Previously, we showed that an ancient transcription factor X chromosome-associated protein 5 (Xap5) is required for flagellar assembly in Chlamydomonas. Here, we show that Xap5 and Xap5-like (Xap5l) are two conserved pairs of antagonistic transcription regulators that control ciliary transcriptional programs during spermatogenesis. Male mice lacking either Xap5 or Xap5l display infertility, as a result of meiotic prophase arrest and sperm flagella malformation, respectively. Mechanistically, Xap5 positively regulates the ciliary gene expression by activating the key regulators including Foxj1 and Rfx families during the early stage of spermatogenesis. In contrast, Xap5l negatively regulates the expression of ciliary genes via repressing these ciliary transcription factors during the spermiogenesis stage. Our results provide new insights into the mechanisms by which temporal and spatial transcription regulators are coordinated to control ciliary transcriptional programs during spermatogenesis.
Collapse
Affiliation(s)
- Weihua Wang
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Junqiao Xing
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Xiqi Zhang
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Hongni Liu
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Xingyu Liu
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- No.1 Middle School Affiliated to Central China Normal UniversityWuhanChina
| | - Haochen Jiang
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Cheng Xu
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Xue Zhao
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Zhangfeng Hu
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan UniversityWuhanChina
| |
Collapse
|
7
|
Kim EN, Li FQ, Takemaru KI. ciBAR1 loss in mice causes laterality defects, pancreatic degeneration, and altered glucose tolerance. Life Sci Alliance 2025; 8:e202402916. [PMID: 39622622 PMCID: PMC11612972 DOI: 10.26508/lsa.202402916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Bin/Amphiphysin/Rvs (BAR) domains are highly conserved domains found in all eukaryotes. BAR domain proteins form crescent-shaped dimers that sense and sculpt curved lipid membranes and play key roles in various cellular processes. However, their functions in mammalian development are poorly understood. We previously demonstrated that Chibby1-interacting BAR domain-containing 1 (ciBAR1, formerly known as FAM92A) localizes to the ciliary base and plays a critical role in ciliogenesis. Here, we report ciliopathy phenotypes of ciBAR1-KO mice. We found that ∼28% of ciBAR1-KO mice show embryonic lethality because of randomized left-right asymmetry; the rest survive into adulthood with no gross morphological abnormalities. Histological assessments of ciliated tissues revealed exocrine pancreatic lesions. Although overall endocrine islet morphology appeared to be normal, ciBAR1-KO mice showed impaired glucose tolerance. Examination of ductal and islet cilia revealed that cilia number and length were significantly reduced in ciBAR1-KO pancreata. ciBAR1-KO MEFs also exhibited ciliary defects. Our findings indicate that ciBAR1 plays a critical role in ciliogenesis depending on the tissue and cell type in mice.
Collapse
Affiliation(s)
- Eunice N Kim
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Feng-Qian Li
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Ken-Ichi Takemaru
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
8
|
Brody SL, Pan J, Huang T, Xu J, Xu H, Koenitizer JR, Brennan SK, Nanjundappa R, Saba TG, Rumman N, Berical A, Hawkins FJ, Wang X, Zhang R, Mahjoub MR, Horani A, Dutcher SK. Undocking of an extensive ciliary network induces proteostasis and cell fate switching resulting in severe primary ciliary dyskinesia. Sci Transl Med 2025; 17:eadp5173. [PMID: 39879322 PMCID: PMC12108131 DOI: 10.1126/scitranslmed.adp5173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/04/2024] [Indexed: 01/31/2025]
Abstract
Primary ciliary dyskinesia is a rare monogenic syndrome that is associated with chronic respiratory disease, infertility, and laterality defects. Although more than 50 genes causative of primary ciliary dyskinesia have been identified, variants in the genes encoding coiled-coil domain-containing 39 (CCDC39) and CCDC40 in particular cause severe disease that is not explained by loss of ciliary motility alone. Here, we sought to understand the consequences of these variants on cellular functions beyond impaired motility. We used human cells with pathogenic variants in CCDC39 and CCDC40, Chlamydomonas reinhardtii genetics, cryo-electron microscopy, and proteomics to define perturbations in ciliary assembly and cilia stability, as well as multiple motility-independent pathways. Analysis of proteomics of cilia from patient cells identified that the absence of the axonemal CCDC39/CCDC40 heterodimer resulted in the loss of a network of more than 90 ciliary structural proteins, including 14 that were defined as ciliary address recognition proteins, which provide docking for the missing structures. The absence of the network impaired microtubule architecture, activated cell quality control pathways, switched multiciliated cell fate to mucus-producing cells and resulted in a defective periciliary barrier. In CCDC39 variant cells, these phenotypes were reversed through expression of a normal CCDC39 transgene. These findings indicate that the CCDC39/CCDC40 heterodimer functions as a scaffold to support the assembly of an extensive network of ciliary proteins, whose loss results in both motility-dependent and motility-independent phenotypes that may explain the severity of disease. Gene therapy might be a potential treatment option to be explored in future studies.
Collapse
Affiliation(s)
- Steven L. Brody
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jiehong Pan
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Tao Huang
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jian Xu
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Huihui Xu
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jeffrey R. Koenitizer
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Steven K. Brennan
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Rashmi Nanjundappa
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Thomas G. Saba
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48108, USA
| | - Nisreen Rumman
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Pediatrics, Faculty of Medicine, Al-Quds University, Abu-Deis, 91220, Palestine
| | - Andrew Berical
- Center for Regenerative Medicine, Boston University, Boston, MA, 02118, USA
| | - Finn J. Hawkins
- Center for Regenerative Medicine, Boston University, Boston, MA, 02118, USA
| | - Xiangli Wang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Moe R. Mahjoub
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Amjad Horani
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48108, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Susan K. Dutcher
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
9
|
Kostyanovskaya E, Lasser MC, Wang B, Schmidt J, Bader E, Buteo C, Arbelaez J, Sindledecker AR, McCluskey KE, Castillo O, Wang S, Dea J, Helde KA, Graglia JM, Brimble E, Kastner DB, Ehrlich AT, State MW, Willsey AJ, Willsey HR. Convergence of autism proteins at the cilium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.05.626924. [PMID: 39677731 PMCID: PMC11643032 DOI: 10.1101/2024.12.05.626924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Hundreds of high-confidence autism genes have been identified, yet the relevant etiological mechanisms remain unclear. Gene ontology analyses have repeatedly identified enrichment of proteins with annotated functions in gene expression regulation and neuronal communication. However, proteins are often pleiotropic and these annotations are inherently incomplete. Our recent autism functional genetics work has suggested that these genes may share a common mechanism at the cilium, a membrane-bound organelle critical for neurogenesis, brain patterning, and neuronal activity-all processes strongly implicated in autism. Moreover, autism commonly co-occurs with conditions that are known to involve ciliary-related pathologies, including congenital heart disease, hydrocephalus, and blindness. However, the role of autism genes at the cilium has not been systematically investigated. Here we demonstrate that autism proteins spanning disparate functional annotations converge in expression, localization, and function at cilia, and that patients with pathogenic variants in these genes have cilia-related co-occurring conditions and biomarkers of disrupted ciliary function. This degree of convergence among genes spanning diverse functional annotations strongly suggests that cilia are relevant to autism, as well as to commonly co-occurring conditions, and that this organelle should be explored further for therapeutic potential.
Collapse
Affiliation(s)
- Elina Kostyanovskaya
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Micaela C. Lasser
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - James Schmidt
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Ethel Bader
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Chad Buteo
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Juan Arbelaez
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Aria Rani Sindledecker
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Kate E. McCluskey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Octavio Castillo
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Sheng Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | | | | | | | - David B. Kastner
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Aliza T. Ehrlich
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Matthew W. State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - A. Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA
| |
Collapse
|
10
|
Wloga D, Joachimiak E, Osinka A, Ahmadi S, Majhi S. Motile Cilia in Female and Male Reproductive Tracts and Fertility. Cells 2024; 13:1974. [PMID: 39682722 PMCID: PMC11639810 DOI: 10.3390/cells13231974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Motile cilia are evolutionarily conserved organelles. In humans, multiciliated cells (MCCs), assembling several hundred motile cilia on their apical surface, are components of the monolayer epithelia lining lower and upper airways, brain ventricles, and parts of the reproductive tracts, the fallopian tube and uterus in females, and efferent ductules in males. The coordinated beating of cilia generates a force that enables a shift of the tubular fluid, particles, or cells along the surface of the ciliated epithelia. Uncoordinated or altered cilia motion or cilia immotility may result in subfertility or even infertility. Here, we summarize the current knowledge regarding the localization and function of MCCs in the human reproductive tracts, discuss how cilia and cilia beating-generated fluid flow directly and indirectly contribute to the processes in these organs, and how lack or improper functioning of cilia influence human fertility.
Collapse
Affiliation(s)
- Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (E.J.); (A.O.); (S.A.); (S.M.)
| | | | | | | | | |
Collapse
|
11
|
Riparbelli MG, Pratelli A, Callaini G. The cilium like region of the Drosophila bifurca spermatocyte: Elongation of a giant axoneme without intraflagellar transport. Cytoskeleton (Hoboken) 2024; 81:529-538. [PMID: 38073091 DOI: 10.1002/cm.21816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 11/20/2024]
Abstract
The growth of the ciliary axonemes mainly depends on the evolutionary conserved intraflagellar transport (IFT) machinery. However, insect spermatocytes are characterized by cilium-like regions (CLRs) that elongate in the absence of IFT. It is generally believed that the dynamics of these structures relies on the free diffusion of soluble tubulin from the cytoplasm. However, this passive process could allow the elongation of short ciliary axonemes, but it is unclear whether simple diffusion of tubulin molecules can ensure the correct assembly of elongated ciliary structures. To decipher this point we analyzed the assembly of the CLRs held by the primary spermatocytes of Drosophila bifurca. These ciliary structures consist of a very elongated axoneme that grows without IFT and, therefore, could represent a good model in which to evaluate the role played by the free diffusion of soluble tubulin. The observation of wavy microtubules in the axonemal lumen of fully elongated CLRs of D. bifurca may be consistent with the diffusion of tubulin within the axonemal lumen. Progressive consumption of soluble tubulin used for axoneme growth at the apical tip of the CLRs could result in a gradient sufficient to move tubulin from the cytoplasm to the apical end of the forming ciliary structure. When the axoneme reaches its full length, tubulin molecules are not drawn to the tip of the CLRs and accumulate at the base of the axoneme, where its concentration may exceed the threshold need for microtubule polymerization. The presence of γ-TuRCs at the proximal ends of the supernumerary microtubules could enhance their nucleation.
Collapse
Affiliation(s)
| | - Ambra Pratelli
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
12
|
Ansel M, Ramachandran K, Dey G, Brunet T. Origin and evolution of microvilli. Biol Cell 2024; 116:e2400054. [PMID: 39233537 DOI: 10.1111/boc.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND INFORMATION Microvilli are finger-like, straight, and stable cellular protrusions that are filled with F-actin and present a stereotypical length. They are present in a broad range of cell types across the animal tree of life and mediate several fundamental functions, including nutrient absorption, photosensation, and mechanosensation. Therefore, understanding the origin and evolution of microvilli is key to reconstructing the evolution of animal cellular form and function. Here, we review the current state of knowledge on microvilli evolution and perform a bioinformatic survey of the conservation of genes encoding microvillar proteins in animals and their unicellular relatives. RESULTS We first present a detailed description of mammalian microvilli based on two well-studied examples, the brush border microvilli of enterocytes and the stereocilia of hair cells. We also survey the broader diversity of microvilli and discuss similarities and differences between microvilli and filopodia. Based on our bioinformatic survey coupled with carefully reconstructed molecular phylogenies, we reconstitute the order of evolutionary appearance of microvillar proteins. We document the stepwise evolutionary assembly of the "molecular microvillar toolkit" with notable bursts of innovation at two key nodes: the last common filozoan ancestor (correlated with the evolution of microvilli distinct from filopodia) and the last common choanozoan ancestor (correlated with the emergence of inter-microvillar adhesions). CONCLUSION AND SIGNIFICANCE We conclude with a scenario for the evolution of microvilli from filopodia-like ancestral structures in unicellular precursors of animals.
Collapse
Affiliation(s)
- Mylan Ansel
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Paris, France
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
- Master BioSciences, Département de Biologie, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Kaustubh Ramachandran
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thibaut Brunet
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Paris, France
| |
Collapse
|
13
|
Chaya T, Maeda Y, Tsutsumi R, Ando M, Ma Y, Kajimura N, Tanaka T, Furukawa T. Ccrk-Mak/Ick signaling is a ciliary transport regulator essential for retinal photoreceptor survival. Life Sci Alliance 2024; 7:e202402880. [PMID: 39293864 PMCID: PMC11412320 DOI: 10.26508/lsa.202402880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
Primary cilia are microtubule-based sensory organelles whose dysfunction causes ciliopathies in humans. The formation, function, and maintenance of primary cilia depend crucially on intraflagellar transport (IFT); however, the regulatory mechanisms of IFT at ciliary tips are poorly understood. Here, we identified that the ciliopathy kinase Mak is a ciliary tip-localized IFT regulator that cooperatively acts with the ciliopathy kinase Ick, an IFT regulator. Simultaneous disruption of Mak and Ick resulted in loss of photoreceptor ciliary axonemes and severe retinal degeneration. Gene delivery of Ick and pharmacological inhibition of FGF receptors, Ick negative regulators, ameliorated retinal degeneration in Mak -/- mice. We also identified that Ccrk kinase is an upstream activator of Mak and Ick in retinal photoreceptor cells. Furthermore, the overexpression of Mak, Ick, and Ccrk and pharmacological inhibition of FGF receptors suppressed ciliopathy-related phenotypes caused by cytoplasmic dynein inhibition in cultured cells. Collectively, our results show that the Ccrk-Mak/Ick axis is an IFT regulator essential for retinal photoreceptor maintenance and present activation of Ick as a potential therapeutic approach for retinitis pigmentosa caused by MAK mutations.
Collapse
Affiliation(s)
- Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yamato Maeda
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Ryotaro Tsutsumi
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Makoto Ando
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yujie Ma
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Naoko Kajimura
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Teruyuki Tanaka
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
14
|
Hilgendorf KI, Myers BR, Reiter JF. Emerging mechanistic understanding of cilia function in cellular signalling. Nat Rev Mol Cell Biol 2024; 25:555-573. [PMID: 38366037 PMCID: PMC11199107 DOI: 10.1038/s41580-023-00698-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 02/18/2024]
Abstract
Primary cilia are solitary, immotile sensory organelles present on most cells in the body that participate broadly in human health, physiology and disease. Cilia generate a unique environment for signal transduction with tight control of protein, lipid and second messenger concentrations within a relatively small compartment, enabling reception, transmission and integration of biological information. In this Review, we discuss how cilia function as signalling hubs in cell-cell communication using three signalling pathways as examples: ciliary G-protein-coupled receptors (GPCRs), the Hedgehog (Hh) pathway and polycystin ion channels. We review how defects in these ciliary signalling pathways lead to a heterogeneous group of conditions known as 'ciliopathies', including metabolic syndromes, birth defects and polycystic kidney disease. Emerging understanding of these pathways' transduction mechanisms reveals common themes between these cilia-based signalling pathways that may apply to other pathways as well. These mechanistic insights reveal how cilia orchestrate normal and pathophysiological signalling outputs broadly throughout human biology.
Collapse
Affiliation(s)
- Keren I Hilgendorf
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Benjamin R Myers
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
15
|
Jurisch-Yaksi N, Wachten D, Gopalakrishnan J. The neuronal cilium - a highly diverse and dynamic organelle involved in sensory detection and neuromodulation. Trends Neurosci 2024; 47:383-394. [PMID: 38580512 DOI: 10.1016/j.tins.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
Cilia are fascinating organelles that act as cellular antennae, sensing the cellular environment. Cilia gained significant attention in the late 1990s after their dysfunction was linked to genetic diseases known as ciliopathies. Since then, several breakthrough discoveries have uncovered the mechanisms underlying cilia biogenesis and function. Like most cells in the animal kingdom, neurons also harbor cilia, which are enriched in neuromodulatory receptors. Yet, how neuronal cilia modulate neuronal physiology and animal behavior remains poorly understood. By comparing ciliary biology between the sensory and central nervous systems (CNS), we provide new perspectives on the functions of cilia in brain physiology.
Collapse
Affiliation(s)
- Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7491 Trondheim, Norway.
| | - Dagmar Wachten
- Department of Biophysical Imaging, Institute of Innate Immunity, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany; Institute for Human Genetics, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07740 Jena, Germany
| |
Collapse
|
16
|
Mohd Rafiq N, Fujise K, Rosenfeld MS, Xu P, De Camilli P. Parkinsonism Sac domain mutation in Synaptojanin-1 affects ciliary properties in iPSC-derived dopaminergic neurons. Proc Natl Acad Sci U S A 2024; 121:e2318943121. [PMID: 38635628 PMCID: PMC11047088 DOI: 10.1073/pnas.2318943121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
Synaptojanin-1 (SJ1) is a major neuronal-enriched PI(4, 5)P2 4- and 5-phosphatase implicated in the shedding of endocytic factors during endocytosis. A mutation (R258Q) that impairs selectively its 4-phosphatase activity causes Parkinsonism in humans and neurological defects in mice (SJ1RQKI mice). Studies of these mice showed, besides an abnormal assembly state of endocytic factors at synapses, the presence of dystrophic nerve terminals selectively in a subset of nigro-striatal dopamine (DA)-ergic axons, suggesting a special lability of DA neurons to the impairment of SJ1 function. Here we have further investigated the impact of SJ1 on DA neurons using iPSC-derived SJ1 KO and SJ1RQKI DA neurons and their isogenic controls. In addition to the expected enhanced clustering of endocytic factors in nerve terminals, we observed in both SJ1 mutant neuronal lines increased cilia length. Further analysis of cilia of SJ1RQDA neurons revealed abnormal accumulation of the Ca2+ channel Cav1.3 and of ubiquitin chains, suggesting a defect in the clearing of ubiquitinated proteins at the ciliary base, where a focal concentration of SJ1 was observed. We suggest that SJ1 may contribute to the control of ciliary protein dynamics in DA neurons, with implications on cilia-mediated signaling.
Collapse
Affiliation(s)
- Nisha Mohd Rafiq
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell biology, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Kenshiro Fujise
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell biology, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Martin Shaun Rosenfeld
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell biology, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Peng Xu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell biology, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell biology, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| |
Collapse
|
17
|
Brody SL, Pan J, Huang T, Xu J, Xu H, Koenitizer J, Brennan SK, Nanjundappa R, Saba TG, Berical A, Hawkins FJ, Wang X, Zhang R, Mahjoub MR, Horani A, Dutcher SK. Loss of an extensive ciliary connectome induces proteostasis and cell fate switching in a severe motile ciliopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585965. [PMID: 38562900 PMCID: PMC10983967 DOI: 10.1101/2024.03.20.585965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Motile cilia have essential cellular functions in development, reproduction, and homeostasis. Genetic causes for motile ciliopathies have been identified, but the consequences on cellular functions beyond impaired motility remain unknown. Variants in CCDC39 and CCDC40 cause severe disease not explained by loss of motility. Using human cells with pathological variants in these genes, Chlamydomonas genetics, cryo-electron microscopy, single cell RNA transcriptomics, and proteomics, we identified perturbations in multiple cilia-independent pathways. Absence of the axonemal CCDC39/CCDC40 heterodimer results in loss of a connectome of over 90 proteins. The undocked connectome activates cell quality control pathways, switches multiciliated cell fate, impairs microtubule architecture, and creates a defective periciliary barrier. Both cilia-dependent and independent defects are likely responsible for the disease severity. Our findings provide a foundation for reconsidering the broad cellular impact of pathologic variants in ciliopathies and suggest new directions for therapies.
Collapse
Affiliation(s)
- Steven L. Brody
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jiehong Pan
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Tao Huang
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jian Xu
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Huihui Xu
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jeffrey Koenitizer
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Steven K. Brennan
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Rashmi Nanjundappa
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Thomas G. Saba
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48108, USA
| | - Andrew Berical
- Center for Regenerative Medicine, Boston University, Boston, MA, 02118, USA
| | - Finn J. Hawkins
- Center for Regenerative Medicine, Boston University, Boston, MA, 02118, USA
| | - Xiangli Wang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Moe R. Mahjoub
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Cell Biology and Physisology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Amjad Horani
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48108, USA
- Department of Cell Biology and Physisology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Susan K. Dutcher
- Department of Cell Biology and Physisology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
18
|
Zhang K, Yao E, Aung T, Chuang PT. The alveolus: Our current knowledge of how the gas exchange unit of the lung is constructed and repaired. Curr Top Dev Biol 2024; 159:59-129. [PMID: 38729684 DOI: 10.1016/bs.ctdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The mammalian lung completes its last step of development, alveologenesis, to generate sufficient surface area for gas exchange. In this process, multiple cell types that include alveolar epithelial cells, endothelial cells, and fibroblasts undergo coordinated cell proliferation, cell migration and/or contraction, cell shape changes, and cell-cell and cell-matrix interactions to produce the gas exchange unit: the alveolus. Full functioning of alveoli also involves immune cells and the lymphatic and autonomic nervous system. With the advent of lineage tracing, conditional gene inactivation, transcriptome analysis, live imaging, and lung organoids, our molecular understanding of alveologenesis has advanced significantly. In this review, we summarize the current knowledge of the constituents of the alveolus and the molecular pathways that control alveolar formation. We also discuss how insight into alveolar formation may inform us of alveolar repair/regeneration mechanisms following lung injury and the pathogenic processes that lead to loss of alveoli or tissue fibrosis.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Thin Aung
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States.
| |
Collapse
|
19
|
Hoque M, Li FQ, Weber WD, Chen JJ, Kim EN, Kuo PL, Visconti PE, Takemaru KI. The Cby3/ciBAR1 complex positions the annulus along the sperm flagellum during spermiogenesis. J Cell Biol 2024; 223:e202307147. [PMID: 38197861 PMCID: PMC10783431 DOI: 10.1083/jcb.202307147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Proper compartmentalization of the sperm flagellum is essential for fertility. The annulus is a septin-based ring that demarcates the midpiece (MP) and the principal piece (PP). It is assembled at the flagellar base, migrates caudally, and halts upon arriving at the PP. However, the mechanisms governing annulus positioning remain unknown. We report that a Chibby3 (Cby3)/Cby1-interacting BAR domain-containing 1 (ciBAR1) complex is required for this process. Ablation of either gene in mice results in male fertility defects, caused by kinked sperm flagella with the annulus mispositioned in the PP. Cby3 and ciBAR1 interact and colocalize to the annulus near the curved membrane invagination at the flagellar pocket. In the absence of Cby3, periannular membranes appear to be deformed, allowing the annulus to migrate over the fibrous sheath into the PP. Collectively, our results suggest that the Cby3/ciBAR1 complex regulates local membrane properties to position the annulus at the MP/PP junction.
Collapse
Affiliation(s)
- Mohammed Hoque
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Feng-Qian Li
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - William David Weber
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jun Jie Chen
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Eunice N. Kim
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pablo E. Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Ken-Ichi Takemaru
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
20
|
Xie S, Naslavsky N, Caplan S. Emerging insights into CP110 removal during early steps of ciliogenesis. J Cell Sci 2024; 137:jcs261579. [PMID: 38415788 PMCID: PMC10941660 DOI: 10.1242/jcs.261579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
The primary cilium is an antenna-like projection from the plasma membrane that serves as a sensor of the extracellular environment and a crucial signaling hub. Primary cilia are generated in most mammalian cells, and their physiological significance is highlighted by the large number of severe developmental disorders or ciliopathies that occur when primary ciliogenesis is impaired. Primary ciliogenesis is a tightly regulated process, and a central early regulatory step is the removal of a key mother centriole capping protein, CP110 (also known as CCP110). This uncapping allows vesicles docked on the distal appendages of the mother centriole to fuse to form a ciliary vesicle, which is bent into a ciliary sheath as the microtubule-based axoneme grows and extends from the mother centriole. When the mother centriole migrates toward the plasma membrane, the ciliary sheath fuses with the plasma membrane to form the primary cilium. In this Review, we outline key early steps of primary ciliogenesis, focusing on several novel mechanisms for removal of CP110. We also highlight examples of ciliopathies caused by genetic variants that encode key proteins involved in the early steps of ciliogenesis.
Collapse
Affiliation(s)
- Shuwei Xie
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
21
|
Li L, Ran J. Regulation of ciliary homeostasis by intraflagellar transport-independent kinesins. Cell Death Dis 2024; 15:47. [PMID: 38218748 PMCID: PMC10787775 DOI: 10.1038/s41419-024-06428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Cilia are highly conserved eukaryotic organelles that protrude from the cell surface and are involved in sensory perception, motility, and signaling. Their proper assembly and function rely on the bidirectional intraflagellar transport (IFT) system, which involves motor proteins, including antegrade kinesins and retrograde dynein. Although the role of IFT-mediated transport in cilia has been extensively studied, recent research has highlighted the contribution of IFT-independent kinesins in ciliary processes. The coordinated activities and interplay between IFT kinesins and IFT-independent kinesins are crucial for maintaining ciliary homeostasis. In this comprehensive review, we aim to delve into the specific contributions and mechanisms of action of the IFT-independent kinesins in cilia. By shedding light on their involvement, we hope to gain a more holistic perspective on ciliogenesis and ciliopathies.
Collapse
Affiliation(s)
- Lin Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
22
|
Erdelsky MR, Groves SA, Shah C, Delios SB, Umana MB, Maurice DH. Phosphodiesterase 4 activity uniquely regulates ciliary cAMP-dependent 3T3-L1 adipogenesis. Cell Signal 2024; 113:110981. [PMID: 37981066 DOI: 10.1016/j.cellsig.2023.110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Recent evidence indicates that the presence of a primary cilium (PC), and of selective cAMP signaling within this smallest of organelles, promotes adipogenic differentiation of 3T3-L1 preadipocytes incubated in media supplemented with either a natural (docosahexaenoic acid, DHA), or a synthetic (TUG-891), free fatty acid receptor 4 (FFAR4) agonist. Indeed, in this earlier work, activation of ciliary FFAR4 in 3T3-L1 cells was correlated with selective increases in PC cAMP and adipogenesis in these cells. However, this study was silent on the role of local PC cAMP phosphodiesterases (PDEs)-mediated events in regulating these adipogenic responses and on the identity of cAMP PDEs that could regulate the "pool" of ciliary cAMP accessed by FFAR4 agonists. In this context, we have identified the PDEs expressed by 3T3-L1 preadipocytes and showed that of these, only PDE4 inhibition promotes FFAR4-mediated adipogenesis. We propose that this work will identify more selective therapeutic targets through which to control adipogenesis, and perhaps the differentiation of other stem cells in which ciliary cAMP is critical.
Collapse
Affiliation(s)
- Mikayla R Erdelsky
- Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Sarah A Groves
- Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Charmi Shah
- Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Samantha B Delios
- Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - M Bibiana Umana
- Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Donald H Maurice
- Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
23
|
Wang J, Saul J, Nikonorova IA, Cruz CN, Power KM, Nguyen KC, Hall DH, Barr MM. Ciliary intrinsic mechanisms regulate dynamic ciliary extracellular vesicle release from sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565151. [PMID: 37961114 PMCID: PMC10635059 DOI: 10.1101/2023.11.01.565151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cilia-derived extracellular vesicles (EVs) contain signaling proteins and act in intercellular communication. Polycystin-2 (PKD-2), a transient receptor potential channel, is a conserved ciliary EVs cargo. Caenorhabditis elegans serves as a model for studying ciliary EV biogenesis and function. C. elegans males release EVs in a mechanically-induced manner and deposit PKD-2-labeled EVs onto the hermaphrodite vulva during mating, suggesting an active release process. Here, we study the dynamics of ciliary EV release using time-lapse imaging and find that cilia can sustain the release of PKD-2-labeled EVs for a two-hour duration. Intriguingly, this extended release doesn't require neuronal synaptic transmission. Instead, ciliary intrinsic mechanisms regulate PKD-2 ciliary membrane replenishment and dynamic EV release. The ciliary kinesin-3 motor KLP-6 is necessary for both initial and extended ciliary EV release, while the transition zone protein NPHP-4 is required only for sustained EV release. The dihydroceramide desaturase DEGS1/2 ortholog TTM-5 is highly expressed in the EV-releasing sensory neurons, localizes to cilia, and is required for sustained but not initial ciliary EV release, implicating ceramide in ciliary ectocytosis. The study offers a comprehensive portrait of real-time ciliary EV release, and mechanisms supporting cilia as proficient EV release platforms.
Collapse
Affiliation(s)
- Juan Wang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Josh Saul
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Inna A. Nikonorova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Carlos Nava Cruz
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Kaiden M. Power
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Ken C. Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - David H. Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Maureen M. Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
24
|
Rafiq NM, Fujise K, Rosenfeld MS, Xu P, Wu Y, De Camilli P. Parkinsonism Sac domain mutation in Synaptojanin-1 affects ciliary properties in iPSC-derived dopaminergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.562142. [PMID: 37873399 PMCID: PMC10592818 DOI: 10.1101/2023.10.12.562142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Synaptojanin-1 (SJ1) is a major neuronal-enriched PI(4,5)P2 4- and 5-phosphatase implicated in the shedding of endocytic factors during endocytosis. A mutation (R258Q) that impairs selectively its 4-phosphatase activity causes Parkinsonism in humans and neurological defects in mice (SJ1RQKI mice). Studies of these mice showed, besides an abnormal assembly state of endocytic factors at synapses, the presence of dystrophic nerve terminals selectively in a subset of nigro-striatal dopamine (DA)-ergic axons, suggesting a special lability of DA neurons to the impairment of SJ1 function. Here we have further investigated the impact of SJ1 on DA neurons using iPSC-derived SJ1 KO and SJ1RQKI DA neurons and their isogenic controls. In addition to the expected enhanced clustering of endocytic factors in nerve terminals, we observed in both SJ1 mutant neuronal lines increased cilia length. Further analysis of cilia of SJ1RQDA neurons revealed abnormal accumulation of the Ca2+ channel Cav1.3 and of ubiquitin chains, suggesting an impaired clearing of proteins from cilia which may result from an endocytic defect at the ciliary base, where a focal concentration of SJ1 was observed. We suggest that SJ1 may contribute to the control of ciliary protein dynamics in DA neurons, with implications on cilia-mediated signaling.
Collapse
Affiliation(s)
- Nisha Mohd Rafiq
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Cell biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair. Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Kenshiro Fujise
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Cell biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair. Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Martin Shaun Rosenfeld
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Cell biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair. Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Peng Xu
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Cell biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair. Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Yumei Wu
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Cell biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair. Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Cell biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair. Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|