1
|
Panebianco CJ, Essaidi M, Barnes E, Williams A, Vancíková K, Labberté MC, Brama P, Nowlan NC, Boerckel JD. Dynamics of postnatal bone development and epiphyseal synostosis in the caprine autopod. Dev Dyn 2025. [PMID: 40359336 DOI: 10.1002/dvdy.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/17/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Bones develop to structurally balance strength and mobility. Bone developmental dynamics are influenced by whether an animal is ambulatory at birth. Precocial species, which are ambulatory at birth, develop advanced skeletal maturity in utero and experience postnatal development under mechanical loading. Here, we characterized postnatal bone development in the lower forelimbs of precocial goats using microcomputed tomography and histology. Our analysis focused on the two phalanges 1 (P1) bones and the partially fused metacarpal bone of the goat autopod from birth through adulthood. RESULTS P1 cortical bone densified rapidly after birth, but cortical thickness increased continually through adulthood. Upon normalization by body mass, the P1 normalized polar moment of inertia was constant over time, suggestive of changes correlating with ambulatory loading. P1 trabecular bone increased in trabecular number and thickness until sexual maturity (12 months), while metacarpal trabeculae grew primarily through trabecular thickening. Unlike prenatal synostosis (i.e., bone fusion) of the metacarpal diaphysis, synostosis of the epiphyses occurred postnatally, prior to growth plate closure, through a unique fibrocartilaginous endochondral ossification. CONCLUSIONS These findings implicate ambulatory loading in postnatal bone development of precocial goats and identify a novel postnatal synostosis event in the caprine metacarpal epiphysis.
Collapse
Affiliation(s)
- Christopher J Panebianco
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maha Essaidi
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elijah Barnes
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- School of Science, Technology, Engineering, and Mathematics, Alabama State University, Montgomery, Alabama, USA
| | - Ashley Williams
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- School of Science, Technology, Engineering, and Mathematics, Alabama State University, Montgomery, Alabama, USA
| | - Karin Vancíková
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Margot C Labberté
- Translational Research Unit, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Pieter Brama
- Translational Research Unit, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Niamh C Nowlan
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Joel D Boerckel
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Li Z, Guo Z, Yang Z, Yang B, Hu Y, Xie X, Zong Z, Chen Z, Zhang K, Zhao P, Li G, Yang X, Bian L. Metabolite-dependent m 6A methylation driven by mechanotransduction-metabolism-epitranscriptomics axis promotes bone development and regeneration. Cell Rep 2025; 44:115611. [PMID: 40272981 DOI: 10.1016/j.celrep.2025.115611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 03/18/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
Intramembranous ossification, a major bone development process, begins with the condensation of precursor cells through the timely structural adaption of extracellular matrix (ECM) catering to rapid cellular morphological changes. Inspired by this, we design a highly cell-adaptable hydrogel to recapitulate an ECM-dependent mechanotransduction-metabolism-epitranscriptomics axis in mesenchymal stromal cells (MSCs). This hydrogel significantly enhances the E-cadherin-mediated cell-cell interactions of MSCs and promotes glucose uptake and tricarboxylic acid (TCA) cycle activities. We further show that elevated succinate inhibits fat mass and obesity-associated protein (FTO), a N6-methyladenosine (m6A) demethylase, thereby enhancing methyltransferase-like 3 (METTL3)-driven m6A methylation. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) indicates increased m6A methylation of runt-related transcription 2 (Runx2), a key osteogenic signaling factor, promoting osteogenesis of hydrogel-delivered MSCs and bone regeneration in critical-sized bone defects. Our findings reveal the mechanism underlying the critical impact of adaptable ECM structures on tissue development and provide valuable guidance for the design of ECM-mimetic cell carriers to enhance the therapeutic outcomes of regenerative medicine.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, China
| | - Zhengnan Guo
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zhengmeng Yang
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, China
| | - Boguang Yang
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, China
| | - Yuan Hu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xian Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, China
| | - Zhixian Zong
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, China
| | - Zekun Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Gang Li
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, China; Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Xuefeng Yang
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China.
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Lang A, Eastburn EA, Younesi M, Nijsure MP, Siciliano C, Pranatharthi Haran A, Panebianco CJ, Seidl E, Tang R, Alsberg E, Willett NJ, Gottardi R, Huh D, Boerckel JD. CYR61 delivery promotes angiogenesis during bone fracture repair. NPJ Regen Med 2025; 10:20. [PMID: 40263309 PMCID: PMC12015299 DOI: 10.1038/s41536-025-00398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 01/31/2025] [Indexed: 04/24/2025] Open
Abstract
Compromised vascular supply and insufficient neovascularization impede bone repair, increasing risk of non-union. CYR61, Cysteine-rich angiogenic inducer of 61kD (also known as CCN1), is a matricellular growth factor that has been implicated in fracture repair. Here, we map the distribution of endogenous CYR61 during bone repair and evaluate the effects of recombinant CYR61 delivery on vascularized bone regeneration. In vitro, CYR61 treatment did not alter chondrogenesis or osteogenic gene expression, but significantly enhanced angiogenesis. In a mouse femoral fracture model, CYR61 delivery did not alter cartilage or bone formation, but accelerated neovascularization during fracture repair. Early initiation of ambulatory mechanical loading disrupted CYR61-induced neovascularization. Together, these data indicate that CYR61 delivery can enhance angiogenesis during bone repair, particularly for fractures with stable fixation, and may have therapeutic potential for fractures with limited blood vessel supply.
Collapse
Affiliation(s)
- Annemarie Lang
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Emily A Eastburn
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Mousa Younesi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P Nijsure
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Carly Siciliano
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Annapurna Pranatharthi Haran
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Elizabeth Seidl
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rui Tang
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, IL, USA
| | - Nick J Willett
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
- The Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Riccardo Gottardi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel D Boerckel
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Melis S, Trompet D, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone physiology, ageing and disease. Nat Rev Endocrinol 2025; 21:135-153. [PMID: 39379711 DOI: 10.1038/s41574-024-01039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
Skeletal stem cells (SSCs) and related progenitors with osteogenic potential, collectively termed skeletal stem and/or progenitor cells (SSPCs), are crucial for providing osteoblasts for bone formation during homeostatic tissue turnover and fracture repair. Besides mediating normal bone physiology, they also have important roles in various metabolic bone diseases, including osteoporosis. SSPCs are of tremendous interest because they represent prime future targets for osteoanabolic therapies and bone regenerative medicine. Remarkable progress has been made in characterizing various SSC and SSPC populations in postnatal bone. SSPCs exist in the periosteum and within the bone marrow stroma, including subsets localizing around arteriolar and sinusoidal blood vessels; they can display osteogenic, chondrogenic, adipogenic and/or fibroblastic potential, and exert critical haematopoiesis-supportive functions. However, much remains to be clarified. By the current markers, bona fide SSCs are commonly contained within broader SSPC populations characterized by considerable heterogeneity and overlap, whose common versus specific functions in health and disease have not been fully unravelled. Here, we review the present knowledge of the identity, fates and relationships of SSPC populations in the postnatal bone environment, their contributions to bone maintenance, the changes observed upon ageing, and the effect of metabolic diseases such as osteoporosis and diabetes mellitus.
Collapse
Affiliation(s)
- Seppe Melis
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Andrei S Chagin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Joung J, Heo Y, Kim Y, Kim J, Choi H, Jeon T, Jang Y, Kim EJ, Lee SH, Suh JM, Elledge SJ, Kim MS, Kang C. Cell enlargement modulated by GATA4 and YAP instructs the senescence-associated secretory phenotype. Nat Commun 2025; 16:1696. [PMID: 39962062 PMCID: PMC11833096 DOI: 10.1038/s41467-025-56929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Dynamic changes in cell size are associated with development and pathological conditions, including aging. Although cell enlargement is a prominent morphological feature of cellular senescence, its functional implications are unknown; moreover, how senescent cells maintain their enlargement state is less understood. Here we show that an extensive remodeling of actin cytoskeleton is necessary for establishing senescence-associated cell enlargement and pro-inflammatory senescence-associated secretory phenotype (SASP). This remodeling is attributed to a balancing act between the SASP regulator GATA4 and the mechanosensor YAP on the expression of the Rho family of GTPase RHOU. Genetic or pharmacological interventions that reduce cell enlargement attenuate SASP with minimal effect on senescence growth arrest. Mechanistically, actin cytoskeleton remodeling couples cell enlargement to the nuclear localization of GATA4 and NF-κB via the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. RhoU protein accumulates in mouse adipose tissue under senescence-inducing conditions. Furthermore, RHOU expression correlates with SASP expression in adipose tissue during human aging. Thus, our study highlights an unexpected instructive role of cell enlargement in modulating the SASP and reveals a mechanical branch in the senescence regulatory network.
Collapse
Affiliation(s)
- Joae Joung
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Yekang Heo
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Yeonju Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Jaejin Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Haebeen Choi
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Taerang Jeon
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Yeji Jang
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Eun-Jung Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Sang Heon Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, South Korea
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, South Korea
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Mi-Sung Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea.
| | - Chanhee Kang
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
6
|
Huang Y, Ouyang X, Tan J, Meng Z, Ma X, Yan Y. The physiological and pathogenic roles of yes-associated protein/transcriptional co-activator with PDZ-binding motif in bone or skeletal motor system-related cells. Cytojournal 2025; 22:13. [PMID: 40134564 PMCID: PMC11932947 DOI: 10.25259/cytojournal_237_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/02/2025] [Indexed: 03/27/2025] Open
Abstract
Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) are the primary downstream effectors of the Hippo signaling pathway. This pathway plays a crucial role in regulating organ size, maintaining tissue homeostasis, and controlling cellular processes such as fate determination and tissue development. This review provides an overview of the current understanding of how the transcriptional regulators YAP and TAZ contribute to the physiological and pathological processes in tissues and cells associated with the skeletal motor system. The underlying molecular mechanisms and mechanical transduction were reviewed.
Collapse
Affiliation(s)
- Yao Huang
- Department of Spinal Surgery, Orthopaedic Research Center, The First Affiliated Hospital of the University of South China, Hengyang, China
| | - Xueqian Ouyang
- Department of Spinal Surgery, Orthopaedic Research Center, The First Affiliated Hospital of the University of South China, Hengyang, China
| | - Jinghua Tan
- Department of Spinal Surgery, Orthopaedic Research Center, The First Affiliated Hospital of the University of South China, Hengyang, China
| | - Zhenyu Meng
- Department of Spinal Surgery, Orthopaedic Research Center, The First Affiliated Hospital of the University of South China, Hengyang, China
| | - Xiuwen Ma
- Department of Spinal Surgery, Orthopaedic Research Center, The First Affiliated Hospital of the University of South China, Hengyang, China
| | - Yiguo Yan
- Department of Spinal Surgery, Orthopaedic Research Center, The First Affiliated Hospital of the University of South China, Hengyang, China
| |
Collapse
|
7
|
Shi Q, Song Y, Cao J, Na J, Yang Z, Chen X, Wang Z, Fan Y, Zheng L. Inhibition of Mitochondrial Fission Reverses Simulated Microgravity-Induced Osteoblast Dysfunction by Enhancing Mechanotransduction and Epigenetic Modification. RESEARCH (WASHINGTON, D.C.) 2025; 8:0602. [PMID: 39906534 PMCID: PMC11791006 DOI: 10.34133/research.0602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 02/06/2025]
Abstract
Simulated microgravity (SMG) poses substantial challenges to astronaut health, particularly impacting osteoblast function and leading to disuse osteoporosis. This study investigates the adverse effects of SMG on osteoblasts, focusing on changes in mitochondrial dynamics and their consequent effects on cellular energy metabolism and mechanotransduction pathways. We discovered that SMG markedly reduced the expression of osteoblast differentiation markers and promoted mitochondrial fission, as indicated by an increase in punctate mitochondria, a decrease in mitochondrial length, and a reduction in cristae density. These mitochondrial alterations are linked to elevated reactive oxygen species levels, a decrease in ΔΨm, and a metabolic shift from oxidative phosphorylation to glycolysis, resulting in decreased adenosine triphosphate production, which are all indicative of mitochondrial dysfunction. Our results showed that treatment with mitochondrial division inhibitor-1 (mdivi-1), a mitochondrial fission inhibitor, effectively inhibited these SMG-induced effects, thereby maintaining mitochondrial structure and function and promoting osteoblast differentiation. Furthermore, SMG disrupted critical mechanotransduction processes, by affecting paxillin expression, the RhoA-ROCK-Myosin II pathway, and actin dynamics, which subsequently altered nuclear morphology and disrupted Yes-associated protein signaling. Notably, treatment with mdivi-1 prevented these disruptions in mechanotransduction pathways. Moreover, our study showed that SMG-induced chromatin remodeling and histone methylation, which are epigenetic barriers to osteogenic differentiation, can be reversed by targeting mitochondrial fission, further highlighting the significance of mitochondrial dynamics in osteoblast function in an SMG environment. Therefore, targeting mitochondrial fission emerges as a promising therapeutic strategy to alleviate osteoblast dysfunction under SMG conditions, providing novel approaches to maintain bone health during prolonged space missions and safeguard the astronaut well-being.
Collapse
Affiliation(s)
| | | | - Jingqi Cao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering,
Beihang University, Beijing 100083, China
| | - Jing Na
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering,
Beihang University, Beijing 100083, China
| | - Zhijie Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering,
Beihang University, Beijing 100083, China
| | - Xinyuan Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering,
Beihang University, Beijing 100083, China
| | - Ziyi Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering,
Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering,
Beihang University, Beijing 100083, China
| | - Lisha Zheng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering,
Beihang University, Beijing 100083, China
| |
Collapse
|
8
|
Ambrosi TH. Surveying the landscape of emerging osteoanabolic therapies. Nat Rev Endocrinol 2025; 21:75-76. [PMID: 39653789 DOI: 10.1038/s41574-024-01076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Affiliation(s)
- Thomas H Ambrosi
- Department of Orthopaedic Surgery, University of California, Davis, Sacramento, CA, USA.
| |
Collapse
|
9
|
Zheng F, Wu T, Wang F, Tang H, Cui X, Liu D, Chen P, Fu J, Li C, Jiang J. Effect of low-intensity pulsed ultrasound on the mineralization of force-treated cementoblasts and orthodontically induced inflammatory root resorption via the Lamin A/C-Yes associated protein axis. J Periodontal Res 2025; 60:189-199. [PMID: 39095980 DOI: 10.1111/jre.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
AIMS Orthodontic treatment commonly results in orthodontically induced inflammatory root resorption (OIIRR). This condition arises from excessive orthodontic force, which triggerslocal inflammatory responses and impedes cementoblasts' mineralization capacity. Low-intensity pulsed ultrasound (LIPUS) shows potential in reducing OIIRR. However, the precise mechanisms through which LIPUS reduces OIIRR remain unclear. This study aimed to explore the effects and mechanisms of LIPUS on the mineralization of force-treated cementoblasts and its impact on OIIRR. METHODS We established a rat OIIRR model and locally administered LIPUS stimulation for 7 and 14 days. We analyzed root resorption volume, osteoclast differentiation, and the expression of osteocalcin and yes-associated protein 1 (YAP1) using micro-computed tomography (micro-CT), hematoxylin and eosin, tartrate-resistant acid phosphatase, immunofluorescence and immunohistochemistry staining. In vitro, we applied compressive force and LIPUS to the immortalized mouse cementoblasts (OCCM30). We assessed mineralization using alkaline phosphatase (ALP) staining, alizarin red staining, real-time quantitative polymerase chain reaction, Western blotting and immunofluorescence staining. RESULTS In rats, LIPUS reduced OIIRR, as evidenced by micro-CT analysis and histological staining. In vitro, LIPUS enhanced mineralization of force-treated OCCM30 cells, as indicated by ALP and alizarin red staining, upregulated mRNA expression of mineralization-related genes, and increased protein expression of mineralization markers. Mechanistically, LIPUS activated YAP1 signaling via the cytoskeleton-Lamin A/C pathway, supported by immunofluorescence and Western blot analysis. CONCLUSION This study demonstrates that LIPUS promotes mineralization in force-treated cementoblasts and reduces OIIRR by activating YAP1 through the cytoskeletal-Lamin A/C signaling pathway. These findings provide fresh insights into how LIPUS benefits orthodontic treatment and suggest potential strategies for preventing and treating OIIRR.
Collapse
Affiliation(s)
- Fu Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Tong Wu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Feifei Wang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Hongyi Tang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xinyu Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Duo Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Peng Chen
- Department of Orthodontics, School of Stomatology Affiliated to Medical College, Zhejiang University, Hangzhou, China
| | - Jiangfeng Fu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Cuiying Li
- Central Laboratory, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Jiuhui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
10
|
Zhou W, Lin J, Wang Q, Wang X, Yao X, Yan Y, Sun W, Zhu Q, Zhang X, Wang X, Ji B, Ouyang H. Chromatin-site-specific accessibility: A microtopography-regulated door into the stem cell fate. Cell Rep 2025; 44:115106. [PMID: 39723890 DOI: 10.1016/j.celrep.2024.115106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Biomaterials that mimic extracellular matrix topography are crucial in tissue engineering. Previous research indicates that certain biomimetic topography can guide stem cells toward multiple specific lineages. However, the mechanisms by which topographic cues direct stem cell differentiation remain unclear. Here, we demonstrate that microtopography influences nuclear tension in mesenchymal stem cells (MSCs), shaping chromatin accessibility and determining lineage commitment. On aligned substrates, MSCs exhibit high cytoskeletal tension along the fiber direction, creating anisotropic nuclear stress that opens chromatin sites for neurogenic, myogenic, and tenogenic genes via transcription factors like Nuclear receptor TLX (TLX). In contrast, random substrates induce isotropic nuclear stress, promoting chromatin accessibility for osteogenic and chondrogenic genes through Runt-related transcription factors (RUNX). Our findings reveal that aligned and random microtopographies direct site-specific chromatin stretch and lineage-specific gene expression, priming MSCs for distinct lineages. This study introduces a novel framework for understanding how topographic cues govern cell fate in tissue repair and regeneration.
Collapse
Affiliation(s)
- Wenyan Zhou
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; School of Medicine, Taizhou University, Taizhou, Zhejiang Province 318000, China
| | - Junxin Lin
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; School of Medicine, Taizhou University, Taizhou, Zhejiang Province 318000, China
| | - Qianchun Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325000, China
| | - Xianliu Wang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 200051, China
| | - Xudong Yao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province 322000, China
| | - Yiyang Yan
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang Province 314400, China
| | - Wei Sun
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang Province 314400, China
| | - Qiuwen Zhu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Xiaoan Zhang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Xiaozhao Wang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Baohua Ji
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, Zhejiang Province 310027, China; Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.
| | - Hongwei Ouyang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang Province 314400, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
11
|
Zhu Y, Chen J, Chen C, Tang R, Xu J, Shi S, Yu X. Deciphering mechanical cues in the microenvironment: from non-malignant settings to tumor progression. Biomark Res 2025; 13:11. [PMID: 39849659 PMCID: PMC11755887 DOI: 10.1186/s40364-025-00727-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/05/2025] [Indexed: 01/25/2025] Open
Abstract
The tumor microenvironment functions as a dynamic and intricate ecosystem, comprising a diverse array of cellular and non-cellular components that precisely orchestrate pivotal tumor behaviors, including invasion, metastasis, and drug resistance. While unraveling the intricate interplay between the tumor microenvironment and tumor behaviors represents a tremendous challenge, recent research illuminates a crucial biological phenomenon known as cellular mechanotransduction. Within the microenvironment, mechanical cues like tensile stress, shear stress, and stiffness play a pivotal role by activating mechanosensitive effectors such as PIEZO proteins, integrins, and Yes-associated protein. This activation initiates cascades of intrinsic signaling pathways, effectively linking the physical properties of tissues to their physiological and pathophysiological processes like morphogenesis, regeneration, and immunity. This mechanistic insight offers a novel perspective on how the mechanical cues within the tumor microenvironment impact tumor behaviors. While the intricacies of the mechanical tumor microenvironment are yet to be fully elucidated, it exhibits distinct physical attributes from non-malignant tissues, including elevated solid stresses, interstitial hypertension, augmented matrix stiffness, and enhanced viscoelasticity. These traits exert notable influences on tumor progression and treatment responses, enriching our comprehension of the multifaceted nature of the microenvironment. Through this innovative review, we aim to provide a new lens to decipher the mechanical attributes within the tumor microenvironment from non-malignant contexts, broadening our knowledge on how these factors promote or inhibit tumor behaviors, and thus offering valuable insights to identify potential targets for anti-tumor strategies.
Collapse
Affiliation(s)
- Yicheng Zhu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiaoshun Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Rong Tang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
12
|
Panebianco CJ, Essaidi M, Barnes E, Williams A, Vancíková K, Labberté MC, Brama P, Nowlan NC, Boerckel JD. Dynamics of postnatal bone development and epiphyseal synostosis in the caprine autopod. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.26.630423. [PMID: 39763848 PMCID: PMC11703179 DOI: 10.1101/2024.12.26.630423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Bones develop to structurally balance strength and mobility. Bone developmental dynamics are influenced by whether an animal is ambulatory at birth (i.e., precocial). Precocial species, such as goats, develop advanced skeletal maturity in utero, making them useful models for studying the dynamics of bone formation under mechanical load. Here, we used microcomputed tomography and histology to characterize postnatal bone development in the autopod of the caprine lower forelimb. The caprine autopod features two toes, fused by metacarpal synostosis (i.e., bone fusion) prior to birth. Our analysis focused on the phalanges 1 (P1) and metacarpals of the goat autopod from birth through adulthood (3.5 years). P1 cortical bone densified rapidly after birth (half-life using one-phase exponential decay model (τ1/2 = 1.6 ± 0.4 months), but the P1 cortical thickness increased continually through adulthood (τ1/2 = 7.2 ± 2.7 mo). Upon normalization by body mass, the normalized polar moment of inertia of P1 cortical bone was constant over time, suggestive of structural load adaptation. P1 trabecular bone increased in trabecular number (τ1/2 = 6.7 ± 2.8 mo) and thickness (τ1/2 = 6.6 ± 2.0 mo) until skeletal maturity, while metacarpal trabeculae grew primarily through trabecular thickening (τ1/2 = 7.9 ± 2.2 mo). Unlike prenatal fusion of the metacarpal diaphysis, synostosis of the epiphyses occurred postnatally, prior to growth plate closure, through a unique fibrocartilaginous endochondral ossification. These findings implicate ambulatory loading in postnatal bone development of precocial goats and identify a novel postnatal synostosis event in the caprine metacarpal epiphysis.
Collapse
Affiliation(s)
- Christopher J. Panebianco
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Maha Essaidi
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Elijah Barnes
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- School of Science, Technology, Engineering, and Mathematics, Alabama State University, Montgomery, AL, USA
| | - Ashley Williams
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- School of Science, Technology, Engineering, and Mathematics, Alabama State University, Montgomery, AL, USA
| | - Karin Vancíková
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Margot C. Labberté
- Translational Research Unit, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Pieter Brama
- Translational Research Unit, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Niamh C. Nowlan
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Joel D. Boerckel
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Nijsure MP, Tobin B, Jones DL, Lang A, Hallström G, Baitner M, Tanner GI, Moharrer Y, Panebianco CJ, Seidl EG, Dyment NA, Szeto GL, Wood L, Boerckel JD. YAP regulates periosteal expansion in fracture repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.630086. [PMID: 39764016 PMCID: PMC11703278 DOI: 10.1101/2024.12.23.630086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Bone fracture repair initiates by periosteal expansion. The periosteum is typically quiescent, but upon fracture, periosteal cells proliferate and contribute to bone fracture repair. The expansion of the periosteum is regulated by gene transcription; however, the molecular mechanisms behind periosteal expansion are unclear. Here, we show that Yes-Associated Protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) mediate periosteal expansion and periosteal cell proliferation. Bone fracture increases the number of YAP-expressing periosteal cells, and deletion of YAP and TAZ from Osterix (Osx) expressing cells impairs early periosteal expansion. Mechanistically, YAP regulates both 'cell-intrinsic' and 'cell-extrinsic' factors that allow for periosteal expansion. Specifically, we identified Bone Morphogenetic Protein 4 (BMP4) as a cell extrinsic factor regulated by YAP, that rescues the impairment of periosteal expansion upon YAP/TAZ deletion. Together, these data establish YAP mediated transcriptional mechanisms that induce periosteal expansion in the early stages of fracture repair and provide new putative targets for therapeutic interventions.
Collapse
Affiliation(s)
- Madhura P Nijsure
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brendan Tobin
- School of Chemical and Biomolecular Engineering, Georgia Tech College of Engineering, Atlanta, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, USA
| | - Dakota L Jones
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Annemarie Lang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Grey Hallström
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Miriam Baitner
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabrielle I Tanner
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yasaman Moharrer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Mechanical Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher J Panebianco
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth G Seidl
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathaniel A Dyment
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory L Szeto
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, USA
| | - Levi Wood
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Tech College of Engineering, Atlanta, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Joel D Boerckel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Lu X, Zhao Y, Peng X, Lu C, Wu Z, Xu H, Qin Y, Xu Y, Wang Q, Hao Y, Geng D. Comprehensive Overview of Interface Strategies in Implant Osseointegration. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202418849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 01/05/2025]
Abstract
AbstractWith the improvement of implant design and the expansion of application scenarios, orthopedic implants have become a common surgical option for treating fractures and end‐stage osteoarthritis. Their common goal is rapidly forming and long‐term stable osseointegration. However, this fixation effect is limited by implant surface characteristics and peri‐implant bone tissue activity. Therefore, this review summarizes the strategies of interface engineering (osteogenic peptides, growth factors, and metal ions) and treatment methods (porous nanotubes, hydrogel embedding, and other load‐release systems) through research on its biological mechanism, paving the way to achieve the adaptation of both and coordination between different strategies. With the transition of the osseointegration stage, interface engineering strategies have demonstrated varying therapeutic effects. Especially, the activity of osteoblasts runs almost through the entire process of osseointegration, and their physiological activities play a dominant role in bone formation. Furthermore, diseases impacting bone metabolism exacerbate the difficulty of achieving osseointegration. This review aims to assist future research on osseointegration engineering strategies to improve implant‐bone fixation, promote fracture healing, and enhance post‐implantation recovery.
Collapse
Affiliation(s)
- Xiaoheng Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuhu Zhao
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Xiaole Peng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University 1 Youyi Street Chongqing 400016 China
| | - Chengyao Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Zebin Wu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Hao Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yi Qin
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Qing Wang
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center The Affiliated Suzhou Hospital of Nanjing Medical University 242 Guangji Street Suzhou Jiangsu 215006 China
| | - Dechun Geng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| |
Collapse
|
15
|
Gugala Z. What's New in Musculoskeletal Basic Science. J Bone Joint Surg Am 2024; 106:2181-2186. [PMID: 39418351 DOI: 10.2106/jbjs.24.01086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Affiliation(s)
- Zbigniew Gugala
- Department of Orthopaedic Surgery and Rehabilitation, The University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
16
|
DENG Y, QIU R, LIU X, SU Y, XUE Y, DU Y. [Mechanism of Bone-metastatic LUAD Cells Promoting Angiogenesis
Through HGF/YAP Signaling Pathway]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:805-814. [PMID: 39800475 PMCID: PMC11732382 DOI: 10.3779/j.issn.1009-3419.2024.102.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND The early stages of tumor bone metastasis are closely associated with changes in the vascular niche of the bone microenvironment, and abnormal angiogenesis accelerates tumor metastasis and progression. However, the effects of lung adenocarcinoma (LUAD) cells reprogrammed by the bone microenvironment on the vascular niche within the bone microenvironment and the underlying mechanisms remain unclear. This study investigates the effects and mechanisms of LUAD cells reprogrammed by the bone microenvironment on endothelial cells and angiogenesis, providing insights into the influence of tumor cells on the vascular niche within the bone microenvironment. METHODS The culture media from bone-metastatic LUAD cell A549-GFP-LUC-BM3 (BM3-CM) and A549-GFP-LUC (A549-CM) were separately applied to human umbilical vein endothelial cell (HUVEC). A colony formation assay, scratch assay, and tube formation assay were conducted to evaluate the proliferation, migration, and angiogenesis of HUVEC. Gene set enrichment analysis (GSEA) was conducted to identify enriched pathways, while reverse transcription quantitative polymerase chain reaction (RT-qPCR) and enzyme linked immunosorbent assay (ELISA) were performed to quantify hepatocyte growth factor (HGF), a protein that plays a crucial role in angiogenesis. Furthermore, the pivotal function of HGF and its underlying molecular mechanisms have been substantiated through the utilisation of recombinant proteins, neutralising antibodies, pathway inhibitors, immunofluorescence staining, and Western blot. RESULTS BM3-CM demonstrated a more pronounced impact on the proliferation, migration, and angiogenesis of HUVEC compared to A549-CM. Bioinformatics analysis, combined with in vitro experiment, demonstrated that the secretory protein HGF was significantly elevated in BM3 cells and BM3-CM (P<0.05). The addition of HGF neutralizing antibodies to BM3-CM inhibited the promoting effect of BM3-CM on HUVEC (P<0.05), while the addition of recombinant HGF to A549-CM reproduced that promoting effect of BM3-CM on HUVEC (P<0.05). HGF can enhance the activation of YAP (Yes-associated protein) in HUVEC, and this promotion effect may be achieved by activating Src and activating YAP into the nucleus (P<0.05), but this effect can be inhibited by HGF neutralizing antibodies (P<0.05). Furthermore, the addition of recombinant HGF to A549-CM can recapitulate the YAP activation effect of BM3-CM in HUVEC (P<0.05). CONCLUSIONS Bone microenvironment reprogrammed bone-metastatic LUAD cells BM3 promote the proliferation, migration, and angiogenesis of HUVEC through the HGF/YAP axis, potentially playing a significant role in the modifications of the vascular niche.
Collapse
|
17
|
Housman G. Advances in skeletal genomics research across tissues and cells. Curr Opin Genet Dev 2024; 88:102245. [PMID: 39180931 DOI: 10.1016/j.gde.2024.102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Phenotypic variation within the skeleton has biological, behavioral, and biomedical functional implications for individuals and species. Thus, it is critical to understand how genomic, environmental, and mediating regulatory factors combine and interact to drive skeletal trait development and evolution. Recent research efforts to clarify these mechanisms have been made possible by expanded collections of genomic and phenotypic data from in vivo skeletal tissues, as well as the development of relevant in vitro skeletal cell culture systems. This review outlines this current work and recommends that continued exploration of this complexity should include an increased focus on how interactions between genomic and physiologically relevant contexts contribute to skeletal trait variation at population and evolutionary scales.
Collapse
Affiliation(s)
- Genevieve Housman
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| |
Collapse
|
18
|
Han L, Ji Y, Yu Y, Ni Y, Zeng H, Zhang X, Liu H, Zhang Y. Trajectory-centric framework TrajAtlas reveals multi-scale differentiation heterogeneity among cells, genes, and gene modules in osteogenesis. PLoS Genet 2024; 20:e1011319. [PMID: 39436962 PMCID: PMC11530032 DOI: 10.1371/journal.pgen.1011319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/01/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Osteoblasts, the key cells responsible for bone formation and the maintenance of skeletal integrity, originate from a diverse array of progenitor cells. However, the mechanisms underlying osteoblast differentiation from these multiple osteoprogenitors remain poorly understood. To address this knowledge gap, we developed a comprehensive framework to investigate osteoblast differentiation at multiple scales, encompassing cells, genes, and gene modules. We constructed a reference atlas focused on differentiation, which incorporates various osteoprogenitors and provides a seven-level cellular taxonomy. To reconstruct the differentiation process, we developed a model that identifies the transcription factors and pathways involved in differentiation from different osteoprogenitors. Acknowledging that covariates such as age and tissue type can influence differentiation, we created an algorithm to detect differentially expressed genes throughout the differentiation process. Additionally, we implemented methods to identify conserved pseudotemporal gene modules across multiple samples. Overall, our framework systematically addresses the heterogeneity observed during osteoblast differentiation from diverse sources, offering novel insights into the complexities of bone formation and serving as a valuable resource for understanding osteogenesis.
Collapse
Affiliation(s)
- Litian Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Yiqian Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Yueqi Ni
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Hao Zeng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoxin Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Huan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei Province, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei Province, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
19
|
Naik A, Chitturi P, Nguyen J, Leask A. The yes-associated protein-1 (YAP1) inhibitor celastrol suppresses the ability of transforming growth factor β to activate human gingival fibroblasts. Arch Oral Biol 2024; 160:105910. [PMID: 38364717 DOI: 10.1016/j.archoralbio.2024.105910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024]
Abstract
OBJECTIVE To determine whether celastrol, an inhibitor of the mechanosensitive transcriptional cofactor yes-associated protein-1 (YAP1), impairs the ability of TGFβ1 to stimulate fibrogenic activity in human gingival fibroblast cell line. DESIGN Human gingival fibroblasts were pre-treated with celastrol or DMSO followed by stimulation with or without TGFβ1 (4 ng/ml). We then utilized bulk RNA sequencing (RNAseq), real-time polymerase chain reaction (RT-PCR), Western blot, immunofluorescence, cell proliferation assays to determine if celastrol impaired TGFβ1-induced responses in a human gingival fibroblast cell line. RESULTS Celastrol impaired the ability of TGFβ1 to induce expression of the profibrotic marker and mediator CCN2. Bulk RNAseq analysis of gingival fibroblasts treated with TGFβ1, in the presence or absence of celastrol, revealed that celastrol impaired the ability of TGFβ1 to induce mRNA expression of genes within extracellular matrix, wound healing, focal adhesion and cytokine/Wnt signaling clusters. RT-PCR analysis of extracted RNAs confirmed that celastrol antagonized the ability of TGFβ1 to induce expression of genes anticipated to contribute to fibrotic responses. Celastrol also reduced gingival fibroblast proliferation, and YAP1 nuclear localization in response to TGFβ1. CONCLUSION YAP1 inhibitors such as celastrol could be used to impair pro-fibrotic responses to TGFβ1 in human gingival fibroblasts.
Collapse
Affiliation(s)
- Angha Naik
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - John Nguyen
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
20
|
Lang A, Benn A, Collins JM, Wolter A, Balcaen T, Kerckhofs G, Zwijsen A, Boerckel JD. Endothelial SMAD1/5 signaling couples angiogenesis to osteogenesis in juvenile bone. Commun Biol 2024; 7:315. [PMID: 38480819 PMCID: PMC10937971 DOI: 10.1038/s42003-024-05915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Skeletal development depends on coordinated angiogenesis and osteogenesis. Bone morphogenetic proteins direct bone formation in part by activating SMAD1/5 signaling in osteoblasts. However, the role of SMAD1/5 in skeletal endothelium is unknown. Here, we found that endothelial cell-conditional SMAD1/5 depletion in juvenile mice caused metaphyseal and diaphyseal hypervascularity, resulting in altered trabecular and cortical bone formation. SMAD1/5 depletion induced excessive sprouting and disrupting the morphology of the metaphyseal vessels, with impaired anastomotic loop formation at the chondro-osseous junction. Endothelial SMAD1/5 depletion impaired growth plate resorption and, upon long-term depletion, abrogated osteoprogenitor recruitment to the primary spongiosa. Finally, in the diaphysis, endothelial SMAD1/5 activity was necessary to maintain the sinusoidal phenotype, with SMAD1/5 depletion inducing formation of large vascular loops and elevated vascular permeability. Together, endothelial SMAD1/5 activity sustains skeletal vascular morphogenesis and function and coordinates growth plate remodeling and osteoprogenitor recruitment dynamics in juvenile mouse bone.
Collapse
Affiliation(s)
- Annemarie Lang
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden (TUD), Fetscherstrasse 74, Dresden, 01307, Germany.
| | - Andreas Benn
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, 3000, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven, 3000, Belgium
| | - Joseph M Collins
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Angelique Wolter
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, 14163, Germany
| | - Tim Balcaen
- Institute of Mechanics, Materials and Civil Engineering, Biomechanics lab, UCLouvain, Louvain-la-Neuve, 1348, Belgium
- Institute of Experimental and Clinical Research, Pole of Morphology, UCLouvain, Brussels, 1200, Belgium
- KU Leuven, Department of Chemistry, Sustainable Chemistry for Metals and Molecules, Leuven, 3000, Belgium
| | - Greet Kerckhofs
- Institute of Mechanics, Materials and Civil Engineering, Biomechanics lab, UCLouvain, Louvain-la-Neuve, 1348, Belgium
- Institute of Experimental and Clinical Research, Pole of Morphology, UCLouvain, Brussels, 1200, Belgium
- Department of Materials Engineering, KU Leuven, Heverlee, 3001, Belgium
- Division for Skeletal Tissue Engineering, Prometheus, KU Leuven, Leuven, 3000, Belgium
| | - An Zwijsen
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, 3000, Belgium
| | - Joel D Boerckel
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Wein MN. Blood and bones: Mechanical cues and Hippo signaling drive vascular invasion during limb formation. Dev Cell 2024; 59:173-174. [PMID: 38262346 DOI: 10.1016/j.devcel.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024]
Abstract
Although mechanical cues are known to influence the postnatal skeleton, the impact of bone cell mechano-transduction on early skeletal development remains less clear. In this issue of Developmental Cell, Collins et al. (2023) report that YAP/TAZ deletion in osteoblast precursors reduces Cxcl12 expression, leading to defects in bone vascularization.
Collapse
Affiliation(s)
- Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|