1
|
Pan G, Roy B, Giri S, Lanfear DE, Thandavarayan RA, Guha A, Ortiz PA, Palaniyandi SS. Aldehyde Dehydrogenase 2 Activator Augments the Beneficial Effects of Empagliflozin in Mice with Diabetes-Associated HFpEF. Int J Mol Sci 2022; 23:10439. [PMID: 36142350 PMCID: PMC9499333 DOI: 10.3390/ijms231810439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 01/24/2023] Open
Abstract
To ameliorate diabetes mellitus-associated heart failure with preserved ejection fraction (HFpEF), we plan to lower diabetes-mediated oxidative stress-induced 4-hydroxy-2-nonenal (4HNE) accumulation by pharmacological agents that either decrease 4HNE generation or increase its detoxification.A cellular reactive carbonyl species (RCS), 4HNE, was significantly increased in diabetic hearts due to a diabetes-induced decrease in 4HNE detoxification by aldehyde dehydrogenase (ALDH) 2, a cardiac mitochondrial enzyme that metabolizes 4HNE. Therefore, hyperglycemia-induced 4HNE is critical for diabetes-mediated cardiotoxicity and we hypothesize that lowering 4HNE ameliorates diabetes-associated HFpEF. We fed a high-fat diet to ALDH2*2 mice, which have intrinsically low ALDH2 activity, to induce type-2 diabetes. After 4 months of diabetes, the mice exhibited features of HFpEF along with increased 4HNE adducts, and we treated them with vehicle, empagliflozin (EMP) (3 mg/kg/d) to reduce 4HNE and Alda-1 (10 mg/kg/d), and ALDH2 activator to enhance ALDH2 activity as well as a combination of EMP + Alda-1 (E + A), via subcutaneous osmotic pumps. After 2 months of treatments, cardiac function was assessed by conscious echocardiography before and after exercise stress. EMP + Alda-1 improved exercise tolerance, diastolic and systolic function, 4HNE detoxification and cardiac liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) pathways in ALDH2*2 mice with diabetes-associated HFpEF. This combination was even more effective than EMP alone. Our data indicate that ALDH2 activation along with the treatment of hypoglycemic agents may be a salient strategy to alleviate diabetes-associated HFpEF.
Collapse
Affiliation(s)
- Guodong Pan
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit, MI 48202, USA
| | - Bipradas Roy
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit, MI 48202, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - David E. Lanfear
- Heart and Vascular Institute, Henry Ford Hospital, Detroit, MI 48202, USA
- Center for Health Policy and Health Services Research, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | - Ashrith Guha
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Pablo A. Ortiz
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit, MI 48202, USA
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
2
|
Type 2 Diabetes Induced by Changes in Proteomic Profiling of Zebrafish Chronically Exposed to a Mixture of Organochlorine Pesticides at Low Concentrations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19094991. [PMID: 35564385 PMCID: PMC9100612 DOI: 10.3390/ijerph19094991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023]
Abstract
Effect of organochlorine pesticides (OCPs) mixtures on development of type 2 diabetes mellitus (T2DM) and the underlying mechanism, especially at protein levels, are largely unknown. We exposed a mixture of five OCPs to zebrafish at concentrations of 0, 0.05, 0.25, 2.5, and 25 μg/L for 12 weeks. Differentially expressed proteins (DEPs) were quantitatively identified in female zebrafish livers, and its functional study was conducted. The significantly high glucose and low insulin levels were observed only at 0.05 μg/L, linking to the different pattern of DEPs than other concentrations. A total of 1082 proteins was quantified, of which 321 proteins formed 6 clusters in protein dynamics analysis. The enriched pathways in cluster 3 showing distinct pattern of DEPs could explain the nonlinear response at 0.05 μg/L, indicating that OCP mixtures adversely affected proteins associated with mitochondrial function and energy metabolism. We proposed a feasible mechanism that decrease in expression of aldehyde dehydrogenase led to abnormal accumulation of aldehydes, reducing expression of glyceraldehyde 3-phosphate dehydrogenase, and resulting in disruption of glucose homeostasis. Our findings help to better understand the causality of T2DM by exposure to OCP mixtures and to identify biomarkers in the protein expression level.
Collapse
|
3
|
Pan G, Roy B, Palaniyandi SS. Diabetic Aldehyde Dehydrogenase 2 Mutant (ALDH2*2) Mice Are More Susceptible to Cardiac Ischemic-Reperfusion Injury Due to 4-Hydroxy-2-Nonenal Induced Coronary Endothelial Cell Damage. J Am Heart Assoc 2021; 10:e021140. [PMID: 34482710 PMCID: PMC8649540 DOI: 10.1161/jaha.121.021140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Aldehyde dehydrogenase‐2 (ALDH2), a mitochondrial enzyme, detoxifies reactive aldehydes such as 4‐hydroxy‐2‐nonenal (4HNE). A highly prevalent E487K mutation in ALDH2 (ALDH2*2) in East Asian people with intrinsic low ALDH2 activity is implicated in diabetic complications. 4HNE‐induced cardiomyocyte dysfunction was studied in diabetic cardiac damage; however, coronary endothelial cell (CEC) injury in myocardial ischemia‐reperfusion injury (IRI) in diabetic mice has not been studied. Therefore, we hypothesize that the lack of ALDH2 activity exacerbates 4HNE‐induced CEC dysfunction which leads to cardiac damage in ALDH2*2 mutant diabetic mice subjected to myocardial IRI. Methods and Results Three weeks after diabetes mellitus (DM) induction, hearts were subjected to IRI either in vivo via left anterior descending artery occlusion and release or ex vivo IRI by using the Langendorff system. The cardiac performance was assessed by conscious echocardiography in mice or by inserting a balloon catheter in the left ventricle in the ex vivo model. Just 3 weeks of DM led to an increase in cardiac 4HNE protein adducts and, cardiac dysfunction, and a decrease in the number of CECs along with reduced myocardial ALDH2 activity in ALDH2*2 mutant diabetic mice compared with their wild‐type counterparts. Systemic pretreatment with Alda‐1 (10 mg/kg per day), an activator of both ALDH2 and ALDH2*2, led to a reduction in myocardial infarct size and dysfunction, and coronary perfusion pressure upon cardiac IRI by increasing CEC population and coronary arteriole opening. Conclusions Low ALDH2 activity exacerbates 4HNE‐mediated CEC injury and thereby cardiac dysfunction in diabetic mouse hearts subjected to IRI, which can be reversed by ALDH2 activation.
Collapse
Affiliation(s)
- Guodong Pan
- Division of Hypertension and Vascular ResearchDepartment of Internal MedicineHenry Ford Health SystemDetroitMI
| | - Bipradas Roy
- Division of Hypertension and Vascular ResearchDepartment of Internal MedicineHenry Ford Health SystemDetroitMI
- Department of PhysiologyWayne State UniversityDetroitMI
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular ResearchDepartment of Internal MedicineHenry Ford Health SystemDetroitMI
- Department of PhysiologyWayne State UniversityDetroitMI
| |
Collapse
|
4
|
Pan G, Deshpande M, Pang H, Palaniyandi SS. Precision medicine approach: Empagliflozin for diabetic cardiomyopathy in mice with aldehyde dehydrogenase (ALDH) 2 * 2 mutation, a specific genetic mutation in millions of East Asians. Eur J Pharmacol 2018; 839:76-81. [PMID: 30240795 DOI: 10.1016/j.ejphar.2018.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/17/2023]
Abstract
A vast majority of type-2 diabetic patients (~65%) die of cardiovascular complications including heart failure (HF). In diabetic hearts, levels of 4-hydroxy-2-nonenal (4HNE), a reactive aldehyde that is produced upon lipid peroxidation, were increased. We also demonstrated that in diabetic hearts, there is a decrease in the activity of aldehyde dehydrogenase (ALDH) 2, a primary detoxifying enzyme present in cardiac mitochondria. A single point mutation at E487K of ALDH2 in East Asians known as ALDH2 * 2 intrinsically lowers ALDH2 activity. We hypothesize that Empagliflozin (EMP), a sodium-glucose cotransporter (SGLT) 2 inhibitor, can ameliorate diabetic cardiomyopathy by decreasing hyperglycemia-mediated 4HNE protein adducts in ALDH2 * 2 mutant mice which serve as a precision medicine tool as they mimic ALDH2 * 2 carriers. We induced type-2 diabetes in 11-14 month-old male and female ALDH2 * 2 mice through a high-fat diet. Chow-fed ALDH2 * 2 mice served as controls. At the end of 4 months, we treated the diabetic ALDH2 * 2 mice with EMP (3 mg/kg/d) or its vehicle (Veh). After 2 months of EMP treatment, cardiac function was assessed by conscious echocardiography after treadmill exercise stress. EMP improved the cardiac function and running distance and duration significantly compared to Veh-treated ALDH2 * 2 diabetic mice. These beneficial effects can be attributed to the EMP-mediated decrease in cardiac mitochondrial 4HNE adducts and increase in the levels of phospho AKT, AKT, phospho Akt substrate of 160 kDa (pAS160), AS160 and GLUT-4 in the skeletal muscle tissue of the ALDH2*2 mutant diabetic mice, respectively. Finally, our data implicate EMP can ameliorate diabetic cardiomyopathy in diabetic ALDH2 * 2 mutant patients.
Collapse
Affiliation(s)
- Guodong Pan
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, United States
| | - Mandar Deshpande
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, United States
| | - Haiyan Pang
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, United States
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, United States; Department of Physiology, Wayne State University, Detroit, MI 48202, United States.
| |
Collapse
|
5
|
Pan G, Munukutla S, Kar A, Gardinier J, Thandavarayan RA, Palaniyandi SS. Type-2 diabetic aldehyde dehydrogenase 2 mutant mice (ALDH 2*2) exhibiting heart failure with preserved ejection fraction phenotype can be determined by exercise stress echocardiography. PLoS One 2018; 13:e0195796. [PMID: 29677191 PMCID: PMC5909916 DOI: 10.1371/journal.pone.0195796] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/29/2018] [Indexed: 11/21/2022] Open
Abstract
E487K point mutation of aldehyde dehydrogenase (ALDH) 2 (ALDH2*2) in East Asians intrinsically lowers ALDH2 activity. ALDH2*2 is associated with diabetic cardiomyopathy. Diabetic patients exhibit heart failure of preserved ejection fraction (HFpEF) i.e. while the systolic heart function is preserved in them, they may exhibit diastolic dysfunction, implying a jeopardized myocardial health. Currently, it is challenging to detect cardiac functional deterioration in diabetic mice. Stress echocardiography (echo) in the clinical set-up is a procedure used to measure cardiac reserve and impaired cardiac function in coronary artery diseases. Therefore, we hypothesized that high-fat diet fed type-2 diabetic ALDH2*2 mutant mice exhibit HFpEF which can be measured by cardiac echo stress test methodology. We induced type-2 diabetes in 12-week-old male C57BL/6 and ALDH2*2 mice through a high-fat diet. At the end of 4 months of DM induction, we measured the cardiac function in diabetic and control mice of C57BL/6 and ALDH2*2 genotypes by conscious echo. Subsequently, we imposed exercise stress by allowing the mice to run on the treadmill until exhaustion. Post-stress, we measured their cardiac function again. Only after treadmill running, but not at rest, we found a significant decrease in % fractional shortening and % ejection fraction in ALDH2*2 mice with diabetes compared to C57BL/6 diabetic mice as well as non-diabetic (control) ALDH2*2 mice. The diabetic ALDH2*2 mice also exhibited poor maximal running speed and distance. Our data suggest that high-fat fed diabetic ALDH2*2 mice exhibit HFpEF and treadmill exercise stress echo test is able to determine this HFpEF in the diabetic ALDH2*2 mice.
Collapse
MESH Headings
- Aldehyde Dehydrogenase, Mitochondrial/genetics
- Animals
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/physiopathology
- Diet, High-Fat/adverse effects
- Echocardiography, Stress
- Heart Failure/diagnostic imaging
- Heart Failure/etiology
- Heart Failure/physiopathology
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Phenotype
- Point Mutation
- Stroke Volume
Collapse
Affiliation(s)
- Guodong Pan
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI United States of America
| | - Srikar Munukutla
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI United States of America
| | - Ananya Kar
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI United States of America
| | - Joseph Gardinier
- Bone and Joint Center, Henry Ford Health System, Detroit, MI United States of America
| | - Rajarajan A. Thandavarayan
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States of America
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI United States of America
- Department of Physiology, Wayne State University, Detroit, MI, United States of America
| |
Collapse
|
6
|
Yan S, Wu G. Could ALDH2 *2 be the reason for low incidence and mortality of ovarian cancer for East Asia women? Oncotarget 2017; 9:12503-12512. [PMID: 29552329 PMCID: PMC5844765 DOI: 10.18632/oncotarget.23605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/16/2017] [Indexed: 12/15/2022] Open
Abstract
It is curious that East Asian women have a low incidence and mortality of ovarian cancer in various epidemiological studies. Although different explanations were given, they appear unsubstantial. We notice that East Asian population usually are inactive aldehyde dehydrogenase 2 mutation (ALDH2 * 2) carriers, and ALDH plays an important role in the resistance of ovarian cancer to chemotherapeutics, especially in ovarian cancer stem cells. Therefore, we hypothesize whether ALDH2 mutation is the major reason for low incidence and mortality of ovarian cancer in East Asian women, and use the evidence from literature, transcriptomic data with average 5-year overall survival to confirm our hypothesis.
Collapse
Affiliation(s)
- Shaomin Yan
- Bioscience and Technology Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
| | - Guang Wu
- Bioscience and Technology Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
| |
Collapse
|
7
|
Matsumoto A, Vasiliou V, Kawamoto T, Tanaka K, Ichiba M. Ethanol reduces lifespan, body weight, and serum alanine aminotransferase level of aldehyde dehydrogenase 2 knockout mouse. Alcohol Clin Exp Res 2014; 38:1883-93. [PMID: 24930774 DOI: 10.1111/acer.12462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/02/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND The aldehyde dehydrogenase 2 (Aldh2) knockout mouse is an animal model of a polymorphism at the human ALDH2 locus (ALDH2*2). To detect differences in the basic phenotype of this animal model, lifespan, body weight (BW), and serum alanine aminotransferase (ALT) level were evaluated. METHODS Aldh2(+/+) , Aldh2(+/-) , and Aldh2(-/-) mice were maintained, from 10 weeks of age, on standard solid food, with liquid supplied as ethanol (EtOH) solution at a concentration of 0 to 20% (forced EtOH consumption). RESULTS For animals provided with water (without EtOH), mice of the distinct genotypes exhibited no difference in lifespan, with the mean values ranging from 90 to 96 weeks for female mice and 97 to 105 weeks for male mice. For animals provided with EtOH, there was a dose-dependent reduction of lifespan in Aldh2(-/-) mice with p for trend <0.001. For example, the mean lifespans of the Aldh2(-/-) females in the 0, 3, 10, and 20% groups were 95, 85, 70, and 29 weeks, respectively. No influence on lifespan was found for Aldh2(+/+) and Aldh2(+/-) mice. BW and ALT level of Aldh2(-/-) mice were significantly lower than those of Aldh2(+/+) mice when the mice were treated with EtOH. While multiple regression analysis suggested that the BW and ALT level in Aldh2(-/-) mice correlated with lifespan, adjustment for EtOH concentration revealed that this correlation was not significant (i.e., reflected EtOH dependence). CONCLUSIONS Aldh2(-/-) mice were unchanged in terms of their basic phenotype under standard laboratory conditions. However, chronic EtOH administration (forced consumption) in these mice resulted in dose-dependent reductions in lifespan, BW, and serum ALT level.
Collapse
|
8
|
Mali VR, Ning R, Chen J, Yang XP, Xu J, Palaniyandi SS. Impairment of aldehyde dehydrogenase-2 by 4-hydroxy-2-nonenal adduct formation and cardiomyocyte hypertrophy in mice fed a high-fat diet and injected with low-dose streptozotocin. Exp Biol Med (Maywood) 2014; 239:610-8. [PMID: 24651616 DOI: 10.1177/1535370213520109] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE) are generated in the myocardium in cardiac disease. 4HNE and other toxic aldehydes form adducts with proteins, leading to cell damage and organ dysfunction. Aldehyde dehydrogenases (ALDHs) metabolize toxic aldehydes such as 4HNE into nontoxic metabolites. Both ALDH levels and activity are reduced in cardiac disease. We examined whether reduced ALDH2 activity contributes to cardiomyocyte hypertrophy in mice fed a high-fat diet and injected with low-dose streptozotocin (STZ). These mice exhibited most of the characteristics of metabolic syndrome/type-2 diabetes mellitus (DM): increased blood glucose levels depicting hyperglycemia (415.2 ± 18.7 mg/dL vs. 265.2 ± 7.6 mg/dL; P < 0.05), glucose intolerance with normal plasma insulin levels, suggesting insulin resistance and obesity as evident from increased weight (44 ± 3.1 vs. 34.50 ± 1.32 g; P < 0.05) and body fat. Myocardial ALDH2 activity was 60% lower in these mice (0.1 ± 0.012 vs. 0.04 ± 0.015 µmol/min/mg protein; P < 0.05). Myocardial 4HNE levels were also elevated in the hyperglycemic hearts. Co-immunoprecipitation study showed that 4HNE formed adducts on myocardial ALDH2 protein in the mice exhibiting metabolic syndrome/type-2 DM, and they had obvious cardiac hypertrophy compared with controls as evident from increased heart weight (HW), HW to tibial length ratio, left ventricular (LV) mass and cardiomyocyte hypertrophy. Cardiomyocyte hypertrophy was correlated inversely with ALDH2 activity (R (2 )= 0.7; P < 0.05). Finally, cardiac dysfunction was observed in mice with metabolic syndrome/type-2 DM. Therefore, we conclude that reduced ALDH2 activity may contribute to cardiac hypertrophy and dysfunction in mice presenting with some of the characteristics of metabolic syndrome/type-2 DM when on a high-fat diet and low-dose STZ injection.
Collapse
Affiliation(s)
- Vishal R Mali
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
9
|
Chen CH, Ferreira JCB, Gross ER, Mochly-Rosen D. Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol Rev 2014; 94:1-34. [PMID: 24382882 DOI: 10.1152/physrev.00017.2013] [Citation(s) in RCA: 453] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A family of detoxifying enzymes called aldehyde dehydrogenases (ALDHs) has been a subject of recent interest, as its role in detoxifying aldehydes that accumulate through metabolism and to which we are exposed from the environment has been elucidated. Although the human genome has 19 ALDH genes, one ALDH emerges as a particularly important enzyme in a variety of human pathologies. This ALDH, ALDH2, is located in the mitochondrial matrix with much known about its role in ethanol metabolism. Less known is a new body of research to be discussed in this review, suggesting that ALDH2 dysfunction may contribute to a variety of human diseases including cardiovascular diseases, diabetes, neurodegenerative diseases, stroke, and cancer. Recent studies suggest that ALDH2 dysfunction is also associated with Fanconi anemia, pain, osteoporosis, and the process of aging. Furthermore, an ALDH2 inactivating mutation (termed ALDH2*2) is the most common single point mutation in humans, and epidemiological studies suggest a correlation between this inactivating mutation and increased propensity for common human pathologies. These data together with studies in animal models and the use of new pharmacological tools that activate ALDH2 depict a new picture related to ALDH2 as a critical health-promoting enzyme.
Collapse
|
10
|
Murri M, Insenser M, Bernal-Lopez MR, Perez-Martinez P, Escobar-Morreale HF, Tinahones FJ. Proteomic analysis of visceral adipose tissue in pre-obese patients with type 2 diabetes. Mol Cell Endocrinol 2013; 376:99-106. [PMID: 23791845 DOI: 10.1016/j.mce.2013.06.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 01/04/2023]
Abstract
The mechanisms involved in the progression to overt diabetes in pre-obese subjects remain unclear. Therefore, a nontargeted evaluation of differences in the protein abundance of visceral adipose tissue (VAT) obtained from pre-obese diabetic subjects and pre-obese subjects showing normal glucose tolerance may provide novel insights on the molecular processes involved in the progression to overt diabetes in pre-obesity. Diabetic patients showed increased VAT abundance of glutathione S-transferase Mu 2, peroxiredoxin-2, antithrombin-III, apolipoprotein A-IV, Ig κ chain C region, mitochondrial aldehyde dehydrogenase and actin, and decreased abundance of annexin-A1, retinaldehyde dehydrogenase-1, and vinculin, compared with their non-diabetic counterparts. These proteins are involved in cytoskeleton function and structure, oxidative stress, inflammation and retinoid metabolism. The presence of diabetes influences the VAT abundance of several proteins. Hence, the proteins identified here could be considered candidate molecules in future studies addressing the role that VAT dysfunction plays in the development of type 2 diabetes.
Collapse
Affiliation(s)
- Mora Murri
- Diabetes, Obesity and Human Reproduction Group, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
11
|
Jüllig M, Hickey AJ, Middleditch MJ, Crossman DJ, Lee SC, Cooper GJS. Characterization of proteomic changes in cardiac mitochondria in streptozotocin-diabetic rats using iTRAQ™ isobaric tags. Proteomics Clin Appl 2012; 1:565-76. [PMID: 21136708 DOI: 10.1002/prca.200600831] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diabetes now affects more than 5% of the world's population and heart failure is the most common cause of death amongst diabetic patients. Accumulating evidence supports a view that myocardial mitochondrial structural and functional changes are central to the onset of diabetic heart failure, but the exact nature of these changes at the proteomic level remains unclear.Here we report on proteomic changes in diabetic rat heart mitochondria following 120 days of streptozotocin-diabetes using the recently developed iTRAQ™ labeling method, which permits quantification of proteins directly from complex mixtures, bypassing the limitations associated with gel-based methods such as 2-DE. Of 252 unique proteins identified, 144 were represented in at least three of six individual paired experiments. Relative amounts of 65 proteins differed significantly between the groups, confirming that the cardiac mitochondrial proteome is indeed impacted by diabetes. The most significant changes were increased protein levels of enzymes involved in mitochondrial oxidation of long-chain fatty acids, which was also confirmed by enzyme assays, and decreased levels of multiple enzymes involved in oxidative phosphorylation and catabolism of short-chain fatty acids and branched-chain amino acids. We also found significant changes in levels of several enzymes linked to oxidative stress.
Collapse
Affiliation(s)
- Mia Jüllig
- School of Biological Sciences and Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
12
|
Li C, Xia J, Zhang G, Wang S, Wang L. Nateglinide versus repaglinide for type 2 diabetes mellitus in China. Acta Diabetol 2009; 46:325-33. [PMID: 19183841 DOI: 10.1007/s00592-008-0092-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Accepted: 12/17/2008] [Indexed: 11/30/2022]
Abstract
The purpose of this study is to evaluate efficacy and safety of nateglinide tablet administration in comparison with those of repaglinide tablet as control on treating type 2 diabetes mellitus in China. Pooled-analysis with analysis of covariance (ANCOVA) method was applied to assess the efficacy and safety based on original data collected from four independent randomized clinical trials with similar research protocols. However meta-analysis was applied based on the outcomes of the four studies. The results by meta-analysis were comparable to those obtained by pooled-analysis. The means of HbA(1c), and fasting blood glucose in both the nateglinide and repaglinide groups were reduced significantly after 12 weeks duration but no statistical differences in reduction between the two groups. The adverse reaction rates were 9.89 and 6.51% in the nateglinide and repaglinide groups respectively, with the rate difference showing no statistical significance, and the Odds Ratio of adverse reaction rate (95% confidence interval) was 1.59 (0.99, 2.55). Both nateglinide and repaglinide administration have similarly significant effects on reducing HbA(1c) and FBG. However, the adverse reaction rate in the nateglinide group is higher than that in the latter using repaglinide but no statistical significance difference as revealed in the four clinical trials detailed below.
Collapse
Affiliation(s)
- Chanjuan Li
- Department of Health Statistics, Fourth Military Medical University, No 17, Changle West Road, 710032, Xi'an, Shaanxi, China
| | | | | | | | | |
Collapse
|
13
|
Decanini A, Karunadharma PP, Nordgaard CL, Feng X, Olsen TW, Ferrington DA. Human retinal pigment epithelium proteome changes in early diabetes. Diabetologia 2008; 51:1051-61. [PMID: 18414830 PMCID: PMC4397501 DOI: 10.1007/s00125-008-0991-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 02/21/2008] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Diabetic retinopathy is the most common complication of diabetes and a leading cause of blindness among working-age adults. Anatomical and functional changes occur in the retina and retinal pigment epithelium (RPE) prior to clinical symptoms of the disease. However, the molecular mechanisms responsible for these early changes, particularly in the RPE, remain unclear. To begin defining the molecular changes associated with pre-retinopathic diabetes, we conducted a comparative proteomics study of human donor RPE. METHODS The RPE was dissected from diabetic human donor eyes with no clinically apparent diabetic retinopathy (n=6) and from eyes of age-matched control donors (n=17). Soluble proteins were separated based upon their mass and charge using two-dimensional (2-D) gel electrophoresis. Protein spots were visualised with a fluorescent dye and spot densities were compared between diabetic and control gels. Proteins from spots with significant disease-related changes in density were identified using mass spectrometry. RESULTS Analysis of 325 spots on 2-D gels identified 31 spots that were either up- or downregulated relative to those from age-matched control donors. The protein identity of 18 spots was determined by mass spectrometry. A majority of altered proteins belonged to two major functional groups, metabolism and chaperones, while other affected categories included protein degradation, synthesis and transport, oxidoreductases, cytoskeletal structure and retinoid metabolism. CONCLUSIONS/INTERPRETATION Changes identified in the RPE proteome of pre-retinopathic diabetic donor eyes compared with age-matched controls suggest specific cellular alterations that may contribute to diabetic retinopathy. Defining the pre-retinopathic changes affecting the RPE could provide important insight into the molecular events that lead to this disease.
Collapse
Affiliation(s)
- A. Decanini
- Department of Ophthalmology, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - P. P. Karunadharma
- Department of Ophthalmology, University of Minnesota Twin Cities, Minneapolis, MN 55455
- Department of Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - C. L. Nordgaard
- Department of Ophthalmology, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - X. Feng
- Department of Ophthalmology, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - T. W. Olsen
- Department of Ophthalmology, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - D. A. Ferrington
- Department of Ophthalmology, University of Minnesota Twin Cities, Minneapolis, MN 55455
- Department of Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455
- Corresponding Author: University of Minnesota, 380 Lions Research Bldg., 2001 6 St SE, Minneapolis MN 55455 Telephone: (612) 624-8267. Fax (612) 626-0781,
| |
Collapse
|
14
|
Jüllig M, Chen X, Hickey AJ, Crossman DJ, Xu A, Wang Y, Greenwood DR, Choong YS, Schönberger SJ, Middleditch MJ, Phillips ARJ, Cooper GJS. Reversal of diabetes-evoked changes in mitochondrial protein expression of cardiac left ventricle by treatment with a copper(II)-selective chelator. Proteomics Clin Appl 2007; 1:387-99. [PMID: 21136691 DOI: 10.1002/prca.200600770] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Indexed: 01/02/2023]
Affiliation(s)
- Mia Jüllig
- Faculty of Science, School of Biological Sciences and Maurice Wilkins Centre of Research Excellence in Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hamblin M, Friedman DB, Hill S, Caprioli RM, Smith HM, Hill MF. Alterations in the diabetic myocardial proteome coupled with increased myocardial oxidative stress underlies diabetic cardiomyopathy. J Mol Cell Cardiol 2007; 42:884-95. [PMID: 17320100 PMCID: PMC2677446 DOI: 10.1016/j.yjmcc.2006.12.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 12/11/2006] [Accepted: 12/18/2006] [Indexed: 11/21/2022]
Abstract
Diabetic cardiomyopathy has been documented as an underlying etiology of heart failure (HF) among diabetics. Although oxidative stress has been proposed to contribute to diabetic cardiomyopathy, much of the evidence lacks specificity. Furthermore, whether alterations occur at the cardiac proteome level in diabetic cardiac complications with attendant oxidative stress remains unknown. Therefore, we sought to identify cardiac protein changes in relation to myocardial oxidative stress that are specific to diabetic cardiomyopathy. Diabetes was induced in rats by a single injection of streptozotocin (STZ). STZ-treated rats were examined for diabetic cardiomyopathy at 8 weeks post-STZ by left ventricular (LV) hemodynamic analysis. LV systolic pressure (LVSP), rate of pressure rise (+dP/dt), and rate of pressure decay (-dP/dt) were depressed while LV end-diastolic pressure (LVEDP) was increased. Myocardial oxidative stress was increased in STZ-diabetic rats, as indexed by significant increases in myocardial formation of 8-iso PGF(2alpha) and oxidized glutathione (GSSG). In-depth mining of the diabetic myocardial proteome by proteomic analysis utilizing two-dimensional difference gel electrophoresis and mass spectrometry (DIGE/MS) techniques revealed that a high proportion (12 of 24) of the altered proteins that could be identified by mass spectrometry were localized to the mitochondria. Down-regulation of antioxidant and anti-apoptotic proteins was also observed in STZ-diabetic hearts. These results characterize a specific 'type I diabetic' pattern of cardiac proteome changes indicative of diabetic cardiomyopathy presenting with higher oxidative stress, supporting the idea that analysis of isoprostane biosynthesis and protein expression profiles may be useful diagnostically to assess the efficacy of antioxidant therapies as prophylactic treatments against type I diabetes mellitus complications involving the heart.
Collapse
Affiliation(s)
- Milton Hamblin
- Department of Biomedical Sciences, Division of Cardiovascular Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - David B. Friedman
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Salisha Hill
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Richard M. Caprioli
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Holly M. Smith
- Department of Biomedical Sciences, Division of Cardiovascular Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Michael F. Hill
- Department of Biomedical Sciences, Division of Cardiovascular Biology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|