1
|
Visansirikul S, Kolodziej SA, Demchenko AV. Staphylococcus aureuscapsular polysaccharides: a structural and synthetic perspective. Org Biomol Chem 2020; 18:783-798. [DOI: 10.1039/c9ob02546d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review surveys known structures of staphylococcal polysaccharides and summarizes all synthetic efforts to obtain these sequences.
Collapse
Affiliation(s)
- Satsawat Visansirikul
- Department of Chemistry and Biochemistry
- University of Missouri – St Louis
- One University Boulevard
- St Louis
- USA
| | | | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry
- University of Missouri – St Louis
- One University Boulevard
- St Louis
- USA
| |
Collapse
|
2
|
Abstract
Dating back to the 1960s, initial studies on the staphylococcal cell wall were driven by the need to clarify the mode of action of the first antibiotics and the resistance mechanisms developed by the bacteria. During the following decades, the elucidation of the biosynthetic path and primary composition of staphylococcal cell walls was propelled by advances in microbial cell biology, specifically, the introduction of high-resolution analytical techniques and molecular genetic approaches. The field of staphylococcal cell wall gradually gained its own significance as the complexity of its chemical structure and involvement in numerous cellular processes became evident, namely its versatile role in host interactions, coordination of cell division and environmental stress signaling.This chapter includes an updated description of the anatomy of staphylococcal cell walls, paying particular attention to information from the last decade, under four headings: high-resolution analysis of the Staphylococcus aureus peptidoglycan; variations in peptidoglycan composition; genetic determinants and enzymes in cell wall synthesis; and complex functions of cell walls. The latest contributions to a more precise picture of the staphylococcal cell envelope were possible due to recently developed state-of-the-art microscopy and spectroscopy techniques and to a wide combination of -omics approaches, that are allowing to obtain a more integrative view of this highly dynamic structure.
Collapse
Affiliation(s)
- Rita Sobral
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | |
Collapse
|
3
|
Distinct phenotypic traits of Staphylococcus aureus are associated with persistent, contagious bovine intramammary infections. Sci Rep 2018; 8:15968. [PMID: 30374136 PMCID: PMC6206001 DOI: 10.1038/s41598-018-34371-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/16/2018] [Indexed: 12/05/2022] Open
Abstract
Staphylococcus aureus causing persistent, recurrent bovine intramammary infections are still a major challenge to dairy farming. Generally, one or a few clonal lineages are predominant in dairy herds, indicating animal-to-animal transfers and the existence of distinct pathotypic traits. The aim of this study was to determine if long term persistence and spreading of S. aureus are associated with specific phenotypic traits, including cellular invasion, cytotoxicity and biofilm formation. Mastitis isolates were collected over a 3-years period from a single dairy herd, resulting in two persistent subtypes, the high within-herd prevalent subtype ST9 (CC9)-methicillin-susceptible S. aureus (MSSA), designated HP/ST9, and the low within-herd prevalent subtype ST504 (CC705)-MSSA, designated LP/ST504. Characterization of the two different coexisting persistent subtypes showed that the following phenotypic traits are particularly associated with high within-herd prevalence: lack of capsular polysaccharide expression, high cellular invasiveness, low cytotoxicity and high biofilm/ poly-N-acetylglucosamine (PNAG) production, which may concomitantly contribute to the spreading of HP/ST9 within the herd. By contrast to HP/ST9, LP/ST504 is characterized by the formation of colony dendrites, which may help the bacteria to access deeper tissues as niches for persistence in single animals. Thus, within a single herd, two different types of persistence can be found in parallel, allowing longtime persistence of S. aureus in dairy cattle. Furthermore, this study indicates that ST9 (CC9)-MSSA strains, which are currently thought to have their primary reservoir in swine and humans, can also successfully spread to new hosts and persist in dairy herds for years.
Collapse
|
4
|
Asadollahi P, Farahani NN, Mirzaii M, Khoramrooz SS, van Belkum A, Asadollahi K, Dadashi M, Darban-Sarokhalil D. Distribution of the Most Prevalent Spa Types among Clinical Isolates of Methicillin-Resistant and -Susceptible Staphylococcus aureus around the World: A Review. Front Microbiol 2018; 9:163. [PMID: 29487578 PMCID: PMC5816571 DOI: 10.3389/fmicb.2018.00163] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/24/2018] [Indexed: 12/25/2022] Open
Abstract
Background:Staphylococcus aureus, a leading cause of community-acquired and nosocomial infections, remains a major health problem worldwide. Molecular typing methods, such as spa typing, are vital for the control and, when typing can be made more timely, prevention of S. aureus spread around healthcare settings. The current study aims to review the literature to report the most common clinical spa types around the world, which is important for epidemiological surveys and nosocomial infection control policies. Methods: A search via PubMed, Google Scholar, Web of Science, Embase, the Cochrane library, and Scopus was conducted for original articles reporting the most prevalent spa types among S. aureus isolates. The search terms were “Staphylococcus aureus, spa typing.” Results: The most prevalent spa types were t032, t008 and t002 in Europe; t037 and t002 in Asia; t008, t002, and t242 in America; t037, t084, and t064 in Africa; and t020 in Australia. In Europe, all the isolates related to spa type t032 were MRSA. In addition, spa type t037 in Africa and t037and t437 in Australia also consisted exclusively of MRSA isolates. Given the fact that more than 95% of the papers we studied originated in the past decade there was no option to study the dynamics of regional clone emergence. Conclusion: This review documents the presence of the most prevalent spa types in countries, continents and worldwide and shows big local differences in clonal distribution.
Collapse
Affiliation(s)
- Parisa Asadollahi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narges Nodeh Farahani
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirzaii
- Department of Microbiology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyed Sajjad Khoramrooz
- Department of Microbiology, Faculty of Medicine, Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Alex van Belkum
- Data Analytics Unit, bioMérieux 3, La Balme Les Grottes, France
| | - Khairollah Asadollahi
- Department of Social Medicine, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.,Faculty of Medicine, Biotechnology and Medicinal Plants Researches Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Masoud Dadashi
- Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Li D, Guo Y, Wang S, Lv J, Qi X, Chen Z, Han L, Zhang X, Wang L, Yu F. capB2 Expression Is Associated with Staphylococcus aureus Pathogenicity. Front Microbiol 2017; 8:184. [PMID: 28239370 PMCID: PMC5300969 DOI: 10.3389/fmicb.2017.00184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 01/25/2017] [Indexed: 11/21/2022] Open
Abstract
CapB2 is recognized as a tyrosine kinase and is likely a vital factor in extracellular polysaccharide synthesis in Staphylococcus aureus, but its pathogenicity function and regulatory mechanism remain obscure. Here, we demonstrate that CapB2 enhances bacterial virulence in a murine model. Mice infected with the wild type SA75 strain exhibited significantly larger (P < 0.05) skin lesions from days 4 to 7 of infection than those challenged with the capB2 mutant strain. The effect on virulence was reverted by restoring the capB2 mutation to the wild type. The related components of the wild type SA75 cell wall in the capB2 mutant strain (SA75ΔcapB2) were thinner than wild type SA75 strain and the capB2 mutant complemented strain (SA75ΔcapB2-C), which was determined by the transmission electron microscopy. The survival percentages of the wild type strain SA75 and SA75ΔcapB2-C were significantly higher relative to SA75ΔcapB2. The results of qRT-PCR studies also indicated that mutations in regulatory gene sarA led to a drastic increase in capB2 gene transcription, with a 326-fold increase of growth at 6 h compared with the wild type strain, suggesting that sarA is a major negative regulator of capB2 expression. Taken together, these results demonstrate that the expression of CapB2 promotes S. aureus virulence in a mouse model of skin infection, and that capB2 gene transcription is regulated negatively by SarA.
Collapse
Affiliation(s)
- Dan Li
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Yinjuan Guo
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Shanshan Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Jingnan Lv
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Xiuqin Qi
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Zengqiang Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Lizhong Han
- Department of Clinical Microbiology, Ruijin Hospital of Shanghai Jiaotong University Shanghai, China
| | - Xueqing Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Liangxing Wang
- Department of Respiratory Medicine, the First Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Fangyou Yu
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| |
Collapse
|
6
|
Waryah CB, Wells K, Ulluwishewa D, Chen-Tan N, Gogoi-Tiwari J, Ravensdale J, Costantino P, Gökçen A, Vilcinskas A, Wiesner J, Mukkur T. In Vitro Antimicrobial Efficacy of Tobramycin Against Staphylococcus aureus Biofilms in Combination With or Without DNase I and/or Dispersin B: A Preliminary Investigation. Microb Drug Resist 2016; 23:384-390. [PMID: 27754780 DOI: 10.1089/mdr.2016.0100] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus in biofilms is highly resistant to the treatment with antibiotics, to which the planktonic cells are susceptible. This is likely to be due to the biofilm creating a protective barrier that prevents antibiotics from accessing the live pathogens buried in the biofilm. S. aureus biofilms consist of an extracellular matrix comprising, but not limited to, extracellular bacterial DNA (eDNA) and poly-β-1, 6-N-acetyl-d-glucosamine (PNAG). Our study revealed that despite inferiority of dispersin B (an enzyme that degrades PNAG) to DNase I that cleaves eDNA, in dispersing the biofilm of S. aureus, both enzymes were equally efficient in enhancing the antibacterial efficiency of tobramycin, a relatively narrow-spectrum antibiotic against infections caused by gram-positive and gram-negative pathogens, including S. aureus, used in this investigation. However, a combination of these two biofilm-degrading enzymes was found to be significantly less effective in enhancing the antimicrobial efficacy of tobramycin than the individual application of the enzymes. These findings indicate that combinations of different biofilm-degrading enzymes may compromise the antimicrobial efficacy of antibiotics and need to be carefully assessed in vitro before being used for treating medical devices or in pharmaceutical formulations for use in the treatment of chronic ear or respiratory infections.
Collapse
Affiliation(s)
- Charlene Babra Waryah
- 1 School of Biomedical Sciences, Faculty of Health Science, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia.,2 Department of Medicine, Albert Einstein College of Medicine , Bronx, New York.,3 Department of Cell Biology, Albert Einstein College of Medicine , Bronx, New York
| | - Kelsi Wells
- 1 School of Biomedical Sciences, Faculty of Health Science, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia
| | - Dulantha Ulluwishewa
- 1 School of Biomedical Sciences, Faculty of Health Science, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia
| | - Nigel Chen-Tan
- 4 Curtin Electron Microscope Facility, John de Laeter Centre, Faculty of Science and Engineering, Curtin University , Perth, Western Australia
| | - Jully Gogoi-Tiwari
- 1 School of Biomedical Sciences, Faculty of Health Science, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia
| | - Joshua Ravensdale
- 1 School of Biomedical Sciences, Faculty of Health Science, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia
| | - Paul Costantino
- 1 School of Biomedical Sciences, Faculty of Health Science, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia
| | - Anke Gökçen
- 5 Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology , Gießen, Germany
| | - Andreas Vilcinskas
- 5 Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology , Gießen, Germany
| | - Jochen Wiesner
- 5 Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology , Gießen, Germany
| | - Trilochan Mukkur
- 1 School of Biomedical Sciences, Faculty of Health Science, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia
| |
Collapse
|
7
|
Fattom A, Matalon A, Buerkert J, Taylor K, Damaso S, Boutriau D. Efficacy profile of a bivalent Staphylococcus aureus glycoconjugated vaccine in adults on hemodialysis: Phase III randomized study. Hum Vaccin Immunother 2015; 11:632-41. [PMID: 25483694 PMCID: PMC4514248 DOI: 10.4161/hv.34414] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In a previous study in end-stage renal disease (ESRD) hemodialysis patients, a single dose of Staphylococcus aureus type 5 and 8 capsular polysaccharides (T5/T8) conjugated to nontoxic recombinant Pseudomonas aeruginosa exotoxin A investigational vaccine showed no efficacy against S. aureus bacteremia 1 year post-vaccination, but a trend for efficacy was observed over the first 40 weeks post-vaccination. Vaccine efficacy (VE) of 2 vaccine doses was therefore evaluated. In a double-blind trial 3359 ESRD patients were randomized (1:1) to receive vaccine or placebo at week 0 and 35. VE in preventing S. aureus bacteremia was assessed between 3–35 weeks and 3–60 weeks post-dose-1. Anti-T5 and anti-T8 antibodies were measured. Serious adverse events (SAEs) were recorded for 42 days post-vaccination and deaths until study end. No significant difference in the incidence of S. aureus bacteremia was observed between vaccine and placebo groups between weeks 3–35 weeks post-dose 1 (VE -23%, 95%CI: -98;23, p = 0.39) or at 3–60 weeks post-dose-1 (VE -8%, 95%CI: -57;26, p = 0.70). Day 42 geometric mean antibody concentrations were 272.4 μg/ml and 242.0 μg/ml (T5 and T8, respectively) in vaccinees. SAEs were reported by 24%/25.3% of vaccinees/placebo recipients. These data do not show a protective effect of either 1 or 2 vaccine doses against S. aureus bacteremia in ESRD patients. The vaccine induced a robust immune response and had an acceptable safety profile. Further investigation suggested possible suboptimal vaccine quality (manufacturing) and a need to expand the antigen composition of the vaccine. This study is registered at www.clinicaltrials.gov NCT00071214.
Collapse
Affiliation(s)
- Ali Fattom
- a Nabi Biopharmaceuticals ; Rockville , MD USA
| | | | | | | | | | | |
Collapse
|
8
|
Thompson T, Brown PD. Comparison of antibiotic resistance, virulence gene profiles, and pathogenicity of methicillin-resistant and methicillin-susceptible Staphylococcus aureus using a Caenorhabditis elegans infection model. Pathog Glob Health 2014; 108:283-91. [PMID: 25319852 DOI: 10.1179/2047773214y.0000000155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES This study compared the presence of 35 virulence genes, resistance phenotypes to 11 anti-staphylococcal antibiotics, and pathogenicity in methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA). METHODS Multiplex PCR analysis was used to differentiate Staphylococcus aureus isolates (n = 102) based on characterization of the Staphylococcal Cassette Chromosome mec (SCCmec). Singleplex and multiplex PCR assays targeting 35 virulence determinants were used to analyze the virulence repertoire of S. aureus. In vitro activities of the antibiotics were determined by the disk-diffusion method. The pathogenicity of representative isolates was assessed using Caenorhabditis elegans survival assays. Significance in virulence distribution and antibiotic resistance phenotypes was assessed using the Chi-squared tests. Kaplan-Meier survival estimates were used to analyze nematode survival and significance of survival rates evaluated using the log-rank test. RESULTS Except for sei (staphylococcal enterotoxin I) (P = 0·027), all other virulence genes were not significantly associated with MRSA. Resistance to clindamycin (P = 0·03), tetracycline (P = 0·048), trimethoprim/sulfamethoxazole (P = 0·038), and oxacillin (P = 0·004) was significantly associated with MRSA. Survival assay showed MSSA having a lower median lifespan of 3 days than MRSA that had a median lifespan of 6 days. The difference in the killing time of MRSA and MSSA was significant (P < 0·001). CONCLUSION While antibiotic resistance was significantly associated with MRSA, there was no preferential distribution of the virulence genes. The quicker killing potential of MSSA compared to MRSA suggests that carriage of virulence determinants per se does not determine pathogenicity in S. aureus. Pathogenicity is impacted by other factors, possibly antibiotic resistance.
Collapse
|
9
|
Chan YGY, Kim HK, Schneewind O, Missiakas D. The capsular polysaccharide of Staphylococcus aureus is attached to peptidoglycan by the LytR-CpsA-Psr (LCP) family of enzymes. J Biol Chem 2014; 289:15680-90. [PMID: 24753256 DOI: 10.1074/jbc.m114.567669] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Envelope biogenesis in bacteria involves synthesis of intermediates that are tethered to the lipid carrier undecaprenol-phosphate. LytR-CpsA-Psr (LCP) enzymes have been proposed to catalyze the transfer of undecaprenol-linked intermediates onto the C6-hydroxyl of MurNAc in peptidoglycan, thereby promoting attachment of wall teichoic acid (WTA) in bacilli and staphylococci and capsular polysaccharides (CPS) in streptococci. S. aureus encodes three lcp enzymes, and a variant lacking all three genes (Δlcp) releases WTA from the bacterial envelope and displays a growth defect. Here, we report that the type 5 capsular polysaccharide (CP5) of Staphylococcus aureus Newman is covalently attached to the glycan strands of peptidoglycan. Cell wall attachment of CP5 is abrogated in the Δlcp variant, a defect that is best complemented via expression of lcpC in trans. CP5 synthesis and peptidoglycan attachment are not impaired in the tagO mutant, suggesting that CP5 synthesis does not involve the GlcNAc-ManNAc linkage unit of WTA and may instead utilize another Wzy-type ligase to assemble undecaprenyl-phosphate intermediates. Thus, LCP enzymes of S. aureus are promiscuous enzymes that attach secondary cell wall polymers with discrete linkage units to peptidoglycan.
Collapse
Affiliation(s)
- Yvonne Gar-Yun Chan
- From the Department of Microbiology, University of Chicago, Chicago, Illinois 60637 and
| | - Hwan Keun Kim
- From the Department of Microbiology, University of Chicago, Chicago, Illinois 60637 and
| | - Olaf Schneewind
- From the Department of Microbiology, University of Chicago, Chicago, Illinois 60637 and the Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Argonne, Illinois 60439
| | - Dominique Missiakas
- From the Department of Microbiology, University of Chicago, Chicago, Illinois 60637 and the Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Argonne, Illinois 60439
| |
Collapse
|
10
|
Pier GB. Will there ever be a universal Staphylococcus aureus vaccine? Hum Vaccin Immunother 2013; 9:1865-76. [PMID: 23793522 PMCID: PMC3906350 DOI: 10.4161/hv.25182] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/25/2013] [Indexed: 02/07/2023] Open
Abstract
Developing a universal vaccine for S. aureus is a top priority but to date we have only had failures in human clinical trials. Given the plethora of bacterial virulence factors, broad range of the health of humans at-risk for infections, lack of any information regarding immune effectors mediating protection for any manifestation of S. aureus infection and overall competence of this organism as a colonizer, commensal and pathogen, we may just simply have to accept the fact that we will not get a universal vaccine. Antigenic variation is a major challenge for some vaccine targets and for many conserved targets the organism can easily decrease or even eliminate expression to avoid immune effectors without compromise to infectivity and ability to cause disease. Studies of human immune responses similarly have been unable to identify any clear mediators of immunity and data from such studies can only eliminate those found not to be associated with protection or that might serve as a marker for individuals with a higher level of resistance to infection. Animal studies are not predictive of success in humans and unlikely will be except in hindsight if and when we develop an efficacious vaccine. Successful vaccines for other bacteria based on capsular polysaccharides have not worked to date for S. aureus, and laboratory studies combining antibody to the major capsular serotypes and the other S. aureus surface polysaccharide, poly-N-acetyl glucosamine, unexpectedly showed interference not augmentation of immunity. Potential pathways toward vaccine development do exist but for the foreseeable future will be based on empiric approaches derived from laboratory-based in vitro and animal tests and not on inducing a known immune effector that predicts human resistance to infection.
Collapse
Affiliation(s)
- Gerald B Pier
- Division of Infectious Diseases; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Boston, MA USA
| |
Collapse
|
11
|
Abstract
Staphylococcus aureus, the most virulent of the many staphylococcal species, has remained a major cause of morbidity and mortality despite the availability of numerous effective anti-staphylococcal antibiotics. S. aureus causes disease through both toxin-mediated and non-toxin-mediated mechanisms. This organism is responsible for both healthcare associated and community-based infections ranging from relatively minor skin and soft tissue infections to severe life threatening systemic infections. Patients with diabetes mellitus are at increased risk of invasive S. aureus infections. This article focuses on the spectrum of invasive S. aureus infections and discusses the clinical features, investigations and management of these infections in patients with diabetes mellitus.
Collapse
|
12
|
Rapid and reliable identification of Staphylococcus aureus capsular serotypes by means of artificial neural network-assisted Fourier transform infrared spectroscopy. J Clin Microbiol 2013; 51:2261-6. [PMID: 23658268 DOI: 10.1128/jcm.00581-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus capsular polysaccharides (CP) are important virulence factors and represent putative targets for vaccine development. Therefore, the purpose of this study was to develop a high-throughput method to identify and discriminate the clinically important S. aureus capsular serotypes 5, 8, and NT (nontypeable). A comprehensive set of clinical isolates derived from different origins and control strains, representative for each serotype, were used to establish a CP typing system based on Fourier transform infrared (FTIR) spectroscopy and chemometric techniques. By combining FTIR spectroscopy with artificial neuronal network (ANN) analysis, a system was successfully established, allowing a rapid identification and discrimination of all three serotypes. The overall accuracy of the ANN-assisted FTIR spectroscopy CP typing system was 96.7% for the internal validation and 98.2% for the external validation. One isolate in the internal validation and one isolate in the external validation failed in the classification procedure, but none of the isolates was incorrectly classified. The present study demonstrates that ANN-assisted FTIR spectroscopy allows a rapid and reliable discrimination of S. aureus capsular serotypes. It is suitable for diagnostic as well as large-scale epidemiologic surveillance of S. aureus capsule expression and provides useful information with respect to chronicity of infection.
Collapse
|
13
|
Verkaik NJ, van Wamel WJB, van Belkum A. Immunotherapeutic approaches against Staphylococcus aureus. Immunotherapy 2011; 3:1063-73. [DOI: 10.2217/imt.11.84] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Staphylococcus aureus is a major cause of life-threatening infections such as bacteremia and endocarditis. Unfortunately, many strains of this bacterial species have become resistant to certain antibiotics, including methicillin and amoxicillin. These strains are known as methicillin-resistant S. aureus (MRSA). Therefore, the prophylactic and therapeutic potential of antistaphylococcal vaccines is currently being explored with priority. In animal models, (passive) immunization with (antibodies directed against) certain S. aureus surface components, staphylococcal toxins and capsular polysaccharides protects against S. aureus colonization or infection. However, immunization studies performed in humans show less promising results. So far, not a single antistaphylococcal vaccine successfully passed clinical trials. This article focuses on the results that were obtained with immunotherapeutic approaches directed against S. aureus in animal and human studies. In addition, it is discussed whether effective immunization approaches against S. aureus are feasible in humans.
Collapse
Affiliation(s)
| | - Willem JB van Wamel
- Erasmus Medical Center, Department of Medical Microbiology & Infectious Diseases, ‘s Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Alex van Belkum
- Erasmus Medical Center, Department of Medical Microbiology & Infectious Diseases, ‘s Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
- BioMérieux, 3 route de Port Michaud, La Balme-Les-Grottes, 38390, France
| |
Collapse
|
14
|
Schaumburg F, Köck R, Friedrich AW, Soulanoudjingar S, Ngoa UA, von Eiff C, Issifou S, Kremsner PG, Herrmann M, Peters G, Becker K. Population structure of Staphylococcus aureus from remote African Babongo Pygmies. PLoS Negl Trop Dis 2011; 5:e1150. [PMID: 21572985 PMCID: PMC3091839 DOI: 10.1371/journal.pntd.0001150] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 03/09/2011] [Indexed: 12/15/2022] Open
Abstract
Background Pandemic community-acquired methicillin-resistant Staphylococcus aureus isolates (CA-MRSA) predominantly encode the Panton-Valentine leukocidin (PVL), which can be associated with severe infections. Reports from non-indigenous Sub-Saharan African populations revealed a high prevalence of PVL-positive isolates. The objective of our study was to investigate the S. aureus carriage among a remote indigenous African population and to determine the molecular characteristics of the isolates, particularly those that were PVL-positive. Methodology/Principal Findings Nasal S. aureus carriage and risk factors of colonization were systematically assessed in remote Gabonese Babongo Pygmies. Susceptibility to antibiotics, possession of toxin-encoding genes (i.e., PVL, enterotoxins, and exfoliative toxins), S. aureus protein A (spa) types and multi-locus sequence types (MLST) were determined for each isolate. The carriage rate was 33%. No MRSA was detected, 61.8% of the isolates were susceptible to penicillin. Genes encoding PVL (55.9%), enterotoxin B (20.6%), exfoliative toxin D (11.7%) and the epidermal cell differentiation inhibitor B (11.7%) were highly prevalent. Thirteen spa types were detected and were associated with 10 STs predominated by ST15, ST30, ST72, ST80, and ST88. Conclusions The high prevalence of PVL-positive isolates among Babongo Pygmies demands our attention as PVL can be associated with necrotinzing infection and may increase the risk of severe infections in remote Pygmy populations. Many S. aureus isolates from Babongo Pygmies and pandemic CA-MRSA-clones have a common genetic background. Surveillance is needed to control the development of resistance to antibiotic drugs and to assess the impact of the high prevalence of PVL in indigenous populations. Staphylococcus aureus is a bacterium that colonizes humans worldwide. The anterior nares are its main ecological niche. Carriers of S. aureus are at a higher risk of developing invasive infections. Few reports indicated a different clonal structure and profile of virulence factors in S. aureus isolates from Sub-Saharan Africa. As there are no data about isolates from remote indigenous African populations, we conducted a cross-sectional survey of S. aureus nasal carriage in Gabonese Babongo Pygmies. The isolates were characterized regarding their susceptibility to antibiotic agents, possession of virulence factors and clonal lineage. While similar carriage rates were found in populations of industrialized countries, isolates that encode the genes for the Panton-Valentine leukocidin (PVL) were clearly more prevalent than in European countries. Of interest, many methicillin-susceptible S. aureus isolates from Babongo Pygmies showed the same genetic background as pandemic methicillin-resistant S. aureus (MRSA) clones. We advocate a surveillance of S. aureus in neglected African populations to control the development of resistance to antibiotic drugs with particular respect to MRSA and to assess the impact of the high prevalence of PVL-positive isolates.
Collapse
Affiliation(s)
- Frieder Schaumburg
- Institute of Medical Microbiology, University of Münster, Münster, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Premru MM, Špik VC, Furlan SL, Zupanc TL. Clinical appearance of Staphylococcus aureus spondylodiscitis and molecular characterization of the isolates. ACTA ACUST UNITED AC 2010; 42:763-6. [DOI: 10.3109/00365548.2010.492398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Prenafeta A, March R, Foix A, Casals I, Costa L. Study of the humoral immunological response after vaccination with a Staphylococcus aureus biofilm-embedded bacterin in dairy cows: possible role of the exopolysaccharide specific antibody production in the protection from Staphylococcus aureus induced mastitis. Vet Immunol Immunopathol 2009; 134:208-17. [PMID: 19836084 DOI: 10.1016/j.vetimm.2009.09.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 06/15/2009] [Accepted: 09/21/2009] [Indexed: 11/25/2022]
Abstract
The objective of the present study was to analyze an extracellular component from Staphylococcus aureus (S. aureus), which we refer to as slime associated antigenic complex (SAAC), and to investigate the role of SAAC-specific antibody production in protection from S. aureus bovine mastitis. Twelve primiparous gestating cows were randomly assigned to one of the three groups: Group 1 was vaccinated with a S. aureus bacterin with very limited SAAC content; Group 2 received a S. aureus bacterin with high SAAC content and Group 3 served as unvaccinated controls. Animals were vaccinated at 45 days before the expected parturition date and revaccinated 35 days later. All groups were challenged by intramammary infusion with a virulent heterologous strain of S. aureus 23 days after calving. Antibody response against SAAC in serum and in milk, general clinical signs, mastitis score, somatic cell count (SCC) and count of S. aureus in milk were evaluated before and after challenge. Immunization with a high SAAC content in the S. aureus bacterin (Group 2) significantly enhanced antibody titers against SAAC (in serum and milk) and reduced the S. aureus concentration in milk during the post-challenge period compared to Group 1 and Group 3. Moreover, a significant negative correlation was observed between SAAC antibody production on the day of the challenge and the S. aureus count in milk by 1 day after challenge. However, there was no evidence of a difference between vaccinated and control groups with regard to clinical signs of mastitis following the challenge. Nevertheless, the SAAC antibody concentration on the day of the challenge negatively correlated with the mastitis score in quarters infected with S. aureus at 2 days post-challenge. These results indicate that the vaccines did not prevent S. aureus intramammary infection (IMI) after the experimental challenge, but immunization with a S. aureus bacterin with high SAAC content was able to reduce S. aureus multiplication in the mammary gland after challenge and suggests that the SAAC-specific antibody response could be involved in the protection against S. aureus intramammary infection. Although further studies should be performed to confirm the efficacy (under experimental conditions and in field trials), we propose bacterins from strong biofilm-producing bacteria and with high SAAC content, rather than with limited SAAC content, as a cost-efficient vaccine design against S. aureus bovine mastitis.
Collapse
Affiliation(s)
- Antoni Prenafeta
- Research and Development Department, HIPRA, 17170 Amer (Girona), Spain.
| | | | | | | | | |
Collapse
|
17
|
Vandecasteele SJ, Boelaert JR, De Vriese AS. Staphylococcus aureusInfections in Hemodialysis: What a Nephrologist Should Know: Table 1. Clin J Am Soc Nephrol 2009; 4:1388-400. [DOI: 10.2215/cjn.01590309] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Pérez MM, Prenafeta A, Valle J, Penadés J, Rota C, Solano C, Marco J, Grilló MJ, Lasa I, Irache JM, Maira-Litran T, Jiménez-Barbero J, Costa L, Pier GB, de Andrés D, Amorena B. Protection from Staphylococcus aureus mastitis associated with poly-N-acetyl beta-1,6 glucosamine specific antibody production using biofilm-embedded bacteria. Vaccine 2009; 27:2379-86. [PMID: 19428854 PMCID: PMC3024585 DOI: 10.1016/j.vaccine.2009.02.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 02/03/2009] [Accepted: 02/04/2009] [Indexed: 11/17/2022]
Abstract
Staphylococcus aureus vaccines based on bacterins surrounded by slime, surface polysaccharides coupled to protein carriers and polysaccharides embedded in liposomes administered together with non-biofilm bacterins confer protection against mastitis. However, it remains unknown whether protective antibodies are directed to slime-associated known exopolysaccharides and could be produced in the absence of bacterin immunizations. Here, a sheep mastitis vaccination study was carried out using bacterins, crude bacterial extracts or a purified exopolysaccharide from biofilm bacteria delivered in different vehicles. This polysaccharide reacted specifically with antibodies to poly-N-acetyl-beta-1,6-glucosamine (PNAG) and not with antibodies to other capsular antigens or bacterial components. Following intra-mammary challenge with biofilm-producing bacteria, antibody production against the polysaccharide, milk bacterial counts and mastitis lesions were determined. Bacterins from strong biofilm-producing bacteria triggered the highest production of antibodies to PNAG and conferred the highest protection against infection and mastitis, compared with weak biofilm-producing bacteria and non-cellular inocula. Thus, bacterins from strong biofilm bacteria, rather than purified polysaccharide, are proposed as a cost-efficient vaccination against S. aureus ruminant mastitis.
Collapse
Affiliation(s)
- M M Pérez
- Departamento de Sanidad Animal, SIA-CITA (DGA) Ctra. de Montañana, Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Multiple resistant staphylococci that cause significant morbidity and mortality are the leading cause of nosocomial infections. Meanwhile, methicillin-resistant Staphylococcus aureus (MRSA) also spreads in the community, where highly virulent strains infect children and young adults who have no predisposing risk factors. Although some treatment options remain, the search for new antibacterial targets and lead compounds is urgently required to ensure that staphylococcal infections can be effectively treated in the future. Promising targets for new antibacterials are gene products that are involved in essential cell functions. In addition to antibacterials, active and passive immunization strategies are being developed that target surface components of staphylococci such as cell wall-linked adhesins, teichoic acids and capsule or immunodominant antigens.
Collapse
Affiliation(s)
- Knut Ohlsen
- University of Würzburg, Institute for Molecular Infection Biology, Röntgenring 11, 97070 Würzburg, Germany
| | - Udo Lorenz
- University of Würzburg, Centre for Operative Medicine, Department of Surgery I, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| |
Collapse
|