1
|
Yao W, Yang Z, Lou X, Mao H, Yan H, Zhang Y. Simultaneous Detection of Ebola Virus and Pathogens Associated With Hemorrhagic Fever by an Oligonucleotide Microarray. Front Microbiol 2021; 12:713372. [PMID: 34394063 PMCID: PMC8363200 DOI: 10.3389/fmicb.2021.713372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/05/2021] [Indexed: 11/15/2022] Open
Abstract
Ebola virus infection causes severe hemorrhagic fever, and its mortality rates varied from 25 to 90% in the previous outbreaks. The highly infectious and lethal nature of this virus highlights the need for reliable and sensitive diagnostic methods to distinguish it from other diseases present with similar clinical symptoms. Based on multiplex polymerase chain reaction (PCR) and oligonucleotide microarray technology, a cost-effective, multipathogen and high-throughput method was developed for simultaneous detection of Ebola virus and other pathogens associated with hemorrhagic fever, including Marburg virus, Lassa fever virus, Junin virus, Machupo virus, Rift Valley fever virus, Crimean-Congo hemorrhagic fever virus, malaria parasite, hantavirus, severe fever with thrombocytopenia syndrome virus, dengue virus, yellow fever virus, Chikungunya virus, influenza A virus, and influenza B virus. This assay had an excellent specificity for target pathogens, without overlap signal between the probes. The limit of detection was approximately 103 pathogen copies/μl. A total of 60 positive nucleic acid samples for different pathogens were detected, a concordance of 100% was observed between microarray assay and real-time PCR analysis. Consequently, the described oligonucleotide microarray may be specific and sensitive assay for diagnosis and surveillance of infections caused by Ebola virus and other species of hemorrhagic fever pathogens.
Collapse
Affiliation(s)
- Wenwu Yao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhangnv Yang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xiuyu Lou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Haiyan Mao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hao Yan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
2
|
Bu J, Deng Z, Liu H, Li J, Wang D, Yang Y, Zhong S. Current methods and prospects of coronavirus detection. Talanta 2021; 225:121977. [PMID: 33592725 PMCID: PMC7833523 DOI: 10.1016/j.talanta.2020.121977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/21/2022]
Abstract
SARS-COV-2 is a novel coronavirus discovered in Wuhan in December 30, 2019, and is a family of SARS-COV (severe acute respiratory syndrome coronavirus), that is, coronavirus family. After infection with SARS-COV-2, patients often experience fever, cough, gas prostration, dyspnea and other symptoms, which can lead to severe acute respiratory syndrome (SARS), kidney failure and even death. The SARS-COV-2 virus is particularly infectious and has led to a global infection crisis, with an explosion in the number of infections. Therefore, rapid and accurate detection of the virus plays a vital role. At present, many detection methods are limited in their wide application due to their defects such as high preparation cost, poor stability and complex operation process. Moreover, some methods need to be operated by professional medical staff, which can easily lead to infection. In order to overcome these problems, a Surface molecular imprinting technology (SM-MIT) is proposed for the first time to detect SARS-COV-2 virus. For this SM-MIT method, this review provides detailed detection principles and steps. In addition, this method not only has the advantages of low cost, high stability and good specificity, but also can detect whether it is infected at designated points. Therefore, we think SM-MIT may have great potential in the detection of SARS-COV-2 virus.
Collapse
Affiliation(s)
- Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Jiacheng Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - De Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
3
|
Luo B, Liu Z, Wang X, Shi S, Zhong N, Ma P, Wu S, Wu D, Zhao M, Liang W. Dual-peak long period fiber grating coated with graphene oxide for label-free and specific assays of H5N1 virus. JOURNAL OF BIOPHOTONICS 2021; 14:e202000279. [PMID: 32902141 DOI: 10.1002/jbio.202000279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/20/2020] [Accepted: 09/06/2020] [Indexed: 05/28/2023]
Abstract
Avian influenza is an acute infectious disease caused by the avian influenza virus (AIV), which has caused enormous economic losses and posed considerable threats to public health. This study aimed to demonstrate an immunosensor based on dispersion turning point long-period fiber grating (DTP-LPFG) integrated with graphene oxide (GO) for the specific detection of a type of AIV H5N1 virus. LPFG was designed to work at DTP, whose dual-peak spacing was very high sensitive to a refractive index. Anti-H5N1 monoclonal antibodies were covalently bonded with the GO film on the fiber surface, thus constructing an immunosensor for the label-free and specific detection of the H5N1 virus. The proposed method was capable of the reliable detection of H5N1 virus with the limit of detection as low as ~1.05 ng/ml within the large range of 1 ng/mL to 25 µg/mL. More importantly, immunoassays of the whole H5N1 virus in clinical samples further confirmed that the GO-integrated DTP-LPFG immunosensor showed very high specificity to the H5N1 virus and demonstrated great potential for clinical use.
Collapse
Affiliation(s)
- Binbin Luo
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing, China
| | - Zhijiang Liu
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing, China
| | - Xin Wang
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing, China
| | - Shenghui Shi
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing, China
| | - Nianbing Zhong
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing, China
| | - Peijie Ma
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Shengxi Wu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Decao Wu
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing, China
| | - Mingfu Zhao
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing, China
| | - Wangwang Liang
- Animal Disease Surveillance and Diagnosis Department, Chongqing Animal Disease Prevention and Control Center, Chongqing, China
| |
Collapse
|
4
|
Toth E, Dawson ED, Taylor AW, Stoughton RS, Blair RH, Johnson JE, Slinskey A, Fessler R, Smith CB, Talbot S, Rowlen K. FluChip-8G Insight: HA and NA subtyping of potentially pandemic influenza A viruses in a single assay. Influenza Other Respir Viruses 2019; 14:55-60. [PMID: 31608599 PMCID: PMC6928037 DOI: 10.1111/irv.12683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/26/2019] [Accepted: 09/11/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Global influenza surveillance in humans and animals is a critical component of pandemic preparedness. The FluChip-8G Insight assay was developed to subtype both seasonal and potentially pandemic influenza viruses in a single assay with a same day result. FluChip-8G Insight uses whole gene segment RT-PCR-based amplification to provide robustness against genetic drift and subsequent microarray detection with artificial neural network-based data interpretation. OBJECTIVES The objective of this study was to verify and validate the performance of the FluChip-8G Insight assay for the detection and positive identification of human and animal origin non-seasonal influenza A specimens. METHODS We evaluated the ability of the FluChip-8G Insight technology to type and HA and NA subtype a sample set consisting of 297 results from 180 unique non-seasonal influenza A strains (49 unique subtypes). RESULTS FluChip-8G Insight demonstrated a positive percent agreement ≥93% for 5 targeted HA and 5 targeted NA subtypes except for H9 (88%), and negative percent agreement exceeding 95% for all targeted subtypes. CONCLUSIONS The FluChip-8G Insight neural network-based algorithm used for virus identification performed well over a data set of 297 naïve sample results, and can be easily updated to improve performance on emerging strains without changing the underlying assay chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Catherine B Smith
- Influenza Division, the Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sarah Talbot
- Influenza Division, the Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
5
|
Analytical evaluation of the microarray-based FluChip-8G Influenza A+B Assay. J Virol Methods 2019; 273:113686. [PMID: 31271790 PMCID: PMC6779046 DOI: 10.1016/j.jviromet.2019.113686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Influenza causes a significant annual disease burden, with characterization of the infecting virus important in clinical and public health settings. Rapid immunoassays are fast but insensitive, whereas real-time RT-PCR is sensitive but susceptible to genetic mutations and often requires multiple serial assays. The FluChip-8G Influenza A+B Assay provides type and subtype/lineage identification of influenza A and B, including non-seasonal A viruses, in a single microarray-based assay with same day turnaround time. OBJECTIVE To evaluate key analytical performance characteristics of the FluChip-8G Influenza A+B Assay. STUDY DESIGN Analytical sensitivity, cross-reactivity, and multi-site reproducibility were evaluated. RESULTS The limit of detection (LOD) for the FluChip-8G influenza A+B Assay ranged from 5.8 × 102-1.5 × 105 genome copies/mL, with most samples ∼2 × 103 genome copies/mL (∼160 genome copies/reaction). Fifty two (52) additional strains were correctly identified near the LOD, demonstrating robust reactivity. Two variant viruses (H1N1v and H3N2v) resulted in dual identification as both "non-seasonal influenza A" and A/H1N1pdm09. No reproducible cross-reactivity was observed for the 34 organisms tested, however, challenges with internal control inhibition due to crude growth matrix were observed. Lastly, samples tested near the LOD showed high reproducibility (97.0% (95% CI 94.7-98.7)) regardless of operator, site, reagent lot, or testing day. CONCLUSION The FluChip-8G Influenza A+B Assay is an effective new method for detecting and identifying both seasonal and non-seasonal influenza viruses, as revealed by good sensitivity and robust reactivity to 52 unique strains of influenza virus. In addition, the lack of cross-reactivity to non-influenza pathogens and high lab-to-lab reproducibility highlight the analytical performance of the assay as an alternative to real-time RT-PCR and sequencing-based assays. Clinical validation of the technology in a multi-site clinical study is the subject of a separate investigation.
Collapse
|
6
|
Shen KM, Sabbavarapu NM, Fu CY, Jan JT, Wang JR, Hung SC, Lee GB. An integrated microfluidic system for rapid detection and multiple subtyping of influenza A viruses by using glycan-coated magnetic beads and RT-PCR. LAB ON A CHIP 2019; 19:1277-1286. [PMID: 30839009 DOI: 10.1039/c8lc01369a] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The influenza A (InfA) virus, which poses a significant global public health threat, is routinely classified into "subtypes" based on viral hemagglutinin (HA) and neuraminidase (NA) antigens. Because there are nearly 200 viral subtypes, current diagnostic approaches require multiplexing or array systems to cover various subtypes of HA and NA. A microfluidic chip featuring a HA × NA array was consequently developed herein for diagnosis and subtyping of InfA viruses via the use of glycan-coated magnetic beads followed by reverse transcription (RT) polymerase chain reaction (PCR). Up to 12 InfA subtypes were simultaneously detected in an automated fashion in less than 100 minutes on this microfluidic platform, representing a significant improvement in analysis speed compared to benchtop RT-PCR and chip-based microarray systems. The limits of detection of the RT-PCR assays ranged from 40 to 3000 copy numbers for the different subtypes of InfA viruses, around two orders of magnitude higher than in previous studies using microfluidic technologies. In summary, the array-type microfluidic chip system provides a rapid, sensitive, and fully automated approach for detection and multiple subtyping of InfA.
Collapse
Affiliation(s)
- Kao-Mai Shen
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Zhuo Z, Wang J, Chen W, Su X, Chen M, Fang M, He S, Zhang S, Ge S, Zhang J, Xia N. A Rapid On-Site Assay for the Detection of Influenza A by Capillary Convective PCR. Mol Diagn Ther 2018; 22:225-234. [PMID: 29470763 DOI: 10.1007/s40291-018-0320-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Morbidity and mortality from influenza A (Flu A) have increased in recent years. Timely diagnosis and management are critical for disease control. Therefore, the development of a rapid, accurate, and portable analytical method for on-site analysis is imperative. OBJECTIVES The aim of this work was to develop a rapid, on-site, automated assay for the detection of Flu A and to evaluate the assay. METHODS A handheld instrument (TD-01) based on capillary convective polymerase chain reaction (PCR) was developed for rapid on-site detection of Flu A. Since a previous version of the instrument, an automated motion mechanism has been introduced to TD-01 to achieve RNA automated testing. The primers and probe used for Flu A detection were designed according to the Flu A gene sequence of matrix proteins. Finally, we evaluated the detection spectra, sensitivity, specificity, and diagnostic performance of the assay. RESULTS The TD-01 was able to successfully automatically detect Flu A RNA within 30 min. Results for serially diluted viruses indicated that the lower limit of detection for Flu A was 0.1 TCID50/ml (50% tissue culture infective dose). After evaluating known virus stocks, including 15 strains of Flu A, four strains of Flu B, and two strains of respiratory syncytial virus (RSV), the assay had a favorable detection spectrum and no obvious cross-reactivity. Method verification based on 554 clinical samples indicated that the sensitivity and specificity of TD-01 were 98.30% (231/235) and 98.75% (315/319), respectively. CONCLUSIONS The results indicate that Flu A detection by TD-01 is particularly suitable for on-site testing and has the potential for application in point-of-care testing.
Collapse
Affiliation(s)
- Zhihao Zhuo
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiang'an Campus of Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
- School of Life Sciences, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| | - Jin Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiang'an Campus of Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
- School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| | - Wendi Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiang'an Campus of Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
- School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| | - Xiaosong Su
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiang'an Campus of Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
- School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| | - Mengyuan Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiang'an Campus of Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
- School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| | - Mujin Fang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiang'an Campus of Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
- School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| | - Shuizhen He
- Xiamen Center for Disease Control and Prevention, Shengguang Rd., Jimei District, Xiamen, China
| | - Shiyin Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiang'an Campus of Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, Fujian, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China.
- School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China.
| | - Shengxiang Ge
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiang'an Campus of Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, Fujian, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China.
- School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China.
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiang'an Campus of Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
- School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiang'an Campus of Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
- School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| |
Collapse
|
8
|
Pei Z, Jiang X, Yang Z, Ren X, Gong H, Reeves M, Sheng J, Wang Y, Pan Z, Liu F, Wu J, Lu S. Oral Delivery of a Novel Attenuated Salmonella Vaccine Expressing Influenza A Virus Proteins Protects Mice against H5N1 and H1N1 Viral Infection. PLoS One 2015; 10:e0129276. [PMID: 26083421 PMCID: PMC4471199 DOI: 10.1371/journal.pone.0129276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/06/2015] [Indexed: 11/23/2022] Open
Abstract
Attenuated strains of invasive enteric bacteria, such as Salmonella, represent promising gene delivery agents for nucleic acid-based vaccines as they can be administrated orally. In this study, we constructed a novel attenuated strain of Salmonella for the delivery and expression of the hemagglutinin (HA) and neuraminidase (NA) of a highly pathogenic H5N1 influenza virus. We showed that the constructed Salmonella strain exhibited efficient gene transfer activity for HA and NA expression and little cytotoxicity and pathogenicity in mice. Using BALB/c mice as the model, we evaluated the immune responses and protection induced by the constructed Salmonella-based vaccine. Our study showed that the Salmonella-based vaccine induced significant production of anti-HA serum IgG and mucosal IgA, and of anti-HA interferon-γ producing T cells in orally vaccinated mice. Furthermore, mice orally vaccinated with the Salmonella vaccine expressing viral HA and NA proteins were completely protected from lethal challenge of highly pathogenic H5N1 as well as H1N1 influenza viruses while none of the animals treated with the Salmonella vaccine carrying the empty expression vector with no viral antigen expression was protected. These results suggest that the Salmonella-based vaccine elicits strong antigen-specific humoral and cellular immune responses and provides effective immune protection against multiple strains of influenza viruses. Furthermore, our study demonstrates the feasibility of developing novel attenuated Salmonella strains as new oral vaccine vectors against influenza viruses.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Female
- Gene Transfer Techniques
- Hemagglutinins/genetics
- Hemagglutinins/immunology
- Immunity, Cellular
- Immunity, Humoral
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Mice
- Mice, Inbred BALB C
- Neuraminidase/genetics
- Neuraminidase/immunology
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Salmonella Vaccines/administration & dosage
- Salmonella Vaccines/genetics
- Salmonella Vaccines/immunology
- Salmonella Vaccines/therapeutic use
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/therapeutic use
- Viral Proteins/genetics
- Viral Proteins/immunology
Collapse
Affiliation(s)
- Zenglin Pei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiaohong Jiang
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Zhu Yang
- Taizhou Institute of Virology, Taizhou, Jiangsu, China
- Jiangsu Affynigen Biotechnologies, Inc., Taizhou, Jiangsu, China
| | - Xiaoguang Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hao Gong
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Michael Reeves
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Jingxue Sheng
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Yu Wang
- Taizhou Institute of Virology, Taizhou, Jiangsu, China
- Jiangsu Affynigen Biotechnologies, Inc., Taizhou, Jiangsu, China
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Fenyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- School of Public Health, University of California, Berkeley, California, United States of America
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Sangwei Lu
- School of Public Health, University of California, Berkeley, California, United States of America
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| |
Collapse
|
9
|
Chandler DP, Griesemer SB, Knickerbocker C, Golova JB, Lambarqui A, Perov AN, Zimmerman C, Wiles C, Rudy GB, St George K. Development and clinical testing of a simple, low-density gel element array for influenza identification, subtyping, and H275Y detection. J Virol Methods 2014; 208:152-9. [PMID: 25066276 PMCID: PMC4175443 DOI: 10.1016/j.jviromet.2014.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/09/2014] [Accepted: 07/15/2014] [Indexed: 11/22/2022]
Abstract
The objectives of this study were to develop a user-friendly, gel element microarray test for influenza virus detection, subtyping, and neuraminidase inhibitor resistance detection, assess the performance characteristics of the assay, and perform a clinical evaluation on retrospective nasopharyngeal swab specimens. A streamlined microarray workflow enabled a single user to run up to 24 tests in an 8h shift. The most sensitive components of the test were the primers and probes targeting the A/H1 pdm09 HA gene with an analytical limit of detection (LoD) <100 gene copies (gc) per reaction. LoDs for all targets in nasopharyngeal swab samples were ≤1000 gc, with the exception of one target in the seasonal A/H1N1 subtype. Seasonal H275Y variants were detectable in a mixed population when present at >5% with wild type virus, while the 2009 pandemic H1N1 H275Y variant was detectable at ≤1% in a mixture with pandemic wild type virus. Influenza typing and subtyping results concurred with those obtained with real-time RT-PCR assays on more than 97% of the samples tested. The results demonstrate that a large panel of single-plex, real-time RT-PCR tests can be translated to an easy-to-use, sensitive, and specific microarray test for potential diagnostic use.
Collapse
Affiliation(s)
- Darrell P Chandler
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, United States.
| | - Sara B Griesemer
- Laboratory of Viral Diseases, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12208, United States
| | | | - Julia B Golova
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, United States
| | - Amine Lambarqui
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, United States
| | - Alexander N Perov
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, United States
| | - Cynthia Zimmerman
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, United States
| | - Cory Wiles
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, United States
| | - George B Rudy
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, United States
| | - Kirsten St George
- Laboratory of Viral Diseases, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12208, United States
| |
Collapse
|
10
|
Lim S, Nan H, Lee MJ, Kang SH. Fast on-site diagnosis of influenza A virus by Palm PCR and portable capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 963:134-9. [PMID: 24956080 DOI: 10.1016/j.jchromb.2014.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 05/17/2014] [Accepted: 06/02/2014] [Indexed: 11/19/2022]
Abstract
A method combining Palm polymerase chain reaction (PCR) and portable capillary electrophoresis (CE) was developed for rapid on-site analysis of influenza A (H1N1) virus. The portable CE system was suitable for rapid diagnosis which was able to detect a sample in ∼4 min after sample loading, while the 'Palm PCR' system allowed for high-speed nucleic acid amplification in ∼16 min. The analysis time from DNA sample to analysis of amplified target DNA molecule was only ∼20 min, which was significantly less than slab gel electrophoresis with other commercially available PCR machine. When the 100-bp DNA ladder was separated, the relative standard deviation values (n=5) for the migration times and peak areas of the 100 and 200-bp DNA molecules were 0.26 and 8.9%. The detection limits were 6.3 and 7.2 pg/μL, respectively. The combined method was also able to identify two influenza A-associated genes (the HA and NP genes of the novel H1N1 influenza). CE separation was achieved with a sieving matrix of 1% poly(vinylpyrrolidone) (Mr=1,300,000) in 1× TBE buffer (pH 8.45). The combined Palm PCR-portable CE system should provide an improved, fast on-site molecular genetic diagnostic method.
Collapse
Affiliation(s)
- Seoyeon Lim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin-si, Gyunggi-do 446-701, Republic of Korea
| | - He Nan
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin-si, Gyunggi-do 446-701, Republic of Korea
| | - Min-Jun Lee
- Ahram Biosystems Inc., Seoul 133-120, Republic of Korea
| | - Seong Ho Kang
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin-si, Gyunggi-do 446-701, Republic of Korea.
| |
Collapse
|
11
|
Relative Frequency of Seasonal Influenza A and B in Khuzestan Province by Reverse Transcription-Polymerase Chain Reaction (RT-PCR) During 2009-2010. Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.5312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
12
|
Application of genomics, proteomics and metabolomics in drug discovery, development and clinic. Ther Deliv 2013; 4:395-413. [PMID: 23442083 DOI: 10.4155/tde.13.4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genomics, proteomics and metabolomics are three areas that are routinely applied throughout the drug-development process as well as after a product enters the market. This review discusses all three 'omics, reporting on the key applications, techniques, recent advances and expectations of each. Genomics, mainly through the use of novel and next-generation sequencing techniques, has advanced areas of drug discovery and development through the comparative assessment of normal and diseased-state tissues, transcription and/or expression profiling, side-effect profiling, pharmacogenomics and the identification of biomarkers. Proteomics, through techniques including isotope coded affinity tags, stable isotopic labeling by amino acids in cell culture, isobaric tags for relative and absolute quantification, multidirectional protein identification technology, activity-based probes, protein/peptide arrays, phage displays and two-hybrid systems is utilized in multiple areas through the drug development pipeline including target and lead identification, compound optimization, throughout the clinical trials process and after market analysis. Metabolomics, although the most recent and least developed of the three 'omics considered in this review, provides a significant contribution to drug development through systems biology approaches. Already implemented to some degree in the drug-discovery industry and used in applications spanning target identification through to toxicological analysis, metabolic network understanding is essential in generating future discoveries.
Collapse
|
13
|
Yang Z, Mao G, Liu Y, Chen YC, Liu C, Luo J, Li X, Zen K, Pang Y, Wu J, Liu F. Detection of the pandemic H1N1/2009 influenza A virus by a highly sensitive quantitative real-time reverse-transcription polymerase chain reaction assay. Virol Sin 2013; 28:24-35. [PMID: 23385352 DOI: 10.1007/s12250-013-3290-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/23/2013] [Indexed: 11/29/2022] Open
Abstract
A quantitative real time reverse-transcription polymerase chain reaction (qRT-PCR) assay with specific primers recommended by the World Health Organization (WHO) has been widely used successfully for detection and monitoring of the pandemic H1N1/2009 influenza A virus. In this study, we report the design and characterization of a novel set of primers to be used in a qRT-PCR assay for detecting the pandemic H1N1/2009 virus. The newly designed primers target three regions that are highly conserved among the hemagglutinin (HA) genes of the pandemic H1N1/2009 viruses and are different from those targeted by the WHO-recommended primers. The qRT-PCR assays with the newly designed primers are highly specific, and as specific as the WHO-recommended primers for detecting pandemic H1N1/2009 viruses and other influenza viruses including influenza B viruses and influenza A viruses of human, swine, and raccoon dog origin. Furthermore, the qRT-PCR assays with the newly designed primers appeared to be at least 10-fold more sensitive than those with the WHO-recommended primers as the detection limits of the assays with our primers and the WHO-recommended primers were 2.5 and 25 copies of target RNA per reaction, respectively. When tested with 83 clinical samples, 32 were detected to be positive using the qRT-PCR assays with our designed primers, while only 25 were positive by the assays with the WHO-recommended primers. These results suggest that the qRT-PCR system with the newly designed primers represent a highly sensitive assay for diagnosis of the pandemic H1N1/2009 virus infection.
Collapse
Affiliation(s)
- Zhu Yang
- Institute of Virology, School of Life Sciences, Nanjing University, Nanjing 210093, Jiangsu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nucleic acid sandwich hybridization assay with quantum dot-induced fluorescence resonance energy transfer for pathogen detection. SENSORS 2012; 12:16660-72. [PMID: 23211753 PMCID: PMC3571803 DOI: 10.3390/s121216660] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/23/2012] [Accepted: 11/30/2012] [Indexed: 11/17/2022]
Abstract
This paper reports a nucleic acid sandwich hybridization assay with a quantum dot (QD)-induced fluorescence resonance energy transfer (FRET) reporter system. Two label-free hemagglutinin H5 sequences (60-mer DNA and 630-nt cDNA fragment) of avian influenza viruses were used as the targets in this work. Two oligonucleotides (16 mers and 18 mers) that specifically recognize two separate but neighboring regions of the H5 sequences were served as the capturing and reporter probes, respectively. The capturing probe was conjugated to QD655 (donor) in a molar ratio of 10:1 (probe-to-QD), and the reporter probe was labeled with Alexa Fluor 660 dye (acceptor) during synthesis. The sandwich hybridization assay was done in a 20 μL transparent, adhesive frame-confined microchamber on a disposable, temperature-adjustable indium tin oxide (ITO) glass slide. The FRET signal in response to the sandwich hybridization was monitored by a homemade optical sensor comprising a single 400 nm UV light-emitting diode (LED), optical fibers, and a miniature 16-bit spectrophotometer. The target with a concentration ranging from 0.5 nM to 1 μM was successfully correlated with both QD emission decrease at 653 nm and dye emission increase at 690 nm. To sum up, this work is beneficial for developing a portable QD-based nucleic acid sensor for on-site pathogen detection.
Collapse
|
15
|
Radomski JP, Slonimski PP. Alignment free characterization of the influenza-A hemagglutinin genes by the ISSCOR method. C R Biol 2012; 335:180-93. [PMID: 22464426 DOI: 10.1016/j.crvi.2012.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 10/26/2011] [Accepted: 01/11/2012] [Indexed: 12/23/2022]
Abstract
Analyses and visualizations by the ISSCOR method of the influenza virus hemagglutinin genes of three different A-subtypes revealed some rather striking temporal (for A/H3N3), and spatial relationships (for A/H5N1) between groups of individual gene subsets. The application to the A/H1N1 set revealed also relationships between the seasonal H1, and the swine-like novel 2009 H1v variants in a quick and unambiguous manner. Based on these examples we consider the application of the ISSCOR method for analysis of large sets of homologous genes as a worthwhile addition to a toolbox of genomics-it allows a rapid diagnostics of trends, and possibly can even aid an early warning of newly emerging epidemiological threats.
Collapse
Affiliation(s)
- Jan P Radomski
- Interdisciplinary Center for Mathematical and Computational Modeling, Warsaw University, Warsaw, Poland.
| | | |
Collapse
|
16
|
Teo J, Pietro PD, Biagio FS, Capozzoli M, Deng YM, Barr I, Caldwell N, Ong KL, Sato M, Tan R, Lin R. VereFlu™: an integrated multiplex RT-PCR and microarray assay for rapid detection and identification of human influenza A and B viruses using lab-on-chip technology. Arch Virol 2011; 156:1371-8. [PMID: 21503642 PMCID: PMC7087244 DOI: 10.1007/s00705-011-0999-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/31/2011] [Indexed: 12/16/2022]
Abstract
Threatening sporadic outbreaks of avian influenza and the H1N1 pandemic of 2009 highlight the need for rapid and accurate detection and typing of influenza viruses. In this paper, we describe the validation of the VereFlu™ Lab-on-Chip Influenza Assay, which is based on the integration of two technologies: multiplex reverse transcription (RT)-PCR followed by microarray amplicon detection. This assay simultaneously detects five influenza virus subtypes, including the 2009 pandemic influenza A (H1N1), seasonal H1N1, H3N2, H5N1 and influenza B virus. The VereFlu™ assay was clinically validated in Singapore and compared against reference methods of real-time PCR, virus detection by immunofluorescence of cell cultures and sequencing. A sensitivity and specificity of 96.8% and 92.8%, respectively, was demonstrated for pandemic H1N1; 95.7% and 100%, respectively, for seasonal H1N1; 91.2% and 97.6%, respectively, for seasonal H3N2; 95.2% and 100%, respectively, for influenza B. Additional evaluations carried out at the World Health Organization (WHO) Collaborating Centre, Melbourne, Australia, confirmed that the test was able to reliably detect H5N1. This portable, fast time-to-answer (3 hours) device is particularly suited for diagnostic applications of detection, differentiation and identification of human influenza virus subtypes.
Collapse
Affiliation(s)
- Jeanette Teo
- Department of Laboratory Medicine, National University Hospital, Singapore, 119074 Singapore
| | - Patrizia Di Pietro
- CCI Group, Molecular Diagnostic Business Unit, Microfluidics Division, STMicroelectronics, Stradale Primosole 50, 95121 Catania, Italy
| | - Floriana San Biagio
- CCI Group, Molecular Diagnostic Business Unit, Microfluidics Division, STMicroelectronics, Stradale Primosole 50, 95121 Catania, Italy
| | - Monica Capozzoli
- CCI Group, Molecular Diagnostic Business Unit, Microfluidics Division, STMicroelectronics, Stradale Primosole 50, 95121 Catania, Italy
| | - Yi-Mo Deng
- WHO Collaborating Centre for Reference and Research on Influenza, 10 Wreckyn St, North Melbourne, VIC Australia
| | - Ian Barr
- WHO Collaborating Centre for Reference and Research on Influenza, 10 Wreckyn St, North Melbourne, VIC Australia
| | - Natalie Caldwell
- WHO Collaborating Centre for Reference and Research on Influenza, 10 Wreckyn St, North Melbourne, VIC Australia
| | - Kian-Leong Ong
- Veredus Laboratories Pte Ltd, 83 Science Park Drive #03-02A, The Curie, Singapore Science Park, Singapore, 118258 Singapore
| | - Mitsuharu Sato
- Veredus Laboratories Pte Ltd, 83 Science Park Drive #03-02A, The Curie, Singapore Science Park, Singapore, 118258 Singapore
| | - Rosemary Tan
- Veredus Laboratories Pte Ltd, 83 Science Park Drive #03-02A, The Curie, Singapore Science Park, Singapore, 118258 Singapore
| | - Raymond Lin
- Department of Laboratory Medicine, National University Hospital, Singapore, 119074 Singapore
| |
Collapse
|