1
|
Shi XY, Wang XL, Zhao J, Yang SH, Zhang CH. Role of octamer transcription factor 4 in proliferation, migration, drug sensitivity, and stemness maintenance of pancreatic cancer cells. World J Clin Oncol 2025; 16:100723. [PMID: 40130045 PMCID: PMC11866075 DOI: 10.5306/wjco.v16.i3.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/18/2024] [Accepted: 12/13/2024] [Indexed: 01/21/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the most aggressive malignancies characterized by rapid progression and poor prognosis. The involvement of cancer stem cells (CSCs) and Octamer transcription factor 4 (OCT4) in PC pathobiology is being increasingly recognized. AIM To investigate the role of OCT4 in pancreatic CSCs and its effect on PC cell proliferation, migration, drug sensitivity, and stemness maintenance. METHODS We analyzed OCT4 and CD133 expression in PC tissues and cell lines. BxPC-3 cells were used to assess the effects of OCT4 modulation on cellular behavior. Proliferation, migration, and stemness of BxPC-3 cells were evaluated, and the PI3K/AKT/mTOR pathway was examined to gain mechanistic insights. RESULTS OCT4 and CD133 were significantly overexpressed in PC tissues. OCT4 modulation altered BxPC-3 cell proliferation, invasion, and stemness, with OCT4 overexpression (OV-OCT4) enhancing these properties and OCT4 interference decreasing them. OV-OCT4 activated the PI3K/AKT/mTOR pathway, which correlated with an increase in PC stem cells (PCSC). CONCLUSION OCT4 plays a crucial role in PCSCs by influencing the aggressiveness and drug resistance of PC cells, thus presenting itself as a potential therapeutic target.
Collapse
Affiliation(s)
- Xue-Ying Shi
- Department of General Surgery, The Third Affiliated Hospital, Inner Mongolia Medical University, Baotou 014010, Inner Mongolia Autonomous Region, China
| | - Xi-Lan Wang
- Department of Gastroenterology, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China
| | - Jin Zhao
- Department of General Surgery, The Third Affiliated Hospital, Inner Mongolia Medical University, Baotou 014010, Inner Mongolia Autonomous Region, China
| | - Shi-Hai Yang
- Department of General Surgery, The Third Affiliated Hospital, Inner Mongolia Medical University, Baotou 014010, Inner Mongolia Autonomous Region, China
| | - Cheng-Hai Zhang
- Department of General Surgery, The Third Affiliated Hospital, Inner Mongolia Medical University, Baotou 014010, Inner Mongolia Autonomous Region, China
| |
Collapse
|
2
|
Cancer cells as a new source of induced pluripotent stem cells. Stem Cell Res Ther 2022; 13:459. [PMID: 36064437 PMCID: PMC9446809 DOI: 10.1186/s13287-022-03145-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
Over the last 2 decades, induced pluripotent stem cells (iPSCs) have had various potential applications in various medical research areas, from personalized medicine to disease treatment. Different cellular resources are accessible for iPSC generation, such as keratinocytes, skin fibroblasts, and blood or urine cells. However, all these sources are somatic cells, and we must make several changes in a somatic cell's transcriptome and chromatin state to become a pluripotent cell. It has recently been revealed that cancer cells can be a new source of iPSCs production. Cancer cells show similarities with iPSCs in self-renewal capacity, reprogramming potency, and signaling pathways. Although genetic abnormalities and potential tumor formation in cancer cells pose a severe risk, reprogrammed cancer-induced pluripotent stem cells (cancer-iPSCs) indicate that pluripotency can transiently overcome the cancer phenotype. This review discusses whether cancer cells can be a preferable source to generate iPSCs.
Collapse
|
3
|
Wu CH, Lin HH, Wu YY, Chiu YL, Huang LY, Cheng CC, Yang CC, Tsai TN. Generation of Functional Cardiomyocytes from Human Gastric Fibroblast-Derived Induced Pluripotent Stem Cells. Biomedicines 2021; 9:biomedicines9111565. [PMID: 34829794 PMCID: PMC8615619 DOI: 10.3390/biomedicines9111565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
Coronary artery diseases are major problems of the world. Coronary artery disease patients frequently suffer from peptic ulcers when they receive aspirin treatment. For diagnostic and therapeutic purposes, the implementation of panendoscopy (PES) with biopsy is necessary. Some biopsy samples are wasted after the assay is completed. In the present study, we established a protocol for human gastric fibroblast isolation and induced pluripotent stem cell (iPSC) generation from gastric fibroblasts via PES with biopsy. We showed that these iPSCs can be differentiated into functional cardiomyocytes in vitro. To our knowledge, this is the first study to generate iPSCs from gastric fibroblasts in vitro.
Collapse
Affiliation(s)
- Chih-Hsien Wu
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan; (C.-H.W.); (Y.-L.C.)
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (L.-Y.H.); (C.-C.C.); (C.-C.Y.)
| | - Hsuan-Hwai Lin
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Centre, Taipei 11490, Taiwan;
| | - Yi-Ying Wu
- Division of Hematology/Oncology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan; (C.-H.W.); (Y.-L.C.)
| | - Li-Yen Huang
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (L.-Y.H.); (C.-C.C.); (C.-C.Y.)
- Division of Cardiology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan County 32551, Taiwan
| | - Cheng-Chung Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (L.-Y.H.); (C.-C.C.); (C.-C.Y.)
| | - Chung-Chi Yang
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (L.-Y.H.); (C.-C.C.); (C.-C.Y.)
- Division of Cardiology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan County 32551, Taiwan
| | - Tsung-Neng Tsai
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (L.-Y.H.); (C.-C.C.); (C.-C.Y.)
- Correspondence:
| |
Collapse
|
4
|
Zhang Q, Han Z, Zhu Y, Chen J, Li W. The Role and Specific Mechanism of OCT4 in Cancer Stem Cells: A Review. Int J Stem Cells 2020; 13:312-325. [PMID: 32840233 PMCID: PMC7691851 DOI: 10.15283/ijsc20097] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Recently, evidences show that cancer stem cells (CSCs) are a type of cancer cell group with self-renewal and play a huge role in tumor recurrence, metastasis, and drug resistance. Finding new treatment directions and targets for cancer prognosis and reducing mortality has become a top priority. OCT4, as a transcription factor, participates in maintaining the stem characteristics of CSCs, but the mechanism of OCT4 is often overlooked. In this review, we try to illustrate the mechanism by which OCT4 plays a role in CSCs from the perspective of genetic modification of OCT4, non-coding RNA, complexes and signaling pathways associated with OCT4. Our ultimate goal is to provide new targets for cancer treatment to prolong the survival of cancer patients.
Collapse
Affiliation(s)
- Qi Zhang
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Zhenzhen Han
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yanbo Zhu
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jingcheng Chen
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Investigating the expression of pluripotency-related genes in human amniotic fluid cells: A semi-quantitative comparison between different subpopulations, from primary to cultured amniocytes. Reprod Biol 2020; 20:338-347. [PMID: 32518050 DOI: 10.1016/j.repbio.2020.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 01/05/2023]
Abstract
Various classifications have been proposed for human amniotic subpopulations, including classification of spindle-shaped (SS) and round-shaped (RS) cells, as well as the more referred triple-category of epithelioid (E-type) cells, amniotic fluid-specific (AF-type) cells and fibroblastoid (F-type) cells. The present study aims to investigate these amniotic subpopulations regarding the expression of some stem cell markers, including OCT4, NANOG, SOX2, C-KIT (CD117), C-MYC, KLF4, and THY1 (CD90). Flow cytometry was performed to characterize the isolated clonal subpopulations for a hematopoietic and a mesenchymal marker using PE-CD31 and FITC-CD90, respectively. A semi-quantitative RT-PCR analysis was carried out on the isolates in the second half of their lifespan when the cells were at the stationary phase of the growth curve. Characterization of isolated cells demonstrated that all clones including both epithelioid and fibroblastoid cells, had mesenchymal, not hematopoietic, lineage. RT-PCR analysis also revealed a higher expression of the target genes in epithelioid cells. Furthermore, the expression pattern of the genes and their correlations were remarkably different between primary- and long term-cultured amniocytes. Taken together, our results showed that the primary-cultured cells express the stemness genes equally, whereas the long term-cultured amniocytes exhibited a highly variable manner in the expression pattern of the genes. Diverse derivation site of amniocytes and individual genetic background can potentially explain the observed variation in the expression level of the target genes. These can also explain why amniocytes differ in many respects observed in our study, including survival rate, plastic adhesion, and growth characteristics.
Collapse
|
6
|
Georgomanoli M, Papapetrou EP. Modeling blood diseases with human induced pluripotent stem cells. Dis Model Mech 2019; 12:12/6/dmm039321. [PMID: 31171568 PMCID: PMC6602313 DOI: 10.1242/dmm.039321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are derived from somatic cells through a reprogramming process, which converts them to a pluripotent state, akin to that of embryonic stem cells. Over the past decade, iPSC models have found increasing applications in the study of human diseases, with blood disorders featuring prominently. Here, we discuss methodological aspects pertaining to iPSC generation, hematopoietic differentiation and gene editing, and provide an overview of uses of iPSCs in modeling the cell and gene therapy of inherited genetic blood disorders, as well as their more recent use as models of myeloid malignancies. We also discuss the strengths and limitations of iPSCs compared to model organisms and other cellular systems commonly used in hematology research.
Collapse
Affiliation(s)
- Maria Georgomanoli
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
7
|
Gong X, Liu W, Wu L, Ma Z, Wang Y, Yu S, Zhang J, Xie H, Wei G, Ma F, Lu L, Chen L. Transcriptional repressor GATA binding 1-mediated repression of SRY-box 2 expression suppresses cancer stem cell functions and tumor initiation. J Biol Chem 2018; 293:18646-18654. [PMID: 30315105 DOI: 10.1074/jbc.ra118.003983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/09/2018] [Indexed: 01/22/2023] Open
Abstract
Cancer stem cells (CSCs) have been reported in a variety of cancers. SRY-box 2 (SOX2) is a member of the SOX family of transcription factors and has been shown to play a critical role in maintaining the functions of CSCs and promoting tumor initiation. However, the underlying mechanisms for the transcriptional regulation of the SOX2 gene in CSCs are unclear. In this study, using in silico and experimental approaches, we identified transcriptional repressor GATA binding 1 (TRPS1), an atypical GATA-type transcription factor, as a critical transcriptional regulator that represses SOX2 expression and thereby suppresses cancer stemness and tumorigenesis. Mechanistically, TRPS1 repressed SOX2 expression by directly targeting the consensus GATA-binding element in the SOX2 promoter as elucidated by ChIP and luciferase reporter assays. Of note, in vitro mammosphere formation assays in culture and in vivo xenograft tumor initiation experiments in mouse models revealed that TRPS1-mediated repression of SOX2 expression suppresses CSC functions and tumor initiation. Taken together, our study provides detailed mechanistic insights into CSC functions and tumor initiation by the TRPS1-SOX2 axis.
Collapse
Affiliation(s)
- Xue Gong
- From the Institute of Life Science, Southeast University, Nanjing 210096, China.,the Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Weiguang Liu
- the Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Lele Wu
- the Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhifang Ma
- the Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuzhi Wang
- From the Institute of Life Science, Southeast University, Nanjing 210096, China.,the Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Shiyi Yu
- the Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Jun Zhang
- the Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Hao Xie
- From the Institute of Life Science, Southeast University, Nanjing 210096, China
| | - Guanyun Wei
- the Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Fei Ma
- the Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Ling Lu
- the Department of Otolaryngology-Head and Neck Surgery, DrumTower Clinical Medical College of Nanjing Medical University, Nanjing 210008, China, and.,the Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Liming Chen
- From the Institute of Life Science, Southeast University, Nanjing 210096, China, .,the Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
8
|
Malik V, Zimmer D, Jauch R. Diversity among POU transcription factors in chromatin recognition and cell fate reprogramming. Cell Mol Life Sci 2018; 75:1587-1612. [PMID: 29335749 PMCID: PMC11105716 DOI: 10.1007/s00018-018-2748-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/23/2017] [Accepted: 01/08/2018] [Indexed: 12/28/2022]
Abstract
The POU (Pit-Oct-Unc) protein family is an evolutionary ancient group of transcription factors (TFs) that bind specific DNA sequences to direct gene expression programs. The fundamental importance of POU TFs to orchestrate embryonic development and to direct cellular fate decisions is well established, but the molecular basis for this activity is insufficiently understood. POU TFs possess a bipartite 'two-in-one' DNA binding domain consisting of two independently folding structural units connected by a poorly conserved and flexible linker. Therefore, they represent a paradigmatic example to study the molecular basis for the functional versatility of TFs. Their modular architecture endows POU TFs with the capacity to accommodate alternative composite DNA sequences by adopting different quaternary structures. Moreover, associations with partner proteins crucially influence the selection of their DNA binding sites. The plentitude of DNA binding modes confers the ability to POU TFs to regulate distinct genes in the context of different cellular environments. Likewise, different binding modes of POU proteins to DNA could trigger alternative regulatory responses in the context of different genomic locations of the same cell. Prominent POU TFs such as Oct4, Brn2, Oct6 and Brn4 are not only essential regulators of development but have also been successfully employed to reprogram somatic cells to pluripotency and neural lineages. Here we review biochemical, structural, genomic and cellular reprogramming studies to examine how the ability of POU TFs to select regulatory DNA, alone or with partner factors, is tied to their capacity to epigenetically remodel chromatin and drive specific regulatory programs that give cells their identities.
Collapse
Affiliation(s)
- Vikas Malik
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Dennis Zimmer
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ralf Jauch
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
9
|
Fu S, Ding J, Liu D, Huang H, Li M, Liu Y, Tu L, Liu D. Generation of human-induced pluripotent stem cells from burn patient-derived skin fibroblasts using a non-integrative method. Int J Mol Med 2018; 41:87-94. [PMID: 29115387 PMCID: PMC5746323 DOI: 10.3892/ijmm.2017.3206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/19/2017] [Indexed: 11/23/2022] Open
Abstract
Patient specific induced pluripotent stem cells (iPSCs) have been recognized as a possible source of cells for skin tissue engineering. They have the potential to greatly benefit patients with large areas of burned skin or skin defects. However, the integration virus-based reprogramming method is associated with a high risk of genetic mutation and mouse embryonic fibroblast feeder-cells may be a pollutant. In the present study, human skin fibroblasts (HSFs) were successfully harvested from patients with burns and patient-specific iPSCs were generated using a non-integration method with a feeder-free approach. The octamer-binding transcription factor 4 (OCT4), sex-determining region Y box 2 (SOX2) and NANOG transcription factors were delivered using Sendai virus vectors. iPSCs exhibited representative human embryonic stem cell-like morphology and proliferation characteristics. They also expressed pluripotent markers, including OCT4, NANOG, SOX2, TRA181, stage-specific embryonic antigen 4 and TRA-160, and exhibited a normal karyotype. Teratoma and embryoid body formation revealed that iPSCs were able to differentiate into cells of all three germ layers in vitro and in vivo. The results of the present study demonstrate that HSFs derived from patients with burns, may be reprogrammed into stem cells with pluripotency, which provides a basis for cell‑based skin tissue engineering in the future.
Collapse
Affiliation(s)
- Shangfeng Fu
- Burns Institute, The First Affiliated Hospital of Nanchang University
| | - Jianwu Ding
- Department of Oncology, The Second Affiliated Hospital of Nanchang University
| | - Dewu Liu
- Burns Institute, The First Affiliated Hospital of Nanchang University
| | - Heping Huang
- Burns Institute, The First Affiliated Hospital of Nanchang University
- Department of Plastic and Aesthetic Surgery, Jingxi Maternal and Child Health Hospital
| | - Min Li
- Burns Institute, The First Affiliated Hospital of Nanchang University
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University
| | - Yang Liu
- Burns Institute, The First Affiliated Hospital of Nanchang University
| | - Longxiang Tu
- Burns Institute, The First Affiliated Hospital of Nanchang University
| | - Deming Liu
- Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
10
|
Kim YM, Kang YG, Park SH, Han MK, Kim JH, Shin JW, Shin JW. Effects of mechanical stimulation on the reprogramming of somatic cells into human-induced pluripotent stem cells. Stem Cell Res Ther 2017; 8:139. [PMID: 28595633 PMCID: PMC5465448 DOI: 10.1186/s13287-017-0594-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/24/2017] [Accepted: 05/22/2017] [Indexed: 12/26/2022] Open
Abstract
Background Mechanical stimuli play important roles in the proliferation and differentiation of adult stem cells. However, few studies on their effects on induced pluripotent stem cells (iPSCs) have been published. Methods Human dermal fibroblasts were seeded onto flexible membrane-bottom plates, and infected with retrovirus expressing the four reprogramming factors OCT4, SOX2, KLF, and c-MYC (OSKM). The cells were subjected to equiaxial stretching (3% or 8% for 2, 4, or 7 days) and seeded on feeder cells (STO). The reprogramming into iPSCs was evaluated by the expression of pluripotent markers, in vitro differentiation into three germ layers, and teratoma formation. Results Equiaxial stretching enhanced reprogramming efficiency without affecting the viral transduction rate. iPSCs induced by transduction of four reprogramming factors and application of equiaxial stretching had characteristics typical of iPSCs in terms of pluripotency and differentiation potentials. Conclusions This is the first study to show that mechanical stimuli can increase reprogramming efficiency. However, it did not enhance the infection rate, indicating that mechanical stimuli, defined as stretching in this study, have positive effects on reprogramming rather than on infection. Additional studies should evaluate the mechanism underlying the modulation of reprogramming of somatic cells into iPSCs.
Collapse
Affiliation(s)
- Young Mi Kim
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongsangnam-do, Republic of Korea
| | - Yun Gyeong Kang
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongsangnam-do, Republic of Korea
| | - So Hee Park
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongsangnam-do, Republic of Korea
| | - Myung-Kwan Han
- Department of Microbiology, Chonbuk National University Medical School, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Ji Won Shin
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongsangnam-do, Republic of Korea
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongsangnam-do, Republic of Korea. .,Department of Health Science and Technology/Cardiovascular and Metabolic Disease Center/Institute of Aged Life Redesign/UHARC, Gimhae, Gyeongsangnam-do, Republic of Korea.
| |
Collapse
|
11
|
Generation of trophoblast-like cells from the amnion in vitro: A novel cellular model for trophoblast development. Placenta 2017; 51:28-37. [PMID: 28292466 DOI: 10.1016/j.placenta.2017.01.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/23/2016] [Accepted: 01/15/2017] [Indexed: 01/07/2023]
Abstract
Despite the high incidence of trophoblast-related diseases, the molecular mechanism of inadequate early trophoblast development is still unclear due to the lack of an appropriate cellular model in vitro. In the present study, we reprogrammed the amniotic cells to be induced pluripotent stem cells (iPSCs) via a non-virus and non-integrated method and subsequently differentiated them into trophoblast-like cells by a modified BMP4 strategy in E6 medium. Compared with the previously studied trophoblast-like cells from ESCs, the iPSCs derived trophoblast-like cells behave similarly in terms of gene expression profiles and biofunctions. Also we confirmed the differentiating tendency from iPSCs to be syncytiotrophoblasts-like cells might be caused by inappropriate differentiating oxygen condition. Additionally, we preliminarily indicated in vitro "artificial" differentiation of iPSCs also undergoing a possible trophoblastic stem cell stage, as witnessed in vivo. In conclusion, we provided an in vitro cellular model to study early trophoblast development for specific individual, by using the feasible amnion.
Collapse
|
12
|
Abstract
Pluripotent stem cells (PSCs) can differentiate into virtually any cell type in the body, making them attractive for both regenerative medicine and drug discovery. Over the past 10 years, technological advances and innovative platforms have yielded first-in-man PSC-based clinical trials and opened up new approaches for disease modeling and drug development. Induced PSCs have become the foremost alternative to embryonic stem cells and accelerated the development of disease-in-a-dish models. Over the years and with each new discovery, PSCs have proven to be extremely versatile. This review article highlights key advancements in PSC research, from 2006 to 2016, and how they will guide the direction of the field over the next decade.
Collapse
Affiliation(s)
- Erin A Kimbrel
- Astellas Institute for Regenerative Medicine, 33 Locke Drive, Marlborough, MA 01752, USA
| | - Robert Lanza
- Astellas Institute for Regenerative Medicine, 33 Locke Drive, Marlborough, MA 01752, USA
| |
Collapse
|
13
|
Câmara DAD, Mambelli LI, Porcacchia AS, Kerkis I. Advances and Challenges on Cancer Cells Reprogramming Using Induced Pluripotent Stem Cells Technologies. J Cancer 2016; 7:2296-2303. [PMID: 27994667 PMCID: PMC5166540 DOI: 10.7150/jca.16629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/18/2016] [Indexed: 12/18/2022] Open
Abstract
Cancer cells transformation into a normal state or into a cancer cell population which is less tumorigenic than the initial one is a challenge that has been discussed during last decades and it is still far to be solved. Due to the highly heterogeneous nature of cancer cells, such transformation involves many genetic and epigenetic factors which are specific for each type of tumor. Different methods of cancer cells reprogramming have been established and can represent a possibility to obtain less tumorigenic or even normal cells. These methods are quite complex, thus a simple and efficient method of reprogramming is still required. As soon as induced pluripotent stem cells (iPSC) technology, which allowed to reprogram terminally differentiated cells into embryonic stem cells (ESC)-like, was developed, the method strongly attracted the attention of researches, opening new perspectives for stem cell (SC) personalized therapies and offering a powerful in vitro model for drug screening. This technology is also used to reprogram cancer cells, thus providing a modern platform to study cancer-related genes and the interaction between these genes and the cell environment before and after reprogramming, in order to elucidate the mechanisms of cancer initiation and progression. The present review summarizes recent advances on cancer cells reprogramming using iPSC technology and shows the progress achieved in such field.
Collapse
Affiliation(s)
- Diana Aparecida Dias Câmara
- Laboratory of Genetics, Butantan Institute
- Department of Morphology and Genetics, Universidade Federal de Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | | |
Collapse
|
14
|
Sheller S, Papaconstantinou J, Urrabaz-Garza R, Richardson L, Saade G, Salomon C, Menon R. Amnion-Epithelial-Cell-Derived Exosomes Demonstrate Physiologic State of Cell under Oxidative Stress. PLoS One 2016; 11:e0157614. [PMID: 27333275 PMCID: PMC4917104 DOI: 10.1371/journal.pone.0157614] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023] Open
Abstract
At term, the signals of fetal maturity and feto-placental tissue aging prompt uterine readiness for delivery by transitioning quiescent myometrium to an active stage. It is still unclear how the signals reach the distant myometrium. Exosomes are a specific type of extracellular vesicle (EVs) that transport molecular signals between cells, and are released from a wide range of cells, including the maternal and fetal cells. In this study, we hypothesize that i) exosomes act as carriers of signals in utero-placental compartments and ii) exosomes reflect the physiologic status of the origin cells. The primary aims of this study were to determine exosomal contents in exosomes derived from primary amnion epithelial cells (AEC). We also determined the effect of oxidative stress on AEC derived exosomal cargo contents. AEC were isolated from amniotic membrane obtained from normal, term, not in labor placentae at delivery, and culture under standard conditions. Oxidative stress was induced using cigarette smoke extract for 48 hours. AEC-conditioned media were collected and exosomes isolated by differential centrifugations. Both growth conditions (normal and oxidative stress induced) produced cup shaped exosomes of around 50 nm, expressed exosomes enriched markers, such as CD9, CD63, CD81 and HSC70, embryonic stem cell marker Nanog, and contained similar amounts of cell free AEC DNA. Using confocal microscopy, the colocalization of histone (H) 3, heat shock protein (HSP) 70 and activated form of pro-senescence and term parturition associated marker p38 mitogen activated protein kinase (MAPK) (P-p38 MAPK) co-localized with exosome enrich marker CD9. HSP70 and P-p38 MAPK were significantly higher in exosomes from AEC grown under oxidative stress conditions than standard conditions (p<0.05). Finally, mass spectrometry and bioinformatics analysis identified 221 different proteins involved in immunomodulatory response and cell-to-cell communication. This study determined AEC exosome characteristics and their cargo reflected the physiologic status of the cell of origin and suggests that AEC-derived exosomal p38 MAPK plays a major role in determining the fate of pregnancy. Understanding the propagation of fetal signals and their mechanisms in normal term pregnancies can provide insights into pathologic activation of such signals associated with spontaneous preterm parturitions.
Collapse
Affiliation(s)
- Samantha Sheller
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - John Papaconstantinou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Rheanna Urrabaz-Garza
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Lauren Richardson
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - George Saade
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Faculty of Health Sciences, University of Queensland, Herston, Queensland, Australia
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| |
Collapse
|
15
|
Kim MS, Yu JH, Lee MY, Kim AL, Jo MH, Kim M, Cho SR, Kim YH. Differential Expression of Extracellular Matrix and Adhesion Molecules in Fetal-Origin Amniotic Epithelial Cells of Preeclamptic Pregnancy. PLoS One 2016; 11:e0156038. [PMID: 27218821 PMCID: PMC4878795 DOI: 10.1371/journal.pone.0156038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/09/2016] [Indexed: 01/25/2023] Open
Abstract
Preeclampsia is a common disease that can occur during human pregnancy and is a leading cause of both maternal and neonatal morbidity and mortality. Inadequate trophoblast invasion and deficient remodeling of uterine spiral arteries are associated with preeclampsia (PE). The development of this syndrome is thought to be related to multiple factors. Recently, we isolated patient-specific human amniotic epithelial cells (AECs) from the placentas of 3 women with normal pregnancy and 3 with preeclamptic pregnancy. Since the characteristics of human AECs in PE are different from those in normal pregnancy, we sought to confirm the genes differentially expressed between preeclamptic pregnancy and normal pregnancy. Therefore, we performed transcriptome analysis to investigate the candidate genes associated with the possible pathophysiology of preeclampsia. Pathway analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) and Kyoto Encyclopedia of Genes and Genomes (KEGG) online resource. In this study, we selected a total of 12 pathways and focused on extracellular matrix-related and biological adhesion molecules. Using RT-PCR array and real-time PCR, we confirmed that COL16A1, ITGB2, and LAMA3 were significantly up-regulated, but ITGA1, ITGA3, ITGA6, MMP1, MMP3, MMP10 and MMP11 were significantly down-regulated in preeclamptic fetal origin cells. Taken together, we suggest that the genes and pathways identified here may be responsible for the occurrence and development of PE, and controlling their expression may play a role in communication with fetal-maternal placenta to keep normal pregnancy.
Collapse
Affiliation(s)
- Myung-Sun Kim
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
- Department and Research Institute of Rehabilitation Medicine, Severance Hospital, Seoul, Korea
- Yonsei Stem Cell Research Center, Avison Biomedical Research Center, Seoul, Korea
| | - Ji Hea Yu
- Department and Research Institute of Rehabilitation Medicine, Severance Hospital, Seoul, Korea
- Yonsei Stem Cell Research Center, Avison Biomedical Research Center, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Min-Young Lee
- Department and Research Institute of Rehabilitation Medicine, Severance Hospital, Seoul, Korea
- Yonsei Stem Cell Research Center, Avison Biomedical Research Center, Seoul, Korea
| | - Ah Leum Kim
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Hyun Jo
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - MinGi Kim
- Department and Research Institute of Rehabilitation Medicine, Severance Hospital, Seoul, Korea
- Yonsei Stem Cell Research Center, Avison Biomedical Research Center, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Severance Hospital, Seoul, Korea
- Yonsei Stem Cell Research Center, Avison Biomedical Research Center, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- * E-mail: (YHK); (SRC)
| | - Young-Han Kim
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
- * E-mail: (YHK); (SRC)
| |
Collapse
|
16
|
|
17
|
Hansel MC, Davila JC, Vosough M, Gramignoli R, Skvorak KJ, Dorko K, Marongiu F, Blake W, Strom SC. The Use of Induced Pluripotent Stem Cells for the Study and Treatment of Liver Diseases. ACTA ACUST UNITED AC 2016; 67:14.13.1-14.13.27. [PMID: 26828329 DOI: 10.1002/0471140856.tx1413s67] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Liver disease is a major global health concern. Liver cirrhosis is one of the leading causes of death in the world and currently the only therapeutic option for end-stage liver disease (e.g., acute liver failure, cirrhosis, chronic hepatitis, cholestatic diseases, metabolic diseases, and malignant neoplasms) is orthotropic liver transplantation. Transplantation of hepatocytes has been proposed and used as an alternative to whole organ transplant to stabilize and prolong the lives of patients in some clinical cases. Although these experimental therapies have demonstrated promising and beneficial results, their routine use remains a challenge due to the shortage of donor livers available for cell isolation, variable quality of those tissues, the potential need for lifelong immunosuppression in the transplant recipient, and high costs. Therefore, new therapeutic strategies and more reliable clinical treatments are urgently needed. Recent and continuous technological advances in the development of stem cells suggest they may be beneficial in this respect. In this review, we summarize the history of stem cell and induced pluripotent stem cell (iPSC) technology in the context of hepatic differentiation and discuss the potential applications the technology may offer for human liver disease modeling and treatment. This includes developing safer drugs and cell-based therapies to improve the outcomes of patients with currently incurable health illnesses. We also review promising advances in other disease areas to highlight how the stem cell technology could be applied to liver diseases in the future. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marc C Hansel
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | - Julio C Davila
- Department of Biochemistry, University of Puerto Rico School of Medicine, Medical Sciences Campus, San Juan, Puerto Rico
| | - Massoud Vosough
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kristen J Skvorak
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kenneth Dorko
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas
| | - Fabio Marongiu
- Department of Biomedical Sciences, Section of Experimental Pathology, Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | - William Blake
- Genetically Modified Models Center of Emphasis, Pfizer, Groton, Connecticut
| | - Stephen C Strom
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Parast MM. Toward better understanding of the human placenta: development of “disease-in-a-dish” models. BMC Pregnancy Childbirth 2015. [PMCID: PMC4402578 DOI: 10.1186/1471-2393-15-s1-a6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
19
|
Kawaguchi T, Tsukiyama T, Kimura K, Matsuyama S, Minami N, Yamada M, Imai H. Generation of Naïve Bovine Induced Pluripotent Stem Cells Using PiggyBac Transposition of Doxycycline-Inducible Transcription Factors. PLoS One 2015; 10:e0135403. [PMID: 26287611 PMCID: PMC4544884 DOI: 10.1371/journal.pone.0135403] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/21/2015] [Indexed: 12/29/2022] Open
Abstract
Generation of pluripotent stem cells (PSCs) in large domestic animals has achieved only limited success; most of the PSCs obtained to date have been classified as primed PSCs, which possess very little capacity to produce chimeric offspring. By contrast, mouse PSCs have been classified as naïve PSCs that can contribute to most of the tissues of chimeras, including germ cells. Here, we describe the generation of two different types of bovine induced pluripotent stem cells (biPSCs) from amnion cells, achieved through introduction of piggyBac vectors containing doxycycline-inducible transcription factors (Oct3/4, Sox2, Klf4, and c-Myc). One type of biPSCs, cultured in medium supplemented with knockout serum replacement (KSR), FGF2, and bovine leukemia inhibitory factor (bLIF), had a flattened morphology like human PSCs; these were classified as primed-type. The other type biPSCs, cultured in KSR, bLIF, Mek/Erk inhibitor, GSK3 inhibitor and forskolin, had a compact morphology like mouse PSCs; these were classified as naïve-type. Cells could easily be switched between these two types of biPSCs by changing the culture conditions. Both types of biPSCs had strong alkaline phosphatase activity, expressed pluripotent markers (OCT3/4, NANOG, REX1, ESRRβ, STELLA, and SOCS3), and formed embryoid bodies that gave rise to differentiated cells from all three embryonic germ layers. However, only naïve-type biPSCs showed the hallmarks of naïve mouse PSCs, such as LIF-dependent proliferation, lack of FGF5 expression, and active XIST expression with two active X chromosomes. Furthermore, naïve-type biPSCs could contribute to the inner cell mass (ICM) of host blastocysts and most tissues within chimeric embryos. This is the first report of generation of biPSCs with several characteristics similar to those of naïve mouse PSCs and a demonstrated potential to contribute to chimeras.
Collapse
Affiliation(s)
- Takamasa Kawaguchi
- Laboratory of Reproductive Biology, Graduate School of Agricuture, Kyoto University, Kyoto, Japan
| | - Tomoyuki Tsukiyama
- Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Koji Kimura
- Animal Feeding and Management Research Division, NARO Institute of Livestock and Grassland Science, Tochigi, Japan
| | - Shuichi Matsuyama
- Animal Feeding and Management Research Division, NARO Institute of Livestock and Grassland Science, Tochigi, Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agricuture, Kyoto University, Kyoto, Japan
| | - Masayasu Yamada
- Laboratory of Reproductive Biology, Graduate School of Agricuture, Kyoto University, Kyoto, Japan
| | - Hiroshi Imai
- Laboratory of Reproductive Biology, Graduate School of Agricuture, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
20
|
Bazley FA, Liu CF, Yuan X, Hao H, All AH, De Los Angeles A, Zambidis ET, Gearhart JD, Kerr CL. Direct Reprogramming of Human Primordial Germ Cells into Induced Pluripotent Stem Cells: Efficient Generation of Genetically Engineered Germ Cells. Stem Cells Dev 2015; 24:2634-48. [PMID: 26154167 DOI: 10.1089/scd.2015.0100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Primordial germ cells (PGCs) share many properties with embryonic stem cells (ESCs) and innately express several key pluripotency-controlling factors, including OCT4, NANOG, and LIN28. Therefore, PGCs may provide a simple and efficient model for studying somatic cell reprogramming to induced pluripotent stem cells (iPSCs), especially in determining the regulatory mechanisms that fundamentally define pluripotency. Here, we report a novel model of PGC reprogramming to generate iPSCs via transfection with SOX2 and OCT4 using integrative lentiviral. We also show the feasibility of using nonintegrative approaches for generating iPSC from PGCs using only these two factors. We show that human PGCs express endogenous levels of KLF4 and C-MYC protein at levels similar to embryonic germ cells (EGCs) but lower levels of SOX2 and OCT4. Transfection with both SOX2 and OCT4 together was required to induce PGCs to a pluripotent state at an efficiency of 1.71%, and the further addition of C-MYC increased the efficiency to 2.33%. Immunohistochemical analyses of the SO-derived PGC-iPSCs revealed that these cells were more similar to ESCs than EGCs regarding both colony morphology and molecular characterization. Although leukemia inhibitory factor (LIF) was not required for the generation of PGC-iPSCs like EGCs, the presence of LIF combined with ectopic exposure to C-MYC yielded higher efficiencies. Additionally, the SO-derived PGC-iPSCs exhibited differentiation into representative cell types from all three germ layers in vitro and successfully formed teratomas in vivo. Several lines were generated that were karyotypically stable for up to 24 subcultures. Their derivation efficiency and survival in culture significantly supersedes that of EGCs, demonstrating their utility as a powerful model for studying factors regulating pluripotency in future studies.
Collapse
Affiliation(s)
- Faith A Bazley
- 1 Department of Biomedical Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Cyndi F Liu
- 2 Department of Genecology and Obstetrics, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Xuan Yuan
- 4 Department of Medicine, Division of Hematology, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Haiping Hao
- 5 JHMI Deep Sequencing and Microarray Core, High Throughput Biology Center, Johns Hopkins University , Baltimore, Maryland
| | - Angelo H All
- 1 Department of Biomedical Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Alejandro De Los Angeles
- 6 Stem Cell Transplantation Program, Division of Pediatric Hematology Oncology, Children's Hospital Boston , Massachusetts.,7 Department of Biological Chemistry and Molecular Pharmacology, Dana-Farber Cancer Institute , Harvard Medical School, Boston, Massachusetts.,8 Harvard Stem Cell Institute , Cambridge, Massachusetts
| | - Elias T Zambidis
- 3 Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,9 Division of Pediatric Oncology at the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - John D Gearhart
- 10 Department of Cell and Developmental Biology, School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,11 Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Candace L Kerr
- 2 Department of Genecology and Obstetrics, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,12 Department of Biochemistry and Molecular Biology, University of Maryland , Baltimore, Maryland
| |
Collapse
|
21
|
Shum C, Macedo SC, Warre-Cornish K, Cocks G, Price J, Srivastava DP. Utilizing induced pluripotent stem cells (iPSCs) to understand the actions of estrogens in human neurons. Horm Behav 2015; 74:228-42. [PMID: 26143621 PMCID: PMC4579404 DOI: 10.1016/j.yhbeh.2015.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/11/2015] [Accepted: 06/25/2015] [Indexed: 01/05/2023]
Abstract
This article is part of a Special Issue "Estradiol and Cognition". Over recent years tremendous progress has been made towards understanding the molecular and cellular mechanism by which estrogens exert enhancing effects on cognition, and how they act as a neuroprotective or neurotrophic agent in disease. Currently, much of this work has been carried out in animal models with only a limited number of studies using native human tissue or cells. Recent advances in stem cell technology now make it possible to reprogram somatic cells from humans into induced pluripotent stem cells (iPSCs), which can subsequently be differentiated into neurons of specific lineages. Importantly, the reprogramming of cells allows for the generation of iPSCs that retain the genetic "makeup" of the donor. Therefore, it is possible to generate iPSC-derived neurons from patients diagnosed with specific diseases, that harbor the complex genetic background associated with the disorder. Here, we review the iPSC technology and how it's currently being used to model neural development and neurological diseases. Furthermore, we explore whether this cellular system could be used to understand the role of estrogens in human neurons, and present preliminary data in support of this. We further suggest that the use of iPSC technology offers a novel system to not only further understand estrogens' effects in human cells, but also to investigate the mechanism by which estrogens are beneficial in disease. Developing a greater understanding of these mechanisms in native human cells will also aid in the development of safer and more effective estrogen-based therapeutics.
Collapse
Affiliation(s)
- Carole Shum
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Sara C Macedo
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK; Faculty of Engineering, Universidade do Porto, 4200-465 Porto, Portugal
| | - Katherine Warre-Cornish
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Graham Cocks
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Jack Price
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.
| |
Collapse
|
22
|
Koike C, Zhou K, Takeda Y, Fathy M, Okabe M, Yoshida T, Nakamura Y, Kato Y, Nikaido T. Characterization of amniotic stem cells. Cell Reprogram 2015; 16:298-305. [PMID: 25068631 DOI: 10.1089/cell.2013.0090] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The amnion membrane is developed from embryo-derived cells, and amniotic cells have been shown to exhibit multidifferentiation potential. These cells represent a desirable source for stem cells for a variety of reasons. However, to date very few molecular analyses of amnion-derived cells have been reported, and efficient markers for isolating the stem cells remain unclear. This paper assesses the characterization of amnion-derived cells as stem cells by examining stemness marker expressions for amnion-derived epithelial cells and mesenchymal cells by flow cytometry, immunocytochemistry, and quantitative PCR. Flow cytometry revealed that amnion epithelial cells expressed CD133, CD 271, and TRA-1-60, whereas mecenchymal cells expressed CD44, CD73, CD90, and CD105. Immunohistochemistry showed that both cells expressed the stemness markers Oct3/4, Sox2, Klf4, and SSEA4. Stemness genes' expression in amnion epithelial cells, mesenchymal cells, fibroblast, bone marrow-derived mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) was compared by quantitative reverse-transcription polymerase chain reaction (RT-PCR). Amnion-derived epithelial cells and mesenchymal cells expressed Oct3/4, Nanog, and Klf4 more than bone marrow-derived MSCs. The sorted TRA1-60-positive cells expressed Oct3/4, Nanog, and Klf4 more than unsorted cells or TRA1-60-negative cells. TRA1-60 can be a marker for isolating amnion epithelial stem cells.
Collapse
Affiliation(s)
- Chika Koike
- 1 Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama, 930-0194, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Growing knowledge concerning transcriptional control of cellular pluripotency has led to the discovery that the fate of differentiated cells can be reversed, which has resulted in the generation, by means of genetic manipulation, of induced pluripotent stem cells. Overexpression of just four pluripotency-related transcription factors, namely Oct3/4, Sox2, Klf4, and c-Myc (Yamanaka factors, OKSM), in fibroblasts appears sufficient to produce this new cell type. Currently, we know that these factors induce several changes in genetic program of differentiated cells that can be divided in two general phases: the initial one is stochastic, and the subsequent one is highly hierarchical and organised. This review briefly discusses the molecular events leading to induction of pluripotency in response to forced presence of OKSM factors in somatic cells. We also discuss other reprogramming strategies used thus far as well as the advantages and disadvantages of laboratory approaches towards pluripotency induction in different cell types.
Collapse
|
24
|
Skowron K, Tomsia M, Czekaj P. An experimental approach to the generation of human embryonic stem cells equivalents. Mol Biotechnol 2014; 56:12-37. [PMID: 24146427 DOI: 10.1007/s12033-013-9702-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recently, particular attention has been paid to the human embryonic stem cells (hESC) in the context of their potential application in regenerative medicine; however, ethical concerns prevent their clinical application. Induction of pluripotency in somatic cells seems to be a good alternative for hESC recruitment regarding its potential use in tissue regeneration, disease modeling, and drug screening. Since Yamanaka's team in 2006 restored pluripotent state of somatic cells for the first time, a significant progress has been made in the area of induced pluripotent stem cells (iPSC) generation. Here, we review the current state of knowledge in the issue of techniques applied to establish iPSC. Somatic cell nuclear transfer, cell fusion, cell extracts reprogramming, and techniques of direct reprogramming are described. Retroviral and lentiviral transduction are depicted as ways of cell reprogramming with the use of integrating vectors. Contrary to them, adenoviruses, plasmids, single multiprotein expression vectors, and PiggyBac transposition systems are examples of non-integrative vectors used in iPSC generation protocols. Furthermore, reprogramming with the delivery of specific proteins, miRNA or small chemical compounds are presented. Finally, the changes occurring during the reprogramming process are described. It is concluded that subject to some limitations iPSC could become equivalents for hESC in regenerative medicine.
Collapse
Affiliation(s)
- Katarzyna Skowron
- Students Scientific Society, Medical University of Silesia, Katowice, Poland
| | | | | |
Collapse
|
25
|
Jiang G, Di Bernardo J, DeLong CJ, Monteiro da Rocha A, O'Shea KS, Kunisaki SM. Induced Pluripotent Stem Cells from Human Placental Chorion for Perinatal Tissue Engineering Applications. Tissue Eng Part C Methods 2014; 20:731-40. [DOI: 10.1089/ten.tec.2013.0480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Guihua Jiang
- From the Consortium for Stem Cell Therapies, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Surgery, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
| | - Julie Di Bernardo
- Department of Surgery, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
| | - Cynthia J. DeLong
- From the Consortium for Stem Cell Therapies, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
| | - André Monteiro da Rocha
- From the Consortium for Stem Cell Therapies, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Obstetrics and Gynecology, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
| | - K. Sue O'Shea
- From the Consortium for Stem Cell Therapies, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shaun M. Kunisaki
- From the Consortium for Stem Cell Therapies, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Surgery, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Obstetrics and Gynecology, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
26
|
Zhao J, Jiang WJ, Sun C, Hou CZ, Yang XM, Gao JG. Induced pluripotent stem cells: origins, applications, and future perspectives. J Zhejiang Univ Sci B 2014; 14:1059-69. [PMID: 24302707 DOI: 10.1631/jzus.b1300215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Embryonic stem (ES) cells are widely used for different purposes, including gene targeting, cell therapy, tissue repair, organ regeneration, and so on. However, studies and applications of ES cells are hindered by ethical issues regarding cell sources. To circumvent ethical disputes, great efforts have been taken to generate ES cell-like cells, which are not derived from the inner cell mass of blastocyst-stage embryos. In 2006, Yamanaka et al. first reprogrammed mouse embryonic fibroblasts into ES cell-like cells called induced pluripotent stem (iPS) cells. About one year later, Yamanaka et al. and Thomson et al. independently reprogrammed human somatic cells into iPS cells. Since the first generation of iPS cells, they have now been derived from quite a few different kinds of cell types. In particular, the use of peripheral blood facilitates research on iPS cells because of safety, easy availability, and plenty of cell sources. Now iPS cells have been used for cell therapy, disease modeling, and drug discovery. In this review, we describe the generations, applications, potential issues, and future perspectives of iPS cells.
Collapse
Affiliation(s)
- Jing Zhao
- School of Life Sciences, Shandong University, Jinan 250100, China
| | | | | | | | | | | |
Collapse
|
27
|
Faucon PC, Pardee K, Kumar RM, Li H, Loh YH, Wang X. Gene networks of fully connected triads with complete auto-activation enable multistability and stepwise stochastic transitions. PLoS One 2014; 9:e102873. [PMID: 25057990 PMCID: PMC4109943 DOI: 10.1371/journal.pone.0102873] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 06/24/2014] [Indexed: 02/04/2023] Open
Abstract
Fully-connected triads (FCTs), such as the Oct4-Sox2-Nanog triad, have been implicated as recurring transcriptional motifs embedded within the regulatory networks that specify and maintain cellular states. To explore the possible connections between FCT topologies and cell fate determinations, we employed computational network screening to search all possible FCT topologies for multistability, a dynamic property that allows the rise of alternate regulatory states from the same transcriptional network. The search yielded a hierarchy of FCTs with various potentials for multistability, including several topologies capable of reaching eight distinct stable states. Our analyses suggested that complete auto-activation is an effective indicator for multistability, and, when gene expression noise was incorporated into the model, the networks were able to transit multiple states spontaneously. Different levels of stochasticity were found to either induce or disrupt random state transitioning with some transitions requiring layovers at one or more intermediate states. Using this framework we simulated a simplified model of induced pluripotency by including constitutive overexpression terms. The corresponding FCT showed random state transitioning from a terminal state to the pluripotent state, with the temporal distribution of this transition matching published experimental data. This work establishes a potential theoretical framework for understanding cell fate determinations by connecting conserved regulatory modules with network dynamics. Our results could also be employed experimentally, using established developmental transcription factors as seeds, to locate cell lineage specification networks by using auto-activation as a cipher.
Collapse
Affiliation(s)
- Philippe C. Faucon
- School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
| | - Keith Pardee
- Wyss Institute for Biological Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
- Center for BioDynamics and Center for Advanced Biotechnology, Boston University, Boston, Massachusetts, United States of America
| | - Roshan M. Kumar
- Wyss Institute for Biological Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
- Center for BioDynamics and Center for Advanced Biotechnology, Boston University, Boston, Massachusetts, United States of America
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Yuin-Han Loh
- Epigenetics and Cell Fates Laboratory, A*STAR Institute of Molecular and Cell Biology, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Xiao Wang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
28
|
Claros S, Rico-Llanos GA, Becerra J, Andrades JA. A novel human TGF-β1 fusion protein in combination with rhBMP-2 increases chondro-osteogenic differentiation of bone marrow mesenchymal stem cells. Int J Mol Sci 2014; 15:11255-74. [PMID: 24968268 PMCID: PMC4139781 DOI: 10.3390/ijms150711255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/03/2014] [Accepted: 06/10/2014] [Indexed: 01/06/2023] Open
Abstract
Transforming growth factor-beta (TGF-β) is involved in processes related to the differentiation and maturation of osteoprogenitor cells into osteoblasts. Rat bone marrow (BM) cells were cultured in a collagen-gel containing 0.5% fetal bovine serum (FBS) for 10 days in the presence of rhTGF (recombinant human TGF)-β1-F2, a fusion protein engineered to include a high-affinity collagen-binding decapeptide derived from von Willebrand factor. Subsequently, cells were moderately expanded in medium with 10% FBS for 4 days and treated with a short pulse of rhBMP (recombinant human bone morphogenetic protein)-2 for 4 h. During the last 2 days, dexamethasone and β-glycerophosphate were added to potentiate osteoinduction. Concomitant with an up-regulation of cell proliferation, DNA synthesis levels were determined. Polymerase chain reaction was performed to reveal the possible stemness of these cells. Osteogenic differentiation was evaluated in terms of alkaline phosphatase activity and mineralized matrix formation as well as by mRNA expression of osteogenic marker genes. Moreover, cells were placed inside diffusion chambers and implanted subcutaneously into the backs of adult rats for 4 weeks. Histological study provided evidence of cartilage and bone-like tissue formation. This experimental procedure is capable of selecting cell populations from BM that, in the presence of rhTGF-β1-F2 and rhBMP-2, achieve skeletogenic potential in vitro and in vivo.
Collapse
Affiliation(s)
- Silvia Claros
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, Universidad de Málaga, Campus de Teatinos, Málaga 29071, Spain.
| | - Gustavo A Rico-Llanos
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, Universidad de Málaga, Campus de Teatinos, Málaga 29071, Spain.
| | - José Becerra
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, Universidad de Málaga, Campus de Teatinos, Málaga 29071, Spain.
| | - José A Andrades
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, Universidad de Málaga, Campus de Teatinos, Málaga 29071, Spain.
| |
Collapse
|
29
|
Compagnucci C, Nizzardo M, Corti S, Zanni G, Bertini E. In vitro neurogenesis: development and functional implications of iPSC technology. Cell Mol Life Sci 2014; 71:1623-39. [PMID: 24252976 PMCID: PMC11113522 DOI: 10.1007/s00018-013-1511-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 12/21/2022]
Abstract
Neurogenesis is the developmental process regulating cell proliferation of neural stem cells, determining their differentiation into glial and neuronal cells, and orchestrating their organization into finely regulated functional networks. Can this complex process be recapitulated in vitro using induced pluripotent stem cell (iPSC) technology? Can neurodevelopmental and neurodegenerative diseases be modeled using iPSCs? What is the potential of iPSC technology in neurobiology? What are the recent advances in the field of neurological diseases? Since the applications of iPSCs in neurobiology are based on the capacity to regulate in vitro differentiation of human iPSCs into different neuronal subtypes and glial cells, and the possibility of obtaining iPSC-derived neurons and glial cells is based on and hindered by our poor understanding of human embryonic development, we reviewed current knowledge on in vitro neural differentiation from a developmental and cellular biology perspective. We highlight the importance to further advance our understanding on the mechanisms controlling in vivo neurogenesis in order to efficiently guide neurogenesis in vitro for cell modeling and therapeutical applications of iPSCs technology.
Collapse
Affiliation(s)
- Claudia Compagnucci
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Department of Neurosciences, Bambino Gesù Children's Research Hospital, IRCCS, 0165, Rome, Italy,
| | | | | | | | | |
Collapse
|
30
|
Mahapatra PS, Bag S. Reprogramming of buffalo (Bubalus bubalis) foetal fibroblasts with avian egg extract for generation of pluripotent stem cells. Res Vet Sci 2014; 96:292-8. [DOI: 10.1016/j.rvsc.2014.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 01/06/2014] [Accepted: 02/09/2014] [Indexed: 01/12/2023]
|
31
|
Heng BC, Fussenegger M. Integration-free reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) without viral vectors, recombinant DNA, and genetic modification. Methods Mol Biol 2014; 1151:75-94. [PMID: 24838880 DOI: 10.1007/978-1-4939-0554-6_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stem cells are envisaged to be integral components of multicellular systems engineered for therapeutic applications. The reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) via recombinant expression of a limited number of transcription factors, which was first achieved by Yamanaka and colleagues in 2007, heralded a major breakthrough in the stem cell field. Since then, there has been rapid progress in the field of iPSC generation, including the identification of various small molecules that can enhance reprogramming efficiency and reduce the number of different transcription factors required for reprogramming. Nevertheless, the major obstacles facing clinical applications of iPSCs are safety concerns associated with the use of viral vectors and recombinant DNA for expressing the appropriate transcription factors during reprogramming. In particular, permanent genetic modifications to newly reprogrammed iPSCs have to be avoided in order to meet stringent safety requirements for clinical therapy. These safety challenges can be overcome by new technology platforms that enable cellular reprogramming to iPSCs without the need to utilize either recombinant DNA or viral vectors. The use of recombinant cell-penetrating peptides and direct transfection of synthetic mRNA encoding appropriate transcription factors have both been shown to successfully reprogram somatic cells to iPSCs. It has also been shown more recently that the direct transfection of certain miRNA species can reprogram somatic cells to pluripotency without the need for any of the transcription factors commonly utilized for iPSC generation. This chapter describes protocols for iPSC generation with these new techniques, which would obviate the use of recombinant DNA and viral vectors in cellular reprogramming, thus avoiding permanent genetic modification to the reprogrammed cells.
Collapse
Affiliation(s)
- Boon Chin Heng
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | | |
Collapse
|
32
|
Hansel MC, Gramignoli R, Blake W, Davila J, Skvorak K, Dorko K, Tahan V, Lee BR, Tafaleng E, Guzman-Lepe J, Soto-Gutierrez A, Fox IJ, Strom SC. Increased reprogramming of human fetal hepatocytes compared with adult hepatocytes in feeder-free conditions. Cell Transplant 2014; 23:27-38. [PMID: 23394081 PMCID: PMC3773298 DOI: 10.3727/096368912x662453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hepatocyte transplantation has been used to treat liver disease. The availability of cells for these procedures is quite limited. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) may be a useful source of hepatocytes for basic research and transplantation if efficient and effective differentiation protocols were developed and problems with tumorigenicity could be overcome. Recent evidence suggests that the cell of origin may affect hiPSC differentiation. Thus, hiPSCs generated from hepatocytes may differentiate back to hepatocytes more efficiently than hiPSCs from other cell types. We examined the efficiency of reprogramming adult and fetal human hepatocytes. The present studies report the generation of 40 hiPSC lines from primary human hepatocytes under feeder-free conditions. Of these, 37 hiPSC lines were generated from fetal hepatocytes, 2 hiPSC lines from normal hepatocytes, and 1 hiPSC line from hepatocytes of a patient with Crigler-Najjar syndrome, type 1. All lines were confirmed reprogrammed and expressed markers of pluripotency by gene expression, flow cytometry, immunocytochemistry, and teratoma formation. Fetal hepatocytes were reprogrammed at a frequency over 50-fold higher than adult hepatocytes. Adult hepatocytes were only reprogrammed with six factors, while fetal hepatocytes could be reprogrammed with three (OCT4, SOX2, NANOG) or four factors (OCT4, SOX2, NANOG, LIN28 or OCT4, SOX2, KLF4, C-MYC). The increased reprogramming efficiency of fetal cells was not due to increased transduction efficiency or vector toxicity. These studies confirm that hiPSCs can be generated from adult and fetal hepatocytes including those with genetic diseases. Fetal hepatocytes reprogram much more efficiently than adult hepatocytes, although both could serve as useful sources of hiPSC-derived hepatocytes for basic research or transplantation.
Collapse
Affiliation(s)
- Marc C. Hansel
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Roberto Gramignoli
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - William Blake
- Genetically Modified Models Center of Emphasis, Pfizer, Groton, Connecticut, USA
| | - Julio Davila
- Genetically Modified Models Center of Emphasis, Pfizer, Groton, Connecticut, USA
| | - Kristen Skvorak
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kenneth Dorko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Veysel Tahan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brian R. Lee
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Edgar Tafaleng
- Genetically Modified Models Center of Emphasis, Pfizer, Groton, Connecticut, USA
| | - Jorge Guzman-Lepe
- Center for Innovative Regenerative Therapies, Department of Surgery, Transplantation Section, Children’s Hospital of Pittsburgh
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Innovative Regenerative Therapies, Department of Surgery, Transplantation Section, Children’s Hospital of Pittsburgh
| | - Ira J. Fox
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
- Center for Innovative Regenerative Therapies, Department of Surgery, Transplantation Section, Children’s Hospital of Pittsburgh
| | - Stephen C. Strom
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
33
|
Liu Z, Zhou J, Wang H, Zhao M, Wang C. Current status of induced pluripotent stem cells in cardiac tissue regeneration and engineering. Regen Med Res 2013; 1:6. [PMID: 25984325 PMCID: PMC4376510 DOI: 10.1186/2050-490x-1-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 02/20/2013] [Indexed: 12/23/2022] Open
Abstract
Myocardial infarction (MI) is associated with damage to the myocardium which results in a great loss of functional cardiomyocytes. As one of the most terminally differentiated organs, the endogenous regenerative potentials of adult hearts are extremely limited and insufficient to compensate for the myocardial loss occurring after MI. Consequentially, exogenous regenerative strategies, especially cell replacement therapy, have emerged and attracted increasing more attention in the field of cardiac tissue regeneration. A renewable source of seeding cells is therefore one of the most important subject in the field. Induced pluripotent stem cells (iPSCs), embryonic stem cell (ESC)-like cells that are derived from somatic cells by reprogramming, represent a promising candidate due to their high potentials for self-renewal, proliferation, differentiation and more importantly, they provide an invaluable method of deriving patient-specific pluripotent stem cells. Therefore, iPSC-based cardiac tissue regeneration and engineering has been extensively investigated in recent years. This review will discuss the achievements and current status in this field, including development of iPSC derivation, in vitro strategies for cardiac generation from iPSCs, cardiac application of iPSCs, challenges confronted at present as well as perspective in the future.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing, 100850 P.R China
| | - Jin Zhou
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing, 100850 P.R China
| | - Haibin Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing, 100850 P.R China
| | - Mengge Zhao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing, 100850 P.R China ; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 USA
| | - Changyong Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing, 100850 P.R China
| |
Collapse
|
34
|
Bayart E, Cohen-Haguenauer O. Technological overview of iPS induction from human adult somatic cells. Curr Gene Ther 2013; 13:73-92. [PMID: 23320476 PMCID: PMC3788326 DOI: 10.2174/1566523211313020002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 02/07/2023]
Abstract
The unlimited proliferation capacity of embryonic stem cells (ESCs) combined with their pluripotent differentiation potential in various lineages raised great interest in both the scientific community and the public at large with hope for future prospects of regenerative medicine. However, since ESCs are derived from human embryos, their use is associated with significant ethical issues preventing broad studies and therapeutic applications. To get around this bottleneck, Takahashi and Yamanaka have recently achieved the conversion of adult somatic cells into ES-like cells via the forced expression of four transcription factors: Oct3/4, Sox2, Klf4 and c-Myc. This first demonstration attracted public attention and opened a new field of stem cells research with both cognitive - such as disease modeling - and therapeutic prospects. This pioneer work just received the 2012 Nobel Prize in Physiology or Medicine. Many methods have been reported since 2006, for the generation of induced pluripotent stem (iPS) cells. Most strategies currently under use are based on gene delivery via gamma-retroviral or lentiviral vectors; some experiments have also been successful using plasmids or transposons- based systems and few with adenovirus. However, most experiments involve integration in the host cell genome with an identified risk for insertional mutagenesis and oncogenic transformation. To circumvent such risks which are deemed incompatible with therapeutic prospects, significant progress has been made with transgene-free reprogramming methods based on e.g.: sendai virus or direct mRNA or protein delivery to achieve conversion of adult cells into iPS. In this review we aim to cover current knowledge relating to both delivery systems and combinations of inducing factors including chemicals which are used to generate human iPS cells. Finally, genetic instability resulting from the reprogramming process is also being considered as a safety bottleneck for future clinical translation and stem cell-therapy prospects based on iPS.
Collapse
Affiliation(s)
- Emilie Bayart
- Laboratoire de Biologie & Pharmacologie Appliquée LBPA CliniGene, ENS – Cachan CNRS UMR 8113, 94235 Cachan, Paris, France
| | | |
Collapse
|
35
|
Spinelli V, Guillot PV, De Coppi P. Induced pluripotent stem (iPS) cells from human fetal stem cells (hFSCs). Organogenesis 2013; 9:101-10. [PMID: 23823661 DOI: 10.4161/org.25197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION (1) Human embryonic stem (ES) cells are pluripotent but are difficult to be used for therapy because of immunological, oncological and ethical barriers. (2) Pluripotent cells exist in vivo, i.e., germ cells and epiblast cells but cannot be isolated without sacrificing the developing embryo. (3) Reprogramming to pluripotency is possible from adult cells using ectopic expression of OKSM and other integrative and non-integrative techniques. (4) Hurdles to overcome include i.e stability of the phenotype in relation to epigenetic memory. SOURCES OF DATA We reviewed the literature related to reprogramming, pluripotency and fetal stem cells. AREAS OF AGREEMENT (1) Fetal stem cells present some advantageous characteristics compared with their neonatal and postnatal counterparts, with regards to cell size, growth kinetics, and differentiation potential, as well as in vivo tissue repair capacity. (2) Amniotic fluid stem cells are more easily reprogrammed to pluripotency than adult fibroblast. (3) The parental population is heterogeneous and present an intermediate phenotype between ES and adult somatic stem cells, expressing markers of both. AREAS OF CONTROVERSY (1) It is unclear whether induced pluripotent stem (iPS) derived from amniotic fluid stem cells are fully or partially reprogrammed. (2) Optimal protocols to ensure highest efficiency and phenotype stability remains to be determined. (3) The "level" of reprogramming, fully vs partial, of iPS derived from amniotic fluid stem cells remain to be determined. GROWING POINTS Banking of fully reprogrammed cells may be important both for (1) autologous and allogenic applications in medicine, and (2) disease modeling.
Collapse
Affiliation(s)
- Valentina Spinelli
- Surgery Unit, Institute of Child Health, University College London and Great Ormond Street Hospital, London, UK.
| | | | | |
Collapse
|
36
|
Barrero MJ, Berdasco M, Paramonov I, Bilic J, Vitaloni M, Esteller M, Izpisua Belmonte JC. DNA hypermethylation in somatic cells correlates with higher reprogramming efficiency. Stem Cells 2013; 30:1696-702. [PMID: 22653871 DOI: 10.1002/stem.1138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The efficiency of somatic cell reprogramming to pluripotency using defined factors is dramatically affected by the cell type of origin. Here, we show that human keratinocytes, which can be reprogrammed at a higher efficiency than fibroblast [Nat Biotechnol 2008;26:1276-1284], share more genes hypermethylated at CpGs with human embryonic stem cells (ESCs) than other somatic cells frequently used for reprogramming. Moreover, pluripotent cells reprogrammed from keratinocytes (KiPS) are more similar to ESCs than those reprogrammed from fibroblasts (FiPS) in regard to DNA methylation levels, mostly due to the presence of genes that fail to acquire high levels of DNA methylation in FiPS cells. We propose that higher reprogramming efficiency correlates with the hypermethylation of tissue-specific genes rather than with a more permissive pluripotency gene network.
Collapse
Affiliation(s)
- María J Barrero
- Center for Regenerative Medicine in Barcelona, Barcelona, Catalonia, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Li Y, Li X, Zhao H, Feng R, Zhang X, Tai D, An G, Wen J, Tan J. Efficient induction of pluripotent stem cells from menstrual blood. Stem Cells Dev 2012; 22:1147-58. [PMID: 23151296 DOI: 10.1089/scd.2012.0428] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The technology to reprogram human somatic cells back to pluripotency allows the production of patient-specific induced pluripotent stem cells (iPSCs) and holds a great promise for regenerative medicine. Choosing the most suitable cell type for induction and reducing the risk of viral transgene activation, especially oncogene activation, are important for iPSC research. To date, human dermal fibroblasts (HDFs) are the most frequent cell source used for iPSC generation, but they have several limitations. An invasive skin biopsy must be performed to obtain HDFs, and HDFs must be cultured for a prolonged period before they can be used for experiments. Thus, in an effort to develop a suitable source for iPSC studies to avoid the limitations mentioned above, we have here identified stromal cells derived from menstrual blood (MenSCs) as suitable candidates. In the present study, we found that MenSCs can be reprogrammed to pluripotent status by doxycycline-inducible lentiviral transduction of OCT4, SOX2, and KLF4. Additionally, we found that MenSCs have a significantly higher reprogramming efficiency than HDFs. The combination of OCT4 and SOX2 is sufficient to reprogram MenSCs into iPSCs without the use of c-MYC or KLF4. The resulting MenSC-iPSCs showed the same characteristics as human embryonic stem cells with regard to morphology, pluripotent markers, gene expression, and the epigenetic status of pluripotent-cell-specific genes. These cells were able to differentiate into various cell types of all 3 germ layers both in vitro and in vivo. Therefore, MenSCs may be a preferred candidate for generation of iPSCs.
Collapse
Affiliation(s)
- Yang Li
- Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shofuda T, Kanematsu D, Fukusumi H, Yamamoto A, Bamba Y, Yoshitatsu S, Suemizu H, Nakamura M, Sugimoto Y, Furue MK, Kohara A, Akamatsu W, Okada Y, Okano H, Yamasaki M, Kanemura Y. Human Decidua-Derived Mesenchymal Cells Are a Promising Source for the Generation and Cell Banking of Human Induced Pluripotent Stem Cells. CELL MEDICINE 2012; 4:125-47. [PMID: 26858858 DOI: 10.3727/215517912x658918] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Placental tissue is a biomaterial with remarkable potential for use in regenerative medicine. It has a three-layer structure derived from the fetus (amnion and chorion) and the mother (decidua), and it contains huge numbers of cells. Moreover, placental tissue can be collected without any physical danger to the donor and can be matched with a variety of HLA types. The decidua-derived mesenchymal cells (DMCs) are highly proliferative fibroblast-like cells that express a similar pattern of CD antigens as bone marrow-derived mesenchymal cells (BM-MSCs). Here we demonstrated that induced pluripotent stem (iPS) cells could be efficiently generated from DMCs by retroviral transfer of reprogramming factor genes. DMC-hiPS cells showed equivalent characteristics to human embryonic stem cells (hESCs) in colony morphology, global gene expression profile (including human pluripotent stem cell markers), DNA methylation status of the OCT3/4 and NANOG promoters, and ability to differentiate into components of the three germ layers in vitro and in vivo. The RNA expression of XIST and the methylation status of its promoter region suggested that DMC-iPSCs, when maintained undifferentiated and pluripotent, had three distinct states: (1) complete X-chromosome reactivation, (2) one inactive X-chromosome, or (3) an epigenetic aberration. Because DMCs are derived from the maternal portion of the placenta, they can be collected with the full consent of the adult donor and have considerable ethical advantages for cell banking and the subsequent generation of human iPS cells for regenerative applications.
Collapse
Affiliation(s)
- Tomoko Shofuda
- Division of Stem Cell Research, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization , Chuo-ku, Osaka , Japan
| | - Daisuke Kanematsu
- † Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization , Osaka , Japan
| | - Hayato Fukusumi
- † Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization , Osaka , Japan
| | - Atsuyo Yamamoto
- Division of Stem Cell Research, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization , Chuo-ku, Osaka , Japan
| | - Yohei Bamba
- ‡ Department of Physiology, Keio University School of Medicine , Shinjuku-ku, Tokyo , Japan
| | - Sumiko Yoshitatsu
- § Department of Plastic Surgery, Osaka National Hospital, National Hospital Organization , Osaka , Japan
| | - Hiroshi Suemizu
- ¶ Biomedical Research Department, Central Institute for Experimental Animals , Kawasaki-ku, Kawasaki , Japan
| | - Masato Nakamura
- ¶Biomedical Research Department, Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Japan; #Department of Pathology and Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yoshikazu Sugimoto
- * Division of Chemotherapy, Faculty of Pharmacy, Keio University , Minato-ku, Tokyo , Japan
| | - Miho Kusuda Furue
- †† Laboratory of Stem Cell Cultures, Laboratory of Cell Cultures, Department of Disease Bioresources Research, National Institute of Biomedical Innovation , Ibaraki, Osaka , Japan
| | - Arihiro Kohara
- ‡‡ JCRB Cell Bank, Laboratory of Cell Cultures, Research on Disease Bioresources, National Institute of Biomedical Innovation , Osaka , Japan
| | - Wado Akamatsu
- ‡ Department of Physiology, Keio University School of Medicine , Shinjuku-ku, Tokyo , Japan
| | - Yohei Okada
- ‡Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan; §§Kanrinmaru-Project, School of Medicine, Keio University, Tokyo, Japan
| | - Hideyuki Okano
- ‡ Department of Physiology, Keio University School of Medicine , Shinjuku-ku, Tokyo , Japan
| | - Mami Yamasaki
- ¶¶Division of Molecular Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Osaka, Japan; ##Department of Neurosurgery, Osaka National Hospital, National Hospital Organization, Osaka, Japan; **Department of Pediatric Neurosurgery, Takatsuki General Hospital, Takatsuki, Osaka, Japan
| | - Yonehiro Kanemura
- †Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Osaka, Japan; ##Department of Neurosurgery, Osaka National Hospital, National Hospital Organization, Osaka, Japan
| |
Collapse
|
39
|
Sabour D, Schöler HR. Reprogramming and the mammalian germline: the Weismann barrier revisited. Curr Opin Cell Biol 2012; 24:716-23. [PMID: 22947493 DOI: 10.1016/j.ceb.2012.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 08/08/2012] [Accepted: 08/20/2012] [Indexed: 01/17/2023]
Abstract
The germline represents a unique cell type that can transmit genetic material to the next generation. During early embryonic development, somatic cells give rise to a small population of cells known as germ cells, which eventually differentiate into mature gametes. Germ cells undergo a process of removing and resetting relevant epigenetic information, mainly by DNA demethylation. This extensive epigenetic reprogramming leads to the conversion of germ cells into immortal cells that can pass on the genome to the next generation. In the absence of germline-specific reprogramming, germ cells would preserve the old, parental epigenetic memory, which would prevent the transfer of heritable information to the offspring. On the contrary, somatic cells cannot reset epigenetic information by preserving the full methylation pattern on imprinting genes. In this review, we focus on the capacity of germ cells and somatic cells (soma) to transfer genetic information to the next generation, and thus revisit the Weismann theory of heredity.
Collapse
Affiliation(s)
- Davood Sabour
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, D-48149 Münster, Germany
| | | |
Collapse
|
40
|
Warmflash A, Arduini BL, Brivanlou AH. The molecular circuitry underlying pluripotency in embryonic stem cells. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:443-56. [PMID: 22761038 DOI: 10.1002/wsbm.1182] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cells in the pluripotent state have the ability to self-renew indefinitely and to differentiate to all the cells of the embryo. These cells provide an in vitro window into development, including human development, as well as holding extraordinary promise for cell-based therapies in regenerative medicine. The recent demonstration that somatic cells can be reprogrammed to the pluripotent state has raised the possibility of patient and disease-specific induced pluripotent cells. In this article, we review the molecular underpinning of pluripotency. We focus on the transcriptional and signaling networks that underlie the state of pluripotency and control differentiation. In general, the action of each of the molecular components and pathways is dose and context dependent highlighting the need for a systems approach to understanding pluripotency.
Collapse
Affiliation(s)
- Aryeh Warmflash
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY, USA
| | | | | |
Collapse
|
41
|
Claros S, Rodríguez-Losada N, Cruz E, Guerado E, Becerra J, Andrades JA. Characterization of adult stem/progenitor cell populations from bone marrow in a three-dimensional collagen gel culture system. Cell Transplant 2012; 21:2021-2032. [PMID: 22472743 DOI: 10.3727/096368912x636939] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stem cell transplantation therapy using mesenchymal stem cells (MSCs) is considered a useful strategy. Although MSCs are commonly isolated by exploiting their plastic adherence, several studies have suggested that there are other populations of stem and/or osteoprogenitor cells that are removed from primary culture during media replacement. Therefore, we developed a three-dimensional (3D) culture system in which adherent and nonadherent stem cells are selected and expanded. Here, we described the characterization of 3D culture-derived cell populations in vitro and the capacity of these cells to differentiate into bone and/or cartilage tissue when placed inside of demineralized bone matrix (DBM) cylinders, implanted subcutaneously into the backs of rat for 2, 4, and 8 weeks. Our results demonstrates that 3D culture cells were a heterogeneous population of uncommitted cells that express pluripotent-, hematopoietic-, mesenchymal-, and endothelial-specific markers in vitro and can undergo osteogenic differentiation in vivo.
Collapse
Affiliation(s)
- Silvia Claros
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Málaga, Málaga, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Sugawara T, Nishino K, Umezawa A, Akutsu H. Investigating cellular identity and manipulating cell fate using induced pluripotent stem cells. Stem Cell Res Ther 2012; 3:8. [PMID: 22405125 PMCID: PMC3392777 DOI: 10.1186/scrt99] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Induced pluripotent stem (iPS) cells, obtained from reprogramming somatic cells by ectopic expression of a defined set of transcription factors or chemicals, are expected to be used as differentiated cells for drug screening or evaluations of drug toxicity and cell replacement therapies. As pluripotent stem cells, iPS cells are similar to embryonic stem (ES) cells in morphology and marker expression. Several types of iPS cells have been generated using combinations of reprogramming molecules and/or small chemical compounds from different types of tissues. A comprehensive approach, such as global gene or microRNA expression analysis and whole genomic DNA methylation profiling, has demonstrated that iPS cells are similar to their embryonic counterparts. Considering the substantial variation among iPS cell lines reported to date, the safety and therapeutic implications of these differences should be thoroughly evaluated before they are used in cell therapies. Here, we review recent research defining the concept of standardization for iPS cells, their ability to differentiate and the identity of the differentiated cells.
Collapse
Affiliation(s)
- Tohru Sugawara
- Department of Reproductive Biology, Center for Regenerative Medicine, National Institute for Child Health and Development, 2-10-1 Okura, Setagayaku, Tokyo 157-8535, Japan
| | | | | | | |
Collapse
|
43
|
Sohn YD, Han JW, Yoon YS. Generation of induced pluripotent stem cells from somatic cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 111:1-26. [PMID: 22917224 DOI: 10.1016/b978-0-12-398459-3.00001-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The technology for generation of induced pluripotent stem cell (iPSC) from somatic cells emerged to circumvent the ethical and immunological limitations of embryonic stem cell (ESC). The recent progress of iPSC technology offers an unprecedented tool for regenerative medicine; however, integrating viral-driven iPSCs prohibits clinical applications by their genetic alterations and tumorigenicity. Various approaches including nonintegrating, nonviral, and nongenetic methods have been developed for generating clinically compatible iPSCs. In addition, approaches for using more clinically convenient or compatible source cells replacing fibroblasts have been actively pursued. While iPSC and ESC closely resemble in genomic, cell biologic, and phenotypic characteristics, these two pluripotent stem cells are not identical in terms of differentiation capacity and epigenetic features. In this chapter, we deal with the current techniques of generating iPSCs and their various characteristics.
Collapse
Affiliation(s)
- Young-Doug Sohn
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | |
Collapse
|
44
|
Abstract
Reprogramming of adult somatic cells into pluripotent stem cells may provide an attractive source of stem cells for regenerative medicine. It has emerged as an invaluable method for generating patient-specific stem cells of any cell lineage without the use of embryonic stem cells. A revolutionary study in 2006 showed that it is possible to convert adult somatic cells directly into pluripotent stem cells by using a limited number of pluripotent transcription factors and is called as iPS cells. Currently, both genomic integrating viral and nonintegrating nonviral methods are used to generate iPS cells. However, the viral-based technology poses increased risk of safety, and more studies are now focused on nonviral-based technology to obtain autologous stem cells for clinical therapy. In this review, the pros and cons of the present iPS cell technology and the future direction for the successful translation of this technology into the clinic are discussed.
Collapse
|
45
|
Grskovic M, Javaherian A, Strulovici B, Daley GQ. Induced pluripotent stem cells--opportunities for disease modelling and drug discovery. Nat Rev Drug Discov 2011; 10:915-29. [PMID: 22076509 DOI: 10.1038/nrd3577] [Citation(s) in RCA: 350] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ability to generate induced pluripotent stem cells (iPSCs) from patients, and an increasingly refined capacity to differentiate these iPSCs into disease-relevant cell types, promises a new paradigm in drug development - one that positions human disease pathophysiology at the core of preclinical drug discovery. Disease models derived from iPSCs that manifest cellular disease phenotypes have been established for several monogenic diseases, but iPSCs can likewise be used for phenotype-based drug screens in complex diseases for which the underlying genetic mechanism is unknown. Here, we highlight recent advances as well as limitations in the use of iPSC technology for modelling a 'disease in a dish' and for testing compounds against human disease phenotypes in vitro. We discuss how iPSCs are being exploited to illuminate disease pathophysiology, identify novel drug targets and enhance the probability of clinical success of new drugs.
Collapse
Affiliation(s)
- Marica Grskovic
- iPierian, 951 Gateway Blvd, South San Francisco, California 94080, USA
| | | | | | | |
Collapse
|
46
|
Han JW, Yoon YS. Induced pluripotent stem cells: emerging techniques for nuclear reprogramming. Antioxid Redox Signal 2011; 15:1799-820. [PMID: 21194386 PMCID: PMC3159104 DOI: 10.1089/ars.2010.3814] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc, can successfully reprogram somatic cells into embryonic stem (ES)-like cells. These cells, which are referred to as induced pluripotent stem (iPS) cells, closely resemble embryonic stem cells in genomic, cell biologic, and phenotypic characteristics, and the creation of these special cells was a major triumph in cell biology. In contrast to pluripotent stem cells generated by somatic cell nuclear-transfer (SCNT) or ES cells derived from the inner cell mass (ICM) of the blastocyst, direct reprogramming provides a convenient and reliable means of generating pluripotent stem cells. iPS cells have already shown incredible potential for research and for therapeutic applications in regenerative medicine within just a few years of their discovery. In this review, current techniques of generating iPS cells and mechanisms of nuclear reprogramming are reviewed, and the potential for therapeutic applications is discussed.
Collapse
Affiliation(s)
- Ji Woong Han
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, GA 30322, USA
| | | |
Collapse
|
47
|
Durnaoglu S, Genc S, Genc K. Patient-specific pluripotent stem cells in neurological diseases. Stem Cells Int 2011; 2011:212487. [PMID: 21776279 PMCID: PMC3138107 DOI: 10.4061/2011/212487] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 03/28/2011] [Accepted: 05/09/2011] [Indexed: 12/29/2022] Open
Abstract
Many human neurological diseases are not currently curable and result in devastating neurologic sequelae. The increasing availability of induced pluripotent stem cells (iPSCs) derived from adult human somatic cells provides new prospects for cellreplacement strategies and disease-related basic research in a broad spectrum of human neurologic diseases. Patient-specific iPSC-based modeling of neurogenetic and neurodegenerative diseases is an emerging efficient tool for in vitro modeling to understand disease and to screen for genes and drugs that modify the disease process. With the exponential increase in iPSC research in recent years, human iPSCs have been successfully derived with different technologies and from various cell types. Although there remain a great deal to learn about patient-specific iPSC safety, the reprogramming mechanisms, better ways to direct a specific reprogramming, ideal cell source for cellular grafts, and the mechanisms by which transplanted stem cells lead to an enhanced functional recovery and structural reorganization, the discovery of the therapeutic potential of iPSCs offers new opportunities for the treatment of incurable neurologic diseases. However, iPSC-based therapeutic strategies need to be thoroughly evaluated in preclinical animal models of neurological diseases before they can be applied in a clinical setting.
Collapse
Affiliation(s)
- Serpen Durnaoglu
- Department of Neuroscience, Health Science Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | | | | |
Collapse
|
48
|
Decembrini S, Cananzi M, Gualdoni S, Battersby A, Allen N, Pearson RA, Ali RR, De Coppi P, Sowden JC. Comparative analysis of the retinal potential of embryonic stem cells and amniotic fluid-derived stem cells. Stem Cells Dev 2011; 20:851-63. [PMID: 20939691 DOI: 10.1089/scd.2010.0291] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Photoreceptors have recently been generated from mouse and human embryonic stem cells (ESCs), although ethics concerns impede their utilization for cell replacement therapy for retinal disease. Extra-embryonic tissues have received attention as alternative therapeutic sources of stem cells. Human and mouse amniotic fluid-derived stem cells (AFCs) have been reported to be multipotent and express embryonic and adult stem cell markers. Here, in vitro conditions that generate retinal cells from ESCs were used to analyze and compare the retinal potential of murine AFCs and ESCs. We show that AFCs express pluripotency markers (Nanog, Sox2, and Oct3/4) as well as retinal transcription factor genes (Et, Lhx2, Tll1, Six6, Otx2, Pax6, and Fgf15). AFCs from amniotic fluid of Fgf15.gfp, Nrl.gfp, and Crx.gfp embryos cultured in retinal proliferation and differentiation conditions failed to switch on these retinal transgenes. AFCs cultured in retinal-promoting conditions, effective on ESCs, showed reduced expression of retinal markers. Retinal co-cultures activated retinal genes in ESCs but not in AFCs, and migration assays in retinal explants showed limited migration of AFCs compared with ESCs. Unlike ESCs, AFCs do not express the early embryonic ectodermal gene Utf1 and Western analysis of AFCs identified only the B isoform of Oct3/4, rather than the isoform A present in ESCs. We conclude that AFCs have restricted potential and differ considerably from ESCs and retinal progenitor cells. Reprogramming to induce pluripotency or new differentiation protocols will be required to confer retinal potential to AFCs as expression of a subset of pluripotency and retinal markers is not sufficient.
Collapse
Affiliation(s)
- Sarah Decembrini
- UCL Institute of Child Health, Great Ormond Street Hospital, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Narsinh K, Narsinh KH, Wu JC. Derivation of human induced pluripotent stem cells for cardiovascular disease modeling. Circ Res 2011; 108:1146-56. [PMID: 21527744 PMCID: PMC3098466 DOI: 10.1161/circresaha.111.240374] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 03/17/2011] [Indexed: 01/29/2023]
Abstract
The successful derivation of human induced pluripotent stem cells (hiPSCs) by dedifferentiation of somatic cells offers significant potential to overcome obstacles in the field of cardiovascular disease. hiPSC derivatives offer incredible potential for new disease models and regenerative medicine therapies. However, many questions remain regarding the optimal starting materials and methods to enable safe, efficient derivation of hiPSCs suitable for clinical applications. Initial reprogramming experiments were carried out using lentiviral or retroviral gene delivery methods. More recently, various nonviral methods that avoid permanent and random transgene insertion have emerged as alternatives. These include transient DNA transfection using plasmids or minicircles, protein transduction, or RNA transfection. In addition, several small molecules have been found to significantly augment hiPSC derivation efficiency, allowing the use of a fewer number of genes during pluripotency induction. We review these various methods for the derivation of hiPSCs, focusing on their ultimate clinical applicability, with an emphasis on their potential for use as cardiovascular therapies and disease-modeling platforms.
Collapse
Affiliation(s)
- Kamileh Narsinh
- Department of Medicine, Stanford University School of Medicine
- Department of Radiology, Stanford University School of Medicine
- Department of Chemistry and Biochemistry, University of California, Los Angeles
| | - Kazim H. Narsinh
- Department of Medicine, Stanford University School of Medicine
- Department of Radiology, Stanford University School of Medicine
| | - Joseph C. Wu
- Department of Medicine, Stanford University School of Medicine
- Department of Radiology, Stanford University School of Medicine
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine
| |
Collapse
|
50
|
Milroy C, Liu L, Hammoud S, Hammoud A, Peterson CM, Carrell DT. Differential methylation of pluripotency gene promoters in in vitro matured and vitrified, in vivo-matured mouse oocytes. Fertil Steril 2011; 95:2094-9. [PMID: 21457962 DOI: 10.1016/j.fertnstert.2011.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To assess the methylation patterns of four pluripotency gene promoters in mouse oocytes after in vivo maturation, in vitro maturation (IVM), and vitrification followed by IVM. DESIGN Experimental study. SETTING Research laboratory. ANIMAL(S) Three populations of metaphase II mouse oocytes were analyzed after in vivo maturation, IVM, and vitrification followed by IVM (V-IVM). Cumulus cells and blastocyst embryos were controls. INTERVENTION(S) The CpG methylation patterns (overall and CpG specific) in the promoters of four pluripotency genes (Oct4, Nanog, Foxd3, and Sox2) were analyzed for each cell type by traditional DNA bisulfite sequencing. MAIN OUTCOME MEASURE(S) Differences for overall methylation were evaluated using the Student's t-test and for individual CpG sites by χ2 analysis. RESULT(S) Significantly lower levels of overall methylation in promoters of Oct4 (25%) and Sox2 (4.5%) were noted in V-IVM oocytes compared with in vivo-matured oocytes (62.5% and 8.5%, respectively). Cumulus cell promoters were generally hypomethylated at Nanog, Foxd3. and Sox2, but hypermethylated at Oct4. CONCLUSION(S) The methylation status of Oct4 and Sox2 promoters of V-IVM mouse oocytes are altered when compared with in vivo-matured oocytes. The biological risk and significance of these changes are unknown and this study indicates caution and that further analyses are warranted.
Collapse
Affiliation(s)
- Colleen Milroy
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, School of Medicine, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | | | | | | | |
Collapse
|