1
|
Li J, Liu F, Mo K, Ni H, Yin Y. Effects of weaning on intestinal longitudinal muscle-myenteric plexus function in piglets. SCIENCE CHINA. LIFE SCIENCES 2024; 67:379-390. [PMID: 37824029 DOI: 10.1007/s11427-022-2391-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/18/2023] [Indexed: 10/13/2023]
Abstract
Weaning piglets usually suffer from severe diarrhea (commonly known as postweaning diarrhea, PWD) along with intestinal motility disorder. Intestinal peristalsis is mainly regulated by the longitudinal muscle-myenteric plexus (LM-MP). To understand the relationship between intestinal LM-MP function and the development of PWD, we compared the intestinal electrical activity, and the transcriptional profile of the LM-MP between 21-day-old piglets (just weaned, n=7) and 24-day-old piglets (suffered the most severe weaning stress, n=7). The results showed that 24-day-old piglets exhibited different degrees of diarrhea. A significant increase in the slow-wave frequency in the ileum and colon was observed in 24-day-old piglets, while c-kit expression in the intestinal LM-MPs was significantly decreased, indicating that PWD caused by elevated slow-wave frequency may be associated with loss of c-kit. The real-time quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) showed that intestinal LM-MPs in 24-day-old piglets may undergo inflammation and oxidative stress. Significant increases in 8-hydroxy-2'-deoxyguanosine and decreases in thioredoxin suggest that weaning may lead to DNA damage in the LM-MP of 24-day-old piglets. In addition, activating transcription factor 3 was significantly upregulated, indicating nerve damage in the LM-MP of 24-day-old piglets. The transcriptomic results showed that most of the differentially expressed genes in the ileal LM-MP after weaning were downregulated and closely related to the cell cycle process. Subsequent RT-qPCR analysis showed that the relative expression of p21 was upregulated, while the expression of cyclin A2, cyclin B1, and proliferating cell nuclear antigen was downregulated in the ileal and colonic LM-MP of 24-day-old piglets, suggesting that weaning may inhibit cell proliferation and cause G1/S cell cycle arrest in ileal and colonic LM-MP. In conclusion, weaning may lead to cell cycle arrest by causing DNA damage in the LM-MP, impairing intestinal motility regulation, and ultimately leading to diarrhea in piglets.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Fenfen Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Kaibin Mo
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hengjia Ni
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 100008, China.
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 100008, China.
| |
Collapse
|
2
|
Rada M, Kapelanski-Lamoureux A, Tsamchoe M, Petrillo S, Lazaris A, Metrakos P. Angiopoietin-1 Upregulates Cancer Cell Motility in Colorectal Cancer Liver Metastases through Actin-Related Protein 2/3. Cancers (Basel) 2022; 14:2540. [PMID: 35626145 PMCID: PMC9139616 DOI: 10.3390/cancers14102540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Resistance to anti-angiogenic therapy is a major challenge in the treatment of colorectal cancer liver metastases (CRCLMs). Vessel co-option has been identified as a key contributor to anti-angiogenic therapy resistance in CRCLMs. Recently, we identified a positive correlation between the expression of Angiopoietin1 (Ang1) in the liver and the development of vessel co-opting CRCLM lesions in vivo. However, the mechanisms underlying its stimulation of vessel co-option are unclear. Herein, we demonstrated Ang1 as a positive regulator of actin-related protein 2/3 (ARP2/3) expression in cancer cells, in vitro and in vivo, which is known to be essential for the formation of vessel co-option in CRCLM. Significantly, Ang1-dependent ARP2/3 expression was impaired in the cancer cells upon Tie2 or PI3K/AKT inhibition in vitro. Taken together, our results suggest novel mechanisms by which Ang1 confers the development of vessel co-option in CRCLM, which, targeting this pathway, may serve as promising therapeutic targets to overcome the development of vessel co-option in CRCLM.
Collapse
Affiliation(s)
- Miran Rada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (A.K.-L.); (M.T.); (S.P.); (A.L.)
| | | | | | | | | | - Peter Metrakos
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (A.K.-L.); (M.T.); (S.P.); (A.L.)
| |
Collapse
|
3
|
Tonon F, Cemazar M, Kamensek U, Zennaro C, Pozzato G, Caserta S, Ascione F, Grassi M, Guido S, Ferrari C, Cansolino L, Trotta F, Kuzmanov BG, Forte G, Martino F, Perrone F, Bomben R, Gattei V, Elvassore N, Murano E, Truong NH, Olson M, Farra R, Grassi G, Dapas B. 5-Azacytidine Downregulates the Proliferation and Migration of Hepatocellular Carcinoma Cells In Vitro and In Vivo by Targeting miR-139-5p/ROCK2 Pathway. Cancers (Basel) 2022; 14:1630. [PMID: 35406401 PMCID: PMC8996928 DOI: 10.3390/cancers14071630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND For hepatocellular carcinoma (HCC), effective therapeutic approaches are lacking. As aberrant gene methylation is a major contributor to HCC development, demethylating drugs such as 5-azacytidine (5-Aza) have been proposed. As most 5-Aza mechanisms of action are unknown, we investigated its phenotypic/molecular effects. METHODS 5-Aza effects were examined in the human HCC cell lines JHH-6/HuH-7 and in the rat cell-line N1-S1. We also employed a xenograft mouse model (HuH-7), a zebrafish model (JHH-6), and an orthotopic syngeneic rat model (N1-S1) of HCC. RESULTS 5-Aza downregulated cell viability/growth/migration/adhesion by upregulating miR-139-5p, which in turn downregulated ROCK2/cyclin D1/E2F1 and increased p27kip1, resulting in G1/G0 cell accumulation. Moreover, a decrease in cyclin B1 and an increase in p27kip1 led to G2/M accumulation. Finally, we observed a decrease in MMP-2 levels, a stimulator of HCC cell migration. Aza effects were confirmed in the mouse model; in the zebrafish model, we also demonstrated the downregulation of tumor neo-angiogenesis, and in the orthotopic rat model, we observed impaired N1-S1 grafting in a healthy liver. CONCLUSION We demonstrate for the first time that 5-Aza can impair HCC development via upregulation of miR-139-5p, which in turn impairs the ROCK2/cyclin D1/E2F1/cyclin B1 pro-proliferative pathway and the ROCK2/MMP-2 pro-migratory pathway. Thus, we provide novel information about 5-Aza mechanisms of action and deepen the knowledge about the crosstalk among ROCK2/cyclin D1/E2F1/cyclin B1/p27kip1/MMP-2 in HCC.
Collapse
Affiliation(s)
- Federica Tonon
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (F.T.); (F.P.); (B.D.)
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (M.C.); (U.K.); (B.G.K.)
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (M.C.); (U.K.); (B.G.K.)
| | - Cristina Zennaro
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume 447, I-34149 Trieste, Italy; (C.Z.); (G.P.)
| | - Gabriele Pozzato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume 447, I-34149 Trieste, Italy; (C.Z.); (G.P.)
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples “Federico II”, Piazzale V. Tecchio 80, I-80125 Naples, Italy; (S.C.); (F.A.); (S.G.)
- CEINGE Advanced Biotechnologies, via Gaetano Salvatore, 486, I-80145 Napoli, Italy
| | - Flora Ascione
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples “Federico II”, Piazzale V. Tecchio 80, I-80125 Naples, Italy; (S.C.); (F.A.); (S.G.)
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy;
| | - Stefano Guido
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples “Federico II”, Piazzale V. Tecchio 80, I-80125 Naples, Italy; (S.C.); (F.A.); (S.G.)
- CEINGE Advanced Biotechnologies, via Gaetano Salvatore, 486, I-80145 Napoli, Italy
| | - Cinzia Ferrari
- Department of Clinic-Surgical Sciences, Laboratory of Experimental Surgery and Animal Facility, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy; (C.F.); (L.C.)
| | - Laura Cansolino
- Department of Clinic-Surgical Sciences, Laboratory of Experimental Surgery and Animal Facility, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy; (C.F.); (L.C.)
| | - Francesco Trotta
- Department of General Surgery, Maggiore Hospital, Largo Donatori del Sangue 1, I-26900 Lodi, Italy;
| | - Biljana Grcar Kuzmanov
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (M.C.); (U.K.); (B.G.K.)
| | - Giancarlo Forte
- International Clinical Research Center (ICRC) of St Anne’s University Hospital, CZ-65691 Brno, Czech Republic; (G.F.); (F.M.)
| | - Fabiana Martino
- International Clinical Research Center (ICRC) of St Anne’s University Hospital, CZ-65691 Brno, Czech Republic; (G.F.); (F.M.)
| | - Francesca Perrone
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (F.T.); (F.P.); (B.D.)
- Department of Paediatrics, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Riccardo Bomben
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, Istituto di Ricovero a Cura a Carattere Scientifico IRCCS, 33081 Aviano, Italy; (R.B.); (V.G.)
| | - Valter Gattei
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, Istituto di Ricovero a Cura a Carattere Scientifico IRCCS, 33081 Aviano, Italy; (R.B.); (V.G.)
| | - Nicola Elvassore
- Industrial Engineering Department, University of Padova, Via Francesco Marzolo, 9, I-35131 Padova, Italy;
| | | | - Nhung Hai Truong
- Stem Cell Research and Application Laboratory, VNUHCM, University of Science, Ho Chi Minh City 72711, Vietnam;
| | - Michael Olson
- Department of Chemistry and Biology, X University, MaRS Discovery District, West Tower 661 University Avenue, Toronto, ON M5G 1M1, Canada;
| | - Rossella Farra
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (F.T.); (F.P.); (B.D.)
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (F.T.); (F.P.); (B.D.)
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (F.T.); (F.P.); (B.D.)
| |
Collapse
|
4
|
Rada M, Tsamchoe M, Kapelanski-Lamoureux A, Hassan N, Bloom J, Petrillo S, Kim DH, Lazaris A, Metrakos P. Cancer Cells Promote Phenotypic Alterations in Hepatocytes at the Edge of Cancer Cell Nests to Facilitate Vessel Co-Option Establishment in Colorectal Cancer Liver Metastases. Cancers (Basel) 2022; 14:1318. [PMID: 35267627 PMCID: PMC8909291 DOI: 10.3390/cancers14051318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
Vessel co-option is correlated with resistance against anti-angiogenic therapy in colorectal cancer liver metastases (CRCLM). Vessel co-opting lesions are characterized by highly motile cancer cells that move toward and along the pre-existing vessels in the surrounding nonmalignant tissue and co-opt them to gain access to nutrients. To access the sinusoidal vessels, the cancer cells in vessel co-opting lesions must displace the hepatocytes and occupy their space. However, the mechanisms underlying this displacement are unknown. Herein, we examined the involvement of apoptosis, autophagy, motility, and epithelial-mesenchymal transition (EMT) pathways in hepatocyte displacement by cancer cells. We demonstrate that cancer cells induce the expression of the proteins that are associated with the upregulation of apoptosis, motility, and EMT in adjacent hepatocytes in vitro and in vivo. Accordingly, we observe the upregulation of cleaved caspase-3, cleaved poly (ADP-ribose) polymerase-1 (PARP-1) and actin-related protein 2/3 (ARP2/3) in adjacent hepatocytes to cancer cell nests, while we notice a downregulation of E-cadherin. Importantly, the knockdown of runt-related transcription factor 1 (RUNX1) in cancer cells attenuates the function of cancer cells in hepatocytes alterations in vitro and in vivo. Altogether, our data suggest that cancer cells exploit various mechanisms to displace hepatocytes and access the sinusoidal vessels to establish vessel co-option.
Collapse
Affiliation(s)
- Miran Rada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (M.T.); (A.K.-L.); (N.H.); (J.B.); (S.P.); (D.H.K.); (A.L.)
| | | | | | | | | | | | | | | | - Peter Metrakos
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (M.T.); (A.K.-L.); (N.H.); (J.B.); (S.P.); (D.H.K.); (A.L.)
| |
Collapse
|
5
|
Liao R, Xie B, Cui J, Qi Z, Xue S, Wang Y. E2F transcription factor 1 (E2F1) promotes the transforming growth factor TGF-β1 induced human cardiac fibroblasts differentiation through promoting the transcription of CCNE2 gene. Bioengineered 2021; 12:6869-6877. [PMID: 34521301 PMCID: PMC8806588 DOI: 10.1080/21655979.2021.1972194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The differentiation of cardiac fibroblast to myofibroblast is the key process of cardiac fibrosis. In the study, we aimed to determine the function of E2F Transcription Factor 1 (E2F1) in human cardiac fibroblasts (HCFs) differentiation, search for its downstream genes and elucidate the function of them in HCFs differentiation. As a result, we found that E2F1 was up-regulated in TGF-β1-induced HCFs differentiation. Silencing the expression of E2F1 by siRNA in HCFs, we found that the expression of differentiation-related genes (Collagen-1, α-Smooth muscle actin, and Fibronectin-1) was significantly suppressed, combining with proliferation and migration assay, we determined that HCFs differentiation was decreased. Luciferase report assay and immunoprecipitation proved that the oncogene CCNE2 was a direct target gene of E2F1, overexpression of CCNE2 was found in differentiated HCFs, silencing the expression of CCNE2 by siRNA decreased HCFs differentiation. Our research suggested that E2F1 and its downstream target gene CCNE2 play a vital role in TGF-β1-induced HCFs differentiation, thus E2F1 and CCNE2 may be a potential therapeutic target for cardiac fibrosis.
Collapse
Affiliation(s)
- Rongheng Liao
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Xie
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Cui
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhen Qi
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongyi Wang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Godoy PRDV, Donaires FS, Montaldi APL, Sakamoto-Hojo ET. Anti-Proliferative Effects of E2F1 Suppression in Glioblastoma Cells. Cytogenet Genome Res 2021; 161:372-381. [PMID: 34482308 DOI: 10.1159/000516997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/03/2021] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive malignant brain tumor; surgery, radiation, and temozolomide still remain the main treatments. There is evidence that E2F1 is overexpressed in various types of cancer, including GBM. E2F1 is a transcription factor that controls the cell cycle progression and regulates DNA damage responses and the proliferation of pluripotent and neural stem cells. To test the potentiality of E2F1 as molecular target for GBM treatment, we suppressed the E2F1 gene (siRNA) in the U87MG cell line, aiming to inhibit cellular proliferation and modulate the radioresistance of these cells. Following E2F1 suppression, associated or not with gamma-irradiation, several assays (cell proliferation, cell cycle analysis, neurosphere counting, and protein expression) were performed in U87MG cells grown as monolayer or neurospheres. We found that siE2F1-suppressed cells showed reduced cell proliferation and increased cell death (sub-G1 fraction) in monolayer cultures, and also a significant reduction in the number of neurospheres. In addition, in irradiated cells, E2F1 suppression caused similar effects, with reduction of the number of neurospheres and neurosphere cell numbers relative to controls; these results suggest that E2F1 plays a role in the maintenance of GBM stem cells, and our results obtained in neurospheres are relevant within the context of radiation resistance. Furthermore, E2F1 suppression inhibited or delayed GBM cell differentiation by maintaining a reasonable proportion of CD133+ cells when grown at differentiation condition. Therefore, E2F1 proved to be an interesting molecular target for therapeutic intervention in U87MG cells.
Collapse
Affiliation(s)
- Paulo R D V Godoy
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil,
| | - Flavia S Donaires
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Paula L Montaldi
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Elza T Sakamoto-Hojo
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Tonon F, Farra R, Zennaro C, Pozzato G, Truong N, Parisi S, Rizzolio F, Grassi M, Scaggiante B, Zanconati F, Bonazza D, Grassi G, Dapas B. Xenograft Zebrafish Models for the Development of Novel Anti-Hepatocellular Carcinoma Molecules. Pharmaceuticals (Basel) 2021; 14:803. [PMID: 34451900 PMCID: PMC8400454 DOI: 10.3390/ph14080803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common type of tumor and the second leading cause of tumor-related death worldwide. Liver cirrhosis is the most important predisposing factor for HCC. Available therapeutic approaches are not very effective, especially for advanced HCC, which is the most common form of the disease at diagnosis. New therapeutic strategies are therefore urgently needed. The use of animal models represents a relevant tool for preclinical screening of new molecules/strategies against HCC. However, several issues, including animal husbandry, limit the use of current models (rodent/pig). One animal model that has attracted the attention of the scientific community in the last 15 years is the zebrafish. This freshwater fish has several attractive features, such as short reproductive time, limited space and cost requirements for husbandry, body transparency and the fact that embryos do not show immune response to transplanted cells. To date, two different types of zebrafish models for HCC have been developed: the transgenic zebrafish and the zebrafish xenograft models. Since transgenic zebrafish models for HCC have been described elsewhere, in this review, we focus on the description of zebrafish xenograft models that have been used in the last five years to test new molecules/strategies against HCC.
Collapse
Affiliation(s)
- Federica Tonon
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Rossella Farra
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Cristina Zennaro
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Gabriele Pozzato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Nhung Truong
- Stem Cell Research and Application Laboratory, VNUHCM, University of Science, Ho Chi Minh City 72711, Vietnam;
| | - Salvatore Parisi
- Pathology Unit, CRO Aviano, National Cancer Institute, IRCCS, I 33081 Aviano, Italy; (S.P.); (F.R.)
- Doctoral School in Molecular Biomedicine, University of Trieste, I 34127 Trieste, Italy
| | - Flavio Rizzolio
- Pathology Unit, CRO Aviano, National Cancer Institute, IRCCS, I 33081 Aviano, Italy; (S.P.); (F.R.)
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, I 30170 Mestre, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I 34127 Trieste, Italy;
| | - Bruna Scaggiante
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I 34149 Trieste, Italy; (B.S.); (B.D.)
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Deborah Bonazza
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Gabriele Grassi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I 34149 Trieste, Italy; (B.S.); (B.D.)
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I 34149 Trieste, Italy; (B.S.); (B.D.)
| |
Collapse
|
8
|
Rada M, Kapelanski-Lamoureux A, Petrillo S, Tabariès S, Siegel P, Reynolds AR, Lazaris A, Metrakos P. Runt related transcription factor-1 plays a central role in vessel co-option of colorectal cancer liver metastases. Commun Biol 2021; 4:950. [PMID: 34376784 PMCID: PMC8355374 DOI: 10.1038/s42003-021-02481-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer liver metastasis (CRCLM) has two major histopathological growth patterns: angiogenic desmoplastic and non-angiogenic replacement. The replacement lesions obtain their blood supply through vessel co-option, wherein the cancer cells hijack pre-existing blood vessels of the surrounding liver tissue. Consequentially, anti-angiogenic therapies are less efficacious in CRCLM patients with replacement lesions. However, the mechanisms which drive vessel co-option in the replacement lesions are unknown. Here, we show that Runt Related Transcription Factor-1 (RUNX1) overexpression in the cancer cells of the replacement lesions drives cancer cell motility via ARP2/3 to achieve vessel co-option. Furthermore, overexpression of RUNX1 in the cancer cells is mediated by Transforming Growth Factor Beta-1 (TGFβ1) and thrombospondin 1 (TSP1). Importantly, RUNX1 knockdown impaired the metastatic capability of colorectal cancer cells in vivo and induced the development of angiogenic lesions in liver. Our results confirm that RUNX1 may be a potential target to overcome vessel co-option in CRCLM.
Collapse
Affiliation(s)
- Miran Rada
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | | | - Stephanie Petrillo
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Sébastien Tabariès
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Peter Siegel
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | | | - Anthoula Lazaris
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Peter Metrakos
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC, Canada.
| |
Collapse
|
9
|
Lu Y, Su F, Yang H, Xiao Y, Zhang X, Su H, Zhang T, Bai Y, Ling X. E2F1 transcriptionally regulates CCNA2 expression to promote triple negative breast cancer tumorigenicity. Cancer Biomark 2021; 33:57-70. [PMID: 34366326 DOI: 10.3233/cbm-210149] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a highly malignant breast cancer subtype with a poor prognosis. The cell cycle regulator cyclin A2 (CCNA2) plays a role in tumor development. Herein, we explored the role of CCNA2 in TNBC. METHODS We analyzed CCNA2 expression in 15 pairs of TNBC and adjacent tissues and assessed the relationship between CCNA2 expression using the tissue microarray cohort. Furthermore, we used two TNBC cohort datasets to analyze the correlation between CCNA2 and E2F transcription factor 1 (E2F1) and a luciferase reporter to explore their association. Through rescue experiments, we analyzed the effects of E2F1 knockdown on CCNA2 expression and cellular behavior. RESULTS We found that CCNA2 expression in TNBC was significantly higher than that in adjacent tissues with similar observations in MDA-MB-231 and MDA-MB-468 cells. E2F1 was highly correlated with CCNA2 as observed through bioinformatics analysis (R= 0.80, P< 0.001) and through TNBC tissue verification analysis (R= 0.53, P< 0.001). We determined that E2F1 binds the +677 position within the CCNA2 promoter. Moreover, CCNA2 overexpression increased cell proliferation, invasion, and migration owing to E2F1 upregulation in TNBC. CONCLUSION Our data indicate that E2F1 promotes TNBC proliferation and invasion by upregulating CCNA2 expression. E2F1 and CCNA2 are potential candidates that may be targeted for effective TNBC treatment.
Collapse
Affiliation(s)
- Yongbin Lu
- Scientific Development and Planing Department, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.,College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.,Scientific Development and Planing Department, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fei Su
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.,Scientific Development and Planing Department, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hui Yang
- International Medical Department Area B, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China.,Scientific Development and Planing Department, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yi Xiao
- Breast surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaobin Zhang
- Breast surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hongxin Su
- Department of Radiotherapy, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Tao Zhang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yana Bai
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, China.,School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoling Ling
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Chen K, Hou Y, Liao R, Li Y, Yang H, Gong J. LncRNA SNHG6 promotes G1/S-phase transition in hepatocellular carcinoma by impairing miR-204-5p-mediated inhibition of E2F1. Oncogene 2021; 40:3217-3230. [PMID: 33824472 DOI: 10.1038/s41388-021-01671-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/17/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
Emerging evidence suggests that long noncoding RNAs (lncRNAs) function as competitive endogenous RNA (ceRNA) targeting proteins and genes; however, the role of lncRNAs in hepatocellular carcinoma (HCC) is not well understood. We investigated the mechanism by which lncRNA SNHG6 promotes the development of HCC. RT-qPCR revealed upregulated lncRNA SNHG6 in the HCC setting. Elevated SNHG6 expression was indicative of poor prognosis in patients with HCC. SNHG6 overexpression resulted in increased cyclin D1, cyclin E1, and E2F1 expression both in vitro and in vivo. SNHG6 also promoted HCC cell proliferation by enhancing G1-S phase transition in vitro. Dual luciferase reporter assays, RIP, and RNA pull-down assays demonstrated SNHG6 competitively bound to miR-204-5p and inhibited its expression preventing miR-204-5p from targeting E2F1. Overexpression of miR-204-5p abolished the effect of SNHG6. Our data suggest that SNHG6 functions as a ceRNA that targets miR-204-5p resulting in an increased E2F1 expression and enhanced G1-S phase transition, thereby promoting the tumorigenesis of HCC.
Collapse
Affiliation(s)
- Kai Chen
- Organ Transplant Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China
- The Third Ward of Hepatobiliary Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China
| | - Yifu Hou
- Organ Transplant Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China
- The Third Ward of Hepatobiliary Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China
| | - Rui Liao
- Department of Hepatobiliary, School of Clinical Medicine, Southwest Medical University, Luzhou, PR China
| | - Youzan Li
- Department of Hepatobiliary, School of Clinical Medicine, Southwest Medical University, Luzhou, PR China
| | - Hongji Yang
- Organ Transplant Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
- The Third Ward of Hepatobiliary Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
| | - Jun Gong
- The Second Ward of Hepatobiliary Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
| |
Collapse
|
11
|
Perrone F, Craparo EF, Cemazar M, Kamensek U, Drago SE, Dapas B, Scaggiante B, Zanconati F, Bonazza D, Grassi M, Truong N, Pozzato G, Farra R, Cavallaro G, Grassi G. Targeted delivery of siRNAs against hepatocellular carcinoma-related genes by a galactosylated polyaspartamide copolymer. J Control Release 2021; 330:1132-1151. [PMID: 33212117 DOI: 10.1016/j.jconrel.2020.11.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 02/08/2023]
Abstract
Given the lack of effective treatments for Hepatocellular carcinoma (HCC), the development of novel therapeutic approaches is very urgent. Here, siRNAs were delivered to HCC cells by a synthetic polymer containing α,β-poly-(N-2-hydroxyethyl)-D,L-aspartamide-(PHEA) derivatized with diethylene triamine (DETA) and bearing in the side chain galactose (GAL) linked via a polyethylene glycol (PEG) to obtain (PHEA-DETA-PEG-GAL, PDPG). The GAL residue allows the targeting to the asialo-glycoprotein receptor (ASGPR), overexpressed in HCC cells compared to normal hepatocytes. Uptake studies performed using a model siRNA or a siRNA targeted against the enhanced green fluorescence protein, demonstrated the PDPG specific delivery of siRNA to HuH7 cells, a human cellular model of HCC. GAL-free copolymer (PHEA-DETA-PEG-NH2, PDP) or the chemical block of ASGPR, impaired PDPG targeting effectiveness in vitro. The specificity of PDPG delivery was confirmed in vivo in a mouse dorsal skinfold window chamber assay. Functional studies using siRNAs targeting the mRNAs of HCC-related genes (eEF1A1, eEF1A2 and E2F1) delivered by PDPG, significantly decreased HuH7 vitality/number and down regulated the expression of the target genes. Only minor effectiveness was in contrast observed for PDP. In IHH, a human model of normal hepatocytes with reduced ASGPR expression, PDPG barely reduced cell vitality. In a subcutaneous xenograft mouse model of HCC, PDPG-siRNAs reduced HCC tumor growth compared to controls without significant toxic effects. In conclusion, our study demonstrates the valuable potentials of PDPG for the specific delivery of siRNAs targeting HCC-related genes.
Collapse
Affiliation(s)
- Francesca Perrone
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, Trieste I-34149, Italy
| | - Emanuela Fabiola Craparo
- Department of Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, Palermo 90123, Italy
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, Ljubljana SI-1000, Slovenia; Faculty of Health Sciences, University of Primorska, Polje 42, SI-, Izola 6310, Slovenia
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, Ljubljana SI-1000, Slovenia
| | - Salvatore Emanuele Drago
- Department of Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, Palermo 90123, Italy
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, Trieste I-34149, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, Trieste I-34149, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, Trieste 447, Italy
| | - Debora Bonazza
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, Trieste 447, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, Trieste I 34127, Italy
| | - Nhung Truong
- Stem Cell Research and Application Laboratory - VNUHCM - University of Science, Ho Chi Minh city, Viet Nam
| | - Gabriele Pozzato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, Trieste 447, Italy
| | - Rossella Farra
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, Trieste I-34149, Italy.
| | - Gennara Cavallaro
- Department of Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, Palermo 90123, Italy.
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, Trieste I-34149, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, Trieste 447, Italy
| |
Collapse
|
12
|
Dapas B, Pozzato G, Zorzet S, Capolla S, Macor P, Scaggiante B, Coan M, Guerra C, Gnan C, Gattei V, Zanconati F, Grassi G. Effects of eEF1A1 targeting by aptamer/siRNA in chronic lymphocytic leukaemia cells. Int J Pharm 2020; 574:118895. [PMID: 31862491 DOI: 10.1016/j.ijpharm.2019.118895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The effectiveness of therapies for chronic lymphocytic leukemia (CLL), the most common leukemia in Western countries adults, can be improved via a deeper understanding of its molecular abnormalities. Whereas the isoforms of the eukaryotic elongation factor 1A (eEF1A1 and eEF1A2) are implicated in different tumors, no information are available in CLL. METHODS eEF1A1/eEF1A2 amounts were quantitated in the lymphocytes of 46 CLL patients vs normal control (real time PCR, western blotting). eEF1A1 role in CLL was investigated in a cellular (MEC-1) and animal model of CLL via its targeting by an aptamer (GT75) or a siRNA (siA1) delivered by electroporation (in vitro) or lipofection (in vivo). RESULTS eEF1A1/eEF1A2 were elevated in CLL lymphocytes vs control. eEF1A1 but not eEF1A2 levels were higher in patients which died during the study compared to those surviving. eEF1A1 targeting (GT75/siA1) resulted in MEC-1 viability reduction/autophagy stimulation and in vivo tumor growth down-regulation. CONCLUSIONS The increase of eEF1A1 in dead vs surviving patients may confer to eEF1A1 the role of a prognostic marker for CLL and possibly of a therapeutic target, given its involvement in MEC-1 survival. Specific aptamer/siRNA released by optimized delivery systems may allow the development of novel therapeutic options.
Collapse
Affiliation(s)
- Barbara Dapas
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Gabriele Pozzato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Sonia Zorzet
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Sara Capolla
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Michela Coan
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Chiara Guerra
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Chiara Gnan
- Institute for Maternal and Child Health - "IRCCS Burlo Garofolo", Via dell'Istria, 65, 34137 Trieste, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Via Franco Gallini, 2, 33081 Aviano, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy.
| |
Collapse
|
13
|
Farra R, Maruna M, Perrone F, Grassi M, Benedetti F, Maddaloni M, El Boustani M, Parisi S, Rizzolio F, Forte G, Zanconati F, Cemazar M, Kamensek U, Dapas B, Grassi G. Strategies for Delivery of siRNAs to Ovarian Cancer Cells. Pharmaceutics 2019; 11:547. [PMID: 31652539 PMCID: PMC6835428 DOI: 10.3390/pharmaceutics11100547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
The unmet need for novel therapeutic options for ovarian cancer (OC) deserves further investigation. Among the different novel drugs, small interfering RNAs (siRNAs) are particularly attractive because of their specificity of action and efficacy, as documented in many experimental setups. However, the fragility of these molecules in the biological environment necessitates the use of delivery materials able to protect them and possibly target them to the cancer cells. Among the different delivery materials, those based on polymers and lipids are considered very interesting because of their biocompatibility and ability to carry/deliver siRNAs. Despite these features, polymers and lipids need to be engineered to optimize their delivery properties for OC. In this review, we concentrated on the description of the therapeutic potential of siRNAs and polymer-/lipid-based delivery systems for OC. After a brief description of OC and siRNA features, we summarized the strategies employed to minimize siRNA delivery problems, the targeting strategies to OC, and the preclinical models available. Finally, we discussed the most interesting works published in the last three years about polymer-/lipid-based materials for siRNA delivery.
Collapse
Affiliation(s)
- Rossella Farra
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Matea Maruna
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Francesca Perrone
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy.
| | - Fabio Benedetti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, I-34127 Trieste, Italy.
| | - Marianna Maddaloni
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Maguie El Boustani
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, I-33081 Aviano, Italy.
- Doctoral School in Molecular Biomedicine, University of Trieste, I-34127 Trieste, Italy.
| | - Salvo Parisi
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, I-33081 Aviano, Italy.
- Doctoral School in Molecular Biomedicine, University of Trieste, I-34127 Trieste, Italy.
| | - Flavio Rizzolio
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, I-33081 Aviano, Italy.
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, I-30123 Venezia-Mestre, Italy.
| | - Giancarlo Forte
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic.
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I-34149 Trieste, Italy.
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia.
| | - Urska Kamensek
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia.
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| |
Collapse
|
14
|
Hajiasgharzadeh K, Somi MH, Shanehbandi D, Mokhtarzadeh A, Baradaran B. Small interfering RNA-mediated gene suppression as a therapeutic intervention in hepatocellular carcinoma. J Cell Physiol 2018; 234:3263-3276. [PMID: 30362510 DOI: 10.1002/jcp.27015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the lethal and difficult-to-cure cancers worldwide. Owing to the late diagnosis and drug resistance of malignant hepatocytes, treatment of this cancer by conventional chemotherapy agents is challenging, and researchers are seeking new alternative treatment options to overcome therapy resistance in this neoplasm. RNA interference (RNAi) is a potent and specific approach in targeting gene expression and has emerged as a novel therapeutic tool for many diseases, including cancers. Small interfering RNA (siRNA) is a type of RNAi that is produced intracellularly from exogenous synthetic oligonucleotides and can selectively knock down target gene expression in a sequence-specific manner. Various factors play roles in the initiation and progression of HCC and provide multiple candidate targets for siRNA intervention. In addition, due to the liver's unique architecture and availability of some hepatic siRNA delivery methods, this organ has received much more attention as a target tissue for such oligonucleotide action. Recent advances in designing nanoparticle systems for the in vivo delivery of siRNAs have markedly enhanced the potency of siRNA-mediated gene silencing under clinical development for HCC therapy. The utility of siRNAs as anti-HCC agents is the subject of the current review. siRNA-based gene therapies could be one of the main feasible approaches for HCC therapy in the future.
Collapse
Affiliation(s)
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Fanesi G, Abrami M, Zecchin F, Giassi I, Ferro ED, Boisen A, Grassi G, Bertoncin P, Grassi M, Marizza P. Combined Used of Rheology and LF-NMR for the Characterization of PVP-Alginates Gels Containing Liposomes. Pharm Res 2018; 35:171. [PMID: 29967941 DOI: 10.1007/s11095-018-2427-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/07/2018] [Indexed: 01/24/2023]
Abstract
PURPOSE This paper is based on the characterization of the rheological and Low Field NMR (LF-NMR) properties of an interpenetrated hydrogel made up by poly(N-vinyl-2-pyrrolidone) and sodium alginate. The final aim is to use the hydrogel as a delivery matrix for liposomes, widely used tools in the drug delivery field. METHODS Rheology, LF-NMR, TEM, cryo-TEM, confocal laser scanning microscopy and release test were employed to characterize the interpenetrated hydrogel. Different theoretical approaches such as Flory, Chui, Scherer and Schurz theories were used to interpret the experimental results. RESULTS We found that the crosslinking mechanisms of the two polymers produced an anti-synergistic effect on the final mechanical properties of the interpenetrated hydrogel. Instead of creating a continuous network, alginate formed isolated, cross-linked, clusters embedded in a continuous network of poly(N-vinyl-2-pyrrolidone). Additionally, gel structure significantly influenced liposome delivery. CONCLUSIONS The rheological and LF-NMR characterization were confirmed and supported by the independent techniques TEM, cryo-TEM and release tests Thus, our findings reiterate the potentiality of both rheology and LF-NMR for the characterisation of soft materials such as interpenetrated polymeric networks.
Collapse
Affiliation(s)
- Giulia Fanesi
- Department of Micro- and Nanotechnology, Technical University of Denmark (DTU), Ørsteds Plads Bygning 345Ø, 2800 Kgs, Kongens Lyngby, Denmark
| | - Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Building B, via Valerio 6, I-34127, Trieste, Italy
| | - Francesca Zecchin
- Department of Engineering and Architecture, University of Trieste, Building B, via Valerio 6, I-34127, Trieste, Italy
| | - Irina Giassi
- Department of Engineering and Architecture, University of Trieste, Building B, via Valerio 6, I-34127, Trieste, Italy
| | - Elena Dal Ferro
- Department of Micro- and Nanotechnology, Technical University of Denmark (DTU), Ørsteds Plads Bygning 345Ø, 2800 Kgs, Kongens Lyngby, Denmark
| | - Anja Boisen
- Department of Micro- and Nanotechnology, Technical University of Denmark (DTU), Ørsteds Plads Bygning 345Ø, 2800 Kgs, Kongens Lyngby, Denmark
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, I-34100, Trieste, Italy
| | - Paolo Bertoncin
- Department of Life Sciences, University of Trieste, Piazzale Europa 1, I-34127, Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Building B, via Valerio 6, I-34127, Trieste, Italy.
| | - Paolo Marizza
- Department of Micro- and Nanotechnology, Technical University of Denmark (DTU), Ørsteds Plads Bygning 345Ø, 2800 Kgs, Kongens Lyngby, Denmark
| |
Collapse
|
16
|
Farra R, Musiani F, Perrone F, Čemažar M, Kamenšek U, Tonon F, Abrami M, Ručigaj A, Grassi M, Pozzato G, Bonazza D, Zanconati F, Forte G, El Boustani M, Scarabel L, Garziera M, Russo Spena C, De Stefano L, Salis B, Toffoli G, Rizzolio F, Grassi G, Dapas B. Polymer-Mediated Delivery of siRNAs to Hepatocellular Carcinoma: Variables Affecting Specificity and Effectiveness. Molecules 2018; 23:777. [PMID: 29597300 PMCID: PMC6017305 DOI: 10.3390/molecules23040777] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 02/06/2023] Open
Abstract
Despite the advances in anticancer therapies, their effectiveness for many human tumors is still far from being optimal. Significant improvements in treatment efficacy can come from the enhancement of drug specificity. This goal may be achieved by combining the use of therapeutic molecules with tumor specific effects and delivery carriers with tumor targeting ability. In this regard, nucleic acid-based drug (NABD) and particularly small interfering RNAs (siRNAs), are attractive molecules due to the possibility to be engineered to target specific tumor genes. On the other hand, polymeric-based delivery systems are emerging as versatile carriers to generate tumor-targeted delivery systems. Here we will focus on the most recent findings in the selection of siRNA/polymeric targeted delivery systems for hepatocellular carcinoma (HCC), a human tumor for which currently available therapeutic approaches are poorly effective. In addition, we will discuss the most attracting and, in our opinion, promising siRNA-polymer combinations for HCC in relation to the biological features of HCC tissue. Attention will be also put on the mathematical description of the mechanisms ruling siRNA-carrier delivery, this being an important aspect to improve effectiveness reducing the experimental work.
Collapse
Affiliation(s)
- Rossella Farra
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy.
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, I-40127 Bologna, Italy.
| | - Francesca Perrone
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Maja Čemažar
- Department of Experimental Oncology, Institute of Oncology, Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia.
| | - Urška Kamenšek
- Department of Experimental Oncology, Institute of Oncology, Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Federica Tonon
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy.
| | - Aleš Ručigaj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy.
| | - Gabriele Pozzato
- Department of "Scienze Mediche, Chirurgiche e della Salute", University of Trieste, Cattinara Hospital, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Deborah Bonazza
- Department of "Scienze Mediche, Chirurgiche e della Salute", University of Trieste, Cattinara Hospital, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Fabrizio Zanconati
- Department of "Scienze Mediche, Chirurgiche e della Salute", University of Trieste, Cattinara Hospital, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Giancarlo Forte
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital, Studenstka 6, 656 91 Brno, Czech Republic.
| | - Maguie El Boustani
- Experimental and Clinical Pharmacology Unit, C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
- Doctoral School in Molecular Biomedicine, University of Trieste, 34100 Trieste, Italy.
| | - Lucia Scarabel
- C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
| | - Marica Garziera
- Experimental and Clinical Pharmacology Unit, C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
| | - Concetta Russo Spena
- Experimental and Clinical Pharmacology Unit, C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
- Doctoral School in Chemistry, University of Trieste, 34100 Trieste, Italy.
| | - Lucia De Stefano
- Experimental and Clinical Pharmacology Unit, C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
- Doctoral School in Chemistry, University of Trieste, 34100 Trieste, Italy.
| | - Barbara Salis
- Experimental and Clinical Pharmacology Unit, C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
- Doctoral School in Molecular Biomedicine, University of Trieste, 34100 Trieste, Italy.
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
| | - Flavio Rizzolio
- Experimental and Clinical Pharmacology Unit, C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University, via Torino 155, I-30172 Mestre (Venezia), Italy.
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| |
Collapse
|
17
|
Lu Y, Li W. Functional characterization of E2F3b in human HepG2 liver cancer cell line. J Cell Biochem 2017; 119:3429-3439. [PMID: 29135049 DOI: 10.1002/jcb.26513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/03/2017] [Indexed: 12/20/2022]
Abstract
E2F3 is a transcription factor that has been shown to be overexpressed in hepatocellular carcinoma (HCC). It is well-known that the E2F3 gene encodes two proteins E2F3a and E2F3b. Therefore, the functions of the two distinct isoforms need to be clarified separately. To characterize the function of E2F3b in HCC, the effects of ectopic expression of E2F3b on cell proliferation, cell cycle, apoptosis and gene expression were investigated. E2F3b promoted G1/S phase transition and markedly increased cell proliferation, but had minor effect on apoptosis. Microarray analyses identified 366 differentially expressed genes (171 upregulated and 195 downregulated) in E2F3b- overexpressing cells. Differential expression of 16 genes relevant to cell cycle and cell proliferation were further verified by real-time PCR. Six genes, including CDC2, CCNE1, ARF, MAP4K2, MUSK, and PAX2 were confirmed to be upregulated by more than twofold; one gene, CCNA2 was validated to be downregulated by more than twofold. We also confirmed that E2F3b increased the protein levels of both cyclin E and Arf but did not affect cyclin D1 protein. These results suggest that E2F3b functions as an important promoter for cell proliferation and plays important roles in transcriptional regulation in HepG2 liver cancer cells.
Collapse
Affiliation(s)
- Yujia Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
18
|
Milcovich G, Lettieri S, Antunes FE, Medronho B, Fonseca AC, Coelho JFJ, Marizza P, Perrone F, Farra R, Dapas B, Grassi G, Grassi M, Giordani S. Recent advances in smart biotechnology: Hydrogels and nanocarriers for tailored bioactive molecules depot. Adv Colloid Interface Sci 2017; 249:163-180. [PMID: 28527520 DOI: 10.1016/j.cis.2017.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 12/18/2022]
Abstract
Over the past ten years, the global biopharmaceutical market has remarkably grown, with ten over the top twenty worldwide high performance medical treatment sales being biologics. Thus, biotech R&D (research and development) sector is becoming a key leading branch, with expanding revenues. Biotechnology offers considerable advantages compared to traditional therapeutic approaches, such as reducing side effects, specific treatments, higher patient compliance and therefore more effective treatments leading to lower healthcare costs. Within this sector, smart nanotechnology and colloidal self-assembling systems represent pivotal tools able to modulate the delivery of therapeutics. A comprehensive understanding of the processes involved in the self-assembly of the colloidal structures discussed therein is essential for the development of relevant biomedical applications. In this review we report the most promising and best performing platforms for specific classes of bioactive molecules and related target, spanning from siRNAs, gene/plasmids, proteins/growth factors, small synthetic therapeutics and bioimaging probes.
Collapse
Affiliation(s)
- Gesmi Milcovich
- Nano Carbon Materials Research Lab, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Stefania Lettieri
- Nano Carbon Materials Research Lab, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Filipe E Antunes
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, Coimbra, Portugal
| | - Bruno Medronho
- Faculty of Sciences and Technology (MEDITBIO), University of Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal
| | - Ana C Fonseca
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Polo II, Rua Silvio Lima, Coimbra, Portugal
| | - Jorge F J Coelho
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Polo II, Rua Silvio Lima, Coimbra, Portugal
| | - Paolo Marizza
- Department of Micro- and Nanotechnology, Technical University of Denmark (DTU), Ørsteds Plads Bygning 345Ø, Kongens Lyngby 2800, Denmark
| | - Francesca Perrone
- Department of Life Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34100 Trieste, Italy
| | - Rossella Farra
- Department of Life Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34100 Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34100 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34100 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6, 34127 Trieste, Italy
| | - Silvia Giordani
- Nano Carbon Materials Research Lab, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy; Chemistry Department, Università di Torino, Via Giuria 7, 10125 Turin, Italy.
| |
Collapse
|
19
|
Cornella N, Tebaldi T, Gasperini L, Singh J, Padgett RA, Rossi A, Macchi P. The hnRNP RALY regulates transcription and cell proliferation by modulating the expression of specific factors including the proliferation marker E2F1. J Biol Chem 2017; 292:19674-19692. [PMID: 28972179 DOI: 10.1074/jbc.m117.795591] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/18/2017] [Indexed: 12/31/2022] Open
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNP) form a large family of RNA-binding proteins that exert numerous functions in RNA metabolism. RALY is a member of the hnRNP family that binds poly-U-rich elements within several RNAs and regulates the expression of specific transcripts. RALY is up-regulated in different types of cancer, and its down-regulation impairs cell cycle progression. However, the RALY's role in regulating RNA levels remains elusive. Here, we show that numerous genes coding for factors involved in transcription and cell cycle regulation exhibit an altered expression in RALY-down-regulated HeLa cells, consequently causing impairments in transcription, cell proliferation, and cell cycle progression. Interestingly, by comparing the list of RALY targets with the list of genes affected by RALY down-regulation, we found an enrichment of RALY mRNA targets in the down-regulated genes upon RALY silencing. The affected genes include the E2F transcription factor family. Given its role as proliferation-promoting transcription factor, we focused on E2F1. We demonstrate that E2F1 mRNA stability and E2F1 protein levels are reduced in cells lacking RALY expression. Finally, we also show that RALY interacts with transcriptionally active chromatin in both an RNA-dependent and -independent manner and that this association is abolished in the absence of active transcription. Taken together, our results highlight the importance of RALY as an indirect regulator of transcription and cell cycle progression through the regulation of specific mRNA targets, thus strengthening the possibility of a direct gene expression regulation exerted by RALY.
Collapse
Affiliation(s)
- Nicola Cornella
- From the Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Toma Tebaldi
- the Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Lisa Gasperini
- From the Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | | | | | - Annalisa Rossi
- From the Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy,
| | - Paolo Macchi
- From the Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy,
| |
Collapse
|
20
|
Halib N, Perrone F, Cemazar M, Dapas B, Farra R, Abrami M, Chiarappa G, Forte G, Zanconati F, Pozzato G, Murena L, Fiotti N, Lapasin R, Cansolino L, Grassi G, Grassi M. Potential Applications of Nanocellulose-Containing Materials in the Biomedical Field. MATERIALS (BASEL, SWITZERLAND) 2017; 10:977. [PMID: 28825682 PMCID: PMC5578343 DOI: 10.3390/ma10080977] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023]
Abstract
Because of its high biocompatibility, bio-degradability, low-cost and easy availability, cellulose finds application in disparate areas of research. Here we focus our attention on the most recent and attractive potential applications of cellulose in the biomedical field. We first describe the chemical/structural composition of cellulose fibers, the cellulose sources/features and cellulose chemical modifications employed to improve its properties. We then move to the description of cellulose potential applications in biomedicine. In this field, cellulose is most considered in recent research in the form of nano-sized particle, i.e., nanofiber cellulose (NFC) or cellulose nanocrystal (CNC). NFC is obtained from cellulose via chemical and mechanical methods. CNC can be obtained from macroscopic or microscopic forms of cellulose following strong acid hydrolysis. NFC and CNC are used for several reasons including the mechanical properties, the extended surface area and the low toxicity. Here we present some potential applications of nano-sized cellulose in the fields of wound healing, bone-cartilage regeneration, dental application and different human diseases including cancer. To witness the close proximity of nano-sized cellulose to the practical biomedical use, examples of recent clinical trials are also reported. Altogether, the described examples strongly support the enormous application potential of nano-sized cellulose in the biomedical field.
Collapse
Affiliation(s)
- Nadia Halib
- Department of Basic Sciences & Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Level 15, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Kuala Lumpur 55100, Malaysia;.
| | - Francesca Perrone
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Rossella Farra
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy.
| | - Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy.
| | - Gianluca Chiarappa
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy.
| | - Giancarlo Forte
- Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
| | - Fabrizio Zanconati
- Surgery and Health Sciences, Department of Medical, Cattinara Hospital, University of Trieste, I-34127 Trieste, Italy.
| | - Gabriele Pozzato
- Surgery and Health Sciences, Department of Medical, Cattinara Hospital, University of Trieste, I-34127 Trieste, Italy.
| | - Luigi Murena
- Surgery and Health Sciences, Department of Medical, Cattinara Hospital, University of Trieste, I-34127 Trieste, Italy.
| | - Nicola Fiotti
- Surgery and Health Sciences, Department of Medical, Cattinara Hospital, University of Trieste, I-34127 Trieste, Italy.
| | - Romano Lapasin
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy.
| | - Laura Cansolino
- Department of Clinico-Surgical Sciences, Experimental Surgery Laboratory, University of Pavia and IRCCS S, Matteo Hospital Pavia, 27100 Pavia, Italy.
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy.
| |
Collapse
|
21
|
Barba AA, Cascone S, Caccavo D, Lamberti G, Chiarappa G, Abrami M, Grassi G, Grassi M, Tomaiuolo G, Guido S, Brucato V, Carfì Pavia F, Ghersi G, La Carrubba V, Abbiati RA, Manca D. Engineering approaches in siRNA delivery. Int J Pharm 2017; 525:343-358. [PMID: 28213276 DOI: 10.1016/j.ijpharm.2017.02.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 12/18/2022]
Abstract
siRNAs are very potent drug molecules, able to silence genes involved in pathologies development. siRNAs have virtually an unlimited therapeutic potential, particularly for the treatment of inflammatory diseases. However, their use in clinical practice is limited because of their unfavorable properties to interact and not to degrade in physiological environments. In particular they are large macromolecules, negatively charged, which undergo rapid degradation by plasmatic enzymes, are subject to fast renal clearance/hepatic sequestration, and can hardly cross cellular membranes. These aspects seriously impair siRNAs as therapeutics. As in all the other fields of science, siRNAs management can be advantaged by physical-mathematical descriptions (modeling) in order to clarify the involved phenomena from the preparative step of dosage systems to the description of drug-body interactions, which allows improving the design of delivery systems/processes/therapies. This review analyzes a few mathematical modeling approaches currently adopted to describe the siRNAs delivery, the main procedures in siRNAs vectors' production processes and siRNAs vectors' release from hydrogels, and the modeling of pharmacokinetics of siRNAs vectors. Furthermore, the use of physical models to study the siRNAs vectors' fate in blood stream and in the tissues is presented. The general view depicts a framework maybe not yet usable in therapeutics, but with promising possibilities for forthcoming applications.
Collapse
Affiliation(s)
- Anna Angela Barba
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
| | - Sara Cascone
- Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
| | - Diego Caccavo
- Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
| | - Gaetano Lamberti
- Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy.
| | - Gianluca Chiarappa
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy
| | - Michela Abrami
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy
| | - Giovanna Tomaiuolo
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Italy; CEINGE Biotecnologie avanzate, Napoli, Italy
| | - Stefano Guido
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Italy; CEINGE Biotecnologie avanzate, Napoli, Italy
| | - Valerio Brucato
- Università degli Studi di Palermo, DICAM - Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali and ATeN Center - CHAB, Italy
| | - Francesco Carfì Pavia
- Università degli Studi di Palermo, DICAM - Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali and ATeN Center - CHAB, Italy
| | - Giulio Ghersi
- Università degli Studi di Palermo, STEBICEF - Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche and ATeN Center - CHAB, Italy
| | - Vincenzo La Carrubba
- Università degli Studi di Palermo, DICAM - Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali and ATeN Center - CHAB, Italy
| | - Roberto Andrea Abbiati
- PSE-Lab, Process Systems Engineering Laboratory - Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta" Politecnico di Milano - Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Davide Manca
- PSE-Lab, Process Systems Engineering Laboratory - Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta" Politecnico di Milano - Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
22
|
Cavallaro G, Farra R, Craparo EF, Sardo C, Porsio B, Giammona G, Perrone F, Grassi M, Pozzato G, Grassi G, Dapas B. Galactosylated polyaspartamide copolymers for siRNA targeted delivery to hepatocellular carcinoma cells. Int J Pharm 2017; 525:397-406. [PMID: 28119125 DOI: 10.1016/j.ijpharm.2017.01.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 02/07/2023]
Abstract
The limited efficacy of available treatments for hepatocellular carcinoma (HCC) requires the development of novel therapeutic approaches. We synthesized a novel cationic polymer based on α,β-poly-(N-2-hydroxyethyl)-d,L-aspartamide (PHEA) for drug delivery to HCC cells. The copolymer was synthesized by subsequent derivatization of PHEA with diethylene triamine (DETA) and with a polyethylene glycol (PEG) derivative bearing galactose (GAL) molecules, obtaining the cationic derivative PHEA-DETA-PEG-GAL. PHEA-DETA-PEG-GAL has suitable chemical-physical characteristics for a potential systemic use and can effectively deliver a siRNA (siE2F1) targeted against the transcription factor E2F1, a gene product involved in HCC. The presence of GAL residues in the polyplexes allows the targeting of HCC cells that express the asialo-glycoprotein receptor (ASGP-R). In these cells, but not in ASGP-R non-expressing cells, PHEA-DETA-PEG-GAL/siE2F1 polyplexes induce the reduction of the mRNA and protein levels of E2F1 and of E2F1-regulated genes, all involved in the promotion of the G1/S phase transition. This results in a decrease of cell proliferation with a G1/G0 phase cells accumulation. Notably, removal of GAL residue almost completely abrogates the targeting capacity of the developed polyplexes. In conclusion, the generated polyplexes demonstrate the potential to effectively contributing to the development of novel anti-HCC therapeutic approaches via a siRNA-targeted delivery.
Collapse
Affiliation(s)
- Gennara Cavallaro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Rossella Farra
- Department of Industrial Engineering and Information Technology, University of Trieste, Italy
| | - Emanuela Fabiola Craparo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Carla Sardo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Porsio
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Gaetano Giammona
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | | | - Mario Grassi
- Department of Industrial Engineering and Information Technology, University of Trieste, Italy
| | - Gabriele Pozzato
- Department of 'Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Italy
| | | | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Italy
| |
Collapse
|
23
|
Farra R, Scaggiante B, Guerra C, Pozzato G, Grassi M, Zanconati F, Perrone F, Ferrari C, Trotta F, Grassi G, Dapas B. Dissecting the role of the elongation factor 1A isoforms in hepatocellular carcinoma cells by liposome-mediated delivery of siRNAs. Int J Pharm 2017; 525:367-376. [PMID: 28229942 DOI: 10.1016/j.ijpharm.2017.02.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/20/2017] [Accepted: 02/10/2017] [Indexed: 02/08/2023]
Abstract
Eukaryotic elongation factor 1A (eEF1A), a protein involved in protein synthesis, has two major isoforms, eEF1A1 and eEF1A2. Despite the evidences of their involvement in hepatocellular carcinoma (HCC), the quantitative contribution of each of the two isoforms to the disease is unknown. We depleted the two isoforms by means of siRNAs and studied the effects in three different HCC cell lines. Particular care was dedicated to select siRNAs able to target each of the two isoform without affecting the other one. This is not a trivial aspect due to the high sequence homology between eEF1A1 and eEF1A2. The selected siRNAs can specifically deplete either eEF1A1 or eEF1A2. This, in turn, results in an impairment of cell vitality, growth and arrest in the G1/G0 phase of the cell cycle. Notably, these effects are quantitatively superior following eEF1A1 than eEF1A2 depletion. Moreover, functional tests revealed that the G1/G0 block induced by eEF1A1 depletion depends on the down-regulation of the transcription factor E2F1, a known player in HCC. In conclusion, our data indicate that the independent targeting of the two eEF1A isoforms is effective in reducing HCC cell growth and that eEF1A1 depletion may result in a more evident effect.
Collapse
Affiliation(s)
- Rossella Farra
- Department of Industrial Engineering and Information Technology, University of Trieste, Italy
| | | | - Chiara Guerra
- Department of Life Sciences, University of Trieste, Italy
| | - Gabriele Pozzato
- Department of Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Italy
| | - Mario Grassi
- Department of Industrial Engineering and Information Technology, University of Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Italy
| | | | - Cinzia Ferrari
- Department of Clinic-Surgical Sciences, Experimental Surgery Laboratory, University of Pavia, Italy
| | - Francesco Trotta
- Department of Clinic-Surgical Sciences, Experimental Surgery Laboratory, University of Pavia, Italy; U.O. di Chirurgia Generale e Toracica, Ospedale Maggiore, Lodi, Italy
| | | | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Italy
| |
Collapse
|
24
|
Bochicchio S, Dapas B, Russo I, Ciacci C, Piazza O, De Smedt S, Pottie E, Barba AA, Grassi G. In vitro and ex vivo delivery of tailored siRNA-nanoliposomes for E2F1 silencing as a potential therapy for colorectal cancer. Int J Pharm 2017; 525:377-387. [PMID: 28189855 DOI: 10.1016/j.ijpharm.2017.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/18/2017] [Accepted: 02/07/2017] [Indexed: 02/01/2023]
Abstract
Tailored developed nanoliposomes loaded with a siRNA against the transcription factor E2F1 (siE2F1), were produced and delivered to human colorectal adenocarcinoma cell lines and to intestinal human biopsies. siE2F1 loaded nanoliposomes were produced through a dedicated ultrasound assisted technique producing particles with about 40nm size (Small Unilamellar Vesicles, SUVs) and 100% siRNA encapsulation efficiency. Compared to other production methods, the one proposed here can easily produce particles in the nanometric scale by suitable ultrasonic duty cycle treatments. Furthermore, SUVs have a high degree of size homogeneity, a relevant feature for uniform delivery behaviour. siE2F1-loaded SUVs demonstrated a very low cytotoxicity in cells when compared to a commercial transfection agent. Moreover, SUVs loaded with siE2F1 were effective in the down regulation of the target in cultured colon carcinoma cells and in the consequent reduction of cell growth. Finally, a remarkable uptake and target silencing efficiencies were observed in cultured human biopsy of colonic mucosa. In conclusion, whereas further studies in more complex models are required, the siE2F1-SUVs generated have the potential to contribute to the development of novel effective inflammatory bowel diseases-associated colorectal cancer therapies for a future personalized medicine.
Collapse
Affiliation(s)
- Sabrina Bochicchio
- Dipartimento di Farmacia, University of Salerno, Fisciano, SA, Italy; Dipartimento di Ingegneria Industriale, University of Salerno, Fisciano, SA, Italy
| | - Barbara Dapas
- Dipartimento di Scienze della Vita, University of Trieste, Italy
| | - Ilaria Russo
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", University of Salerno, Fisciano, SA, Italy
| | - Carolina Ciacci
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", University of Salerno, Fisciano, SA, Italy
| | - Ornella Piazza
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", University of Salerno, Fisciano, SA, Italy
| | | | - Eline Pottie
- Department of Pharmaceutics, University of Gent, Belgium
| | - Anna Angela Barba
- Dipartimento di Farmacia, University of Salerno, Fisciano, SA, Italy.
| | - Gabriele Grassi
- Dipartimento di Scienze della Vita, University of Trieste, Italy; Dipartimento di Scienze Mediche, Chirurgiche e della Salute, Ospedale di Cattinara, University of Trieste, Italy
| |
Collapse
|
25
|
Scarabel L, Perrone F, Garziera M, Farra R, Grassi M, Musiani F, Russo Spena C, Salis B, De Stefano L, Toffoli G, Rizzolio F, Tonon F, Abrami M, Chiarappa G, Pozzato G, Forte G, Grassi G, Dapas B. Strategies to optimize siRNA delivery to hepatocellular carcinoma cells. Expert Opin Drug Deliv 2017; 14:797-810. [PMID: 28266887 DOI: 10.1080/17425247.2017.1292247] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/03/2017] [Indexed: 02/08/2023]
Abstract
hepatocellular carcinoma (hcc) is the predominant form of primary liver cancer and the second leading cause of cancer-associated mortality worldwide. available therapies for hcc have limited efficacy due to often late diagnosis and the general resistance of hcc to anti-cancer agents; therefore, the development of novel therapeutics is urgently required. small-interfering rna (sirna) molecules are short, double-stranded rnas that specifically recognize and bind the mrna of a target gene to inhibit gene expression. despite the great therapeutic potential of sirnas towards many human tumors including hcc, their use is limited by suboptimal delivery. Areas covered: In this review, we outline the current data regarding the therapeutic potential of siRNAs in HCC and describe the development of effective siRNA delivery systems. We detail the key problems associated with siRNA delivery and discuss the possible solutions. Finally, we provide examples of the various siRNA delivery strategies that have been employed in animal models of HCC and in human patients enrolled in clinical trials. Expert opinion: Despite the existing difficulties in siRNA delivery for HCC, the increasing scientific attention and breakthrough studies in this field is facilitating the design of novel and efficient technical solutions that may soon find practical applications.
Collapse
Affiliation(s)
- Lucia Scarabel
- a Experimental and Clinical Pharmacology Unit , C.R.O. National Cancer Institute , Aviano , Italy
| | - Francesca Perrone
- b Department of Life Sciences, Cattinara University Hospital , University of Trieste , Trieste , Italy
| | - Marica Garziera
- a Experimental and Clinical Pharmacology Unit , C.R.O. National Cancer Institute , Aviano , Italy
| | - Rossella Farra
- c Department of Engineering and Architecture , University of Trieste , Trieste , Italy
| | - Mario Grassi
- c Department of Engineering and Architecture , University of Trieste , Trieste , Italy
| | - Francesco Musiani
- d Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Concetta Russo Spena
- a Experimental and Clinical Pharmacology Unit , C.R.O. National Cancer Institute , Aviano , Italy
| | - Barbara Salis
- a Experimental and Clinical Pharmacology Unit , C.R.O. National Cancer Institute , Aviano , Italy
| | - Lucia De Stefano
- a Experimental and Clinical Pharmacology Unit , C.R.O. National Cancer Institute , Aviano , Italy
| | - Giuseppe Toffoli
- a Experimental and Clinical Pharmacology Unit , C.R.O. National Cancer Institute , Aviano , Italy
| | - Flavio Rizzolio
- a Experimental and Clinical Pharmacology Unit , C.R.O. National Cancer Institute , Aviano , Italy
| | - Federica Tonon
- c Department of Engineering and Architecture , University of Trieste , Trieste , Italy
| | - Michela Abrami
- b Department of Life Sciences, Cattinara University Hospital , University of Trieste , Trieste , Italy
| | - Gianluca Chiarappa
- c Department of Engineering and Architecture , University of Trieste , Trieste , Italy
| | - Gabriele Pozzato
- e Department of 'Scienze Mediche, Chirurgiche e della Salute' , Cattinara University Hospital, University of Trieste , Trieste , Italy
| | - Giancarlo Forte
- f Center for Translational Medicine, International Clinical Research Center , St. Anne's University Hospital , Brno , Czech Republic
| | - Gabriele Grassi
- b Department of Life Sciences, Cattinara University Hospital , University of Trieste , Trieste , Italy
- e Department of 'Scienze Mediche, Chirurgiche e della Salute' , Cattinara University Hospital, University of Trieste , Trieste , Italy
| | - Barbara Dapas
- b Department of Life Sciences, Cattinara University Hospital , University of Trieste , Trieste , Italy
| |
Collapse
|
26
|
Confalonieri M, Buratti E, Grassi G, Bussani R, Chilosi M, Farra R, Abrami M, Stuani C, Salton F, Ficial M, Confalonieri P, Zandonà L, Romano M. Keratin14 mRNA expression in human pneumocytes during quiescence, repair and disease. PLoS One 2017; 12:e0172130. [PMID: 28199407 PMCID: PMC5310884 DOI: 10.1371/journal.pone.0172130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
The lung alveoli slowly self-renew pneumocytes, but their facultative regeneration capacity is rapidly efficient after an injury, so fibrosis infrequently occurs. We recently observed Keratin 14 (KRT14) expression during diffuse alveolar damage (DAD), but not in controls. We wonder if KRT14 may be a marker of pneumocyte transition from quiescence to regeneration. Quantitative PCR and Western blot analyses highlighted the presence of KRT14 (mRNA and protein) only in human lung samples with DAD or interstitial lung disease (ILD). In the exponentially growing cell lines A549 and H441, the mRNA and protein levels of KRT14 peaked at day one after cell seeding and decreased at day two, opposite to what observed for the proliferation marker E2F1. The inverse relation of KRT14 versus E2F1 expression holds true also for other proliferative markers, such as cyclin E1 and cyclin D1. Of interest, we also found that E2F1 silencing caused cell cycle arrest and increased KRT14 expression, whilst E2F1 stimulation induced cell cycle progression and decreased KRT14. KRT14 also increased in proliferative pneumocytes (HPAEpiC) just before transdifferentiation. Overall, our results suggest that KRT14 is a viable biomarker of pneumocyte activation, and repair/regeneration. The involvement of KRT14 in regenerative process may suggest a novel pharmaceutical target to accelerate lung repair.
Collapse
Affiliation(s)
- Marco Confalonieri
- Pulmonology Department, University Hospital of Cattinara, Trieste, Italy
| | - Emanuele Buratti
- Molecular Pathology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Rossana Bussani
- Institute of Pathologic Anatomy, University of Trieste, Trieste, Italy
| | - Marco Chilosi
- Department of Diagnostic and Public Health, Pathology Unit, University of Verona, Verona, Italy
| | - Rossella Farra
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Cristiana Stuani
- Molecular Pathology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Francesco Salton
- Pulmonology Department, University Hospital of Cattinara, Trieste, Italy
| | - Miriam Ficial
- Department of Diagnostic and Public Health, Pathology Unit, University of Verona, Verona, Italy
| | - Paola Confalonieri
- Pulmonology Department, University Hospital of Cattinara, Trieste, Italy
| | - Lorenzo Zandonà
- Institute of Pathologic Anatomy, University of Trieste, Trieste, Italy
| | - Maurizio Romano
- Molecular Pathology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
27
|
A novel HMGA1-CCNE2-YAP axis regulates breast cancer aggressiveness. Oncotarget 2016; 6:19087-101. [PMID: 26265440 PMCID: PMC4662477 DOI: 10.18632/oncotarget.4236] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/12/2015] [Indexed: 12/23/2022] Open
Abstract
High Mobility Group A1 (HMGA1) is an architectural chromatin factor that promotes neoplastic transformation and progression. However, the mechanism by which HMGA1 exerts its oncogenic function is not fully understood. Here, we show that cyclin E2 (CCNE2) acts downstream of HMGA1 to regulate the motility and invasiveness of basal-like breast cancer cells by promoting the nuclear localization and activity of YAP, the downstream mediator of the Hippo pathway. Mechanistically, the activity of MST1/2 and LATS1/2, the core kinases of the Hippo pathway, are required for the HMGA1- and CCNE2-mediated regulation of YAP localization. In breast cancer patients, high levels of HMGA1 and CCNE2 expression are associated with the YAP/TAZ signature, supporting this connection. Moreover, we provide evidence that CDK inhibitors induce the translocation of YAP from the nucleus to the cytoplasm, resulting in a decrease in its activity. These findings reveal an association between HMGA1 and the Hippo pathway that is relevant to stem cell biology, tissue homeostasis, and cancer.
Collapse
|
28
|
Scaggiante B, Farra R, Dapas B, Baj G, Pozzato G, Grassi M, Zanconati F, Grassi G. Aptamer targeting of the elongation factor 1A impairs hepatocarcinoma cells viability and potentiates bortezomib and idarubicin effects. Int J Pharm 2016; 506:268-279. [PMID: 27094354 DOI: 10.1016/j.ijpharm.2016.04.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/23/2016] [Accepted: 04/13/2016] [Indexed: 02/05/2023]
Abstract
The high morbidity and mortality of hepatocellular carcinoma (HCC) is mostly due to the limited efficacy of the available therapeutic approaches. Here we explore the anti-HCC potential of an aptamer targeting the elongation factor 1A (eEF1A), a protein implicated in the promotion of HCC. As delivery methods, we have compared the effectiveness of cationic liposome and cholesterol-mediated approaches. A75 nucleotide long aptamer containing GT repetition (GT75) was tested in three HCC cell lines, HepG2, HuH7 and JHH6. When delivered by liposomes, GT75 was able to effectively reducing HCC cells viability in a dose and time dependent fashion. Particular sensitive were JHH6 where increased apoptosis with no effects on cell cycle were observed. GT75 effect was likely due to the interference with eEF1A activity as neither the mRNA nor the protein levels were significantly affected. Notably, cholesterol-mediated delivery of GT75 abrogated its efficacy due to cellular mis-localization as proven by fluorescence and confocal microscopic analysis. Finally, liposome-mediated delivery of GT75 improved the therapeutic index of the anticancer drugs bortezomib and idarubicin. In conclusion, liposome but not cholesterol-mediated delivery of GT75 resulted in an effective delivery of GT75, causing the impairment of the vitality of a panel of HCC derived cells.
Collapse
Affiliation(s)
| | - Rosella Farra
- Department of Industrial Engineering and Information Technology, University of Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Italy
| | - Gabriele Baj
- Department of Life Sciences, University of Trieste, Italy
| | - Gabriele Pozzato
- Department of Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Italy
| | - Mario Grassi
- Department of Industrial Engineering and Information Technology, University of Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Italy
| | | |
Collapse
|
29
|
Farra R, Grassi M, Grassi G, Dapas B. Therapeutic potential of small interfering RNAs/micro interfering RNA in hepatocellular carcinoma. World J Gastroenterol 2015; 21:8994-9001. [PMID: 26290628 PMCID: PMC4533033 DOI: 10.3748/wjg.v21.i30.8994] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/28/2015] [Accepted: 07/03/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer and represents the third leading cause of cancer-related death worldwide. Current available therapeutic approaches are poorly effective, especially for the advanced forms of the disease. In the last year, short double stranded RNA molecules termed small interfering RNAs (siRNAs) and micro interfering RNAs (miRNA), emerged as interesting molecules with potential therapeutic value for HCC. The practical use of these molecules is however limited by the identification of optimal molecular targets and especially by the lack of effective and targeted HCC delivery systems. Here we focus our discussion on the most recent advances in the identification of siRNAs/miRNAs molecular targets and on the development of suitable siRNA/miRNAs delivery systems.
Collapse
|
30
|
Sardo C, Farra R, Licciardi M, Dapas B, Scialabba C, Giammona G, Grassi M, Grassi G, Cavallaro G. Development of a simple, biocompatible and cost-effective Inulin-Diethylenetriamine based siRNA delivery system. Eur J Pharm Sci 2015; 75:60-71. [PMID: 25845631 DOI: 10.1016/j.ejps.2015.03.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/28/2015] [Accepted: 03/24/2015] [Indexed: 02/07/2023]
Abstract
Small interfering RNAs (siRNAs) have the potential to be of therapeutic value for many human diseases. So far, however, a serious obstacle to their therapeutic use is represented by the absence of appropriate delivery systems able to protect them from degradation and to allow an efficient cellular uptake. In this work we developed a siRNA delivery system based on inulin (Inu), an abundant and natural polysaccharide. Inu was functionalized via the conjugation with diethylenetriamine (DETA) residues to form the complex Inu-DETA. We studied the size, surface charge and the shape of the Inu-DETA/siRNA complexes; additionally, the cytotoxicity, the silencing efficacy and the cell uptake-mechanisms were studied in the human bronchial epithelial cells (16HBE) and in the hepatocellular carcinoma derived cells (JHH6). The results presented here indicate that Inu-DETA copolymers can effectively bind siRNAs, are highly cytocompatible and, in JHH6, can effectively deliver functional siRNAs. Optimal delivery is observed using a weight ratio Inu-DETA/siRNA of 4 that corresponds to polyplexes with an average size of 600nm and a slightly negative surface charge. Moreover, the uptake and trafficking mechanisms, mainly based on micropinocytosis and clatrin mediated endocytosis, allow the homogeneous diffusion of siRNA within the cytoplasm of JHH6. Notably, in 16 HBE where the trafficking mechanism (caveolae mediated endocytosis) does not allow an even distribution of siRNA within the cell cytoplasm, no significant siRNA activity is observed. In conclusion, we developed a novel inulin-based siRNA delivery system able to efficiently release siRNA in JHH6 with negligible cytotoxicity thus opening the way for further testing in more complex in vivo models.
Collapse
Affiliation(s)
- C Sardo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - R Farra
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy
| | - M Licciardi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - B Dapas
- Department of Life Sciences, University Hospital of Cattinara, Strada di Fiume 447, 34100 Trieste, Italy
| | - C Scialabba
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - G Giammona
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - M Grassi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy
| | - G Grassi
- Department of Life Sciences, University Hospital of Cattinara, Strada di Fiume 447, 34100 Trieste, Italy.
| | - G Cavallaro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
31
|
Posocco B, Dreussi E, de Santa J, Toffoli G, Abrami M, Musiani F, Grassi M, Farra R, Tonon F, Grassi G, Dapas B. Polysaccharides for the Delivery of Antitumor Drugs. MATERIALS 2015; 8:2569-2615. [PMCID: PMC5455549 DOI: 10.3390/ma8052569] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 04/24/2015] [Indexed: 12/12/2022]
Abstract
Among the several delivery materials available so far, polysaccharides represent very attractive molecules as they can undergo a wide range of chemical modifications, are biocompatible, biodegradable, and have low immunogenic properties. Thus, polysaccharides can contribute to significantly overcome the limitation in the use of many types of drugs, including anti-cancer drugs. The use of conventional anti-cancer drugs is hampered by their high toxicity, mostly depending on the indiscriminate targeting of both cancer and normal cells. Additionally, for nucleic acid based drugs (NABDs), an emerging class of drugs with potential anti-cancer value, the practical use is problematic. This mostly depends on their fast degradation in biological fluids and the difficulties to cross cell membranes. Thus, for both classes of drugs, the development of optimal delivery materials is crucial. Here we discuss the possibility of using different kinds of polysaccharides, such as chitosan, hyaluronic acid, dextran, and pullulan, as smart drug delivery materials. We first describe the main features of polysaccharides, then a general overview about the aspects ruling drug release mechanisms and the pharmacokinetic are reported. Finally, notable examples of polysaccharide-based delivery of conventional anti-cancer drugs and NABDs are reported. Whereas additional research is required, the promising results obtained so far, fully justify further efforts, both in terms of economic support and investigations in the field of polysaccharides as drug delivery materials.
Collapse
Affiliation(s)
- Bianca Posocco
- Centro di Riferimento Oncologico, Via Franco Gallini 2, I-33081 Aviano (PN), Italy; E-Mails: (B.P.); (E.D.); jdesanta.@cro.it (J.S.); (G.T.)
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy; E-Mails: (M.G.); (R.F.); (F.T.)
| | - Eva Dreussi
- Centro di Riferimento Oncologico, Via Franco Gallini 2, I-33081 Aviano (PN), Italy; E-Mails: (B.P.); (E.D.); jdesanta.@cro.it (J.S.); (G.T.)
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy; E-Mails: (M.G.); (R.F.); (F.T.)
| | - Jacopo de Santa
- Centro di Riferimento Oncologico, Via Franco Gallini 2, I-33081 Aviano (PN), Italy; E-Mails: (B.P.); (E.D.); jdesanta.@cro.it (J.S.); (G.T.)
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy; E-Mails: (M.G.); (R.F.); (F.T.)
| | - Giuseppe Toffoli
- Centro di Riferimento Oncologico, Via Franco Gallini 2, I-33081 Aviano (PN), Italy; E-Mails: (B.P.); (E.D.); jdesanta.@cro.it (J.S.); (G.T.)
| | - Michela Abrami
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; E-Mails: (M.A.); (B.D.)
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, I-40127 Bologna, Italy; E-Mail:
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy; E-Mails: (M.G.); (R.F.); (F.T.)
| | - Rossella Farra
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy; E-Mails: (M.G.); (R.F.); (F.T.)
| | - Federica Tonon
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy; E-Mails: (M.G.); (R.F.); (F.T.)
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; E-Mails: (M.A.); (B.D.)
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; E-Mails: (M.A.); (B.D.)
| |
Collapse
|
32
|
Farra R, Dapas B, Baiz D, Tonon F, Chiaretti S, Del Sal G, Rustighi A, Elvassore N, Pozzato G, Grassi M, Grassi G. Impairment of the Pin1/E2F1 axis in the anti-proliferative effect of bortezomib in hepatocellular carcinoma cells. Biochimie 2015; 112:85-95. [PMID: 25742740 DOI: 10.1016/j.biochi.2015.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/20/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND The modest efficacy of available therapies for Hepatocellular carcinoma (HCC) indicates the need to develop novel therapeutic approaches. For the proteasome inhibitor Bortezomib (BZB), potentially attractive for HCC treatment, the mechanism of action is largely unknown. The BZB effect on E2Fs and the E2Fs control on the peptidylproline cis-trans isomerase (Pin1), prompted us to explore the BZB effect on the Pin1-E2F1 axis. METHODS The tumorigenic cell line HuH7 together with the non-tumorigenic cells IHH and the human pluripotent stem cell derived hepatocytes (hPSC-H), were used as cellular models of HCC and normal liver cells, respectively. RESULTS BZB reduces HuH7 growth as shown by cell counting, cell vitality test and cell cycle analysis; this is paralleled by the decrease of Pin1, E2F1, cyclin A2 and of the hyper-phosphorylated pRB. Pin1-E2F1 axis impairment justifies the anti-proliferative effect since Pin-E2F1 depletion decreases HuH7 growth while the over-expression rescues BZB-induced inhibition of proliferation. Moreover, Pin1-E2F1 promote HuH7 growth via the up-regulation of cyclin D1, cyclin E, cyclin A2, E2F2 and in part E2F3. Finally, in the control cells IHH and hPSC-H, BZB effect on cell vitality is not irrelevant, a fact correlated to the cellular proliferation rate. Thus, BZB effect on healthy liver tissue may not be entirely negligible hence caution should be exercised in its use in liver regeneration processes. CONCLUSION For the first time we prove the functional involvement of the Pin1-E2F1 axis in the anti-proliferative effect of BZB indicating Pin1-E2F as an attractive target to control HCC cell growth.
Collapse
Affiliation(s)
- Rossella Farra
- Department of Industrial Engineering and Information Technology, University of Trieste, V. Valerio 10, 34100 Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Via Giorgieri, 10, 34127 Trieste, Italy
| | - Daniele Baiz
- International Centre for Genetic Engineering and Biotechnology, Via E. Ramarini 32, 00016 Monterotondo Scalo, Rome, Italy
| | - Federica Tonon
- Department of Industrial Engineering and Information Technology, University of Trieste, V. Valerio 10, 34100 Trieste, Italy
| | - Sara Chiaretti
- Department of Life Sciences, University of Trieste, Via Giorgieri, 10, 34127 Trieste, Italy
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, Via Giorgieri, 10, 34127 Trieste, Italy; Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy
| | - Alessandra Rustighi
- Department of Life Sciences, University of Trieste, Via Giorgieri, 10, 34127 Trieste, Italy; Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; Venetian Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
| | - Gabriele Pozzato
- Department of Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume 447, 34134, Trieste, Italy
| | - Mario Grassi
- Department of Industrial Engineering and Information Technology, University of Trieste, V. Valerio 10, 34100 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, Via Giorgieri, 10, 34127 Trieste, Italy; Department of Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume 447, 34134, Trieste, Italy.
| |
Collapse
|
33
|
Lam SK, Li YY, Zheng CY, Leung LL, Ho JCM. E2F1 downregulation by arsenic trioxide in lung adenocarcinoma. Int J Oncol 2014; 45:2033-43. [PMID: 25174355 DOI: 10.3892/ijo.2014.2609] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/01/2014] [Indexed: 11/05/2022] Open
Abstract
Lung cancer is one of the most common cancers worldwide. Arsenic trioxide (ATO) has been approved by the US Food and Drug Administration for the treatment of acute promyelocytic leukemia. Nonetheless preliminary data have suggested potential activity of ATO in solid tumors including lung cancer. This study aimed to examine the underlying mechanisms of ATO in the treatment of lung adenocarcinoma. Using a panel of 7 lung adenocarcinoma cell lines, the effects of ATO treatment on cell viability, expression of E2F1 and its downstream targets, phosphatidylserine externalization, mitochondrial membrane depolarization and alteration of apoptotic/anti-apoptotic factors were studied. Tumor growth inhibition in vivo was investigated using a nude mouse xenograft model. ATO decreased cell viability with clinically achievable concentrations (8 µM) in all cell lines investigated. This was accompanied by reduced expression of E2F1, cyclin A2, skp2, c-myc, thymidine kinase and ribonucleotide reductase M1, while p-c-Jun was upregulated. Cell viability was significantly decreased with E2F1 knockdown. Treatment with ATO resulted in phosphatidylserine externalization in H23 cells and mitochondrial membrane depolarization in all cell lines, associated with truncation of Bid, downregulation of Bcl-2, upregulation of Bax and Bak, caspase-9 and -3 activation and PARP cleavage. Using the H358 xenograft model, the tumor growth was suppressed in the ATO treatment group during 8 days of treatment, associated with downregulation of E2F1 and upregulation of truncated Bid and cleaved caspase-3. In conclusion, ATO has potent in vitro and in vivo activity in lung adenocarcinoma, partially mediated through E2F1 downregulation and apoptosis.
Collapse
Affiliation(s)
- Sze-Kwan Lam
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| | - Yuan-Yuan Li
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| | - Chun-Yan Zheng
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| | - Leanne Lee Leung
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| | - James Chung-Man Ho
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| |
Collapse
|
34
|
Cavallaro G, Licciardi M, Amato G, Sardo C, Giammona G, Farra R, Dapas B, Grassi M, Grassi G. Synthesis and characterization of polyaspartamide copolymers obtained by ATRP for nucleic acid delivery. Int J Pharm 2014; 466:246-257. [PMID: 24631053 DOI: 10.1016/j.ijpharm.2014.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/07/2014] [Accepted: 03/09/2014] [Indexed: 01/23/2023]
Abstract
Nucleic acid molecules such as small interfering RNAs (siRNAs) and plasmidic DNAs (pDNAs) have been shown to have the potential to be of therapeutic value in different human diseases. Their practical use is however compromised by the lack of appropriate release systems. Delivered as naked molecules, siRNAs/pDNAs are rapidly degraded by extracellular nucleases thus considerably reducing the amount of molecule which can reach the target cells. Additionally, the anionic charge of the phosphate groups present on the siRNAs/pDNAs backbone, disfavors the interaction with the negatively charged surface of the cell membrane. In this paper we describe the generation of a novel polymer able to deliver both siRNAs and pDNAs. The combined release of these molecules is used in many different experimental settings such as the evaluation of the silencing efficiency of a given siRNA targeted against a given RNA, encoded by the pDNA. The possibility to use the same delivery system is very convenient from the technical point of view and it allows minimizing possible artifacts introduced by the use of different delivery agents for siRNAs and pDNA. The copolymer described here is based on α,β-poly(N-2-hydroxyethyl)-d,l-aspartamide (PHEA) bearing positively chargeable side oligochains, with diethylamino ethyl methacrylate (DEAEMA) as monomer. Monomer polymerization has been obtained by atom transfer radical polymerization (ATRP), a technique which allows the precise polymerization of the monomer. In addition to the chemical-physical characterization of the polymer, we provide evidences of the polymer ability to delivery both siRNAs and pDNA to cultured cells. Whereas additional investigations are necessary to study the delivery mechanisms of this polyplex, the polymer generated represents a novel and convenient device for the delivery of both siRNAs and pDNA.
Collapse
Affiliation(s)
- G Cavallaro
- Lab of Biocompatible Polymers, Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), University of Palermo, via Archirafi 32, Palermo 90123, Italy.
| | - M Licciardi
- Lab of Biocompatible Polymers, Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), University of Palermo, via Archirafi 32, Palermo 90123, Italy
| | - G Amato
- Lab of Biocompatible Polymers, Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), University of Palermo, via Archirafi 32, Palermo 90123, Italy
| | - C Sardo
- Lab of Biocompatible Polymers, Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), University of Palermo, via Archirafi 32, Palermo 90123, Italy
| | - G Giammona
- Lab of Biocompatible Polymers, Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), University of Palermo, via Archirafi 32, Palermo 90123, Italy
| | - R Farra
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, Trieste I-34127, Italy
| | - B Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, Trieste I-34149, Italy
| | - M Grassi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, Trieste I-34127, Italy
| | - G Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, Trieste I-34149, Italy
| |
Collapse
|
35
|
Baiz D, Dapas B, Farra R, Scaggiante B, Pozzato G, Zanconati F, Fiotti N, Consoloni L, Chiaretti S, Grassi G. Bortezomib effect on E2F and cyclin family members in human hepatocellular carcinoma cell lines. World J Gastroenterol 2014; 20:795-803. [PMID: 24574752 PMCID: PMC3921488 DOI: 10.3748/wjg.v20.i3.795] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 11/11/2013] [Accepted: 12/03/2013] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the effects of the proteasome inhibitor bortezomib (BZB) on E2Fs and related genes in hepatocellular carcinoma (HCC) cells. METHODS The mRNA levels of the E2F family members (pro-proliferative: E2F1-3 and anti-proliferative: E2F4-8) and of their related genes cyclins and cyclin-dependent kinases (cdks) were evaluated in two HCC cell lines following a single BZB administration. mRNA levels of the epithelial-mesenchymal transition (EMT) genes were also measured in both cell lines after BZB treatment. The BZB concentration (40 nmol/L) used was chosen to stay well below the maximal amount/cm² recommended for in vivo application, and 2 d incubation was chosen as this time point has been found optimal to detect BZB effects in our previous studies. The HCC cell lines, HepG2 and JHH6, were chosen as they display different phenotypes, hepatocyte-like for HepG2 and undifferentiated for JHH6, thus representing an in vitro model of low and high aggressive forms of HCC, respectively. The mRNA levels of the target genes were measured by two-color microarray-based gene expression analysis, performed according to Agilent Technologies protocol and using an Agilent Scan B. For the E2F family members, mRNA levels were quantified by real-time reverse transcription polymerase chain reaction (RT-PCR). Using small interfering RNA's, the effects of E2F8 depletion on cell number was also evaluated. RESULTS After BZB treatment, microarray analysis of the undifferentiated JHH6 revealed a significant decrease in the expression of the pro-proliferative E2F member E2F2. Quantitative RT-PCR data were in keeping with the microarray analysis, and showed a significant increase and decrease in E2F8 and E2F2 mRNA levels, respectively. In contrast, BZB treatment of the hepatocyte-like HCC cell line HepG2 had a significant impact on mRNA levels of 5 of the 8 E2F members. In particular, mRNA levels of the pro-proliferative E2F members E2F1, E2F2, and of the anti-proliferative member E2F8, decreased over 80%. Notably, a reduction in E2F8 expression in HepG2 and JHH6 cells following siRNA treatment had no impact on cell proliferation. As observed with JHH6, BZB treatment of HepG2 cells induced a significant increase in mRNA levels of an anti-proliferative E2F member, E2F6 in this case. As was observed with E2F's, more dramatic changes in mRNA levels of the E2F related genes cyclins and Cdks and EMT genes were observed after BZB treatment of HepG2 compared to JHH6. CONCLUSION The differential expression of E2Fs and related genes induced by BZB in diverse HCC cell phenotypes contribute to bortezomib's mechanism of action in hepatocellular carcinoma.
Collapse
|
36
|
Wang H, Chen G, Wang H, Liu C. RITA inhibits growth of human hepatocellular carcinoma through induction of apoptosis. Oncol Res 2013; 20:437-45. [PMID: 24308154 DOI: 10.3727/096504013x13685487925059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RBP-J-interacting and tubulin-associated (RITA) is a novel RBP-J-interacting protein that downregulates Notch-mediated transcription. The current study focuses on the antitumor effect of RITA in human hepatocellular carcinoma (HCC) and aims to explore its molecular mechanism. Thirty paired HCC and adjacent non-tumoral liver samples were analyzed by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). RITA overexpression was induced by transfection of a pcDNA3.1-Flag-RITA plasmid into HepG2 cells. RITA knockdown was achieved by siRNA transfection. mRNA and protein expression of target genes were quantified by qRT-PCR and Western blotting, respectively. Cell proliferation and apoptosis were measured using MTT assay and flow cytometry. Our results demonstrate that adjacent nontumoral liver samples exhibited increased RITA expression compared to HCC tissues (p < 0.05); RITA levels were associated with tumor differentiation status. Overexpression of RITA suppressed cell proliferation and promoted early apoptosis, while its silencing promoted cell growth dramatically (p < 0.05). RITA overexpression upregulated p53 and reduced cyclin E levels, whereas silencing of RITA had the opposite effect on p53 and cyclin E expression. Our in vitro results represent the first evidence that RITA might suppress tumor growth and induce apoptosis in HCCs, and may be a potent antitumoral agent for HCC treatment that deserves further exploration.
Collapse
Affiliation(s)
- Haihe Wang
- Department of Pathogenobiology, Daqing Branch of Harbin Medical University, Daqing, China.
| | | | | | | |
Collapse
|
37
|
Sheng L, Xiong M, Li C, Meng X. Reversing multidrug-resistant by RNA interference through silencing MDR1 gene in human hepatocellular carcinoma cells subline Bel-7402/ADM. Pathol Oncol Res 2013; 20:541-8. [PMID: 24327315 DOI: 10.1007/s12253-013-9726-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/12/2013] [Indexed: 10/25/2022]
Abstract
Multidrug resistance (MDR) in hepatocellular carcinoma (HC) significantly impedes the effect of chemotherapy and is considered as a primary reason leading to its recurrences and metastasis. The aim of present study was to explore new molecular targets for the reversal of MDR in HC by screening the adriamycin (ADM)-induced, human MDR-resistant HC cell subline Bel-7402/ADM. Small interfering RNAs (siRNAs) of four (MDR1si326, MDR1si1513, MDR1si2631 and MDR1si3071) targeting MDR1 were designed and transfected into Bel-7402/ADM cell strains. The experiments involved the following: mRNA expression of MDR1 gene by RT-PCR, P-glycoprotein (P-gp) expression by Western blot, intracellular ADM accumulation flow cytometry, and IC50 of ADM by a cytotoxic MTT assay. Four siRNAs reversed MDR in HC mediated by MDR1 to varying degrees. The expression level of MDR1 mRNA in cells of MDR1si326 or MDR1si2631 group (0.190 ± 0.038 or 0.171 ± 0.011) was more decreased. The expression level of P-gp in cells of MDR1si326 group was the lowest. The accumulation of ADM in cells of MDR1si326 or MDR1si2631 group (77.0 ± 3.5 or 75.4 ± 2.9) was more increased. The IC50 of cells to ADM was lowest in MDR1si326 group (11.32 ± 0.69 mg/L). Compared with other three siRNAs, MDR1si326 performed the optimal reversal effect of drug resistance in human HC Bel-7402/ADM.
Collapse
Affiliation(s)
- Long Sheng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China,
| | | | | | | |
Collapse
|
38
|
Scaggiante B, Dapas B, Pozzato G, Grassi G. The more basic isoform of eEF1A relates to tumour cell phenotype and is modulated by hyper-proliferative/differentiating stimuli in normal lymphocytes and CCRF-CEM T-lymphoblasts. Hematol Oncol 2013; 31:110-116. [PMID: 22930480 DOI: 10.1002/hon.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/26/2012] [Accepted: 07/07/2012] [Indexed: 02/05/2023]
Abstract
The elongation factor 1A proteins (eEF1A1/A2) are known to play a role in tumours. We previously found that a more basic isoform of eEF1A (MBI-eEF1A) is present in the cytoskeletal/nuclear-enriched extracts of CCRF-CEM T-lymphoblasts but not in those of normal lymphocytes. To obtain deeper knowledge about MBI-eEF1A biology, we investigate from which of the eEF1A proteins, eEF1A1 or eEF1A2, MBI-eEF1A originates and the possibility that its appearance can be modulated by the differentiated or proliferative cell status. CCRF-CEM T-lymphoblasts and normal lymphocytes were cultured with or without differentiation/pro-proliferative stimuli (Phorbol 12-Myristate 13-Acetate (PMA) alone or the combination of phytohaemagglutinin (PHA) with PMA, respectively), and the presence of MBI-eEF1A evaluated together with that of the eEF1A1/A2 mRNAs. Our data indicate that the MBI-eEF1A may derive from eEF1A1 as eEF1A2 is not expressed in CCRF-CEM and normal lymphocytes. Moreover, MBI-eEF1A is inducible in normal lymphocytes upon hyper-proliferative stimuli application; in CCRF-CEM, its presence can be abrogated by PMA-induced differentiation. Finally, MBI-eEF1A may have a functional role in hyper-proliferating/tumour cells as its disappearance reduces the growth of CCRF-CEM and that of PHA/PMA-stimulated lymphocytes. The presented data suggest that MBI-eEF1A may be related to oncogenic cell phenotype, rising the possibility to use MBI-eEF1A as target for novel therapeutic strategies.
Collapse
Affiliation(s)
- Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| | | | | | | |
Collapse
|
39
|
Merrick BA, Phadke DP, Auerbach SS, Mav D, Stiegelmeyer SM, Shah RR, Tice RR. RNA-Seq profiling reveals novel hepatic gene expression pattern in aflatoxin B1 treated rats. PLoS One 2013; 8:e61768. [PMID: 23630614 PMCID: PMC3632591 DOI: 10.1371/journal.pone.0061768] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/13/2013] [Indexed: 01/16/2023] Open
Abstract
Deep sequencing was used to investigate the subchronic effects of 1 ppm aflatoxin B1 (AFB1), a potent hepatocarcinogen, on the male rat liver transcriptome prior to onset of histopathological lesions or tumors. We hypothesized RNA-Seq would reveal more differentially expressed genes (DEG) than microarray analysis, including low copy and novel transcripts related to AFB1’s carcinogenic activity compared to feed controls (CTRL). Paired-end reads were mapped to the rat genome (Rn4) with TopHat and further analyzed by DESeq and Cufflinks-Cuffdiff pipelines to identify differentially expressed transcripts, new exons and unannotated transcripts. PCA and cluster analysis of DEGs showed clear separation between AFB1 and CTRL treatments and concordance among group replicates. qPCR of eight high and medium DEGs and three low DEGs showed good comparability among RNA-Seq and microarray transcripts. DESeq analysis identified 1,026 differentially expressed transcripts at greater than two-fold change (p<0.005) compared to 626 transcripts by microarray due to base pair resolution of transcripts by RNA-Seq, probe placement within transcripts or an absence of probes to detect novel transcripts, splice variants and exons. Pathway analysis among DEGs revealed signaling of Ahr, Nrf2, GSH, xenobiotic, cell cycle, extracellular matrix, and cell differentiation networks consistent with pathways leading to AFB1 carcinogenesis, including almost 200 upregulated transcripts controlled by E2f1-related pathways related to kinetochore structure, mitotic spindle assembly and tissue remodeling. We report 49 novel, differentially-expressed transcripts including confirmation by PCR-cloning of two unique, unannotated, hepatic AFB1-responsive transcripts (HAfT’s) on chromosomes 1.q55 and 15.q11, overexpressed by 10 to 25-fold. Several potentially novel exons were found and exon refinements were made including AFB1 exon-specific induction of homologous family members, Ugt1a6 and Ugt1a7c. We find the rat transcriptome contains many previously unidentified, AFB1-responsive exons and transcripts supporting RNA-Seq’s capabilities to provide new insights into AFB1-mediated gene expression leading to hepatocellular carcinoma.
Collapse
MESH Headings
- Aflatoxin B1/toxicity
- Animals
- Carcinogens/toxicity
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- E2F1 Transcription Factor/physiology
- Exons
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Regulatory Networks
- Glucuronosyltransferase/genetics
- Glucuronosyltransferase/metabolism
- High-Throughput Nucleotide Sequencing
- Liver/drug effects
- Liver/metabolism
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Male
- Oligonucleotide Array Sequence Analysis
- Precancerous Conditions/chemically induced
- Precancerous Conditions/metabolism
- Principal Component Analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Sequence Analysis, RNA
- Transcriptome
Collapse
Affiliation(s)
- B Alex Merrick
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America.
| | | | | | | | | | | | | |
Collapse
|