1
|
Hong R, Xie A, Jiang C, Guo Y, Zhang Y, Chen J, Shen X, Li M, Yue X. A review of the biological activities of lactoferrin: mechanisms and potential applications. Food Funct 2024; 15:8182-8199. [PMID: 39027924 DOI: 10.1039/d4fo02083a] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Lactoferrin, a multifunctional iron-binding protein found in milk and other body fluids, possesses numerous biological activities. The functional activity of lactoferrin lies not only in its iron-binding capacity but also in the molecular mechanisms by which it can affect important chemical components in the host. However, the molecular mechanisms underlying these activities remain unelucidated. In this paper, we review the structure, properties, and contents of different lactoferrin milk sources. The different biological activities, namely antibacterial, antiviral, immunomodulatory, anti-inflammatory, bone regeneration, and improved metabolic disorder bioactivities, and the associated potential mechanisms of lactoferrin are summarized with the aim of providing a reference for the development of lactoferrin-related products.
Collapse
Affiliation(s)
- Ruiyao Hong
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 119077, Singapore
| | - Chengxi Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yangze Guo
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yumeng Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Jiali Chen
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Xinyu Shen
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
2
|
Li B, Zhang B, Zhang F, Liu X, Zhang Y, Peng W, Teng D, Mao R, Yang N, Hao Y, Wang J. Interaction between Dietary Lactoferrin and Gut Microbiota in Host Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7596-7606. [PMID: 38557058 DOI: 10.1021/acs.jafc.3c09050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The gut microbiota are known to play an important role in host health and disease. Alterations in the gut microbiota composition can disrupt the stability of the gut ecosystem, which may result in noncommunicable chronic diseases (NCCDs). Remodeling the gut microbiota through personalized nutrition is a novel therapeutic avenue for both disease control and prevention. However, whether there are commonly used gut microbiota-targeted diets and how gut microbiota-diet interactions combat NCCDs and improve health remain questions to be addressed. Lactoferrin (LF), which is broadly used in dietary supplements, acts not only as an antimicrobial in the defense against enteropathogenic bacteria but also as a prebiotic to propagate certain probiotics. Thus, LF-induced gut microbiota alterations can be harnessed to induce changes in host physiology, and the underpinnings of their relationships and mechanisms are beginning to unravel in studies involving humans and animal models.
Collapse
Affiliation(s)
- Bing Li
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Bo Zhang
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Fuli Zhang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Xiaomeng Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Yunxia Zhang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Weifeng Peng
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Da Teng
- Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, P. R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P. R. China
| | - Ruoyu Mao
- Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, P. R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P. R. China
| | - Na Yang
- Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, P. R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P. R. China
| | - Ya Hao
- Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, P. R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P. R. China
| | - Jianhua Wang
- Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, P. R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P. R. China
| |
Collapse
|
3
|
Ashraf MF, Zubair D, Bashir MN, Alagawany M, Ahmed S, Shah QA, Buzdar JA, Arain MA. Nutraceutical and Health-Promoting Potential of Lactoferrin, an Iron-Binding Protein in Human and Animal: Current Knowledge. Biol Trace Elem Res 2024; 202:56-72. [PMID: 37059920 PMCID: PMC10104436 DOI: 10.1007/s12011-023-03658-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
Lactoferrin is a natural cationic iron-binding glycoprotein of the transferrin family found in bovine milk and other exocrine secretions, including lacrimal fluid, saliva, and bile. Lactoferrin has been investigated for its numerous powerful influences, including anticancer, anti-inflammatory, anti-oxidant, anti-osteoporotic, antifungal, antibacterial, antiviral, immunomodulatory, hepatoprotective, and other beneficial health effects. Lactoferrin demonstrated several nutraceutical and pharmaceutical potentials and have a significant impact on improving the health of humans and animals. Lactoferrin plays a critical role in keeping the normal physiological homeostasis associated with the development of pathological disorders. The current review highlights the medicinal value, nutraceutical role, therapeutic application, and outstanding favorable health sides of lactoferrin, which would benefit from more exploration of this glycoprotein for the design of effective medicines, drugs, and pharmaceuticals for safeguarding different health issues in animals and humans.
Collapse
Affiliation(s)
| | - Dawood Zubair
- Iqraa Medical Complex, Johar Town Lahore, Punjab, Pakistan
| | | | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, 44519, Egypt.
| | - Shabbir Ahmed
- Faculty of Animal Husbandry & Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Qurban Ali Shah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan
| | - Jameel Ahmed Buzdar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan
| | - Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan.
| |
Collapse
|
4
|
Conesa C, Bellés A, Grasa L, Sánchez L. The Role of Lactoferrin in Intestinal Health. Pharmaceutics 2023; 15:1569. [PMID: 37376017 DOI: 10.3390/pharmaceutics15061569] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
The intestine represents one of the first barriers where microorganisms and environmental antigens come into tight contact with the host immune system. A healthy intestine is essential for the well-being of humans and animals. The period after birth is a very important phase of development, as the infant moves from a protected environment in the uterus to one with many of unknown antigens and pathogens. In that period, mother's milk plays an important role, as it contains an abundance of biologically active components. Among these components, the iron-binding glycoprotein, lactoferrin (LF), has demonstrated a variety of important benefits in infants and adults, including the promotion of intestinal health. This review article aims to provide a compilation of all the information related to LF and intestinal health, in infants and adults.
Collapse
Affiliation(s)
- Celia Conesa
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Andrea Bellés
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Laura Grasa
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| |
Collapse
|
5
|
Kunath BJ, Hickl O, Queirós P, Martin-Gallausiaux C, Lebrun LA, Halder R, Laczny CC, Schmidt TSB, Hayward MR, Becher D, Heintz-Buschart A, de Beaufort C, Bork P, May P, Wilmes P. Alterations of oral microbiota and impact on the gut microbiome in type 1 diabetes mellitus revealed by integrated multi-omic analyses. MICROBIOME 2022; 10:243. [PMID: 36578059 PMCID: PMC9795701 DOI: 10.1186/s40168-022-01435-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/04/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Alterations to the gut microbiome have been linked to multiple chronic diseases. However, the drivers of such changes remain largely unknown. The oral cavity acts as a major route of exposure to exogenous factors including pathogens, and processes therein may affect the communities in the subsequent compartments of the gastrointestinal tract. Here, we perform strain-resolved, integrated meta-genomic, transcriptomic, and proteomic analyses of paired saliva and stool samples collected from 35 individuals from eight families with multiple cases of type 1 diabetes mellitus (T1DM). RESULTS We identified distinct oral microbiota mostly reflecting competition between streptococcal species. More specifically, we found a decreased abundance of the commensal Streptococcus salivarius in the oral cavity of T1DM individuals, which is linked to its apparent competition with the pathobiont Streptococcus mutans. The decrease in S. salivarius in the oral cavity was also associated with its decrease in the gut as well as higher abundances in facultative anaerobes including Enterobacteria. In addition, we found evidence of gut inflammation in T1DM as reflected in the expression profiles of the Enterobacteria as well as in the human gut proteome. Finally, we were able to follow transmitted strain-variants from the oral cavity to the gut at the individual omic levels, highlighting not only the transfer, but also the activity of the transmitted taxa along the gastrointestinal tract. CONCLUSIONS Alterations of the oral microbiome in the context of T1DM impact the microbial communities in the lower gut, in particular through the reduction of "mouth-to-gut" transfer of Streptococcus salivarius. Our results indicate that the observed oral-cavity-driven gut microbiome changes may contribute towards the inflammatory processes involved in T1DM. Through the integration of multi-omic analyses, we resolve strain-variant "mouth-to-gut" transfer in a disease context. Video Abstract.
Collapse
Affiliation(s)
- B J Kunath
- Luxembourg Centre for Systems Biomedicine, Esch-sur-Alzette, Luxembourg.
| | - O Hickl
- Luxembourg Centre for Systems Biomedicine, Esch-sur-Alzette, Luxembourg
| | - P Queirós
- Luxembourg Centre for Systems Biomedicine, Esch-sur-Alzette, Luxembourg
| | | | - L A Lebrun
- Luxembourg Centre for Systems Biomedicine, Esch-sur-Alzette, Luxembourg
| | - R Halder
- Luxembourg Centre for Systems Biomedicine, Esch-sur-Alzette, Luxembourg
| | - C C Laczny
- Luxembourg Centre for Systems Biomedicine, Esch-sur-Alzette, Luxembourg
| | - T S B Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - M R Hayward
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - D Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - A Heintz-Buschart
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - C de Beaufort
- Luxembourg Centre for Systems Biomedicine, Esch-sur-Alzette, Luxembourg
- Clinique Pédiatrique, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - P Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Yonsei Frontier Lab (YFL), Yonsei University, Seoul, 03722, South Korea
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - P May
- Luxembourg Centre for Systems Biomedicine, Esch-sur-Alzette, Luxembourg
| | - P Wilmes
- Luxembourg Centre for Systems Biomedicine, Esch-sur-Alzette, Luxembourg.
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg.
| |
Collapse
|
6
|
Younes M, Zhang L, Fekry B, Eckel-Mahan K. Expression of p-STAT3 and c-Myc correlates with P2-HNF4α expression in nonalcoholic fatty liver disease (NAFLD). Oncotarget 2022; 13:1308-1313. [PMID: 36473131 PMCID: PMC9726203 DOI: 10.18632/oncotarget.28324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
We studied the expression of two hepatocyte nuclear factor 4 alpha (HNF4α) isoforms, p-STAT3. and c-Myc in 49 consecutive liver biopsies with nonalcoholic fatty liver disease (NAFLD) using immunohistochemistry. All 49 biopsies (100%) were positive for nuclear expression of P1-HNF4α. Twenty-eight (57%) cases were positive for P2-HNF4α, 6 (12%) were positive for p-STAT3 and 5 (10%) were positive for c-Myc. All 6 (100%) p-STAT3-positive cases were also positive for P2-HNF4α (p = 0.03). p-STAT3-positive cases were more likely to be positive for c-Myc (67% vs. 2%, p = 0.0003). Four cases were positive for P2-HNF4α, p-STAT3 and c-Myc. p-STAT3 expression was associated with hypertension (p = 0.037). All c-Myc positive biopsies were from patients with obesity, diabetes and hypertension. Only c-Myc expression was associated with advanced fibrosis; three (60%) of the c-Myc positive cases were associated with advanced fibrosis in contrast to 7 (10%) of the 44 c-Myc negative cases (p = 0.011). Based on these results, we hypothesize with the following sequence of events with progression of NAFLD: P2-HNF4α expression is followed by expression of p-STAT3 which in turn is followed by the expression of c-Myc. Additional larger studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Mamoun Younes
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Lin Zhang
- Departments of Pathology and Laboratory Medicine, McGovern Medical School at the University of Texas Health Science Center (UTHealth), Houston, TX 77225, USA
| | - Baharan Fekry
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UTHealth), Houston, TX 77225, USA
| | - Kristin Eckel-Mahan
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UTHealth), Houston, TX 77225, USA
| |
Collapse
|
7
|
Li C, Liu X, Huang Z, Zhai Y, Li H, Wu J. Lactoferrin Alleviates Lipopolysaccharide-Induced Infantile Intestinal Immune Barrier Damage by Regulating an ELAVL1-Related Signaling Pathway. Int J Mol Sci 2022; 23:13719. [PMID: 36430202 PMCID: PMC9696789 DOI: 10.3390/ijms232213719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
As the most important intestinal mucosal barrier of the main body, the innate immune barrier in intestinal tract plays especially pivotal roles in the overall health conditions of infants and young children; therefore, how to strengthen the innate immune barrier is pivotal. A variety of bioactivities of lactoferrin (LF) has been widely proved, including alleviating enteritis and inhibiting colon cancer; however, the effects of LF on intestinal immune barrier in infants and young children are still unclear, and the specific mechanism on how LF inhibits infantile enteritis by regulating immune signaling pathways is unrevealed. In the present study, we firstly performed pharmacokinetic analyses of LF in mice intestinal tissues, stomach tissues and blood, through different administration methods, to confirm the metabolic method of LF in mammals. Then we constructed in Vitro and in Vivo infantile intestinal immune barrier damage models utilizing lipopolysaccharide (LPS), and evaluated the effects of LF in alleviating LPS-induced intestinal immune barrier damage. Next, the related immune molecular mechanism on how LF exerted protective effects was investigated, through RNA-seq analyses of the mouse primary intestinal epithelial cells, and the specific genes were analyzed and screened out. Finally, the genes and their related immune pathway were validated in mRNA and protein levels; the portions of special immune cells (CD4+ T cells and CD8+ T cells) were also detected to further support our experimental results. Pharmacokinetic analyses demonstrated that the integrity of LF could reach mice stomach and intestine after oral gavage within 12 h, and the proper administration of LF should be the oral route. LF was proven to down-regulate the expression levels of inflammatory cytokines in both the primary intestinal epithelial cells and mice blood, especially LF without iron (Apo-LF), indicating LF alleviated infantile intestinal immune barrier damage induced by LPS. And through RNA-seq analyses of the mouse primary intestinal epithelial cells treated with LPS and LF, embryonic lethal abnormal vision Drosophila 1 (ELAVL1) was selected as one of the key genes, then the ELAVL1/PI3K/NF-κB pathway regulated by LF was verified to participate in the protection of infantile intestinal immune barrier damage in our study. Additionally, the ratio of blood CD4+/CD8+ T cells was significantly higher in the LF-treated mice than in the control mice, indicating that LF distinctly reinforced the overall immunity of infantile mice, further validating the strengthening bioactivity of LF on infantile intestinal immune barrier. In summary, LF was proven to alleviate LPS-induced intestinal immune barrier damage in young mice through regulating ELAVL1-related immune signaling pathways, which would expand current knowledge of the functions of bioactive proteins in foods within different research layers, as well as benefit preclinical and clinical researches in a long run.
Collapse
Affiliation(s)
- Chaonan Li
- Beijing Key Laboratory of Food Processing and Safety in Forestry, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100085, China
| | - Xinkui Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhihong Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yiyan Zhai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huiying Li
- Beijing Key Laboratory of Food Processing and Safety in Forestry, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100085, China
| | - Jiarui Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
8
|
Cota D, Patil D. Antibacterial potential of ellagic acid and gallic acid against IBD bacterial isolates and cytotoxicity against colorectal cancer. Nat Prod Res 2022; 37:1998-2002. [PMID: 35968644 DOI: 10.1080/14786419.2022.2111560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Ellagic acid and Gallic acid are polyphenols which have shown beneficial effects in animal models of colitis. In the present study Ellagic acid and Gallic acid were evaluated for antibacterial potential against clinical IBD isolates. (HM95, HM233, HM251, HM615). Cytotoxicity was determined against human colorectal adenocarcinoma cells (Caco2, COLO.205, HT.29), whereas, cytocompatibility against normal rat intestinal epithelial (IEC-6) using MTT assay. Ellagic acid showed the lowest MIC and MBC value of 2.5 and 5 mg/mL respectively against HM251 and HM233. Gallic acid exhibited the lowest MIC and MBC value of 1.25 and 2.5 mg/mL respectively against HM251 and HM615. Cytotoxicity assay resulted in reduction of percent cell viability when tested at concentrations ranging from 400-12.5 µg/mL. The polyphenols presented a concentration-dependent deduction in percent cell viability after 48 h exposure It is likely that these polyphenols are good anti-colitic agents. However, further investigations are required.
Collapse
Affiliation(s)
- Damita Cota
- Rani Chennamma College of Pharmacy, Belagavi, Karnataka, India
| | - Dhanashree Patil
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research (KLE University), Belagavi, Karnataka, India
| |
Collapse
|
9
|
Nutraceuticals and Diet Supplements in Crohn's Disease: A General Overview of the Most Promising Approaches in the Clinic. Foods 2022; 11:foods11071044. [PMID: 35407131 PMCID: PMC8998137 DOI: 10.3390/foods11071044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory gastrointestinal disorder requiring lifelong medications. The currently approved drugs for CD are associated with relevant side effects and several studies suggest an increased use of nutraceuticals among CD patients, seeking for what is perceived as a more "natural" approach in controlling this highly morbid condition. Nutraceuticals are foods or foods' components with beneficial health properties that could aid in CD treatment for their anti-inflammatory, analgesic and immunoregulatory activities that come along with safety, high tolerability, easy availability and affordability. Depending on their biological effect, nutraceuticals' support could be employed in different subsets of CD patients, both those with active disease, as adjunctive immunomodulatory therapies, and/or in quiescent disease to provide symptomatic relief in patients with residual functional symptoms. Despite the increasing interest of the general public, both limited research and lack of education from healthcare professionals regarding their real clinical effectiveness account for the increasing number of patients turning to unconventional sources. Professionals should recognize their widespread use and the evidence base for or against their efficacy to properly counsel IBD patients. Overall, nutraceuticals appear to be safe complements to conventional therapies; nonetheless, little quality evidence supports a positive impact on underlying inflammatory activity.
Collapse
|
10
|
The Protective Effects of Lactoferrin on Aflatoxin M1-Induced Compromised Intestinal Integrity. Int J Mol Sci 2021; 23:ijms23010289. [PMID: 35008712 PMCID: PMC8745159 DOI: 10.3390/ijms23010289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022] Open
Abstract
Aflatoxin M1 (AFM1), the only toxin with maximum residue levels in milk, has adverse effects on the intestinal barrier, resulting in intestinal inflammatory disease. Lactoferrin (LF), one of the important bioactive proteins in milk, performs multiple biological functions, but knowledge of the protective effects of LF on the compromised intestinal barrier induced by AFM1 has not been investigated. In the present study, results using Balb/C mice and differentiated Caco-2 cells showed that LF intervention decreased AFM1-induced increased intestinal permeability, improved the protein expression of claudin-3, occludin and ZO-1, and repaired the injured intestinal barrier. The transcriptome and proteome were used to clarify the underlying mechanisms. It was found that LF reduced the intestinal barrier dysfunction caused by AFM1 and was associated with intestinal cell survival related pathways, such as cell cycle, apoptosis and MAPK signaling pathway and intestinal integrity related pathways including endocytosis, tight junction, adherens junction and gap junction. The cross-omics analysis suggested that insulin receptor (INSR), cytoplasmic FMR1 interacting protein 2 (CYFIP2), dedicator of cytokinesis 1 (DOCK1) and ribonucleotide reductase regulatory subunit M2 (RRM2) were the potential key regulators as LF repaired the compromised intestinal barrier. These findings indicated that LF may be an alternative treatment for the compromised intestinal barrier induced by AFM1.
Collapse
|
11
|
Liu N, Feng G, Zhang X, Hu Q, Sun S, Sun J, Sun Y, Wang R, Zhang Y, Wang P, Li Y. The Functional Role of Lactoferrin in Intestine Mucosal Immune System and Inflammatory Bowel Disease. Front Nutr 2021; 8:759507. [PMID: 34901112 PMCID: PMC8655231 DOI: 10.3389/fnut.2021.759507] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease (CD), is one of the main types of intestinal inflammatory diseases with intestine mucosal immune disorder. Intestine mucosal immune system plays a remarkable and important role in the etiology and pathogenesis of IBD. Therefore, understanding the intestine mucosal immune mechanism is a key step to develop therapeutic interventions for IBD. Intestine mucosal immune system and IBD are influenced by various factors, such as inflammation, gut permeability, gut microbiota, and nutrients. Among these factors, emerging evidence show that nutrients play a key role in inflammation activation, integrity of intestinal barrier, and immune cell modulation. Lactoferrin (LF), an iron-binding glycoprotein belonging to transferrin family, is a dietary bioactive component abundantly found in mammalian milk. Notably, LF has been reported to perform diverse biological functions including antibacterial activity, anti-inflammatory activity, intestinal barrier protection, and immune cell modulation, and is involved in maintaining intestine mucosal immune homeostasis. The improved understanding of the properties of LF in intestine mucosal immune system and IBD will facilitate its application in nutrition, clinical medicine, and health. Herein, this review outlines the recent advancements on LF as a potential therapeutic intervention for IBD associated with intestine mucosal immune system dysfunction. We hope this review will provide a reference for future studies and lay a theoretical foundation for LF-based therapeutic interventions for IBD by understanding the particular effects of LF on intestine mucosal immune system.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Gang Feng
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- Yili Maternal & Infant Nutrition Institute, Beijing, China
| | - Xiaoying Zhang
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- Yili Maternal & Infant Nutrition Institute, Beijing, China
| | - Qingjuan Hu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Jiaqi Sun
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- Yili Maternal & Infant Nutrition Institute, Beijing, China
| | - Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yan Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Connell S, Kawashima M, Nakamura S, Imada T, Yamamoto H, Tsubota K, Fukuda S. Lactoferrin Ameliorates Dry Eye Disease Potentially through Enhancement of Short-Chain Fatty Acid Production by Gut Microbiota in Mice. Int J Mol Sci 2021; 22:ijms222212384. [PMID: 34830266 PMCID: PMC8624394 DOI: 10.3390/ijms222212384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 12/27/2022] Open
Abstract
Lactoferrin is a glycoprotein found at high concentrations within exocrine secretions, including tears. Low levels of lactoferrin have been implicated in the loss of tear secretion and ageing. Furthermore, lactoferrin possesses a range of functionalities, including anti-inflammatory properties and the ability to modulate the gut microbiota. Expanding evidence demonstrates a crucial role of the gut microbiota in immune regulation and development. The specific composition of bacterial species of the gut has a profound influence on local and systemic inflammation, leading to a protective capacity against a number of inflammatory diseases, potentially by the induction of regulatory immune cells. In this study, we demonstrated that oral administration of lactoferrin maintains tear secretion in a restraint and desiccating stress induced mouse model of dry eye disease. Furthermore, we revealed that lactoferrin induces the reduction of inflammatory cytokines, modulates gut microbiota, and induces short-chain fatty acid production. Whereas, the antibiotic vancomycin abrogates the effects of lactoferrin on dry eye disease and significantly reduces short-chain fatty acid concentrations. Therefore, this protective effect of LF against a mice model of DED may be explained by our observations of an altered gut microbiota and an enhanced production of immunomodulatory short-chain fatty acids.
Collapse
Affiliation(s)
- Samuel Connell
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (S.C.); (M.K.); (S.N.); (T.I.)
| | - Motoko Kawashima
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (S.C.); (M.K.); (S.N.); (T.I.)
| | - Shigeru Nakamura
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (S.C.); (M.K.); (S.N.); (T.I.)
| | - Toshihiro Imada
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (S.C.); (M.K.); (S.N.); (T.I.)
| | - Hiromitsu Yamamoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Yamagata, Japan;
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (S.C.); (M.K.); (S.N.); (T.I.)
- Tsubota Laboratory, Inc., Tokyo 160-0016, Japan
- Correspondence: (K.T.); (S.F.)
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Yamagata, Japan;
- Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki 210-0821, Kanagawa, Japan
- Correspondence: (K.T.); (S.F.)
| |
Collapse
|
13
|
Zheng J, Wang H, Deng Z, Shan Y, Lü X, Zhao X. Structure and biological activities of glycoproteins and their metabolites in maintaining intestinal health. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34619993 DOI: 10.1080/10408398.2021.1987857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Glycoproteins formed by covalent links between oligosaccharide and polypeptides are abundant in various food sources. They are less sensitivity to gastrointestinal enzymes, and hence many of them undergo fermentation in the colon by microorganisms. Therefore, the confer various health benefits on the intestinal ecosystem. However, the current understanding of the effect of glycoproteins on intestinal microorganisms and gut health is limited. This is probably due to their heterogeneous structures and complex metabolic programming patterns. The structure and biological activities of glycoproteins and their microbial metabolites were summarized in this review. The metabolic pathways activated by intestinal bacteria were then discussed in relation to their potential benefits on gut health. Food-derived glycoproteins and their metabolites improve gut health by regulating the intestinal bacteria and improving intestinal barrier function, thereby amplifying immune response. The data reviewed here show that food-derived glycoproteins are promising candidates for preventing various gastrointestinal diseases. Further studies should explore the interaction mechanisms between intestinal microorganisms and host metabolites.
Collapse
Affiliation(s)
- Jiaqi Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Haotian Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Zhanfei Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Xue Zhao
- Department of Nursing, Shandong College of Traditional Chinese Medicine, Yantai, PR China
| |
Collapse
|
14
|
Lactoferrin and Its Potential Impact for the Relief of Pain: A Preclinical Approach. Pharmaceuticals (Basel) 2021; 14:ph14090868. [PMID: 34577568 PMCID: PMC8468947 DOI: 10.3390/ph14090868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Pain is one of the most disabling symptoms of several clinical conditions. Neurobiologically, it is classified as nociceptive, inflammatory, neuropathic and dysfunctional. Opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) are conventionally prescribed for the treatment of pain. Long-term administration of opioids results in the loss of analgesic efficacy, leading to increased dosage, tolerance, and addiction as the main drawbacks of their use, while the adverse effects of NSAIDs include gastric ulcer formation, intestinal bleeding, acute kidney injury, and hepatotoxicity. Lactoferrin is an iron-binding, anti-inflammatory glycoprotein that displays analgesic activities associated, in part, by interacting with the low-density lipoprotein receptor-related protein (LRP), which may result in the regulation of the DAMP-TRAF6-NFκB, NO-cGMP-ATP K+-sensitive channel and opioid receptor signaling pathways. This review summarizes and discusses for the first time the analgesic effects of lactoferrin and its presumable mechanisms based on pre-clinical trials. Given its anti-nociceptive and anti-inflammatory properties, lactoferrin may be used as an adjunct to enhance the efficacy and to decrease the tolerogenic effects of canonical therapeutic drugs prescribed for pain treatment.
Collapse
|
15
|
Sienkiewicz M, Jaśkiewicz A, Tarasiuk A, Fichna J. Lactoferrin: an overview of its main functions, immunomodulatory and antimicrobial role, and clinical significance. Crit Rev Food Sci Nutr 2021; 62:6016-6033. [PMID: 33685299 DOI: 10.1080/10408398.2021.1895063] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lactoferrin (LF), a glycoprotein found in mucosal secretions, is characterized by a wide range of functions, including immunomodulatory and anti-inflammatory activities. Moreover, several investigations confirmed that LF displays high effectiveness against multiple bacteria and viruses and may be regarded as a potential inhibitor of enveloped viruses, such as presently prevailing SARS-CoV-2. In our review, we discuss available studies about LF functions and bioavailability of different LF forms in in vitro and in vivo models. Moreover, we characterize the potential benefits and side effects of LF use; we also briefly summarize the latest clinical trials examining LF application. Finally, we point potential role of LF in inflammatory bowel disease and indicate its use as a marker for disease severity.
Collapse
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andrzej Jaśkiewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
16
|
Superti F. Lactoferrin from Bovine Milk: A Protective Companion for Life. Nutrients 2020; 12:nu12092562. [PMID: 32847014 PMCID: PMC7551115 DOI: 10.3390/nu12092562] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Lactoferrin (Lf), an iron-binding multifunctional glycoprotein belonging to the transferrin family, is present in most biological secretions and reaches particularly high concentrations in colostrum and breast milk. A key function of lactoferrin is non-immune defence and it is considered to be a mediator linking innate and adaptive immune responses. Lf from bovine milk (bLf), the main Lf used in human medicine because of its easy availability, has been designated by the United States Food and Drug Administration as a food additive that is generally recognized as safe (GRAS). Among the numerous protective activities exercised by this nutraceutical protein, the most important ones demonstrated after its oral administration are: Antianemic, anti-inflammatory, antimicrobial, immunomodulatory, antioxidant and anticancer activities. All these activities underline the significance in host defence of bLf, which represents an ideal nutraceutical product both for its economic production and for its tolerance after ingestion. The purpose of this review is to summarize the most important beneficial activities demonstrated following the oral administration of bLf, trying to identify potential perspectives on its prophylactic and therapeutic applications in the future.
Collapse
Affiliation(s)
- Fabiana Superti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
17
|
Camprubí-Font C, Martinez-Medina M. Why the discovery of adherent-invasive Escherichia coli molecular markers is so challenging? World J Biol Chem 2020; 11:1-13. [PMID: 32405343 PMCID: PMC7205867 DOI: 10.4331/wjbc.v11.i1.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 02/05/2023] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) strains have been extensively related to Crohn’s disease (CD) etiopathogenesis. Higher AIEC prevalence in CD patients versus controls has been reported, and its mechanisms of pathogenicity have been linked to CD physiopathology. In CD, the therapeutic armamentarium remains limited and non-curative; hence, the necessity to better understand AIEC as a putative instigator or propagator of the disease is certain. Nonetheless, AIEC identification is currently challenging because it relies on phenotypic assays based on infected cell cultures which are highly time-consuming, laborious and non-standardizable. To address this issue, AIEC molecular mechanisms and virulence genes have been studied; however, a specific and widely distributed genetic AIEC marker is still missing. The finding of molecular tools to easily identify AIEC could be useful in the identification of AIEC carriers who could profit from personalized treatment. Also, it would significantly promote AIEC epidemiological studies. Here, we reviewed the existing data regarding AIEC genetics and presented those molecular markers that could assist with AIEC identification. Finally, we highlighted the problems behind the discovery of exclusive AIEC biomarkers and proposed strategies to facilitate the search of AIEC signature sequences.
Collapse
Affiliation(s)
- Carla Camprubí-Font
- Laboratory of Molecular Microbiology, Department of Biology, University of Girona, Girona 17003, Spain
| | - Margarita Martinez-Medina
- Laboratory of Molecular Microbiology, Department of Biology, University of Girona, Girona 17003, Spain
| |
Collapse
|
18
|
The Influence of Nutrients on Inflammatory Bowel Diseases. J Nutr Metab 2020; 2020:2894169. [PMID: 32190385 PMCID: PMC7064842 DOI: 10.1155/2020/2894169] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel diseases is a group of inflammatory diseases. The pathogenesis of diseases is multifactorial, which may include a Western-type diet. Diseases occur with periods of recurrence and remission. Many factors can have a beneficial effect on reducing the frequency of recurrence and prolonging the remission period. Such ingredients include dietary fibre, mono- and polyunsaturated fatty acids, certain vitamins (D, C, and E), flavonoids, and minerals such as zinc and selenium. Properly selected nutrition might be an integral part of the treatment of patients with Crohn's disease or ulcerative colitis.
Collapse
|
19
|
Al-Sadi R, Youssef M, Rawat M, Guo S, Dokladny K, Haque M, Watterson MD, Ma TY. MMP-9-induced increase in intestinal epithelial tight permeability is mediated by p38 kinase signaling pathway activation of MLCK gene. Am J Physiol Gastrointest Liver Physiol 2019; 316:G278-G290. [PMID: 30543452 PMCID: PMC6397336 DOI: 10.1152/ajpgi.00126.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 11/21/2018] [Accepted: 12/07/2018] [Indexed: 01/31/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9) has been implicated as being an important pathogenic factor in inflammatory bowel disease (IBD). MMP-9 is markedly elevated in intestinal tissue of patients with IBD, and IBD patients have a defective intestinal tight-junction (TJ) barrier manifested by an increase in intestinal permeability. The loss of intestinal epithelial barrier function is an important contributing factor in the development and prolongation of intestinal inflammation; however, the role of MMP-9 in intestinal barrier function remains unclear. The purpose of this study was to investigate the effect of MMP-9 on the intestinal epithelial TJ barrier and to delineate the intracellular mechanisms involved by using in vitro (filter-grown Caco-2 monolayers) and in vivo (mouse small intestine recycling perfusion) systems. MMP-9 caused a time- and dose-dependent increase in Caco-2 TJ permeability. MMP-9 also caused an increase in myosin light-chain kinase (MLCK) gene activity, protein expression, and enzymatic activity. The pharmacological MLCK inhibition and siRNA-induced knockdown of MLCK inhibited the MMP-9-induced increase in Caco-2 TJ permeability. MMP-9 caused a rapid activation of the p38 kinase signaling pathway and inhibition of p38 kinase activity prevented the MMP-9-induced increase in MLCK gene activity and the increase in Caco-2 TJ permeability. MMP-9 also caused an increase in mouse intestinal permeability in vivo, which was accompanied by an increase in MLCK expression. The MMP-9-induced increase in mouse intestinal permeability was inhibited in MLCK-deficient mice. These data show for the first time that the MMP-9-induced increase in intestinal TJ permeability in vitro and in vivo was mediated by the p38 kinase signal transduction pathway upregulation of MLCK gene activity and that therapeutic targeting of these pathways can prevent the MMP-9-induced increase in intestinal TJ permeability. NEW & NOTEWORTHY MMP-9 is highly elevated in patients with IBD. IBD patients have compromised intestinal TJ barrier function manifested by an increase in intestinal permeability and intestinal inflammation. This study shows that MMP-9, at clinically achievable concentrations, causes an increase in intestinal TJ permeability in vitro and in vivo. In addition, a MMP-9-induced increase in intestinal TJ permeability was mediated by an increase in MLCK gene and protein expression via the p38 kinase pathway.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Penn State Milton S. Hershey Medical Center, College of Medicine , Hershey, Pennsylvania
| | - Moustafa Youssef
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - Manmeet Rawat
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - Shuhong Guo
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - Karol Dokladny
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - Mohammad Haque
- Penn State Milton S. Hershey Medical Center, College of Medicine , Hershey, Pennsylvania
| | | | - Thomas Y Ma
- Penn State Milton S. Hershey Medical Center, College of Medicine , Hershey, Pennsylvania
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| |
Collapse
|
20
|
Iglesias-Figueroa BF, Espinoza-Sánchez EA, Siqueiros-Cendón TS, Rascón-Cruz Q. Lactoferrin as a nutraceutical protein from milk, an overview. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Ribaldone DG, Pellicano R, Actis GC. Inflammation: a highly conserved, Janus-like phenomenon-a gastroenterologist' perspective. J Mol Med (Berl) 2018; 96:861-871. [PMID: 29987405 DOI: 10.1007/s00109-018-1668-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/10/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Inflammation is the result of the loss of host's resilience towards the surrounding world. At gross tissue level, inflammation coincides with fluid leakage from vessels, swelling, and blood stasis and extravasation of mononuclear/macrophage cells. Biochemically, these events lead to anoxia and dramatic changes: interruption of the mitochondrial oxidative phosphorylation, influx of the M1 macrophage subset, which live on anaerobic glycolysis. Fall of ATP then leads to energy shortage and debt. In their chronic forms, these phenomena are now known to mark a number of degenerative disorders that have invaded the Western World since the last century: Parkinson's disease, Alzheimer's syndromes, rheumatic diseases, metabolic diseases. Intriguingly, these affections seem to derive from the gut, along two possible pathways. A sort of ascending loss of function caused by accumulation of (and hyperreactivity to) proteins released to restrain spread of enteric viruses: the alpha-synucleins, now increasingly spotted in relation to Parkinson's pathogenesis. The second pathway would entail the intellectual decline perhaps brought about by large use of food containing the proteins of red processed meat. The bacterium Bilophila wadsworthia, thriving in this meat, can erode the mucus layer on colon surfaces, allowing further bacterial flora to approach lining cells, so upgrading the alarm state. We discuss two strategies to prevent such instability from ending up to full-blown inflammatory bowel disease: physical exercise and systematic switch to fibre-containing diets.
Collapse
Affiliation(s)
- Davide Giuseppe Ribaldone
- Department of Medical Sciences, Division of Gastroenterology, University of Torino, C.so Bramante 88, 10126, Turin, Italy.
| | - Rinaldo Pellicano
- Department of General and Specialist Medicine, Gastroenterologia-U, Molinette Hospital, Turin, Italy
| | | |
Collapse
|
22
|
Bertuccini L, Russo R, Iosi F, Superti F. Lactobacilli and lactoferrin: Biotherapeutic effects for vaginal health. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
23
|
Palmela C, Chevarin C, Xu Z, Torres J, Sevrin G, Hirten R, Barnich N, Ng SC, Colombel JF. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 2018; 67:574-587. [PMID: 29141957 DOI: 10.1136/gutjnl-2017-314903] [Citation(s) in RCA: 364] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/20/2017] [Accepted: 10/28/2017] [Indexed: 02/06/2023]
Abstract
Intestinal microbiome dysbiosis has been consistently described in patients with IBD. In the last decades, Escherichia coli, and the adherent-invasive E coli (AIEC) pathotype in particular, has been implicated in the pathogenesis of IBD. Since the discovery of AIEC, two decades ago, progress has been made in unravelling these bacteria characteristics and its interaction with the gut immune system. The mechanisms of adhesion of AIEC to intestinal epithelial cells (via FimH and cell adhesion molecule 6) and its ability to escape autophagy when inside macrophages are reviewed here. We also explore the existing data on the prevalence of AIEC in patients with Crohn's disease and UC, and the association between the presence of AIEC and disease location, activity and postoperative recurrence. Finally, we highlight potential therapeutic strategies targeting AIEC colonisation of gut mucosa, including the use of phage therapy, bacteriocins and antiadhesive molecules. These strategies may open new avenues for the prevention and treatment of IBD in the future.
Collapse
Affiliation(s)
- Carolina Palmela
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Caroline Chevarin
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Zhilu Xu
- Department of Medicine and Therapeutics, Institute of Digestive Diseases, LKS Institute of Health Science, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Joana Torres
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Gwladys Sevrin
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Robert Hirten
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Siew C Ng
- Department of Medicine and Therapeutics, Institute of Digestive Diseases, LKS Institute of Health Science, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
24
|
Drago-Serrano ME, Campos-Rodríguez R, Carrero JC, de la Garza M. Lactoferrin: Balancing Ups and Downs of Inflammation Due to Microbial Infections. Int J Mol Sci 2017; 18:E501. [PMID: 28257033 PMCID: PMC5372517 DOI: 10.3390/ijms18030501] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
Lactoferrin (Lf) is a glycoprotein of the primary innate immune-defense system of mammals present in milk and other mucosal secretions. This protein of the transferrin family has broad antimicrobial properties by depriving pathogens from iron, or disrupting their plasma membranes through its highly cationic charge. Noteworthy, Lf also exhibits immunomodulatory activities performing up- and down-regulation of innate and adaptive immune cells, contributing to the homeostasis in mucosal surfaces exposed to myriad of microbial agents, such as the gastrointestinal and respiratory tracts. Although the inflammatory process is essential for the control of invasive infectious agents, the development of an exacerbated or chronic inflammation results in tissue damage with life-threatening consequences. In this review, we highlight recent findings in in vitro and in vivo models of the gut, lung, oral cavity, mammary gland, and liver infections that provide experimental evidence supporting the therapeutic role of human and bovine Lf in promoting some parameters of inflammation and protecting against the deleterious effects of bacterial, viral, fungal and protozoan-associated inflammation. Thus, this new knowledge of Lf immunomodulation paves the way to more effective design of treatments that include native or synthetic Lf derivatives, which may be useful to reduce immune-mediated tissue damage in infectious diseases.
Collapse
Affiliation(s)
- Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco (UAM-X), CdMx 04960, Mexico.
| | - Rafael Campos-Rodríguez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional (ESM-IPN), CdMx 11340, Mexico.
| | - Julio César Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (IIB-UNAM), CdMx 70228, Mexico.
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), CdMx 07360, Mexico.
| |
Collapse
|
25
|
Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nat Microbiol 2016; 2:16180. [PMID: 27723761 DOI: 10.1038/nmicrobiol.2016.180] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/23/2016] [Indexed: 12/21/2022]
Abstract
The gastrointestinal microbiome is a complex ecosystem with functions that shape human health. Studying the relationship between taxonomic alterations and functional repercussions linked to disease remains challenging. Here, we present an integrative approach to resolve the taxonomic and functional attributes of gastrointestinal microbiota at the metagenomic, metatranscriptomic and metaproteomic levels. We apply our methods to samples from four families with multiple cases of type 1 diabetes mellitus (T1DM). Analysis of intra- and inter-individual variation demonstrates that family membership has a pronounced effect on the structural and functional composition of the gastrointestinal microbiome. In the context of T1DM, consistent taxonomic differences were absent across families, but certain human exocrine pancreatic proteins were found at lower levels. The associated microbial functional signatures were linked to metabolic traits in distinct taxa. The methodologies and results provide a foundation for future large-scale integrated multi-omic analyses of the gastrointestinal microbiome in the context of host-microbe interactions in human health and disease.
Collapse
|
26
|
Fedorka CE, Scoggin KE, Woodward EM, Squires EL, Ball BA, Troedsson M. The effect of select seminal plasma proteins on endometrial mRNA cytokine expression in mares susceptible to persistent mating-induced endometritis. Reprod Domest Anim 2016; 52:89-96. [PMID: 27686063 DOI: 10.1111/rda.12813] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/29/2016] [Indexed: 11/29/2022]
Abstract
In the horse, breeding induces a transient endometrial inflammation. A subset of mares are unable to resolve this inflammation, and they are considered susceptible to persistent mating-induced endometritis PMIE Select seminal plasma proteins cysteine-rich secretory protein-3 (CRISP-3) and lactoferrin have been shown to affect the innate immune response to sperm in vitro. The objective of this study was to determine whether the addition of CRISP-3 and lactoferrin at the time of insemination had an effect on the mRNA expression of endometrial cytokines in susceptible mares after breeding. Six mares classified as susceptible to PMIE were inseminated during four consecutive oestrous cycles with treatments in randomized order of: 1 mg/ml CRISP-3, 150 μg/ml lactoferrin, seminal plasma (positive control) or lactated Ringer's solution (LRS; negative control) to a total volume of 10 ml combined with 1 × 109 spermatozoa pooled from two stallions. Six hours after treatment, an endometrial biopsy was obtained for qPCR analysis of selected genes associated with inflammation (pro-inflammatory cytokines interleukin (IL)-1β, IL-8, tumour necrosis factor (TNF)-α, interferon (INF)-γ, anti-inflammatory cytokines IL-1RN and IL-10, and inflammatory-modulating cytokine IL-6). Seminal plasma treatment increased the mRNA expression of IL-1β (p = .019) and IL-8 (p = .0068), while suppressing the mRNA expression of TNF (p = .0013). Lactoferrin also suppressed the mRNA expression of TNF (p = .0013). In conclusion, exogenous lactoferrin may be considered as one modulator of the complex series of events resulting in the poorly regulated pro-inflammatory response seen in susceptible mares.
Collapse
Affiliation(s)
- C E Fedorka
- Department of Veterinary Science, College of Agriculture Food and Environment, University of Kentucky, Lexington, KY, USA
| | - K E Scoggin
- Department of Veterinary Science, College of Agriculture Food and Environment, University of Kentucky, Lexington, KY, USA
| | - E M Woodward
- Department of Clinical Sciences, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E L Squires
- Department of Veterinary Science, College of Agriculture Food and Environment, University of Kentucky, Lexington, KY, USA
| | - B A Ball
- Department of Veterinary Science, College of Agriculture Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Mht Troedsson
- Department of Veterinary Science, College of Agriculture Food and Environment, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
27
|
Chauhan AS, Rawat P, Malhotra H, Sheokand N, Kumar M, Patidar A, Chaudhary S, Jakhar P, Raje CI, Raje M. Secreted multifunctional Glyceraldehyde-3-phosphate dehydrogenase sequesters lactoferrin and iron into cells via a non-canonical pathway. Sci Rep 2015; 5:18465. [PMID: 26672975 PMCID: PMC4682080 DOI: 10.1038/srep18465] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/18/2015] [Indexed: 01/08/2023] Open
Abstract
Lactoferrin is a crucial nutritionally important pleiotropic molecule and iron an essential trace metal for all life. The current paradigm is that living organisms have evolved specific membrane anchored receptors along with iron carrier molecules for regulated absorption, transport, storage and mobilization of these vital nutrients. We present evidence for the existence of non-canonical pathway whereby cells actively forage these vital resources from beyond their physical boundaries, by secreting the multifunctional housekeeping enzyme Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) into the extracellular milieu. This effect’s an autocrine/paracrine acquisition of target ligand into the cell. Internalization by this route is extensively favoured even by cells that express surface receptors for lactoferrin and involves urokinase plasminogen activator receptor (uPAR). We also demonstrate the operation of this phenomenon during inflammation, as an arm of the innate immune response where lactoferrin denies iron to invading microorganisms by chelating it and then itself being sequestered into surrounding host cells by GAPDH.
Collapse
Affiliation(s)
- Anoop S Chauhan
- Institute of Microbial Technology, CSIR, Sector 39A, INDIA-160036 Chandigarh
| | - Pooja Rawat
- Institute of Microbial Technology, CSIR, Sector 39A, INDIA-160036 Chandigarh
| | - Himanshu Malhotra
- Institute of Microbial Technology, CSIR, Sector 39A, INDIA-160036 Chandigarh
| | - Navdeep Sheokand
- Institute of Microbial Technology, CSIR, Sector 39A, INDIA-160036 Chandigarh
| | - Manoj Kumar
- Institute of Microbial Technology, CSIR, Sector 39A, INDIA-160036 Chandigarh
| | - Anil Patidar
- Institute of Microbial Technology, CSIR, Sector 39A, INDIA-160036 Chandigarh
| | - Surbhi Chaudhary
- Institute of Microbial Technology, CSIR, Sector 39A, INDIA-160036 Chandigarh
| | - Priyanka Jakhar
- Institute of Microbial Technology, CSIR, Sector 39A, INDIA-160036 Chandigarh
| | - Chaaya I Raje
- National Institute of Pharmaceutical Education &Research, Phase X, Sector 67, SAS Nagar, INDIA-160062 Punjab
| | - Manoj Raje
- Institute of Microbial Technology, CSIR, Sector 39A, INDIA-160036 Chandigarh
| |
Collapse
|
28
|
Bringiotti R, Ierardi E, Lovero R, Losurdo G, Leo AD, Principi M. Intestinal microbiota: The explosive mixture at the origin of inflammatory bowel disease? World J Gastrointest Pathophysiol 2014; 5:550-559. [PMID: 25400998 PMCID: PMC4231519 DOI: 10.4291/wjgp.v5.i4.550] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/02/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBDs), namely Crohn’s disease and ulcerative colitis, are lifelong chronic disorders arising from interactions among genetic, immunological and environmental factors. Although the origin of IBDs is closely linked to immune response alterations, which governs most medical decision-making, recent findings suggest that gut microbiota may be involved in IBD pathogenesis. Epidemiologic evidence and several studies have shown that a dysregulation of gut microbiota (i.e., dysbiosis) may trigger the onset of intestinal disorders such as IBDs. Animal and human investigations focusing on the microbiota-IBD relationship have suggested an altered balance of the intestinal microbial population in the active phase of IBD. Rigorous microbiota typing could, therefore, soon become part of a complete phenotypic analysis of IBD patients. Moreover, individual susceptibility and environmental triggers such as nutrition, medications, age or smoking could modify bacterial strains in the bowel habitat. Pharmacological manipulation of bowel microbiota is somewhat controversial. The employment of antibiotics, probiotics, prebiotics and synbiotics has been widely addressed in the literature worldwide, with the aim of obtaining positive results in a number of IBD patient settings, and determining the appropriate timing and modality of this intervention. Recently, novel treatments for IBDs, such as fecal microbiota transplantation, when accepted by patients, have shown promising results. Controlled studies are being designed. In the near future, new therapeutic strategies can be expected, with non-pathogenic or modified food organisms that can be genetically modified to exert anti-inflammatory properties.
Collapse
|
29
|
Lo Sciuto A, Fernández-Piñar R, Bertuccini L, Iosi F, Superti F, Imperi F. The periplasmic protein TolB as a potential drug target in Pseudomonas aeruginosa. PLoS One 2014; 9:e103784. [PMID: 25093328 PMCID: PMC4122361 DOI: 10.1371/journal.pone.0103784] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/05/2014] [Indexed: 01/09/2023] Open
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa is one of the most dreaded pathogens in the hospital setting, and represents a prototype of multi-drug resistant "superbug" for which effective therapeutic options are very limited. The identification and characterization of new cellular functions that are essential for P. aeruginosa viability and/or virulence could drive the development of anti-Pseudomonas compounds with novel mechanisms of action. In this study we investigated whether TolB, the periplasmic component of the Tol-Pal trans-envelope protein complex of Gram-negative bacteria, represents a potential drug target in P. aeruginosa. By combining conditional mutagenesis with the analysis of specific pathogenicity-related phenotypes, we demonstrated that TolB is essential for P. aeruginosa growth, both in laboratory and clinical strains, and that TolB-depleted P. aeruginosa cells are strongly defective in cell-envelope integrity, resistance to human serum and several antibiotics, as well as in the ability to cause infection and persist in an insect model of P. aeruginosa infection. The essentiality of TolB for P. aeruginosa growth, resistance and pathogenicity highlights the potential of TolB as a novel molecular target for anti-P. aeruginosa drug discovery.
Collapse
Affiliation(s)
- Alessandra Lo Sciuto
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Regina Fernández-Piñar
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Lucia Bertuccini
- Ultrastructural Infectious Pathology Section, Department of Technology and Health, National Institute of Health, Rome, Italy
| | - Francesca Iosi
- Ultrastructural Infectious Pathology Section, Department of Technology and Health, National Institute of Health, Rome, Italy
| | - Fabiana Superti
- Ultrastructural Infectious Pathology Section, Department of Technology and Health, National Institute of Health, Rome, Italy
| | - Francesco Imperi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| |
Collapse
|