1
|
Liu N, Liu M, Jiang M, Li Z, Chen W, Wang W, Fu X, Qi M, Ali MH, Zou N, Liu Q, Tang H, Chu S. Isoliquiritigenin alleviates the development of alcoholic liver fibrosis by inhibiting ANXA2. Biomed Pharmacother 2023; 159:114173. [PMID: 36680814 DOI: 10.1016/j.biopha.2022.114173] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023] Open
Abstract
The study aimed to investigate the effect of isoliquiritigenin (ISL) on model of alcoholic liver fibrosis (ALF). C57BL/6 mice were used to establish animal model of ALF, HSC-T6 cells were used to establish alcohol-activated cell model, and tandem mass tag (TMT) assays were used to analyze the proteome. The results showed that ISL obviously alleviated hepatic fibrosis in model mice. ISL visually improved the area of liver pathological stasis and deposition of fibrillar collagen (Sirius Red staining, Masson staining), inhibited the mRNA expression levels of interleukin 6 (IL-6), tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) in liver tissues. ISL down-regulated the mRNA expression levels of IL-6 and transforming growth factor-β1(TGF-β1) in activated hepatic stellate cells (HSCs). And ISL significantly reduced annexin A2 (ANXA2) in vitro detected by TMT proteomics technology. Interestingly, it was found for the first time that ISL could inhibit ANXA2 expression both in vivo and in vitro, block the sphingosine kinases (SPHKs)/sphingosine-1-phosphate (S1P)/interleukin 17 (IL-17) signaling pathway and regulate the expression of α-smooth muscle actin (α-SMA) by inhibiting the phosphorylation of signal transducer and activator of transcription 3 (STAT3) at the downstream signal to finally reverse HSCs activation and hepatic fibrosis. Thus, we demonstrated that ISL is a drug monomer with notable anti-hepatic fibrosis activity.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Min Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Mengwei Jiang
- Alcohol Research Center, University of Louisville, Louisville, KY, USA
| | - Zhenwei Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Weijun Chen
- School of Traditional Chinese Medicine, Xinjiang Second Medical College, Shengli Road 12, Karamay, China
| | - Wenxuan Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Xianglei Fu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Man Qi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Md Hasan Ali
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Nan Zou
- First Affiliated Hospital, School of Medicine, Shihezi University, North 2nd Road 107, Shihezi, China
| | - Qingguang Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Hui Tang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China.
| | - Shenghui Chu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China.
| |
Collapse
|
2
|
Norcia LF, Watanabe EM, Hamamoto Filho PT, Hasimoto CN, Pelafsky L, de Oliveira WK, Sassaki LY. Polycystic Liver Disease: Pathophysiology, Diagnosis and Treatment. Hepat Med 2022; 14:135-161. [PMID: 36200122 PMCID: PMC9528914 DOI: 10.2147/hmer.s377530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Polycystic liver disease (PLD) is a clinical condition characterized by the presence of more than 10 cysts in the liver. It is a rare disease Of genetic etiology that presents as an isolated disease or assoc\iated with polycystic kidney disease. Ductal plate malformation, ciliary dysfunction, and changes in cell signaling are the main factors involved in its pathogenesis. Most patients with PLD are asymptomatic, but in 2-5% of cases the disease has disabling symptoms and a significant reduction in quality of life. The diagnosis is based on family history of hepatic and/or renal polycystic disease, clinical manifestations, patient age, and polycystic liver phenotype shown on imaging examinations. PLD treatment has evolved considerably in the last decades. Somatostatin analogues hold promise in controlling disease progression, but liver transplantation remains a unique curative treatment modality.
Collapse
Affiliation(s)
- Luiz Fernando Norcia
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Erika Mayumi Watanabe
- Department of Radiology, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Pedro Tadao Hamamoto Filho
- Department of Neurology, Psychology and Psychiatry, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Claudia Nishida Hasimoto
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Leonardo Pelafsky
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Walmar Kerche de Oliveira
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Ligia Yukie Sassaki
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| |
Collapse
|
3
|
Wang G, Duan J, Pu G, Ye C, Li Y, Xiu W, Xu J, Liu B, Zhu Y, Wang C. The Annexin A2-Notch regulatory loop in hepatocytes promotes liver fibrosis in NAFLD by increasing osteopontin expression. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166413. [PMID: 35413401 DOI: 10.1016/j.bbadis.2022.166413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND The mechanisms underlying the progression of liver disease from simple hepatic steatosis to advanced nonalcoholic steatohepatitis (NASH) and liver fibrosis warrant further investigation. Increased mRNA levels of Annexin A2 protein (Anxa2) have been observed in patients with NASH. However, the role of Anxa2 in NASH remains unclear. METHODS The protein levels of Anxa2 were analyzed in the livers of mice and patients with NASH. Anxa2-knockout and -knockdown mice were generated, and NASH was induced through a high fructose, palmitate, and cholesterol (FPC) diet or methionine- and choline-deficient (MCD) diet. FINDINGS We found elevated expression of Anxa2 in the livers of patients and mice with NASH. Anxa2 knockdown but not knockout ameliorated liver fibrosis in both FPC and MCD diet-fed mice. Liver-specific Anxa2 overexpression increased collagen deposition in mice fed a normal diet. Mechanistically, Anxa2 overexpression in hepatocytes promoted hepatic stellate cell activation in a paracrine manner by increasing osteopontin expression. Notch inhibition suppressed the exogenous overexpression of Anxa2-induced osteopontin and endogenous Anxa2 expression. Additionally, Anxa2 overexpression accelerated the progression of nonalcoholic fatty liver disease (NAFLD) in mice fed a high-fat diet. Moreover, Anxa2 levels were higher in NAFLD patients with advanced liver fibrosis than in those with mild liver fibrosis, as determined using the Gene Expression Omnibus database. INTERPRETATION In conclusion, we found increased Anxa2 expression in hepatocytes promoted liver fibrosis in NASH mice by increasing osteopontin expression. The Anxa2-Notch positive regulatory loop contributes to this process and represents a novel target for the treatment of NASH-related liver fibrosis.
Collapse
Affiliation(s)
- Guangyan Wang
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Jinjie Duan
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Guangyin Pu
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Chenji Ye
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Yue Li
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wenjing Xiu
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Jingwen Xu
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Ben Liu
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yi Zhu
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Chunjiong Wang
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China; School of Nursing, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
4
|
Zhu T, Zhang L, Li C, Tan X, Liu J, Huiqin Li, Fan Q, Zhang Z, Zhan M, Fu L, Luo J, Geng J, Wu Y, Zou X, Liang B. The S100 calcium binding protein A11 promotes liver fibrogenesis by targeting TGF-β signaling. J Genet Genomics 2022; 49:338-349. [PMID: 35240304 DOI: 10.1016/j.jgg.2022.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/16/2022]
Abstract
Liver fibrosis is a key transformation stage and also a reversible pathological process in various types of chronic liver diseases. However, the pathogenesis of liver fibrosis still remains elusive. Here, we report that the calcium binding protein A11 (S100A11) is consistently upregulated in the integrated data from GSE liver fibrosis and tree shrew liver proteomics. S100A11 is also experimentally activated in liver fibrosis in mouse, rat, tree shrew, and human with liver fibrosis. While overexpression of S100A11 in vivo and in vitro exacerbates liver fibrosis, the inhibition of S100A11 improves liver fibrosis. Mechanistically, S100A11 activates hepatic stellate cells (HSCs) and the fibrogenesis process via the regulation of the deacetylation of Smad3 in the TGF-β signaling pathway. S100A11 physically interacts with SIRT6, a deacetylase of Smad2/3, which may competitively inhibit the interaction between SIRT6 and Smad2/3. The subsequent release and activation of Smad2/3 promote the activation of HSCs and fibrogenesis. Additionally, a significant elevation of S100A11 in serum is observed in clinical patients. Our study uncovers S100A11 as a novel profibrogenic factor in liver fibrosis, which may represent both a potential biomarker and a promising therapy target for treating liver fibrosis and fibrosis-related liver diseases.
Collapse
Affiliation(s)
- Tingting Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Linqiang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Chengbin Li
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Xiaoqiong Tan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jing Liu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Huiqin Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Qijing Fan
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Zhiguo Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Mingfeng Zhan
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Lin Fu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Jinbo Luo
- Infectious Diseases Department and Hepatic Diseases Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, China; Infectious Diseases Department and Hepatic Diseases Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650034, China
| | - Jiawei Geng
- Infectious Diseases Department and Hepatic Diseases Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, China; Infectious Diseases Department and Hepatic Diseases Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650034, China.
| | - Yingjie Wu
- School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center,Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250021, China; Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Liaoning Provence Key Lab of Genome Engineered Animal Models Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Xiaoju Zou
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China.
| |
Collapse
|
5
|
Cordido A, Vizoso-Gonzalez M, Nuñez-Gonzalez L, Molares-Vila A, Chantada-Vazquez MDP, Bravo SB, Garcia-Gonzalez MA. Quantitative Proteomic Study Unmasks Fibrinogen Pathway in Polycystic Liver Disease. Biomedicines 2022; 10:290. [PMID: 35203500 PMCID: PMC8869147 DOI: 10.3390/biomedicines10020290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Polycystic liver disease (PLD) is a heterogeneous group of congenital disorders characterized by bile duct dilatation and cyst development derived from cholangiocytes. Nevertheless, the cystogenesis mechanism is currently unknown and the PLD treatment is limited to liver transplantation. Novel and efficient therapeutic approaches are th6us needed. In this context, the present work has a principal aim to find novel molecular pathways, as well as new therapeutic targets, involved in the hepatic cystogenesis process. (2) Methods: Quantitative proteomics based on SWATH-MS technology were performed comparing hepatic proteomes of Wild Type and mutant/polycystic livers in a polycystic kidney disease (PKD) murine model (Pkd1cond/cond;Tam-Cre-/+). (3) Results: We identified several proteins altered in abundance, with two-fold cut-off up-regulation or down-regulation and an adjusted p-value significantly related to hepatic cystogenesis. Then, we performed enrichment and a protein-protein analysis identifying a cluster focused on hepatic fibrinogens. Finally, we validated a selection of targets by RT-qPCR, Western blotting and immunohistochemistry, finding a high correlation with quantitative proteomics data and validating the fibrinogen complex. (4) Conclusions: This work identified a novel molecular pathway in cystic liver disease, highlighting the fibrinogen complex as a possible new therapeutic target for PLD.
Collapse
Affiliation(s)
- Adrian Cordido
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.); (L.N.-G.)
- Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain
| | - Marta Vizoso-Gonzalez
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.); (L.N.-G.)
- Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain
| | - Laura Nuñez-Gonzalez
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.); (L.N.-G.)
- Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain
| | - Alberto Molares-Vila
- Biostatistics Platform, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain;
| | - Maria del Pilar Chantada-Vazquez
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain;
| | - Susana B. Bravo
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain;
| | - Miguel A. Garcia-Gonzalez
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.); (L.N.-G.)
- Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain
- Galician Public Foundation of Genomic Medicine, Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
6
|
Yang R, Wang D, Han S, Gu Y, Li Z, Deng L, Yin A, Gao Y, Li X, Yu Y, Wang X. MiR-206 suppresses the deterioration of intrahepatic cholangiocarcinoma and promotes sensitivity to chemotherapy by inhibiting interactions with stromal CAFs. Int J Biol Sci 2022; 18:43-64. [PMID: 34975317 PMCID: PMC8692143 DOI: 10.7150/ijbs.62602] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Intrahepatic cholangiocarcinoma (iCCA) is a highly malignant subtype of cholangiocarcinoma (CCA) with poor prognosis. In iCCA, the interplay between the stroma and tumor cells results in resistance to adjuvant chemotherapy. Increasing evidence indicates that miR-206 participates in tumor progression, but its role in iCCA is still unclear. The aim of this study was to identify dysregulated miR-206 expression in iCCA and to further explore the underlying mechanism. Methods: MiR-206 expression was proven to be downregulated in iCCA tissues by qPCR, and its correlation with clinical characteristics and prognosis was investigated. iCCA-derived cancer-associated fibroblast cells (CAFs) and normal fibroblast cells (NFs) were isolated and identified. MiR-206 was knocked in or down in CAFs and CCA cells, respectively, to explore the role of miR-206, and coculture of these treated CCAs and CAFs was conducted to explore the effects of miR-206 on their mutual promoting effects. Exosomes carrying miR-206 and an orthotopic mouse model were used to determine the inhibitory effects of miR-206 on iCCA deterioration in vivo. Results: We confirmed that miR-206 is a suppressor of iCCA. Overexpressing miR-206 in CCA cells inhibited cell proliferation, migration and invasion. When cocultured with CCA cells, NFs downregulated miR-206 expression, and NFs were susceptible to transforming into CAFs. Moreover, CAFs promoted CCA cell malignant behaviors and gemcitabine resistance. Overexpressing miR-206 in CAFs or CCA cells inhibited this mutual promoting effect. Additionally, when delivered by exosomes, miR-206 suppressed tumor deterioration. And combined with gemcitabine, this treatment resulted in a longer survival time. Conclusion: Our study explained that the interaction between CCA cells and CAFs promoted iCCA deterioration. As a suppressive factor, miR-206 inhibited aggressive characteristics and gemcitabine resistance by interfering with this mutual promoting effect. This research elucidated the molecular mechanism underlying the unfavorable chemotherapeutic response of patients with iCCA, which provided a promising target for iCCA treatment.
Collapse
Affiliation(s)
- Renjie Yang
- School of Medicine, Southeast University, Nanjing, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Dong Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Shen Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yichao Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Zhi Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Lei Deng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Aihong Yin
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yun Gao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yue Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Xuehao Wang
- School of Medicine, Southeast University, Nanjing, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| |
Collapse
|
7
|
Ding YG, Zhao YL, Zhang J, Zuo ZT, Zhang QZ, Wang YZ. The traditional uses, phytochemistry, and pharmacological properties of Paris L. (Liliaceae): A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114293. [PMID: 34102270 DOI: 10.1016/j.jep.2021.114293] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paris L. (Liliaceae) consisted of 33 species, of which the study focused on Paris polyphylla Smith, P. polyphylla var. chinensis (Franch.) Hara, and P. polyphylla Smith var. yunnanensis (Franch.) Hand. -Mazz. Due of course to the good effects of analgesia and hemostasis, it was traditionally used to treat trauma by folk herbalists. AIM OF THIS REVIEW This study summarized the traditional uses, distributions, phytochemical components, pharmacological properties, and toxicity evaluation of the genus Paris, and reviewed the economic value of cultivate P. polyphylla. This aim was that of providing a new and comprehensive recognition of these medicinal plants for the further utilization of Paris plants. MATERIALS AND METHODS The literature about traditional and folk uses of genus Paris was obtained from Duxiu Search, and China National Knowledge Infrastructure (CNKI). The other literature about genus Paris was searched online on Web of Science, PubMed, Google Scholar, Baidu Scholar, Scifinder database, and Springer research. The Scientific Database of China Plant Species (DCP) (http://db.kib.ac.cn/Default.aspx) databases were used to check the scientific names and provide species, varieties, and distribution of genus Paris. The botany studies information of genus Paris was available online from Plant Plus of China (www.iplant.cn). All the molecular structures of chemical compounds displayed in the text were produced by ChemBioDraw Ultra 14.0. RESULTS The plants of genus Paris, containing about 33 species and 15 varieties, are mainly distributed in Southwest China (Yunnan, Sichuan, and Guizhou provinces). More than 320 chemical components have been isolated from genus Paris since 2020, including steroidal saponins, C-21 steroids, phytosterols, insect hormones, pentacyclic triterpenes, flavonoids, and other compounds. Arrays of pharmacological investigations revealed that compounds and extracts of Paris species possess a wide spectrum of pharmacological effects, such as antitumor, cytotoxic, antimicrobial, antifungal, hemostatic, and anti-inflammatory activities. The studies about toxicity evaluation suggested that Rhizome Paridis had slight liver toxicity. CONCLUSIONS The dried rhizomes of P. polyphylla, P. polyphylla var. chinensis, and P. polyphylla var. yunnanensis were used to treat wound, bleeding, and stomachache, etc. in folk medicine. Phytochemistry researches showed that different species had pretty similarities especially in terms of chemical constituents. Pharmacological studies witnessed that Rhizome Paridis has various activities. Among these activities, steroidal saponins were the main active ingredients. Furthermore, an important aspect responsible for increasing interest in genus Paris is the use of antifertility-nonhormonal contraceptives by women. Also, the development of TCM (Traditional Chinese medicine) planting industry can improve the income of ethnic minorities and promote economic development.
Collapse
Affiliation(s)
- Yu-Gang Ding
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yan-Li Zhao
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Ji Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Zhi-Tian Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Qing-Zhi Zhang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.
| |
Collapse
|
8
|
Huang SW, Chen YC, Lin YH, Yeh CT. Clinical Limitations of Tissue Annexin A2 Level as a Predictor of Postoperative Overall Survival in Patients with Hepatocellular Carcinoma. J Clin Med 2021; 10:jcm10184158. [PMID: 34575275 PMCID: PMC8465313 DOI: 10.3390/jcm10184158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second common cause of cancer-related death in Taiwan. Tumor recurrence is frequently observed in HCC patients receiving surgical resection, resulting in unsatisfactory overall survival (OS). Therefore, it is pivotal to identify effective prognostic makers, so that intensive surveillance or adjuvant treatments can be applied to predictively unfavorable patients. Previous studies indicated that Annexin A2 (ANXA2) was an effective prognostic marker in several cancers, including HCC. However, the prognostic value of ANXA2 in Taiwanese HCC patients remains unclear, where a great proportion of patients had chronic hepatitis B with liver cirrhosis. Here, ANXA2 was highly expressed in HCC tissues compared with para-neoplastic noncancerous tissues. Furthermore, high ANXA2 expression in HCC tissues independently predicted shorter OS. In subgroup analysis, however, ANXA2 expression could not effectively predict OS in the following subgroups: female, age > 65 years old, Child–Pugh classification B, hepatitis B virus surface antigen negative or anti-hepatitis C antibody positive, alcoholism, tumor number >1, presence of micro- or macrovascular invasion, absence of capsule, non-cirrhosis and high alpha-fetoprotein. In conclusion, ANXA2 expression in HCC tissues could predict postoperative OS. However, the predictive value was limited in patients with specific clinical conditions.
Collapse
Affiliation(s)
- Shu-Wei Huang
- Department of Gastroenterology and Hepatology, New Taipei Municipal Tucheng Hospital, New Taipei 236, Taiwan;
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Yen-Chin Chen
- Graduate Institute of Clinical Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- Correspondence: (Y.-H.L.); (C.-T.Y.); Tel.: +886-3328-1200 (ext. 7785) (Y.-H.L.); +886-3328-1200 (ext. 8129) (C.-T.Y.); Fax: +886-3328-2824 (C.-T.Y.)
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- Correspondence: (Y.-H.L.); (C.-T.Y.); Tel.: +886-3328-1200 (ext. 7785) (Y.-H.L.); +886-3328-1200 (ext. 8129) (C.-T.Y.); Fax: +886-3328-2824 (C.-T.Y.)
| |
Collapse
|
9
|
Lim HI, Hajjar KA. Annexin A2 in Fibrinolysis, Inflammation and Fibrosis. Int J Mol Sci 2021; 22:6836. [PMID: 34202091 PMCID: PMC8268605 DOI: 10.3390/ijms22136836] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
As a cell surface tissue plasminogen activator (tPA)-plasminogen receptor, the annexin A2 (A2) complex facilitates plasmin generation on the endothelial cell surface, and is an established regulator of hemostasis. Whereas A2 is overexpressed in hemorrhagic disease such as acute promyelocytic leukemia, its underexpression or impairment may result in thrombosis, as in antiphospholipid syndrome, venous thromboembolism, or atherosclerosis. Within immune response cells, A2 orchestrates membrane repair, vesicle fusion, and cytoskeletal organization, thus playing a critical role in inflammatory response and tissue injury. Dysregulation of A2 is evident in multiple human disorders, and may contribute to the pathogenesis of various inflammatory disorders. The fibrinolytic system, moreover, is central to wound healing through its ability to remodel the provisional matrix and promote angiogenesis. A2 dysfunction may also promote tissue fibrogenesis and end-organ fibrosis.
Collapse
Affiliation(s)
- Hana I. Lim
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Katherine A. Hajjar
- Division of Hematology and Oncology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
10
|
Liu X, Wang D, Yang W, Wu X. Oxymatrine exerts anti-fibrotic effects in a rat model of hepatic fibrosis by suppressing endoplasmic reticulum stress. J Int Med Res 2020; 48:300060520961681. [PMID: 33044865 PMCID: PMC7556176 DOI: 10.1177/0300060520961681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE This study evaluated the anti-fibrotic effects of oxymatrine and the role of endoplasmic reticulum (ER) stress in hepatic fibrosis (HF) in animal models. METHODS The HF rat model was established by exposure to NaAsO2, followed by treatment with oxymatrine. Biomarkers of HF and ER stress were measured. The difference in protein expression between groups was evaluated using isobaric tag for relative and absolute quantification (iTRAQ) analysis. The mechanism by which oxymatrine modulated ER stress to alleviate arsenic-induced HF was evaluated using LX2 hepatic stellate cells in vitro. RESULTS The rat model mimicked the pathological and physical phenotypes of HF including ER stress, oxidative stress, impaired liver function, and fibrosis. Treatment with oxymatrine suppressed these responses. Moreover, apoptosis, inflammation, and hepatic stellate cell activation were also inhibited by oxymatrine treatment. The differentially expressed proteins and pathways related to ER stress were identified in the HF and oxymatrine-treated groups via iTRAQ analysis combined with liquid chromatography-mass spectrometry. LX2 cells were activated by NaAsO2 in vitro. Meanwhile, oxymatrine suppressed the activation of LX2 cells by alleviating ER stress and regulating cellular calcium homeostasis. CONCLUSIONS Oxymatrine could reverse NaAsO2-induced HF by alleviating ER stress.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Pharmacy, Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Dong Wang
- Department of Medical Comprehensive, Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Wenping Yang
- Department of Medical Comprehensive, Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Xiaomeng Wu
- Department of Pharmacy, Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
11
|
Xiong K, Shi M, Zhang T, Han H. Protective effect of picroside I against hepatic fibrosis in mice via sphingolipid metabolism, bile acid biosynthesis, and PPAR signaling pathway. Biomed Pharmacother 2020; 131:110683. [PMID: 32942155 DOI: 10.1016/j.biopha.2020.110683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 12/31/2022] Open
Abstract
Picroside I, a hepatoprotectant isolated from Picrorhiza kurroa Royle ex Benth and P. scrophulariiflora Pennell, can reduce liver injury in humans and animals. However, its anti-fibrosis effect remains elusive. This work aimed to explore the mechanism underlying the hepatoprotective effect of picroside I against hepatic fibrosis. Male mice (12 mice per group) were randomly divided into six groups: the control group; the model group, which received thioacetamide (TAA); the positive group, which received TAA + S-(5'-adenosyl)-l-methionine (SAMe, 10 mg/kg); the low-dose group, which received TAA + picroside I (25 mg/kg); the middle-dose group, which received TAA + picroside I (50 mg/kg); and the high-dose group, which received TAA + picroside I (75 mg/kg). Serum biochemical indicators were detected, and histological evaluation was performed. Metabolomics and proteomic analyses were conducted via liquid-chromatography coupled with tandem mass spectrometry (LC-MS/MS). Data showed that picroside I could decrease the serum levels of alanine transaminase (ALT), aspartate transaminase (AST), collagen type IV (CIV), N-terminal peptide of type III procollagen (PIIINP), laminin (LN), and hyaluronic acid (HA) and reduced fibrosis area. Picroside I altered metabolomic profiles, including energy, lipid, and glutathione (GSH) metabolism, in ice with fibrosis. Additionally, 25 differentially expressed proteins in the picroside I high-dose-treated group were reversed relative to in the model group. These proteins were involved in the sphingolipid signaling pathway, primary bile acid biosynthesis, and peroxisome proliferator-activated receptor (PPAR) signaling pathway. Moreover, this study revealed how picroside I could protect against TAA-induced liver fibrosis in mice. Results indicated that picroside I can serve as a candidate drug for hepatic fibrosis.
Collapse
Affiliation(s)
- Kai Xiong
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Mengge Shi
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| | - Han Han
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; Institute of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| |
Collapse
|
12
|
Wang H, Han B, Wang N, Lu Y, Gao T, Qu Z, Yang H, Yang Q. Oxymatrine attenuates arsenic-induced endoplasmic reticulum stress and calcium dyshomeostasis in hepatic stellate cells. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1171. [PMID: 33241020 PMCID: PMC7576087 DOI: 10.21037/atm-20-5881] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Oxymatrine is the main bioactive component of Sophora flavescens. It exhibits various biological activities and has been used in various liver diseases, including hepatic fibrosis (HF). Hepatic stellate cells (HSCs) are the primary cell type involved during HF progression. Oxymatrine treatment could suppress the proliferation of HSCs and degrade the extracellular cell matrix (ECM), presumed to be associated with HF. However, the mechanism is still unknown. Methods NaAsO2 induces HF in LX2 cells. Oxymatrine was used to treat NaAsO2- induced LX2 cells. Then, the LX2 cell proliferation, apoptosis, ECM secretion protein, oxidative stress index, and intracellular calcium concentration were respectively measured. Furthermore, after knocking down GRP78 [endoplasmic reticulum (ER) chaperone BiP] or overexpressing of SERCA2 (ATPase sarcoplasmic/ER Ca2+ transporting 2) in NaAsO2-induced LX2 cells, we detected the changes in ER stress and calcium homeostasis in LX2 cells. Results NaAsO2 exposure promoted apoptosis, increased ECM secretion, produced ER stress, and disrupted calcium homeostasis, which could be attenuated by oxymatrine treatment. Furthermore, knockdown of GRP78 to alleviate ER stress, or overexpression of SERCA2 to restore intracellular calcium homeostasis can inhibit the NaAsO2 effect. Conclusions Oxymatrine treatment could improve calcium homeostasis and attenuate ER stress to reverse NaAsO2-induced HSC activation and ECM secretion, which are the significant phenotypes of HF. The ER stress and calcium homeostasis may be the therapeutic targets for HF.
Collapse
Affiliation(s)
- Huiqun Wang
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China.,Department of Pathophysiology, Ministry of Education, Guizhou Medical University, Guiyang, China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Bing Han
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China.,Department of Pathophysiology, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Nanlan Wang
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yang Lu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Ting Gao
- Department of Pathology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zihan Qu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Hongmei Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Qin Yang
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
13
|
Joaquim HPG, Costa AC, Serpa MH, Talib LL, Gattaz WF. Reduced Annexin A3 in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2020; 270:489-494. [PMID: 31372726 DOI: 10.1007/s00406-019-01048-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022]
Abstract
The cellular and molecular mechanisms underlying onset and development of schizophrenia have not yet been completely elucidated, but the association of disturbed neuroplasticity and inflammation has gained particular relevance recently. These mechanisms are linked to annexins functions. ANXA3, particularly, is associated to inflammation and membrane metabolism cascades. The aim was to determine the ANXA3 levels in first-onset drug-naïve psychotic patients. We investigated by western blot the protein expression of annexin A3 in platelets of first-onset, drug-naïve psychotic patients (diagnoses according to DSM-IV: 28 schizophrenia, 27 bipolar disorder) as compared to 30 age- and gender-matched healthy controls. Annexin A3 level was lower in schizophrenia patients as compared to healthy controls (p < 0.001) and to bipolar patients (p < 0.001). Twenty out of 28 schizophrenic patients had undetectable annexin A3 levels, as compared to none from the bipolar and none from the control subjects. ANXA3 was reduced in drug-naïve patients with schizophrenia. ANXA3 affects neuroplasticity, inflammation and apoptosis, as well as it modulates membrane phospholipid metabolism. All these processes have been discussed in regard to the biology of schizophrenia. In face of these data, we feel that further studies with larger samples are warranted to investigate the possible role of reduced ANXA3 as a possible risk marker for schizophrenia.
Collapse
Affiliation(s)
- Helena P G Joaquim
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785, 3º andar, São Paulo, SP, 05403-010, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, São Paulo, Brazil
| | - Alana Caroline Costa
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785, 3º andar, São Paulo, SP, 05403-010, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, São Paulo, Brazil
| | - Maurício Henriques Serpa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Leda L Talib
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785, 3º andar, São Paulo, SP, 05403-010, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, São Paulo, Brazil
| | - Wagner F Gattaz
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785, 3º andar, São Paulo, SP, 05403-010, Brazil. .,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, São Paulo, Brazil.
| |
Collapse
|
14
|
Sato K, Glaser S, Francis H, Alpini G. Concise Review: Functional Roles and Therapeutic Potentials of Long Non-coding RNAs in Cholangiopathies. Front Med (Lausanne) 2020; 7:48. [PMID: 32154257 PMCID: PMC7045865 DOI: 10.3389/fmed.2020.00048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are RNAs with lengths exceeding 200 nucleotides that are not translated into proteins. It is well-known that small non-coding RNAs, such as microRNAs (miRNAs), regulate gene expression and play an important role in cholangiopathies. Recent studies have demonstrated that lncRNAs may also play a key role in the pathophysiology of cholangiopathies. Patients with cholangiopathies often develop cholangiocarcinoma (CCA), which is cholangiocyte-derived cancer, in the later stage. Cholangiocytes are a primary target of therapies for cholangiopathies and CCA development. Previous studies have demonstrated that expression levels of lncRNAs are altered in the liver of cholangiopathies or CCA tissues. Some lncRNAs regulate gene expression by inhibiting functions of miRNAs leading to diseased liver conditions or CCA progression, suggesting that lncRNAs could be a novel therapeutic target for those disorders. This review summarizes current understandings of functional roles of lncRNAs in cholangiopathies and seek their potentials for novel therapies.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, College of Medicine, Bryan, TX, United States
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| |
Collapse
|
15
|
Jia Z, Zhao C, Wang M, Zhao X, Zhang W, Han T, Xia Q, Han Z, Lin R, Li X. Hepatotoxicity assessment of Rhizoma Paridis in adult zebrafish through proteomes and metabolome. Biomed Pharmacother 2020; 121:109558. [DOI: 10.1016/j.biopha.2019.109558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022] Open
|
16
|
Nuerzhati Y, Dong R, Song Z, Zheng S. Role of the long non‑coding RNA‑Annexin A2 pseudogene 3/Annexin A2 signaling pathway in biliary atresia‑associated hepatic injury. Int J Mol Med 2018; 43:739-748. [PMID: 30569159 PMCID: PMC6317672 DOI: 10.3892/ijmm.2018.4023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 11/21/2018] [Indexed: 12/29/2022] Open
Abstract
Biliary atresia (BA) is the most common cause of chronic cholestasis in children. The long non‑coding RNA (lncRNA) Annexin A2 pseudogene 3 (ANXA2P3) and Annexin A2 (ANXA2) have been suggested to serve pivotal roles in BA; however, the clinical significance and biological roles of ANXA2P3 and ANXA2 in BA remain to be elucidated. The present study aimed to elucidate the function of ANAX2P3 and ANXA2 in BA‑induced liver injury using a human liver cell line and liver tissues from patients with BA. Reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemistry were conducted to determine the expression levels of ANXA2 and ANXA2P3 in liver tissues from patients with BA. Classification of fibrosis was analyzed by Masson staining. The functional roles of ANXA2 and ANXA2P3 in liver cells were determined by Cell Counting kit‑8 assay, and flow cytometric and cell cycle analyses. Activation of the ANXA2/ANXA2P3 signaling pathway in liver cells was evaluated by western blot analysis. According to the present results, the expression levels of ANXA2 and ANXA2P3 were significantly increased in liver tissues from patients with BA. In addition, knocking down the expression of ANXA2P3 and ANXA2 may result in reduced liver cell proliferation, cell cycle arrest in G1 phase and increased apoptosis of liver cells in vitro. Furthermore, in cells in which ANXA2 and ANXA2P3 were overexpressed, cell apoptosis was reduced and cell cycle arrest in G2 phase. Taken together, these results indicated that ANXA2P3 and ANXA2 may have protective effects against liver injury progression and may be considered biomarkers in patients with BA.
Collapse
Affiliation(s)
- Yeletai Nuerzhati
- Department of Pediatric Hepatobiliary Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Rui Dong
- Department of Pediatric Hepatobiliary Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Zai Song
- Department of Pediatric Hepatobiliary Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Shan Zheng
- Department of Pediatric Hepatobiliary Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| |
Collapse
|
17
|
Régnier M, Polizzi A, Lukowicz C, Smati S, Lasserre F, Lippi Y, Naylies C, Laffitte J, Bétoulières C, Montagner A, Ducheix S, Gourbeyre P, Ellero-Simatos S, Menard S, Bertrand-Michel J, Al Saati T, Lobaccaro JM, Burger HM, Gelderblom WC, Guillou H, Oswald IP, Loiseau N. The protective role of liver X receptor (LXR) during fumonisin B1-induced hepatotoxicity. Arch Toxicol 2018; 93:505-517. [DOI: 10.1007/s00204-018-2345-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/05/2018] [Indexed: 01/22/2023]
|
18
|
Sun J, Li B, Sun A, Zhao K, Ma Y, Zhao J, Pan H, Song Q, Wang Y, Yu C, Wang C, Zhang H, Zhang W, Kong C. Comprehensive analysis of aberrantly expressed profiles of messenger RNA in alcoholic liver disease. J Cell Biochem 2018; 120:4248-4254. [PMID: 30294942 DOI: 10.1002/jcb.27710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alcoholic liver disease (ALD) is one of the major cause of morbidity and mortality of clinical liver disease worldwide. Until today, although many general therapies are carried out and several molecular targets have been proposed to act as the potential therapeutic targets, more accurate molecular targets and more effective therapeutic methods remain needed. MATERIAL AND METHODS In the study, we analyze the differential expression genes (DEGs) between the patients with ALD and healthy controls. Gene Ontology enrichment and KEGG signaling pathway analysis are performed to identify the function of DEGs. Some significant molecules are proposed to act as the potential therapeutic targets for ALD. RNA data of 15 ALD tissues and 7 normal tissues for RNA expression analysis were obtained. DEGs in ALD samples compared with normal tissues identified through the limma R package and subjected to network analysis. RESULTS As a result, we obtained a total of 274 DEGs that mainly involved in biological processes related to the angiogenesis, stress reaction, synthesis, and metabolism of organic acids. Network analysis obtained several genes with high network degree and fold change. Some significant molecules are proposed to act as the potential therapeutic targets for ALD. CONCLUSIONS Our research identified some new progression-related genes of alcohol liver diseases, which could be regarded as the new targets for the early diagnosis and therapeutic management in ALD.
Collapse
Affiliation(s)
- Jinhui Sun
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Baolong Li
- Center for Safety Evaluation of Drugs, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Antao Sun
- Department of Hematology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kunpeng Zhao
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Yanchun Ma
- Department of Academic Theory and Research, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jiuli Zhao
- Key Laboratory of Chinese Internal Medicine (Beijing University of Chinese Medicine), Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Pan
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qingrui Song
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Wang
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chunyu Yu
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Cui Wang
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Huan Zhang
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenwen Zhang
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chenfan Kong
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Abstract
Platelets play a vital role in normal hemostasis to stem blood loss at sites of vascular injury by tethering and adhering to sites of injury, recruiting other platelets and blood cells to the developing clot, releasing vasoactive small molecules and proteins, and assembling and activating plasma coagulation proteins in a tightly regulated temporal and spatial manner. In synchrony with specific end products of coagulation, primarily cross-linked fibrin, a stable thrombus quickly forms. Far beyond physiological hemostasis and pathological thrombosis, emerging evidence supports platelets playing a pivotal role in vascular homeostasis, inflammation, cellular repair, regeneration, and wide range of autocrine and paracrine functions. In essence, platelets play both structural and functional roles as reporters, messengers, and active transporters surveying the vasculature for cues of environmental or developmental stimuli and participating as first responders.1 In this review, we will provide a contemporary perspective of platelet physiology, including fundamental, translational, and clinical constructs that apply directly to human health and disease.
Collapse
Affiliation(s)
- Richard C Becker
- From the Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, OH (R.C.B.); and Gill Heart and Vascular Institute (T.S., S.S.S.) and Lexington VA Medical Center (T.S., S.S.S.), University of Kentucky School of Medicine.
| | - Travis Sexton
- From the Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, OH (R.C.B.); and Gill Heart and Vascular Institute (T.S., S.S.S.) and Lexington VA Medical Center (T.S., S.S.S.), University of Kentucky School of Medicine
| | - Susan S Smyth
- From the Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, OH (R.C.B.); and Gill Heart and Vascular Institute (T.S., S.S.S.) and Lexington VA Medical Center (T.S., S.S.S.), University of Kentucky School of Medicine
| |
Collapse
|