1
|
Kojima K, Ooka M, Abe T, Hirota K. Pold4, the fourth subunit of replicative polymerase δ, suppresses gene conversion in the immunoglobulin-variable gene in avian DT40 cells. DNA Repair (Amst) 2021; 100:103056. [PMID: 33588156 DOI: 10.1016/j.dnarep.2021.103056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
The replicative polymerase δ (Polδ), consisting of four subunits, plays a pivotal role in chromosomal replication. Pold4, the smallest subunit of Polδ, is believed to contribute to the regulation of replication by facilitating repair in response to DNA damage. However, that contribution has not been fully elucidated. We here show that Pold4 contributes to the suppression of gene conversion in immunoglobulin-variable (IgV) gene diversification in the chicken DT40 lymphocyte cell line, where gene conversion diversifies the IgV gene through intragenic homologous recombination (HR) between diverged pseudo-V segments. IgV gene conversion is initiated by activation-induced cytidine deaminase-mediated uracil formation in the IgV gene, which in turn converts into an abasic site, leading to replication arrest. POLD4-/- cells exhibited an increased rate of IgV gene conversion. Moreover, the gene-conversion tract was lengthened and the usage of pseudo-V segments was altered, showing a preference, to use the diverged sequence as a donor in POLD4-/- cells. These data suggest that Pold4 is involved in the regulation of HR-mediated gene conversion in IgV diversification. By contrast, the rate in HR-mediated, sister-chromatid exchange and gene-targeting induced by an I-SceI endonclease-mediated DNA double-strand break exhibited by POLD4-/- cells was indistinguishable from that by wild-type cells. These findings indicate that the functionality of general HR is preserved in POLD4-/- cells. In conclusion, Pold4 is involved in the suppression of IgV-gene conversion without affecting the general functionality of HR.
Collapse
Affiliation(s)
- Kota Kojima
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Masato Ooka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Takuya Abe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan.
| |
Collapse
|
2
|
Abe T, Branzei D, Hirota K. DNA Damage Tolerance Mechanisms Revealed from the Analysis of Immunoglobulin V Gene Diversification in Avian DT40 Cells. Genes (Basel) 2018; 9:genes9120614. [PMID: 30544644 PMCID: PMC6316486 DOI: 10.3390/genes9120614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 01/19/2023] Open
Abstract
DNA replication is an essential biochemical reaction in dividing cells that frequently stalls at damaged sites. Homologous/homeologous recombination (HR)-mediated template switch and translesion DNA synthesis (TLS)-mediated bypass processes release arrested DNA replication forks. These mechanisms are pivotal for replication fork maintenance and play critical roles in DNA damage tolerance (DDT) and gap-filling. The avian DT40 B lymphocyte cell line provides an opportunity to examine HR-mediated template switch and TLS triggered by abasic sites by sequencing the constitutively diversifying immunoglobulin light-chain variable gene (IgV). During IgV diversification, activation-induced deaminase (AID) converts dC to dU, which in turn is excised by uracil DNA glycosylase and yields abasic sites within a defined window of around 500 base pairs. These abasic sites can induce gene conversion with a set of homeologous upstream pseudogenes via the HR-mediated template switch, resulting in templated mutagenesis, or can be bypassed directly by TLS, resulting in non-templated somatic hypermutation at dC/dG base pairs. In this review, we discuss recent works unveiling IgV diversification mechanisms in avian DT40 cells, which shed light on DDT mode usage in vertebrate cells and tolerance of abasic sites.
Collapse
Affiliation(s)
- Takuya Abe
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan.
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.
| | - Dana Branzei
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100 Pavia, Italy.
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan.
| |
Collapse
|
3
|
SUMOylation of PCNA by PIAS1 and PIAS4 promotes template switch in the chicken and human B cell lines. Proc Natl Acad Sci U S A 2018; 115:12793-12798. [PMID: 30487218 DOI: 10.1073/pnas.1716349115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA damage tolerance (DDT) releases replication blockage caused by damaged nucleotides on template strands employing two alternative pathways, error-prone translesion DNA synthesis (TLS) and error-free template switch (TS). Lys164 of proliferating cell nuclear antigen (PCNA) is SUMOylated during the physiological cell cycle. To explore the role for SUMOylation of PCNA in DDT, we characterized chicken DT40 and human TK6 B cells deficient in the PIAS1 and PIAS4 small ubiquitin-like modifier (SUMO) E3 ligases. DT40 cells have a unique advantage in the phenotypic analysis of DDT as they continuously diversify their immunoglobulin (Ig) variable genes by TLS and TS [Ig gene conversion (GC)], both relieving replication blocks at abasic sites without accompanying by DNA breakage. Remarkably, PIAS1 -/- /PIAS4 -/- cells displayed a multifold decrease in SUMOylation of PCNA at Lys164 and over a 90% decrease in the rate of TS. Likewise, PIAS1 -/- /PIAS4 -/- TK6 cells showed a shift of DDT from TS to TLS at a chemosynthetic UV lesion inserted into the genomic DNA. The PCNA K164R/K164R mutation caused a ∼90% decrease in the rate of Ig GC and no additional impact on PIAS1 -/- /PIAS4 -/- cells. This epistatic relationship between the PCNA K164R/K164R and the PIAS1 -/- /PIAS4 -/- mutations suggests that PIAS1 and PIAS4 promote TS mainly through SUMOylation of PCNA at Lys164. This idea is further supported by the data that overexpression of a PCNA-SUMO1 chimeric protein restores defects in TS in PIAS1 -/- /PIAS4 -/- cells. In conclusion, SUMOylation of PCNA at Lys164 promoted by PIAS1 and PIAS4 ensures the error-free release of replication blockage during physiological DNA replication in metazoan cells.
Collapse
|
4
|
Kobayashi S, Keka IS, Guilbaud G, Sale J, Narita T, Abdel-Aziz HI, Wang X, Ogawa S, Sasanuma H, Chiu R, Oestergaard VH, Lisby M, Takeda S. The role of HERC2 and RNF8 ubiquitin E3 ligases in the promotion of translesion DNA synthesis in the chicken DT40 cell line. DNA Repair (Amst) 2016; 40:67-76. [PMID: 26994443 DOI: 10.1016/j.dnarep.2016.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/12/2016] [Accepted: 02/03/2016] [Indexed: 12/20/2022]
Abstract
The replicative DNA polymerases are generally blocked by template DNA damage. The resulting replication arrest can be released by one of two post-replication repair (PRR) pathways, translesion DNA synthesis (TLS) and template switching by homologous recombination (HR). The HERC2 ubiquitin ligase plays a role in homologous recombination by facilitating the assembly of the Ubc13 ubiquitin-conjugating enzyme with the RNF8 ubiquitin ligase. To explore the role of HERC2 and RNF8 in PRR, we examined immunoglobulin diversification in chicken DT40 cells deficient in HERC2 and RNF8. Unexpectedly, the HERC2(-/-) and RNF8(-/-) cells and HERC2(-/-)/RNF8(-/-) double mutant cells exhibit a significant reduction in the rate of immunoglobulin (Ig) hypermutation, compared to wild-type cells. Further, the HERC2(-/-) and RNF8(-/-) mutants exhibit defective maintenance of replication fork progression immediately after exposure to UV while retaining proficient post-replicative gap filling. These mutants are both proficient in mono-ubiquitination of PCNA. Taken together, these results suggest that HERC2 and RNF8 promote TLS past abasic sites and UV-lesions at or very close to stalled replication forks.
Collapse
Affiliation(s)
- Shunsuke Kobayashi
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Islam Shamima Keka
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Guillaume Guilbaud
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Julian Sale
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Takeo Narita
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan; Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - H Ismail Abdel-Aziz
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan; Faculty of Medicine, Seuz Canal University, circular road Ez-Eldeen, Ismailia 41522, Egypt
| | - Xin Wang
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Saki Ogawa
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Roland Chiu
- University College Groningen, University of Groningen, 9718 BG Groningen, Hoendiepskade 23-24, The Netherlands
| | - Vibe H Oestergaard
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Shunichi Takeda
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
5
|
Hirota K, Yoshikiyo K, Guilbaud G, Tsurimoto T, Murai J, Tsuda M, Phillips LG, Narita T, Nishihara K, Kobayashi K, Yamada K, Nakamura J, Pommier Y, Lehmann A, Sale JE, Takeda S. The POLD3 subunit of DNA polymerase δ can promote translesion synthesis independently of DNA polymerase ζ. Nucleic Acids Res 2015; 43:1671-83. [PMID: 25628356 PMCID: PMC4330384 DOI: 10.1093/nar/gkv023] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The replicative DNA polymerase Polδ consists of a catalytic subunit POLD1/p125 and three regulatory subunits POLD2/p50, POLD3/p66 and POLD4/p12. The ortholog of POLD3 in Saccharomyces cerevisiae, Pol32, is required for a significant proportion of spontaneous and UV-induced mutagenesis through its additional role in translesion synthesis (TLS) as a subunit of DNA polymerase ζ. Remarkably, chicken DT40 B lymphocytes deficient in POLD3 are viable and able to replicate undamaged genomic DNA with normal kinetics. Like its counterpart in yeast, POLD3 is required for fully effective TLS, its loss resulting in hypersensitivity to a variety of DNA damaging agents, a diminished ability to maintain replication fork progression after UV irradiation and a significant decrease in abasic site-induced mutagenesis in the immunoglobulin loci. However, these defects appear to be largely independent of Polζ, suggesting that POLD3 makes a significant contribution to TLS independently of Polζ in DT40 cells. Indeed, combining polη, polζ and pold3 mutations results in synthetic lethality. Additionally, we show in vitro that POLD3 promotes extension beyond an abasic by the Polδ holoenzyme suggesting that while POLD3 is not required for normal replication, it may help Polδ to complete abasic site bypass independently of canonical TLS polymerases.
Collapse
Affiliation(s)
- Kouji Hirota
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan Department of Chemistry, GraduateSchool of Science and Engineering, Tokyo Metropolitan University, Minami-Osawa, Hachioji- shi, Tokyo 192-0397, Japan
| | - Kazunori Yoshikiyo
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Guillaume Guilbaud
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Toshiki Tsurimoto
- Department of Biology, School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Junko Murai
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Lara G Phillips
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Takeo Narita
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kana Nishihara
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kaori Kobayashi
- Department of Chemistry, GraduateSchool of Science and Engineering, Tokyo Metropolitan University, Minami-Osawa, Hachioji- shi, Tokyo 192-0397, Japan
| | - Kouich Yamada
- Division of Genetic Biochemistry, National Institute of Health and Nutrition, Tokyo 162-8636, Japan
| | - Jun Nakamura
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yves Pommier
- Department of Biology, School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Alan Lehmann
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
6
|
Buerstedde JM, Lowndes N, Schatz DG. Induction of homologous recombination between sequence repeats by the activation induced cytidine deaminase (AID) protein. eLife 2014; 3:e03110. [PMID: 25006166 PMCID: PMC4080448 DOI: 10.7554/elife.03110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/02/2014] [Indexed: 02/06/2023] Open
Abstract
The activation induced cytidine deaminase (AID) protein is known to initiate somatic hypermutation, gene conversion or switch recombination by cytidine deamination within the immunoglobulin loci. Using chromosomally integrated fluorescence reporter transgenes, we demonstrate a new recombinogenic activity of AID leading to intra- and intergenic deletions via homologous recombination of sequence repeats. Repeat recombination occurs at high frequencies even when the homologous sequences are hundreds of bases away from the positions of AID-mediated cytidine deamination, suggesting DNA end resection before strand invasion. Analysis of recombinants between homeologous repeats yielded evidence for heteroduplex formation and preferential migration of the Holliday junctions to the boundaries of sequence homology. These findings broaden the target and off-target mutagenic potential of AID and establish a novel system to study induced homologous recombination in vertebrate cells.DOI: http://dx.doi.org/10.7554/eLife.03110.001.
Collapse
Affiliation(s)
- Jean-Marie Buerstedde
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Noel Lowndes
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, New Haven, United States Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
7
|
Hosono Y, Abe T, Ishiai M, Islam MN, Arakawa H, Wang W, Takeda S, Ishii Y, Takata M, Seki M, Enomoto T. Tumor suppressor RecQL5 controls recombination induced by DNA crosslinking agents. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1002-12. [PMID: 24418621 DOI: 10.1016/j.bbamcr.2014.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/15/2013] [Accepted: 01/02/2014] [Indexed: 12/20/2022]
Abstract
RecQ family DNA helicases function in the maintenance of genome stability. Mice deficient in RecQL5, one of five RecQ helicases, show a cancer predisposition phenotype, suggesting that RecQL5 plays a tumor suppressor role. RecQL5 interacts with Rad51, a key factor in homologous recombination (HR), and displaces Rad51 from Rad51-single stranded DNA (ssDNA) filaments in vitro. However, the precise roles of RecQL5 in the cell remain elusive. Here, we present evidence suggesting that RecQL5 is involved in DNA interstrand crosslink (ICL) repair. Chicken DT40 RECQL5 gene knockout (KO) cells showed sensitivity to ICL-inducing agents such as cisplatin (CDDP) and mitomycin C (MMC) and a higher number of chromosome aberrations in the presence of MMC than wild-type cells. The phenotypes of RECQL5 KO cells resembled those of Fanconi anemia gene KO cells. Genetic analysis using corresponding gene knockout cells showed that RecQL5 is involved in the FANCD1 (BRCA2)-dependent ICL repair pathway in which Rad51-ssDNA filament formation is promoted by BRCA2. The disappearance but not appearance of Rad51-foci was delayed in RECQL5 KO cells after MMC treatment. Deletion of Rad54, which processes the Rad51-ssDNA filament in HR, in RECQL5 KO cells increased sensitivity to CDDP and further delayed the disappearance of Rad51-foci, suggesting that RecQL5 and Rad54 have different effects on the Rad51-ssDNA filament. Furthermore, the frequency and variation of CDDP-induced gene conversion at the immunoglobulin locus were increased in RECQL5 KO cells. These results suggest that RecQL5 plays a role in regulating the incidence and quality of ICL-induced recombination.
Collapse
Affiliation(s)
- Yoshifumi Hosono
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Takuya Abe
- IFOM, the FIRC Institute for Molecular Oncology Foundation, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy
| | - Masamichi Ishiai
- Laboratory of DNA Damage Signaling, Department of Late Effect Studies, Radiation Biology Center, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - M Nurul Islam
- Laboratory of Genetics, NIA, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD 21224, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hiroshi Arakawa
- IFOM, the FIRC Institute for Molecular Oncology Foundation, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy
| | - Weidong Wang
- Laboratory of Genetics, NIA, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD 21224, USA
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yutaka Ishii
- Shujitsu University, School of Pharmacy, Nishigawara, Naka-ku, Okayama 703-8516, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effect Studies, Radiation Biology Center, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masayuki Seki
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan; Department of Biochemistry, Tohoku Pharmaceutical University, 4-1, Komatsushima 4-chome, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| | - Takemi Enomoto
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| |
Collapse
|
8
|
Campo VA, Patenaude AM, Kaden S, Horb L, Firka D, Jiricny J, Di Noia JM. MSH6- or PMS2-deficiency causes re-replication in DT40 B cells, but it has little effect on immunoglobulin gene conversion or on repair of AID-generated uracils. Nucleic Acids Res 2013; 41:3032-46. [PMID: 23314153 PMCID: PMC3597665 DOI: 10.1093/nar/gks1470] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mammalian antibody repertoire is shaped by somatic hypermutation (SHM) and class switch recombination (CSR) of the immunoglobulin (Ig) loci of B lymphocytes. SHM and CSR are triggered by non-canonical, error-prone processing of G/U mismatches generated by activation-induced deaminase (AID). In birds, AID does not trigger SHM, but it triggers Ig gene conversion (GC), a ‘homeologous’ recombination process involving the Ig variable region and proximal pseudogenes. Because recombination fidelity is controlled by the mismatch repair (MMR) system, we investigated whether MMR affects GC in the chicken B cell line DT40. We show here that Msh6−/− and Pms2−/− DT40 cells display cell cycle defects, including genomic re-replication. However, although IgVλ GC tracts in MMR-deficient cells were slightly longer than in normal cells, Ig GC frequency, donor choice or the number of mutations per sequence remained unaltered. The finding that the avian MMR system, unlike that of mammals, does not seem to contribute towards the processing of G/U mismatches in vitro could explain why MMR is unable to initiate Ig GC in this species, despite initiating SHM and CSR in mammalian cells. Moreover, as MMR does not counteract or govern Ig GC, we report a rare example of ‘homeologous’ recombination insensitive to MMR.
Collapse
Affiliation(s)
- Vanina A Campo
- Institut de Recherches Cliniques de Montréal, Division of Immunity and Viral Infections, Montréal, H2W 1R7 Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
9
|
Sale JE. Measurement of diversification in the immunoglobulin light chain gene of DT40 cells. Methods Mol Biol 2012; 920:417-32. [PMID: 22941620 DOI: 10.1007/978-1-61779-998-3_29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immunoglobulin loci of the genetically tractable chicken B cell line DT40 provide a unique opportunity to study the cellular response to endogenously generated DNA damage in a chromosomal context. Abasic sites generated by the concerted action of Activation-Induced Deaminase (AID) and Uracil DNA Glycosylase result in both homologous recombination-dependent gene conversion and translesion synthesis-dependent point mutations. The system has provided important insights into both the early stages of AID-dependent immunoglobulin gene diversification and into the relationship between pathways of DNA damage bypass. Here we describe the assays that can be employed to monitor the rate and pattern of immunoglobulin gene diversification at the light chain locus of DT40.
Collapse
Affiliation(s)
- Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
10
|
Ridpath JR, Takeda S, Swenberg JA, Nakamura J. Convenient, multi-well plate-based DNA damage response analysis using DT40 mutants is applicable to a high-throughput genotoxicity assay with characterization of modes of action. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:153-60. [PMID: 20839229 PMCID: PMC3280086 DOI: 10.1002/em.20595] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Chemists continually synthesize myriad new chemicals (∼2,000/year), some of which make their way into the environment or otherwise pose possible threats to humans who potentially become exposed to the compounds. Regulators must determine whether these, along with the glut (∼80,000) of existing, chemicals are toxic and at what exposure levels. An important component of this determination is to ascertain the mode of action (MOA) of each compound as it relates to the pathway the compound uses to induce genotoxicity. Several assays have traditionally been used to reveal these effects to the genome: the Ames test, tests with yeast and mammalian cell lines, and animal studies. Previously, we described a new multi-well plate-based method which makes use of the DT40 isogenic cell line and its dozens of available mutants knocked out in DNA repair and cell cycle pathways and we now provide a detailed protocol of the further improvement of the assay. Although the DT40 line has existed for some time and has been used in numerous studies of DNA repair pathways, little use has been made of this valuable resource for toxicological investigations. Our method introduces the 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide dye scheme determination of cell survival in a manner that greatly increases throughput and reduces cost while maintaining reasonable sensitivity. Although this new genotoxicity assay requires validation with many more mutagens before becoming an established, regulatory decision-making analysis tool, we believe that this method will be very advantageous if eventually added to the repertoire of those investigating MOAs of potentially genotoxic substances.
Collapse
Affiliation(s)
- John R. Ridpath
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Shunichi Takeda
- Department of Radiation Genetics Graduate School of Medicine, Kyoto, Japan
| | - James A. Swenberg
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jun Nakamura
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Correspondence (and reprints) to: Jun Nakamura, Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA. , Ph: (919)966-6140, Fax: (919)966-6123
| |
Collapse
|
11
|
Hirota K, Sonoda E, Kawamoto T, Motegi A, Masutani C, Hanaoka F, Szüts D, Iwai S, Sale JE, Lehmann A, Takeda S. Simultaneous disruption of two DNA polymerases, Polη and Polζ, in Avian DT40 cells unmasks the role of Polη in cellular response to various DNA lesions. PLoS Genet 2010; 6. [PMID: 20949111 PMCID: PMC2951353 DOI: 10.1371/journal.pgen.1001151] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 09/08/2010] [Indexed: 12/18/2022] Open
Abstract
Replicative DNA polymerases are frequently stalled by DNA lesions. The resulting replication blockage is released by homologous recombination (HR) and translesion DNA synthesis (TLS). TLS employs specialized TLS polymerases to bypass DNA lesions. We provide striking in vivo evidence of the cooperation between DNA polymerase η, which is mutated in the variant form of the cancer predisposition disorder xeroderma pigmentosum (XP-V), and DNA polymerase ζ by generating POLη−/−/POLζ−/− cells from the chicken DT40 cell line. POLζ−/− cells are hypersensitive to a very wide range of DNA damaging agents, whereas XP-V cells exhibit moderate sensitivity to ultraviolet light (UV) only in the presence of caffeine treatment and exhibit no significant sensitivity to any other damaging agents. It is therefore widely believed that Polη plays a very specific role in cellular tolerance to UV-induced DNA damage. The evidence we present challenges this assumption. The phenotypic analysis of POLη−/−/POLζ−/− cells shows that, unexpectedly, the loss of Polη significantly rescued all mutant phenotypes of POLζ−/− cells and results in the restoration of the DNA damage tolerance by a backup pathway including HR. Taken together, Polη contributes to a much wide range of TLS events than had been predicted by the phenotype of XP-V cells. DNA replication is a fragile biochemical reaction, as the replicative DNA polymerases are readily stalled by DNA lesions. The resulting replication blockage is released by translesion DNA synthesis (TLS), which employs specialized TLS polymerases to bypass DNA lesions. There are at least seven TLS polymerases known in vertebrates. However, how they cooperate in vivo remains one of central questions in the field. We analyzed this functional interaction by genetically disrupting two of major TLS polymerases, Polη and Polζ, in the unique genetic model organism, chicken DT40 cells. Currently, it is widely believed that Polη plays a very specific role in cellular tolerance to ultraviolet light–induced DNA damage. Polζ, on the other hand, plays a key role in cellular tolerance to a very wide range of DNA–damaging agents, as POLζ−/− cells are hypersensitivity to a number of DNA damaging agents. Our phenotypic analysis of POLη−/−/POLζ−/− cells shows that, unexpectedly, the loss of Polη significantly rescued all mutant phenotypes of POLζ−/− cells. The genetic interaction shown here reveals a previously unappreciated role of human Polη in cellular response to a wide variety of DNA lesions and two-step collaborative action of Polymerase η and ζ.
Collapse
Affiliation(s)
- Kouji Hirota
- CREST Research Project, Japan Science and Technology, Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiichiro Sonoda
- CREST Research Project, Japan Science and Technology, Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuo Kawamoto
- CREST Research Project, Japan Science and Technology, Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Motegi
- CREST Research Project, Japan Science and Technology, Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chikahide Masutani
- Solution-Oriented Research for Science and Technology (SORST), Japan Science and Technology Agency, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Fumio Hanaoka
- Solution-Oriented Research for Science and Technology (SORST), Japan Science and Technology Agency, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Dávid Szüts
- St. George's, University of London, London, United Kingdom
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Julian E. Sale
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Alan Lehmann
- Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Shunichi Takeda
- CREST Research Project, Japan Science and Technology, Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
12
|
Kajita M, Okazawa T, Ikeda M, Todo K, Magari M, Kanayama N, Ohmori H. Efficient affinity maturation of antibodies in an engineered chicken B cell line DT40-SW by increasing point mutation. J Biosci Bioeng 2010; 110:351-8. [DOI: 10.1016/j.jbiosc.2010.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/02/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
|
13
|
Kohzaki M, Nishihara K, Hirota K, Sonoda E, Yoshimura M, Ekino S, Butler JE, Watanabe M, Halazonetis TD, Takeda S. DNA polymerases nu and theta are required for efficient immunoglobulin V gene diversification in chicken. J Cell Biol 2010; 189:1117-27. [PMID: 20584917 PMCID: PMC2894443 DOI: 10.1083/jcb.200912012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 05/26/2010] [Indexed: 01/10/2023] Open
Abstract
The chicken DT40 B lymphocyte line diversifies its immunoglobulin (Ig) V genes through translesion DNA synthesis-dependent point mutations (Ig hypermutation) and homologous recombination (HR)-dependent Ig gene conversion. The error-prone biochemical characteristic of the A family DNA polymerases Polnu and Pol led us to explore the role of these polymerases in Ig gene diversification in DT40 cells. Disruption of both polymerases causes a significant decrease in Ig gene conversion events, although POLN(-/-)/POLQ(-/-) cells exhibit no prominent defect in HR-mediated DNA repair, as indicated by no increase in sensitivity to camptothecin. Poleta has also been previously implicated in Ig gene conversion. We show that a POLH(-/-)/POLN(-/-)/POLQ(-/-) triple mutant displays no Ig gene conversion and reduced Ig hypermutation. Together, these data define a role for Polnu and Pol in recombination and suggest that the DNA synthesis associated with Ig gene conversion is accounted for by three specialized DNA polymerases.
Collapse
Affiliation(s)
- Masaoki Kohzaki
- Department of Radiation Genetics and Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Research Reactor Institute, Kyoto University, Sennan-gun, Osaka 590-0494, Japan
- Department of Molecular Biology, University of Geneva, Geneva 4 CH-1211, Switzerland
| | - Kana Nishihara
- Department of Radiation Genetics and Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Food and Nutrition, Kyoto Women’s University, Higashiyama-ku, Kyoto 606-8501, Japan
| | - Kouji Hirota
- Department of Radiation Genetics and Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Eiichiro Sonoda
- Department of Radiation Genetics and Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Michio Yoshimura
- Department of Radiation Genetics and Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shigeo Ekino
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto 860-8556, Japan
| | - John E. Butler
- Department of Microbiology, University of Iowa Medical School, Iowa City, IA 52242
| | - Masami Watanabe
- Research Reactor Institute, Kyoto University, Sennan-gun, Osaka 590-0494, Japan
| | - Thanos D. Halazonetis
- Department of Molecular Biology, University of Geneva, Geneva 4 CH-1211, Switzerland
| | - Shunichi Takeda
- Department of Radiation Genetics and Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
14
|
Ordinario EC, Yabuki M, Handa P, Cummings WJ, Maizels N. RAD51 paralogs promote homology-directed repair at diversifying immunoglobulin V regions. BMC Mol Biol 2009; 10:98. [PMID: 19863810 PMCID: PMC2774322 DOI: 10.1186/1471-2199-10-98] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 10/28/2009] [Indexed: 01/08/2023] Open
Abstract
Background Gene conversion depends upon the same factors that carry out more general process of homologous recombination, including homologous gene targeting and recombinational repair. Among these are the RAD51 paralogs, conserved factors related to the key recombination factor, RAD51. In chicken and other fowl, gene conversion (templated mutation) diversifies immunoglobulin variable region sequences. This allows gene conversion and recombinational repair to be studied using the chicken DT40 B cell line, which carries out constitutive gene conversion and provides a robust and physiological model for homology-directed repair in vertebrate cells. Results We show that DT40 contains constitutive nuclear foci of the repair factors RAD51D and XRCC2, consistent with activated homologous recombination. Single-cell imaging of a DT40 derivative in which the rearranged and diversifying immunoglobulin λR light chain gene is tagged with polymerized lactose operator, DT40 PolyLacO-λR, showed that RAD51D and XRCC2 localize to the diversifying λR gene. Colocalizations correlate both functionally and physically with active immunoglobulin gene conversion. Ectopic expression of either RAD51D or XRCC2 accelerated the clonal rate of gene conversion, and conversion tracts were significantly longer in RAD51D than XRCC2 transfectants. Conclusion These results demonstrate direct functions of RAD51D and XRCC2 in immunoglobulin gene conversion, and also suggest that modulation of levels of repair factors may be a useful strategy to promote gene correction in other cell types.
Collapse
Affiliation(s)
- Ellen C Ordinario
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195-7650, USA.
| | | | | | | | | |
Collapse
|
15
|
Ordinario EC, Yabuki M, Larson RP, Maizels N. Temporal regulation of Ig gene diversification revealed by single-cell imaging. THE JOURNAL OF IMMUNOLOGY 2009; 183:4545-53. [PMID: 19748985 DOI: 10.4049/jimmunol.0900673] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rearranged Ig V regions undergo activation-induced cytidine deaminase (AID)-initiated diversification in sequence to produce either nontemplated or templated mutations, in the related pathways of somatic hypermutation and gene conversion. In chicken DT40 B cells, gene conversion normally predominates, producing mutations templated by adjacent pseudo-V regions, but impairment of gene conversion switches mutagenesis to a nontemplated pathway. We recently showed that the activator, E2A, functions in cis to promote diversification, and that G(1) phase of cell cycle is the critical window for E2A action. By single-cell imaging of stable AID-yellow fluorescent protein transfectants, we now demonstrate that AID-yellow fluorescent protein can stably localize to the nucleus in G(1) phase, but undergoes ubiquitin-dependent proteolysis later in cell cycle. By imaging of DT40 polymerized lactose operator-lambda(R) cells, in which polymerized lactose operator tags the rearranged lambda(R) gene, we show that both the repair polymerase Poleta and the multifunctional factor MRE11/RAD50/NBS1 localize to lambda(R), and that lambda(R)/Poleta colocalizations occur predominately in G(1) phase, when they reflect repair of AID-initiated damage. We find no evidence of induction of gamma-H2AX, the phosphorylated variant histone that is a marker of double-strand breaks, and Ig gene conversion may therefore proceed by a pathway involving templated repair at DNA nicks rather than double-strand breaks. These results lead to a model in which Ig gene conversion initiates and is completed or nearly completed in G(1) phase. AID deaminates ssDNA, and restriction of mutagenesis to G(1) phase would contribute to protecting the genome from off-target attack by AID when DNA replication occurs in S phase.
Collapse
Affiliation(s)
- Ellen C Ordinario
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
16
|
The carboxyl terminus of Brca2 links the disassembly of Rad51 complexes to mitotic entry. Curr Biol 2009; 19:1075-85. [PMID: 19540122 PMCID: PMC2719694 DOI: 10.1016/j.cub.2009.05.057] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 05/18/2009] [Accepted: 05/20/2009] [Indexed: 01/14/2023]
Abstract
Background The Rad51 recombinase assembles on DNA to execute homologous DNA recombination (HR). This process is essential to repair replication-associated genomic lesions before cells enter mitosis, but how it is started and stopped during the cell cycle remains poorly understood. Rad51 assembly is regulated by the breast cancer suppressor Brca2, via its evolutionarily conserved BRC repeats, and a distinct carboxy (C)-terminal motif whose biological function is uncertain. Using “hit-and-run” gene targeting to insert single-codon substitutions into the avian Brca2 locus, we report here a previously unrecognized role for the C-terminal motif. Results We show that the avian C-terminal motif is functionally cognate with its human counterpart and identify point mutations that either abolish or enhance Rad51 binding. When these mutations are introduced into Brca2, we find that they affect neither the assembly of Rad51 into nuclear foci on damaged DNA nor DNA repair by HR. Instead, foci disassemble more rapidly in a point mutant that fails to bind Rad51, associated with faster mitotic entry. Conversely, the slower disassembly of foci in a point mutant that constitutively binds Rad51 correlates with delayed mitosis. Indeed, Rad51 foci do not persist in mitotic cells even after G2 checkpoint suppression, suggesting that their disassembly is a prerequisite for chromosome segregation. Conclusions We conclude that Rad51 binding by the C-terminal Brca2 motif is dispensable for the execution of HR but instead links the disassembly of Rad51 complexes to mitotic entry. This mechanism may ensure that HR terminates before chromosome segregation. Our findings assign a biological function for the C-terminal Brca2 motif in a mechanism that coordinates DNA repair with the cell cycle.
Collapse
|
17
|
Sale JE, Batters C, Edmunds CE, Phillips LG, Simpson LJ, Szüts D. Timing matters: error-prone gap filling and translesion synthesis in immunoglobulin gene hypermutation. Philos Trans R Soc Lond B Biol Sci 2009; 364:595-603. [PMID: 19008194 DOI: 10.1098/rstb.2008.0197] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
By temporarily deferring the repair of DNA lesions encountered during replication, the bypass of DNA damage is critical to the ability of cells to withstand genomic insults. Damage bypass can be achieved either by recombinational mechanisms that are generally accurate or by a process called translesion synthesis. Translesion synthesis involves replacing the stalled replicative polymerase with one of a number of specialized DNA polymerases whose active sites are able to tolerate a distorted or damaged DNA template. While this property allows the translesion polymerases to synthesize across damaged bases, it does so with the trade-off of an increased mutation rate. The deployment of these enzymes must therefore be carefully regulated. In addition to their important role in general DNA damage tolerance and mutagenesis, the translesion polymerases play a crucial role in converting the products of activation induced deaminase-catalysed cytidine deamination to mutations during immunoglobulin gene somatic hypermutation. In this paper, we specifically consider the control of translesion synthesis in the context of the timing of lesion bypass relative to replication fork progression and arrest at sites of DNA damage. We then examine how recent observations concerning the control of translesion synthesis might help refine our view of the mechanisms of immunoglobulin gene somatic hypermutation.
Collapse
Affiliation(s)
- Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| | | | | | | | | | | |
Collapse
|
18
|
Nakahara M, Sonoda E, Nojima K, Sale JE, Takenaka K, Kikuchi K, Taniguchi Y, Nakamura K, Sumitomo Y, Bree RT, Lowndes NF, Takeda S. Genetic evidence for single-strand lesions initiating Nbs1-dependent homologous recombination in diversification of Ig v in chicken B lymphocytes. PLoS Genet 2009; 5:e1000356. [PMID: 19180185 PMCID: PMC2625440 DOI: 10.1371/journal.pgen.1000356] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 12/23/2008] [Indexed: 11/18/2022] Open
Abstract
Homologous recombination (HR) is initiated by DNA double-strand breaks (DSB). However, it remains unclear whether single-strand lesions also initiate HR in genomic DNA. Chicken B lymphocytes diversify their Immunoglobulin (Ig) V genes through HR (Ig gene conversion) and non-templated hypermutation. Both types of Ig V diversification are initiated by AID-dependent abasic-site formation. Abasic sites stall replication, resulting in the formation of single-stranded gaps. These gaps can be filled by error-prone DNA polymerases, resulting in hypermutation. However, it is unclear whether these single-strand gaps can also initiate Ig gene conversion without being first converted to DSBs. The Mre11-Rad50-Nbs1 (MRN) complex, which produces 3′ single-strand overhangs, promotes the initiation of DSB-induced HR in yeast. We show that a DT40 line expressing only a truncated form of Nbs1 (Nbs1p70) exhibits defective HR-dependent DSB repair, and a significant reduction in the rate—though not the fidelity—of Ig gene conversion. Interestingly, this defective gene conversion was restored to wild type levels by overproduction of Escherichia coli SbcB, a 3′ to 5′ single-strand–specific exonuclease, without affecting DSB repair. Conversely, overexpression of chicken Exo1 increased the efficiency of DSB-induced gene-targeting more than 10-fold, with no effect on Ig gene conversion. These results suggest that Ig gene conversion may be initiated by single-strand gaps rather than by DSBs, and, like SbcB, the MRN complex in DT40 may convert AID-induced lesions into single-strand gaps suitable for triggering HR. In summary, Ig gene conversion and hypermutation may share a common substrate—single-stranded gaps. Genetic analysis of the two types of Ig V diversification in DT40 provides a unique opportunity to gain insight into the molecular mechanisms underlying the filling of gaps that arise as a consequence of replication blocks at abasic sites, by HR and error-prone polymerases. An important class of chemotherapeutic drugs used in the treatment of cancer induces DNA damage that interferes with DNA replication. The resulting block to replication results in the formation of single-strand gaps in DNA. These gaps can be filled by specialized DNA polymerases, a process associated with the introduction of mutations or by recombination with an undamaged segment of DNA with an identical or similar sequence. Our work shows that diversification of the antibody genes in the chicken B cell line DT40, which is initiated by localized replication-stalling DNA damage, proceeds by formation of a single-strand intermediate. These gaps are generated by the action of a specific nuclease complex, comprising the Mre11, Rad50, and Nbs1 proteins, which have previously been implicated in the initiation of homologous recombination from double-strand breaks. However, in this context, their dysfunction can be reversed by the expression of a bacterial single-strand–specific nuclease, SbcB. Antibody diversification in DT40 thus provides an excellent model for studying the process of replication-stalling DNA damage and will allow a more detailed understanding of the mechanisms underlying gap repair and cellular tolerance of chemotherapeutic agents.
Collapse
Affiliation(s)
- Makoto Nakahara
- CREST Research Project, Japan Science and Technology Agency, Saitama, Japan
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiichiro Sonoda
- CREST Research Project, Japan Science and Technology Agency, Saitama, Japan
| | - Kuniharu Nojima
- CREST Research Project, Japan Science and Technology Agency, Saitama, Japan
| | - Julian E. Sale
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Cambridge, United Kingdom
| | - Katsuya Takenaka
- CREST Research Project, Japan Science and Technology Agency, Saitama, Japan
| | - Koji Kikuchi
- CREST Research Project, Japan Science and Technology Agency, Saitama, Japan
| | | | - Kyoko Nakamura
- CREST Research Project, Japan Science and Technology Agency, Saitama, Japan
| | - Yoshiki Sumitomo
- CREST Research Project, Japan Science and Technology Agency, Saitama, Japan
| | - Ronan T. Bree
- Genome Stability Laboratory, Department of Biochemistry, National University of Ireland-Galway, Galway, Ireland
- National Centre for Biomedical Engineering Science, National University of Ireland-Galway, Galway, Ireland
| | - Noel F. Lowndes
- Genome Stability Laboratory, Department of Biochemistry, National University of Ireland-Galway, Galway, Ireland
- National Centre for Biomedical Engineering Science, National University of Ireland-Galway, Galway, Ireland
| | - Shunichi Takeda
- CREST Research Project, Japan Science and Technology Agency, Saitama, Japan
- * E-mail:
| |
Collapse
|
19
|
Szüts D, Marcus AP, Himoto M, Iwai S, Sale JE. REV1 restrains DNA polymerase zeta to ensure frame fidelity during translesion synthesis of UV photoproducts in vivo. Nucleic Acids Res 2008; 36:6767-80. [PMID: 18953031 PMCID: PMC2588525 DOI: 10.1093/nar/gkn651] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Exposure to ultraviolet light induces a number of forms of damage in DNA, of which (6–4) photoproducts present the most formidable challenge to DNA replication. No single DNA polymerase has been shown to bypass these lesions efficiently in vitro suggesting that the coordinate use of a number of different enzymes is required in vivo. To further understand the mechanisms and control of lesion bypass in vivo, we have devised a plasmid-based system to study the replication of site-specific T–T(6–4) photoproducts in chicken DT40 cells. We show that DNA polymerase ζ is absolutely required for translesion synthesis (TLS) of this lesion, while loss of DNA polymerase η has no detectable effect. We also show that either the polymerase-binding domain of REV1 or ubiquitinated PCNA is required for the recruitment of Polζ as the catalytic TLS polymerase. Finally, we demonstrate a previously unappreciated role for REV1 in ensuring bypass synthesis remains in frame with the template. Our data therefore suggest that REV1 not only helps to coordinate the delivery of DNA polymerase ζ to a stalled primer terminus but also restrains its activity to ensure that nucleotides are incorporated in register with the template strand.
Collapse
Affiliation(s)
- Dávid Szüts
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, UK
| | | | | | | | | |
Collapse
|
20
|
Abstract
Chicken DT40 cells deficient in the 9-1-1 checkpoint clamp exhibit hypersensitivity to a variety of DNA-damaging agents. Although recent work suggests that, in addition to its role in checkpoint activation, this complex may play a role in homologous recombination and translesion synthesis, the cause of this hypersensitivity has not been studied thoroughly. The immunoglobulin locus of DT40 cells allows monitoring of homologous recombination and translesion synthesis initiated by activation-induced deaminase (AID)-dependent abasic sites. We show that both the RAD9(-/-) and RAD17(-/-) mutants exhibit substantially reduced immunoglobulin gene conversion. However, the level of nontemplated immunoglobulin point mutation increased in these mutants, a finding that is reminiscent of the phenotype resulting from the loss of RAD51 paralogs or Brca2. This suggests that the 9-1-1 complex does not play a central role in translesion synthesis in this context. Despite reduced immunoglobulin gene conversion, the RAD9(-/-) and RAD17(-/-) cells do not exhibit a prominent defect in double-strand break-induced gene conversion or a sensitivity to camptothecin. This suggests that the roles of Rad9 and Rad17 may be confined to a subset of homologous recombination reactions initiated by replication-stalling lesions rather than those associated with double-strand break repair.
Collapse
|
21
|
Cummings WJ, Yabuki M, Ordinario EC, Bednarski DW, Quay S, Maizels N. Chromatin structure regulates gene conversion. PLoS Biol 2007; 5:e246. [PMID: 17880262 PMCID: PMC1976632 DOI: 10.1371/journal.pbio.0050246] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 07/17/2007] [Indexed: 12/29/2022] Open
Abstract
Homology-directed repair is a powerful mechanism for maintaining and altering genomic structure. We asked how chromatin structure contributes to the use of homologous sequences as donors for repair using the chicken B cell line DT40 as a model. In DT40, immunoglobulin genes undergo regulated sequence diversification by gene conversion templated by pseudogene donors. We found that the immunoglobulin Vλ pseudogene array is characterized by histone modifications associated with active chromatin. We directly demonstrated the importance of chromatin structure for gene conversion, using a regulatable experimental system in which the heterochromatin protein HP1 (Drosophila melanogaster Su[var]205), expressed as a fusion to Escherichia coli lactose repressor, is tethered to polymerized lactose operators integrated within the pseudo-Vλ donor array. Tethered HP1 diminished histone acetylation within the pseudo-Vλ array, and altered the outcome of Vλ diversification, so that nontemplated mutations rather than templated mutations predominated. Thus, chromatin structure regulates homology-directed repair. These results suggest that histone modifications may contribute to maintaining genomic stability by preventing recombination between repetitive sequences. Homologous recombination promotes genetic exchange between regions containing identical or highly related sequences. This is useful in repairing damaged DNA, or in reassorting genes in meiosis, but uncontrolled homologous recombination can create genomic instability. Chromosomes are made up of a complex of DNA and protein, called chromatin. DNA within chromatin is packed tightly in order to fit the entire genome inside a cell; but chromatin structure may become relaxed to allow access to enzymes that regulate gene expression, transcribe genes into mesenger RNA, or carry out gene replication. We asked if chromatin packing regulates homologous recombination. To do this, we tethered a factor associated with compact chromatin, called HP1, adjacent to an immunoglobulin gene locus at which homologous recombination occurs constitutively, in order to produce a diverse repertoire of antibodies. We found that the compact, repressive chromatin structure produced by HP1 prevents homologous recombination. This finding suggests that regulated changes in chromatin structure may contribute to maintaining genomic stability by preventing recombination between repetitive sequences. Much of the chromosome is tightly packed (heterochromatic) and not transcribed. Here, the authors show that tight packing has another effect: it prevents recombination between homologous sequences.
Collapse
Affiliation(s)
- W. Jason Cummings
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Munehisa Yabuki
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ellen C Ordinario
- Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - David W Bednarski
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Simon Quay
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Nancy Maizels
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Tang ES, Martin A. Immunoglobulin gene conversion: Synthesizing antibody diversification and DNA repair. DNA Repair (Amst) 2007; 6:1557-71. [PMID: 17600774 DOI: 10.1016/j.dnarep.2007.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/15/2007] [Accepted: 05/15/2007] [Indexed: 10/23/2022]
Abstract
Recent developments in the field of antibody (Ab) diversification have rapidly advanced our understanding of the molecular mechanism underlying these events. Key to these developments was the identification of activation-induced cytidine deaminase (AID) as the central regulator of secondary Ab diversification, and the elucidation of its primary function as a DNA deaminase. Incredibly, current literature suggests the existence of a shared pathway, common to all secondary diversification processes, from which the separate outcomes branch outwards at various points. Immunoglobulin gene conversion (IGC) is one of these mechanisms and is used by a number of vertebrate species in both the development of the pre-immune repertoire and in affinity maturation. In a manner similar to other Ab diversification mechanisms, IGC has managed to co-opt a normal DNA repair pathway for the generation of receptor diversity. In the case of IGC specifically, that pathway is homologous recombination (HR). A burgeoning wealth of genetic, biochemical and structural data has clarified the roles of many key HR factors, allowing new insight into its molecular mechanism. These insights, combined with those from the common mechanism of AID action, synergize to develop an emerging picture of the mechanism underlying IGC.
Collapse
Affiliation(s)
- Ephraim S Tang
- Department of Immunology, University of Toronto, Medical Sciences Bldg. 5265, Toronto, Canada M5S 1A8
| | | |
Collapse
|
23
|
Tang ES, Martin A. NHEJ-deficient DT40 cells have increased levels of immunoglobulin gene conversion: evidence for a double strand break intermediate. Nucleic Acids Res 2006; 34:6345-51. [PMID: 17142237 PMCID: PMC1669771 DOI: 10.1093/nar/gkl830] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) likely initiates immunoglobulin gene-conversion (GC) by deaminating cytidines within the V-region of chicken B-cells. However, the intervening DNA lesion required to initiate GC remains elusive. GC could be initiated by a single strand break or a double strand break (DSB). To distinguish between these possibilities, we examined GC in the chicken DT40 B cell line deficient in non-homologous end joining (NHEJ). It is known that the NHEJ and homologous recombination DNA repair pathways compete for DSBs. In light of this, if a DSB is the major intermediate, deficiency in NHEJ should result in increased levels of GC. Here we show that DNA–PKcs−/−/− and Ku70−/− DT40 cells had 5- to 10-fold higher levels of GC relative to wildtype DT40 as measured by surface IgM reversion and sequencing of the V-region. These data suggest that a DSB is the major DNA lesion that initiates GC.
Collapse
Affiliation(s)
| | - Alberto Martin
- To whom correspondence should be addressed. Tel: +416 978 4235; Fax +416 978 1938;
| |
Collapse
|
24
|
Szüts D, Simpson LJ, Kabani S, Yamazoe M, Sale JE. Role for RAD18 in homologous recombination in DT40 cells. Mol Cell Biol 2006; 26:8032-41. [PMID: 16923963 PMCID: PMC1636725 DOI: 10.1128/mcb.01291-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RAD18 is an E3 ubiquitin ligase that catalyzes the monoubiquitination of PCNA, a modification central to DNA damage bypass and postreplication repair in both yeast and vertebrates. Although current evidence suggests that homologous recombination provides an essential backup in vertebrate rad18 mutants, we show that in chicken DT40 cells this is not the case and that RAD18 plays a role in the recombination reaction itself. Gene conversion tracts in the immunoglobulin locus of rad18 cells are shorter and are associated with an increased frequency of deletions and duplications. rad18 cells also exhibit reduced efficiency of gene conversion induced by targeted double-strand breaks in a reporter construct. Blocking an early stage of the recombination reaction by disruption of XRCC3 not only suppresses immunoglobulin gene conversion but also prevents the aberrant immunoglobulin gene rearrangements associated with RAD18 deficiency, reverses the elevated sister chromatid exchange of the rad18 mutant, and reduces its sensitivity to DNA damage. Together, these data suggest that homologous recombination is toxic in the absence of RAD18 and show that, in addition to its established role in postreplication repair, RAD18 is also required for the orderly completion of gene conversion.
Collapse
Affiliation(s)
- Dávid Szüts
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Cambridge CB2 2QH, UK
| | | | | | | | | |
Collapse
|
25
|
Longerich S, Basu U, Alt F, Storb U. AID in somatic hypermutation and class switch recombination. Curr Opin Immunol 2006; 18:164-74. [PMID: 16464563 DOI: 10.1016/j.coi.2006.01.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 01/27/2006] [Indexed: 01/15/2023]
Abstract
Somatic hypermutation and class-switch-recombination are initiated by the deamination of deoxycytosine in DNA by activation-induced-deaminase, AID. Recently, there has been much research into how AID targets double-stranded DNA in sub-regions of Ig genes, the involvement of co-factors and posttranslational modifications in this process, the co-option of DNA 'repair' mechanisms and AID evolution.
Collapse
Affiliation(s)
- Simonne Longerich
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 E. 58(th) Street, Chicago, IL 60615, USA
| | | | | | | |
Collapse
|
26
|
Abdulovic A, Kim N, Jinks-Robertson S. Mutagenesis and the three R's in yeast. DNA Repair (Amst) 2006; 5:409-21. [PMID: 16412705 DOI: 10.1016/j.dnarep.2005.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 11/17/2005] [Accepted: 11/17/2005] [Indexed: 11/19/2022]
Abstract
Mutagenesis is a prerequisite for evolution and also is an important contributor to human diseases. Most mutations in actively dividing cells originate during DNA replication as errors introduced when copying an undamaged DNA template or during the bypass of DNA lesions. In addition, mutations can be introduced during the repair of DNA double-strand breaks by either homologous recombination or non-homologous end-joining pathways. Finally, although generally considered to be a very high-fidelity process, the excision repair of DNA damage may be an important contributor to mutagenesis in non-dividing cells. In this review, we will discuss the well-known contributions of DNA replication to mutagenesis in Saccharomyces cerevisiae, as well as the less-appreciated contributions of recombination and repair to mutagenesis in this organism.
Collapse
Affiliation(s)
- Amy Abdulovic
- Biochemistry, Cell and Developmental Biology Program of the Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
27
|
Ross AL, Sale JE. The catalytic activity of REV1 is employed during immunoglobulin gene diversification in DT40. Mol Immunol 2005; 43:1587-94. [PMID: 16263170 DOI: 10.1016/j.molimm.2005.09.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 09/24/2005] [Indexed: 11/29/2022]
Abstract
REV1 plays a key role in vertebrate translesion synthesis. Although its deoxycytidyl transferase activity is dispensable for tolerance of DNA damage caused by a number of mutagens, its extreme C terminus, which interacts with other translesion polymerases and PCNA, is essential. By examining immunoglobulin diversification in the genetically tractable chicken cell line DT40 we show that the generation of non-templated point mutations from C/G to G/C does require the catalytic activity of REV1. This provides the first clear evidence that the catalytic activity of REV1 is utilised in vivo in higher eukaryotes and is involved in immunoglobulin diversification. Although rev1 DT40 cells incorporate few point mutations, a mutant lacking the C terminus of REV1 exhibits a similar level to that seen in wild-type cells. Thus, the polymerase selection or stabilisation role of REV1 does not appear to play a major role in the bypass of AID-dependent abasic sites.
Collapse
Affiliation(s)
- Anna-Laura Ross
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge, CB2 2QH, UK
| | | |
Collapse
|
28
|
MacDuff DA, Neuberger MS, Harris RS. MDM2 can interact with the C-terminus of AID but it is inessential for antibody diversification in DT40 B cells. Mol Immunol 2005; 43:1099-108. [PMID: 16122802 DOI: 10.1016/j.molimm.2005.07.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Indexed: 01/10/2023]
Abstract
Activation-induced deaminase (AID) is essential for immunoglobulin gene diversification by the distinct processes of class switch recombination, somatic hypermutation and gene conversion. Most evidence indicates that AID triggers these reactions through the direct deamination of cytosine residues in the DNA. However, AID is predominantly cytoplasmic and the mechanism that directs it to the immunoglobulin loci remains elusive. Like its homolog APOBEC1, which requires at least one additional factor to efficiently edit APOB RNA, other proteins are likely to be required for the proper targeting of AID to the immunoglobulin loci. Here, we show that AID can interact with MDM2, an oncoprotein that shuttles between the nucleus and the cytoplasm and targets p53 for nuclear export and degradation. This interaction mapped to the carboxy-terminal region of AID that harbors a nuclear export sequence, suggesting that MDM2 may be involved in the nucleo-cytoplasmic trafficking of AID. We therefore assessed the role of MDM2 in immunoglobulin gene diversification by disrupting MDM2 in DT40, an avian B cell line that constitutively undergoes AID-dependent immunoglobulin gene diversification. The subcellular localization of AID was unaffected in MDM2-deficient DT40 cells. However, slight hyper-and hypo-conversion phenotypes were caused by MDM2-abrogation and overexpression, respectively. These observations suggested that MDM2 has the capacity to negatively regulate AID. Intriguingly, the same carboxy-terminal residues of AID were recently shown to be inessential for somatic hypermutation and immunoglobulin gene conversion but they were strictly required for class switch recombination.
Collapse
Affiliation(s)
- Donna A MacDuff
- University of Minnesota, Department of Biochemistry, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
29
|
Simpson LJ, Sale JE. UBE2V2 (MMS2) is not required for effective immunoglobulin gene conversion or DNA damage tolerance in DT40. DNA Repair (Amst) 2005; 4:503-10. [PMID: 15725630 DOI: 10.1016/j.dnarep.2004.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Accepted: 12/15/2004] [Indexed: 01/14/2023]
Abstract
The RAD6/RAD18 heterodimer promotes translesion synthesis via the monoubiquitination of the DNA sliding clamp, PCNA. In S. cerevisiae, a second complex, UBC13/MMS2/RAD5, can extend this single ubiquitin with a non-canonical lysine 63-linked chain. This polyubiquitination step is required for an error-free mode of bypass, possibly template switching by the stalled replication complex. Evidence of a role for the human homologue of MMS2, UBE2V2, in such a process has been inferred from the abrogation of ultraviolet light-induced gene conversion following antisense knockdown of the transcript in human fibroblasts. To ask whether a similar mechanism contributes to abasic site-induced immunoglobulin gene conversion, and to ascertain the role of UBE2V2 in the vertebrate DNA damage response we created a ube2v2 mutant of the chicken cell line DT40. Unlike budding yeast mms2, ube2v2 DT40 does not exhibit significant hypersensitivity to DNA damage, nor the elevated sister chromatid exchange seen in vertebrate rad18 mutants suggesting that UBE2V2 plays a minor or redundant role in RAD18 dependent DNA damage tolerance. In addition, both ube2v2 and rad18 DT40 display more or less normal levels of immunoglobulin gene conversion and, despite the important role played by RAD18 in DNA damage induced translesion synthesis, rad18 DT40, unlike rev1 DT40, does not show a defect in non-templated immunoglobulin gene mutation. Together these data suggest that signalling through PCNA ubiquitination is not required for immunoglobulin diversification in DT40.
Collapse
Affiliation(s)
- Laura J Simpson
- MRC Laboratory of Molecular Biology, Division of Protein & Nucleic Acid Chemistry, Hills Road, Cambridge, CB2 2QH, UK
| | | |
Collapse
|
30
|
Abstract
A functional immune system is one of the prerequisites for the survival of a species. Humans have one of the most complicated immune systems, with the ability to learn from and adapt to pathogens. At first, a primary repertoire of antibodies is generated, which, upon antigen encounter, will diversify and adapt to produce a highly specific and potent secondary response, part of which is kept in memory to fight off future infections. In this review, the mechanism as well as the specificities of the key protein in the secondary immune response, activation-induced cytidine deaminase (AID), are highlighted, as well as its role in the DNA deamination model of immunoglobulin diversification. The review also highlights aspects of AID's regulation on both the transcriptional as well as post-translational level and its potential molecular mechanism and specificity. Furthermore, it expands outside the involvement of AID in somatic hypermutation, class switching, and gene conversion to discuss the implications of DNA deamination in epigenetic modifications of DNA (as a potential demethylase), the induction of mutations during oncogenesis, and includes an evolutionary comparison to the DNA deaminase family member APOBEC3G, a key protein in human immunodeficiency virus pathogenesis.
Collapse
Affiliation(s)
- Svend Petersen-Mahrt
- DNA Editing Laboratory, Cancer Research UK, Clare Hall Laboratories, South Mimms Hert, UK.
| |
Collapse
|
31
|
Abstract
The year 2004 marks the fortieth anniversary of the Holliday junction. This extraordinary DNA structure, originally proposed by Robin Holliday to explain genetic recombination in fungi, now appears to be a pivotal intermediate in many aspects of DNA metabolism. In those forty years the Holliday junction has gone from a hypothetical structure to models for its atomic structure and visualization of its dynamics at the single molecule level.
Collapse
Affiliation(s)
- Wolf-Dietrich Heyer
- Section of Microbiology, Center for Genetics and Development, University of California, Davis, CA 95616 USA.
| | | |
Collapse
|