1
|
Arora S, Satija S, Mittal A, Solanki S, Mohanty SK, Srivastava V, Sengupta D, Rout D, Arul Murugan N, Borkar RM, Ahuja G. Unlocking The Mysteries of DNA Adducts with Artificial Intelligence. Chembiochem 2024; 25:e202300577. [PMID: 37874183 DOI: 10.1002/cbic.202300577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
Cellular genome is considered a dynamic blueprint of a cell since it encodes genetic information that gets temporally altered due to various endogenous and exogenous insults. Largely, the extent of genomic dynamicity is controlled by the trade-off between DNA repair processes and the genotoxic potential of the causative agent (genotoxins or potential carcinogens). A subset of genotoxins form DNA adducts by covalently binding to the cellular DNA, triggering structural or functional changes that lead to significant alterations in cellular processes via genetic (e. g., mutations) or non-genetic (e. g., epigenome) routes. Identification, quantification, and characterization of DNA adducts are indispensable for their comprehensive understanding and could expedite the ongoing efforts in predicting carcinogenicity and their mode of action. In this review, we elaborate on using Artificial Intelligence (AI)-based modeling in adducts biology and present multiple computational strategies to gain advancements in decoding DNA adducts. The proposed AI-based strategies encompass predictive modeling for adduct formation via metabolic activation, novel adducts' identification, prediction of biochemical routes for adduct formation, adducts' half-life predictions within biological ecosystems, and, establishing methods to predict the link between adducts chemistry and its location within the genomic DNA. In summary, we discuss some futuristic AI-based approaches in DNA adduct biology.
Collapse
Affiliation(s)
- Sakshi Arora
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Shiva Satija
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Aayushi Mittal
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Saveena Solanki
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Sanjay Kumar Mohanty
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry CBH School, Royal Institute of Technology (KTH) AlbaNova University Center, 10691, Stockholm, Sweden
| | - Debarka Sengupta
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Diptiranjan Rout
- Department of Transfusion Medicine National Cancer Institute, AIIMS, New Delhi, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110608, India
| | - Natarajan Arul Murugan
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur Halugurisuk P.O.: Changsari, Dist, Guwahati, Assam, 781101, India
| | - Gaurav Ahuja
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| |
Collapse
|
2
|
Oh J, Xu J, Chong J, Wang D. Structural and biochemical analysis of DNA lesion-induced RNA polymerase II arrest. Methods 2019; 159-160:29-34. [PMID: 30797902 DOI: 10.1016/j.ymeth.2019.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/30/2019] [Accepted: 02/19/2019] [Indexed: 11/16/2022] Open
Abstract
Transcription, catalyzed by RNA polymerase II (Pol II) in eukaryotes, is the first step in gene expression. RNA Pol II is a 12-subunit enzyme complex regulated by many different transcription factors during transcription initiation, elongation, and termination. During elongation, Pol II encounters various types of obstacles that can cause transcriptional pausing and arrest. Through decades of research on transcriptional pausing, it is widely known that Pol II can distinguish between different types of obstacles by its active site. A major class of obstacles is DNA lesions. While some DNA lesions can cause transient transcriptional pausing, which can be bypassed by Pol II itself or with the help from other elongation factors, bulky DNA damage can cause prolonged transcriptional pausing and arrest, which signals for transcription coupled repair. Using biochemical and structural biology approaches, the outcomes of many different types of DNA lesions, DNA modifications, and DNA binding molecules to transcription were studied. In this mini review, we will describe the in vitro transcription assays with Pol II to investigate the impacts of various DNA lesions on transcriptional outcomes and the crystallization method of lesion-arrested Pol II complex. These methods can provide a general platform for the structural and biochemical analysis of Pol II transcriptional pausing and bypass mechanisms.
Collapse
Affiliation(s)
- Juntaek Oh
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Jun Xu
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Jenny Chong
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
3
|
Konovalov KA, Pardo-Avila F, Tse CKM, Oh J, Wang D, Huang X. 8-Oxo-guanine DNA damage induces transcription errors by escaping two distinct fidelity control checkpoints of RNA polymerase II. J Biol Chem 2019; 294:4924-4933. [PMID: 30718278 DOI: 10.1074/jbc.ra118.007333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/29/2019] [Indexed: 01/05/2023] Open
Abstract
RNA polymerase II (Pol II) has an intrinsic fidelity control mechanism to maintain faithful genetic information transfer during transcription. 8-Oxo-guanine (8OG), a commonly occurring damaged guanine base, promotes misincorporation of adenine into the RNA strand. Recent structural work has shown that adenine can pair with the syn conformation of 8OG directly upstream of the Pol II active site. However, it remains unknown how 8OG is accommodated in the active site as a template base for the incoming ATP. Here, we used molecular dynamics (MD) simulations to investigate two consecutive steps that may contribute to the adenine misincorporation by Pol II. First, the mismatch is located in the active site, contributing to initial incorporation of adenine. Second, the mismatch is in the adjacent upstream position, contributing to extension from the mismatched bp. These results are supported by an in vitro transcription assay, confirming that 8OG can induce adenine misincorporation. Our simulations further suggest that 8OG forms a stable bp with the mismatched adenine in both the active site and the adjacent upstream position. This stability predominantly originates from hydrogen bonding between the mismatched adenine and 8OG in a noncanonical syn conformation. Interestingly, we also found that an unstable bp present directly upstream of the active site, such as adenine paired with 8OG in the canonical anti conformation, largely disrupts the stability of the active site. Our findings have uncovered two main factors contributing to how 8OG induces transcriptional errors and escapes Pol II transcriptional fidelity control checkpoints.
Collapse
Affiliation(s)
- Kirill A Konovalov
- From the HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, and
| | - Fátima Pardo-Avila
- Department of Chemistry, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, and
| | - Carmen Ka Man Tse
- Department of Chemistry, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, and
| | - Juntaek Oh
- Department of Cellular and Molecular Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093
| | - Dong Wang
- Department of Cellular and Molecular Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093
| | - Xuhui Huang
- From the HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China, .,Department of Chemistry, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, and
| |
Collapse
|
4
|
Ikehata H, Yamamoto M. Roles of the KEAP1-NRF2 system in mammalian skin exposed to UV radiation. Toxicol Appl Pharmacol 2018; 360:69-77. [DOI: 10.1016/j.taap.2018.09.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022]
|
5
|
Structural basis of DNA lesion recognition for eukaryotic transcription-coupled nucleotide excision repair. DNA Repair (Amst) 2018; 71:43-55. [PMID: 30174298 DOI: 10.1016/j.dnarep.2018.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Eukaryotic transcription-coupled nucleotide excision repair (TC-NER) is a pathway that removes DNA lesions capable of blocking RNA polymerase II (Pol II) transcription from the template strand. This process is initiated by lesion-arrested Pol II and the recruitment of Cockayne Syndrome B protein (CSB). In this review, we will focus on the lesion recognition steps of eukaryotic TC-NER and summarize the recent research progress toward understanding the structural basis of Pol II-mediated lesion recognition and Pol II-CSB interactions. We will discuss the roles of CSB in both TC-NER initiation and transcription elongation. Finally, we propose an updated model of tripartite lesion recognition and verification for TC-NER in which CSB ensures Pol II-mediated recognition of DNA lesions for TC-NER.
Collapse
|
6
|
Kolbanovskiy M, Chowdhury MA, Nadkarni A, Broyde S, Geacintov NE, Scicchitano DA, Shafirovich V. The Nonbulky DNA Lesions Spiroiminodihydantoin and 5-Guanidinohydantoin Significantly Block Human RNA Polymerase II Elongation in Vitro. Biochemistry 2017; 56:3008-3018. [PMID: 28514164 DOI: 10.1021/acs.biochem.7b00295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The most common, oxidatively generated lesion in cellular DNA is 8-oxo-7,8-dihydroguanine, which can be oxidized further to yield highly mutagenic spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh) in DNA. In human cell-free extracts, both lesions can be excised by base excision repair and global genomic nucleotide excision repair. However, it is not known if these lesions can be removed by transcription-coupled DNA repair (TCR), a pathway that clears lesions from DNA that impede RNA synthesis. To determine if Sp or Gh impedes transcription, which could make each a viable substrate for TCR, either an Sp or a Gh lesion was positioned on the transcribed strand of DNA under the control of a promoter that supports transcription by human RNA polymerase II. These constructs were incubated in HeLa nuclear extracts that contained active RNA polymerase II, and the resulting transcripts were resolved by denaturing polyacrylamide gel electrophoresis. The structurally rigid Sp strongly blocks transcription elongation, permitting 1.6 ± 0.5% nominal lesion bypass. In contrast, the conformationally flexible Gh poses less of a block to human RNAPII, allowing 9 ± 2% bypass. Furthermore, fractional lesion bypass for Sp and Gh is minimally affected by glycosylase activity found in the HeLa nuclear extract. These data specifically suggest that both Sp and Gh may well be susceptible to TCR because each poses a significant block to human RNA polymerase II progression. A more general principle is also proposed: Conformational flexibility may be an important structural feature of DNA lesions that enhances their transcriptional bypass.
Collapse
Affiliation(s)
- Marina Kolbanovskiy
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| | - Moinuddin A Chowdhury
- Department of Biology, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| | - Aditi Nadkarni
- Department of Biology, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| | - Suse Broyde
- Department of Biology, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| | - Nicholas E Geacintov
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| | - David A Scicchitano
- Department of Biology, New York University , 100 Washington Square East, New York, New York 10003-5180, United States.,Division of Science, New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Vladimir Shafirovich
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| |
Collapse
|
7
|
Shin JH, Xu L, Wang D. Mechanism of transcription-coupled DNA modification recognition. Cell Biosci 2017; 7:9. [PMID: 28239446 PMCID: PMC5320713 DOI: 10.1186/s13578-016-0133-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/02/2016] [Indexed: 11/10/2022] Open
Abstract
As a key enzyme for gene expression, RNA polymerase II (pol II) reads along the DNA template and catalyzes accurate mRNA synthesis during transcription. On the other hand, genomic DNA is under constant attack by endogenous and environmental stresses. These attack cause many DNA lesions. Pol II functions as a specific sensor that is able to recognize changes in DNA sequences and structures and induces different outcomes. A critical question in the field is how Pol II recognizes and senses these DNA modifications or lesions. Recent studies provided new insights into understanding this critical question. In this mini-review, we would like to focus on three classes of DNA lesions/modifications: (1) Bulky, DNA-distorting lesions that block pol II transcription, (2) small DNA lesions that promote pol II pausing and error-prone transcriptional bypass, and (3) endogenous enzyme-catalyzed DNA modifications that lead to pol II pausing and error-free transcriptional bypass.
Collapse
Affiliation(s)
- Ji Hyun Shin
- Department of Cellular and Molecular Medicine, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Liang Xu
- Department of Cellular and Molecular Medicine, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Dong Wang
- Department of Cellular and Molecular Medicine, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
8
|
Shin JH, Xu L, Wang D. RNA polymerase II acts as a selective sensor for DNA lesions and endogenous DNA modifications. Transcription 2016; 7:57-62. [PMID: 27105138 PMCID: PMC4984683 DOI: 10.1080/21541264.2016.1168506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
During transcription elongation, RNA polymerase II (pol II) travels along the DNA template across thousands to millions of nucleotides and accurately synthesizes the complementary RNA transcripts. Apart from its canonical function as a key enzyme for DNA-dependent RNA synthesis, pol II also functions as a selective sensor to recognize DNA lesions or epigenetic modifications.
Collapse
Affiliation(s)
- Ji Hyun Shin
- Department of Cellular and Molecular Medicine, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, CA, USA
| | - Liang Xu
- Department of Cellular and Molecular Medicine, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, CA, USA
| | - Dong Wang
- Department of Cellular and Molecular Medicine, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Nadkarni A, Burns JA, Gandolfi A, Chowdhury MA, Cartularo L, Berens C, Geacintov NE, Scicchitano DA. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription. J Biol Chem 2016; 291:848-61. [PMID: 26559971 PMCID: PMC4705403 DOI: 10.1074/jbc.m115.685271] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/23/2015] [Indexed: 11/06/2022] Open
Abstract
DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N(6)-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N(6)-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N(6)-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N(6)-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N(6)-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER.
Collapse
Affiliation(s)
- Aditi Nadkarni
- From the Departments of Biology and Chemistry, New York University, New York, New York 10003
| | - John A Burns
- From the Departments of Biology and Chemistry, New York University, New York, New York 10003
| | - Alberto Gandolfi
- the Dipartimento di Matematica e Informatica "Ulisse Dini," Università di Firenze, 50134 Firenze, Italy, the Division of Science, New York University Abu Dhabi, Post Office Box 129188, Abu Dhabi, United Arab Emirates
| | - Moinuddin A Chowdhury
- From the Departments of Biology and Chemistry, New York University, New York, New York 10003
| | - Laura Cartularo
- From the Departments of Biology and Chemistry, New York University, New York, New York 10003
| | - Christian Berens
- the Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany, 07743, and
| | - Nicholas E Geacintov
- From the Departments of Biology and Chemistry, New York University, New York, New York 10003
| | - David A Scicchitano
- From the Departments of Biology and Chemistry, New York University, New York, New York 10003, the Division of Science, New York University Abu Dhabi, Post Office Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Xu L, Wang W, Chong J, Shin JH, Xu J, Wang D. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications. Crit Rev Biochem Mol Biol 2015; 50:503-19. [PMID: 26392149 DOI: 10.3109/10409238.2015.1087960] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress toward understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation.
Collapse
Affiliation(s)
- Liang Xu
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Wei Wang
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Jenny Chong
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Ji Hyun Shin
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Jun Xu
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Dong Wang
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| |
Collapse
|
11
|
Savery N. Prioritizing the repair of DNA damage that is encountered by RNA polymerase. Transcription 2014; 2:168-172. [PMID: 21922058 DOI: 10.4161/trns.2.4.16146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 05/12/2011] [Accepted: 05/13/2011] [Indexed: 11/19/2022] Open
Abstract
Transcription-coupled DNA repair pathways enable lesions that block transcription to be repaired more quickly than similar lesions in other parts of the genome. Here I consider the recent progress that has been made in understanding how bacteria prioritize certain lesions for nucleotide excision repair.
Collapse
Affiliation(s)
- Nigel Savery
- DNA-Protein Interactions Unit; School of Biochemistry; University of Bristol; Bristol, UK
| |
Collapse
|
12
|
Xu L, Da L, Plouffe SW, Chong J, Kool E, Wang D. Molecular basis of transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis. DNA Repair (Amst) 2014; 19:71-83. [PMID: 24767259 DOI: 10.1016/j.dnarep.2014.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Maintaining high transcriptional fidelity is essential for life. Some DNA lesions lead to significant changes in transcriptional fidelity. In this review, we will summarize recent progress towards understanding the molecular basis of RNA polymerase II (Pol II) transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis. In particular, we will focus on the three key checkpoint steps of controlling Pol II transcriptional fidelity: insertion (specific nucleotide selection and incorporation), extension (differentiation of RNA transcript extension of a matched over mismatched 3'-RNA terminus), and proofreading (preferential removal of misincorporated nucleotides from the 3'-RNA end). We will also discuss some novel insights into the molecular basis and chemical perspectives of controlling Pol II transcriptional fidelity through structural, computational, and chemical biology approaches.
Collapse
Affiliation(s)
- Liang Xu
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Linati Da
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Steven W Plouffe
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Jenny Chong
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Eric Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, United States.
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States.
| |
Collapse
|
13
|
Deaconescu AM. RNA polymerase between lesion bypass and DNA repair. Cell Mol Life Sci 2013; 70:4495-509. [PMID: 23807206 PMCID: PMC11113250 DOI: 10.1007/s00018-013-1384-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 05/13/2013] [Accepted: 05/23/2013] [Indexed: 11/29/2022]
Abstract
DNA damage leads to heritable changes in the genome via DNA replication. However, as the DNA helix is the site of numerous other transactions, notably transcription, DNA damage can have diverse repercussions on cellular physiology. In particular, DNA lesions have distinct effects on the passage of transcribing RNA polymerases, from easy bypass to almost complete block of transcription elongation. The fate of the RNA polymerase positioned at a lesion is largely determined by whether the lesion is structurally subtle and can be accommodated and eventually bypassed, or bulky, structurally distorting and requiring remodeling/complete dissociation of the transcription elongation complex, excision, and repair. Here we review cellular responses to DNA damage that involve RNA polymerases with a focus on bacterial transcription-coupled nucleotide excision repair and lesion bypass via transcriptional mutagenesis. Emphasis is placed on the explosion of new structural information on RNA polymerases and relevant DNA repair factors and the mechanistic models derived from it.
Collapse
Affiliation(s)
- Alexandra M Deaconescu
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South St., MS029, Waltham, MA, 02454, USA,
| |
Collapse
|
14
|
Khobta A, Epe B. Repair of oxidatively generated DNA damage in Cockayne syndrome. Mech Ageing Dev 2013; 134:253-60. [PMID: 23518175 DOI: 10.1016/j.mad.2013.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/12/2013] [Accepted: 03/01/2013] [Indexed: 11/16/2022]
Abstract
Defects in the repair of endogenously (especially oxidatively) generated DNA modifications and the resulting genetic instability can potentially explain the clinical symptoms of Cockayne syndrome (CS), a hereditary disease characterized by developmental defects and neurological degeneration. In this review, we describe the evidence for the involvement of CSA and CSB proteins, which are mutated in most of the CS patients, in the repair and processing of DNA damage induced by reactive oxygen species and the implications for the induction of cell death and mutations. Taken together, the data demonstrate that CSA and CSB, in addition to their established role in transcription-coupled nucleotide excision repair, can modulate the base excision repair (BER) of oxidized DNA bases both directly (by interaction with BER proteins) and indirectly (by modulating the expression of the DNA repair genes). Both nuclear and mitochondrial DNA repair is affected by mutations in CSA and CSB genes. However, the observed retardations of repair and the resulting accumulation of unrepaired endogenously generated DNA lesions are often mild, thus pointing to the relevance of additional roles of the CS proteins, e.g. in the mitochondrial response to oxidatively generated DNA damage and in the maintenance of gene transcription.
Collapse
Affiliation(s)
- Andriy Khobta
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, D-55099 Mainz, Germany.
| | | |
Collapse
|
15
|
Marinković M, de Leeuw WC, Ensink WA, de Jong M, Breit TM, Admiraal W, Kraak MHS, Jonker MJ. Gene expression patterns and life cycle responses of toxicant-exposed chironomids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:12679-12686. [PMID: 23126638 DOI: 10.1021/es3033617] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cellular stress responses are frequently presumed to be more sensitive than traditional ecotoxicological life cycle end points such as survival and growth. Yet, the focus to reduce test duration and to generate more sensitive end points has caused transcriptomics studies to be performed at low doses during short exposures, separately and independently from traditional ecotoxicity tests, making comparisons with life cycle end points indirect. Therefore we aimed to directly compare the effects on growth, survival, and gene expression of the nonbiting midge Chironomus riparius. To this purpose, we simultaneously analyzed life cycle and transcriptomics responses of chironomid larvae exposed to four model toxicants. We observed that already at the lowest test concentrations many transcripts were significantly differentially expressed, while the life cycle end points of C. riparius were hardly affected. Analysis of the differentially expressed transcripts showed that at the lowest test concentrations substantial and biologically relevant cellular stress was induced and that many transcripts responded already maximally at these lowest test concentrations. The direct comparison between molecular end life cycle responses after fourteen days of exposure revealed that gene expression is more sensitive to toxicant exposure than life cycle end points, underlining the potential of transcriptomics for ecotoxicity testing and environmental risk assessment.
Collapse
Affiliation(s)
- Marino Marinković
- Microarray Department and Integrative Bioinformatics Unit, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Tanshinones are a class of abietane diterpene compound isolated from Salvia miltiorrhiza (Danshen or Tanshen in Chinese), a well-known herb in Traditional Chinese Medicine (TCM). Since they were first identified in the 1930s, more than 40 lipophilic tanshinones and structurally related compounds have been isolated from Danshen. In recent decades, numerous studies have been conducted to investigate the isolation, identification, synthesis and pharmacology of tanshinones. In addition to the well-studied cardiovascular activities, tanshinones have been investigated more recently for their anti-cancer activities in vitro and in vivo. In this review, we update the herbal and alternative sources of tanshinones, and the pharmacokinetics of selected tanshinones. We discuss anti-cancer properties and identify critical issues for future research. Whereas previous studies have suggested anti-cancer potential of tanshinones affecting multiple cellular processes and molecular targets in cell culture models, data from in vivo potency assessment experiments in preclinical models vary greatly due to lack of uniformity of solvent vehicles and routes of administration. Chemical modifications and novel formulations had been made to address the poor oral bioavailability of tanshinones. So far, human clinical trials have been far from ideal in their design and execution for the purpose of supporting an anti-cancer indication of tanshinones.
Collapse
|
17
|
Kanamitsu K, Ikeda S. Fission yeast homologs of human XPC and CSB, rhp41 and rhp26, are involved in transcription-coupled repair of methyl methanesulfonate-induced DNA damage. Genes Genet Syst 2011; 86:83-91. [PMID: 21670547 DOI: 10.1266/ggs.86.83] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Methyl methanesulfonate (MMS) methylates nitrogen atoms in purines, and predominantly produces 7-methylguanine and 3-methyladenine (3-meA). Previously, we showed that base excision repair (BER) and nucleotide excision repair (NER) synergistically function to repair MMS-induced DNA damage in the fission yeast Schizosaccharomyces pombe. Here, we studied the roles of NER components in repair of 3-meA and BER intermediates such as the AP site and single strand breaks. Mutants of rhp41 (XPC homolog) and rhp26 (CSB homolog) exhibited moderate sensitivity to MMS. Transcription of the fbp1 gene, which is induced by glucose starvation, was strongly inhibited by MMS damage in rhp41Δ and rhp26Δ strains but not in wild type and 3-meA DNA glycosylase-deficient cells. The results indicate that Rhp41p and Rhp26p are involved in transcription-coupled repair (TCR) of MMS-induced DNA damage. In the BER pathway of S. pombe, AP lyase activity of Nth1p mainly incises the AP site to generate a 3'-blocked end, which is in turn converted to 3'-OH by Apn2p. Deletion of rad16 or rhp26 in the nth1Δ strain greatly enhanced MMS sensitivity, suggesting that the AP site could also be corrected by TCR. Double mutant apn2Δ/rad16Δ exhibited hypersensitivity to MMS, implying that Rad16p provides a backup pathway for removal of the 3'-blocked end. Moreover, an rhp51Δ strain was extremely sensitive to MMS and double mutants of nth1Δ/rhp51Δ and apn2Δ/rhp51Δ increased the sensitivity, suggesting that homologous recombination is necessary for repair of three different types of lesions, 3-meA, AP sites and 3'-blocked ends.
Collapse
Affiliation(s)
- Kyoichiro Kanamitsu
- Department of Biochemistry, Faculty of Science, Okayama University of Science, Okayama 700-0005, Japan
| | | |
Collapse
|
18
|
Prabha S, Rao DN, Nagaraja V. Distinct properties of hexameric but functionally conserved Mycobacterium tuberculosis transcription-repair coupling factor. PLoS One 2011; 6:e19131. [PMID: 21559463 PMCID: PMC3084762 DOI: 10.1371/journal.pone.0019131] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 03/17/2011] [Indexed: 12/04/2022] Open
Abstract
Transcription coupled nucleotide excision repair (TC-NER) is involved in correcting UV-induced damage and other road-blocks encountered in the transcribed strand. Mutation frequency decline (Mfd) is a transcription repair coupling factor, involved in repair of template strand during transcription. Mfd from M. tuberculosis (MtbMfd) is 1234 amino-acids long harboring characteristic modules for different activities. Mtbmfd complemented Escherichia coli mfd (Ecomfd) deficient strain, enhanced survival of UV irradiated cells and increased the road-block repression in vivo. The protein exhibited ATPase activity, which was stimulated ∼1.5-fold in the presence of DNA. While the C-terminal domain (CTD) comprising amino acids 630 to 1234 showed ∼2-fold elevated ATPase activity than MtbMfd, the N-terminal domain (NTD) containing the first 433 amino acid residues was able to bind ATP but deficient in hydrolysis. Overexpression of NTD of MtbMfd led to growth defect and hypersensitivity to UV light. Deletion of 184 amino acids from the C-terminal end of MtbMfd (MfdΔC) increased the ATPase activity by ∼10-fold and correspondingly exhibited efficient translocation along DNA as compared to the MtbMfd and CTD. Surprisingly, MtbMfd was found to be distributed in monomer and hexamer forms both in vivo and in vitro and the monomer showed increased susceptibility to proteases compared to the hexamer. MfdΔC, on the other hand, was predominantly monomeric in solution implicating the extreme C-terminal region in oligomerization of the protein. Thus, although the MtbMfd resembles EcoMfd in many of its reaction characteristics, some of its hitherto unknown distinct properties hint at its species specific role in mycobacteria during transcription-coupled repair.
Collapse
Affiliation(s)
- Swayam Prabha
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Desirazu N. Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- * E-mail: (DNR); (VN)
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- * E-mail: (DNR); (VN)
| |
Collapse
|
19
|
Zhang Z, Wang Y, Song T, Gao J, Wu G, Zhang J, Qian X. DNA double helix unwinding triggers transcription block-dependent apoptosis: a semiquantitative probe of the response of ATM, RNAPII, and p53 to two DNA intercalators. Chem Res Toxicol 2010; 22:483-91. [PMID: 19182866 DOI: 10.1021/tx800288v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have previously shown the binding modes of two DNA interacting analogues (1)a {3-(4-methyl-piperazin)-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile} and (3)a {3-(3-dimethylamino-propylamino)-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile} with the DNA double helix. In this study, we have determined the notably different DNA damage signal pathway elicited by (1)a and (3)a due to the different extents to which they unwind the DNA double helix. First, we have identified that ataxia-telangiectasia-mutated (ATM) protein kinase can respond to DNA double helix unwinding caused by both (1)a and (3)a. In addition, the amount of ATM activation is consistent with the degree to which the DNA double helix was unwound. Consequently, we used (1)a and (3)a to semiquantitatively probe the response of RNA polymerase II (RNAPII) and p53 toward DNA double helix unwinding in vivo. By means of flow cytometry, immunocytochemistry, ChIP, quantitative real-time polymerase chain reaction, and Western blot analyses, we measured the level of p53 and RNAPII phosphorylation, in addition to the dynamics of the RNAPII distribution along the c-Myc gene. These results provided novel evidence for the impact of subtle DNA structural changes on the activity of RNAPII and p53. Moreover, DNA double helix conformational damage-dependent apoptosis was studied for the first time. These results indicated that (1)a can induce transcriptional blockage following a shift of the unphosphorylated IIa form of RNAPII to the phosphorylated IIo form, while (3)a is unable to induce the same effect. Subsequently, p53 accumulation and phosphorylation events occur that lead to apoptosis in the case of (1)a exposure. This suggests that the transcriptional blockage is also correlated to the degree of double helix unwinding. Furthermore, we found that the degree of DNA conformational damage determines whether or not apoptosis occurs through transcriptional blockage. Under our experimental conditions, ATM does not participate in the downstream events even when it has been activated. Thus, p53-mediated apoptosis may be independently triggered by transcriptional blockage.
Collapse
Affiliation(s)
- Zhichao Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Hlavin EM, Smeaton MB, Miller PS. Initiation of DNA interstrand cross-link repair in mammalian cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:604-24. [PMID: 20658650 PMCID: PMC2911644 DOI: 10.1002/em.20559] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Interstrand cross-links (ICLs) are among the most cytotoxic DNA lesions to cells because they prevent the two DNA strands from separating, thereby precluding replication and transcription. Even though chemotherapeutic cross-linking agents are well established in clinical use, and numerous repair proteins have been implicated in the initial events of mammalian ICL repair, the precise mechanistic details of these events remain to be elucidated. This review will summarize our current understanding of how ICL repair is initiated with an emphasis on the context (replicating, transcribed or quiescent DNA) in which the ICL is recognized, and how the chemical and physical properties of ICLs influence repair. Although most studies have focused on replication-dependent repair because of the relation to highly replicative tumor cells, replication-independent ICL repair is likely to be important in the circumvention of cross-link cytotoxicity in nondividing, terminally differentiated cells that may be challenged with exogenous or endogenous sources of ICLs. Consequently, the ICL repair pathway that should be considered "dominant" appears to depend on the cell type and the DNA context in which the ICL is encountered. The ability to define and inhibit distinct pathways of ICL repair in different cell cycle phases may help in developing methods that increase cytotoxicity to cancer cells while reducing side-effects in nondividing normal cells. This may also lead to a better understanding of pathways that protect against malignancy and aging.
Collapse
Affiliation(s)
| | | | - Paul S. Miller
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
21
|
Abstract
In this chapter, I describe the alkaline single-cell gel electrophoresis (Comet assay) combined with fluorescence in situ hybridization (FISH) technology, used in our laboratory, to study the incidence and repair of lesions induced in human cells by ultraviolet light. The Comet-FISH method permits the simultaneous and comparative analysis of DNA damage and its repair throughout the genome and in defined chromosomal regions. This very sensitive approach can be applied to any lesion, such as those induced by chemical carcinogens and products of cellular metabolism that can be converted to DNA single- or double-strand breaks. The unique advantages and limitations of the method for particular applications are discussed.
Collapse
Affiliation(s)
- Graciela Spivak
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
22
|
Tanshinone IIA triggers p53 responses and apoptosis by RNA polymerase II upon DNA minor groove binding. Biochem Pharmacol 2009; 78:1316-22. [PMID: 19591811 DOI: 10.1016/j.bcp.2009.06.110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 11/22/2022]
Abstract
Our previous work has shown that tanshinone IIA (Tan IIA) is a DNA minor groove binder instead of an intercalator as previously thought. In this study, we have further demonstrated that the molecular antitumor pharmacology of Tan IIA is dependent on its groove-binding capability. First, we investigated the structure damage to duplex DNA upon Tan IIA binding using circular dichroism spectra. Subsequently, we performed western blot, flow cytometry analysis, chromatin immunoprecipitation, and quantitative real-time PCR to illustrate the RNAPII degradation, phosphorylation, and distribution along the transcribed gene in H22 cells exposed to Tan IIA. In addition, p53 activation and apoptosis induction in both cultured H22 cells and in mice bearing the ascitic-type H22 were measured following Tan IIA treatment. It was revealed that Tan IIA decreases the level of RNAPII by altering DNA structure. At the low dose range (0.2-4 microM) of Tan IIA exposure, the DNA structure damage results in the inhibition of RNAPII binding to DNA and the initiation of RNAPII phosphorylation, while higher concentrations of Tan IIA (4-20 microM) cause complete phosphorylation and degradation of RNAPII followed by p53 activation and apoptosis. A similar apoptosis induction by RNAPII was observed in animals. Apoptosis of tumor cells from ascitic fluid was not detected until RNAPII levels were downregulated by Tan IIA, which requires 40 mg/kg body weight of Tan IIA. It was concluded that DNA-conformational-damage-dependent RNAPII response upon groove binding is the molecular basis of the antitumor property of Tan IIA, in vivo and in vitro.
Collapse
|
23
|
Mugal CF, von Grünberg HH, Peifer M. Transcription-induced mutational strand bias and its effect on substitution rates in human genes. Mol Biol Evol 2008; 26:131-42. [PMID: 18974087 DOI: 10.1093/molbev/msn245] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
If substitution rates are not the same on the two complementary DNA strands, a substitution is considered strand asymmetric. Such substitutional strand asymmetries are determined here for the three most frequent types of substitution on the human genome (C --> T, A --> G, and G --> T). Substitution rate differences between both strands are estimated for 4,590 human genes by aligning all repeats occurring within the introns with their ancestral consensus sequences. For 1,630 of these genes, both coding strand and noncoding strand rates could be compared with rates in gene-flanking regions. All three rates considered are found to be on average higher on the coding strand and lower on the transcribed strand in comparison to their values in the gene-flanking regions. This finding points to the simultaneous action of rate-increasing effects on the coding strand--such as increased adenine and cytosine deamination--and transcription-coupled repair as a rate-reducing effect on the transcribed strand. The common behavior of the three rates leads to strong correlations of the rate asymmetries: Whenever one rate is strand biased, the other two rates are likely to show the same bias. Furthermore, we determine all three rate asymmetries as a function of time: the A --> G and G --> T rate asymmetries are both found to be constant in time, whereas the C --> T rate asymmetry shows a pronounced time dependence, an observation that explains the difference between our results and those of an earlier work by Green et al. (2003. Transcription-associated mutational asymmetry in mammalian evolution. Nat Genet. 33:514-517.). Finally, we show that in addition to transcription also the replication process biases the substitution rates in genes.
Collapse
Affiliation(s)
- Carina F Mugal
- Institute of Chemistry, Karl-Franzens University Graz, Graz, Austria
| | | | | |
Collapse
|
24
|
Dimitri A, Burns JA, Broyde S, Scicchitano DA. Transcription elongation past O6-methylguanine by human RNA polymerase II and bacteriophage T7 RNA polymerase. Nucleic Acids Res 2008; 36:6459-71. [PMID: 18854351 PMCID: PMC2582612 DOI: 10.1093/nar/gkn657] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
O6-Methylguanine (O6-meG) is a major mutagenic, carcinogenic and cytotoxic DNA adduct produced by various endogenous and exogenous methylating agents. We report the results of transcription past a site-specifically modified O6-meG DNA template by bacteriophage T7 RNA polymerase and human RNA polymerase II. These data show that O6-meG partially blocks T7 RNA polymerase and human RNA polymerase II elongation. In both cases, the sequences of the truncated transcripts indicate that both polymerases stop precisely at the damaged site without nucleotide incorporation opposite the lesion, while extensive misincorporation of uracil is observed in the full-length RNA. For both polymerases, computer models suggest that bypass occurs only when O6-meG adopts an anti conformation around its glycosidic bond, with the methyl group in the proximal orientation; in contrast, blockage requires the methyl group to adopt a distal conformation. Furthermore, the selection of cytosine and uracil partners opposite O6-meG is rationalized with modeled hydrogen-bonding patterns that agree with experimentally observed O6-meG:C and O6-meG:U pairing schemes. Thus, in vitro, O6-meG contributes substantially to transcriptional mutagenesis. In addition, the partial blockage of RNA polymerase II suggests that transcription-coupled DNA repair could play an auxiliary role in the clearance of this lesion.
Collapse
Affiliation(s)
- Alexandra Dimitri
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, NY 10003, USA
| | | | | | | |
Collapse
|
25
|
Dimitri A, Jia L, Shafirovich V, Geacintov NE, Broyde S, Scicchitano DA. Transcription of DNA containing the 5-guanidino-4-nitroimidazole lesion by human RNA polymerase II and bacteriophage T7 RNA polymerase. DNA Repair (Amst) 2008; 7:1276-88. [PMID: 18555749 PMCID: PMC2572817 DOI: 10.1016/j.dnarep.2008.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 04/03/2008] [Accepted: 04/09/2008] [Indexed: 12/24/2022]
Abstract
Damage in transcribed DNA presents a challenge to the cell because it can partially or completely block the progression of an RNA polymerase, interfering with transcription and compromising gene expression. While blockage of RNA polymerase progression is thought to trigger the recruitment of transcription-coupled DNA repair (TCR), bypass of the lesion can also occur, either error-prone or error-free. Error-prone transcription is often referred to as transcriptional mutagenesis (TM). Elucidating why some lesions pose blocks to transcription elongation while others do not remains a challenging problem. As part of an effort to understand this, we studied transcription past a 5-guanidino-4-nitroimidazole (NI) lesion, using two structurally different RNA polymerases, human RNA polymerase II (hRNAPII) and bacteriophage T7 RNA polymerase (T7RNAP). The NI damage results from the oxidation of guanine in DNA by peroxynitrite, a well known, biologically important oxidant. It is of structural interest because it is a ring-opened and conformationally flexible guanine lesion. Our results show that NI acts as a partial block to T7RNAP while posing a major block to hRNAPII, which has a more constrained active site than T7RNAP. Lesion bypass by T7RNAP induces base misincorporations and deletions opposite the lesion (C>A>-1 deletion >G >>> U), but hRNAPII exhibits error-free transcription although lesion bypass is a rare event. We employed molecular modeling methods to explain the observed blockage or bypass accompanied by nucleotide incorporation opposite the lesion. The results of the modeling studies indicate that NI's multiple hydrogen-bonding capabilities and torsional flexibility are important determinants of its effect on transcription in both enzymes. These influence the kinetics of lesion bypass and may well play a role in TM and TCR in cells.
Collapse
Affiliation(s)
- Alexandra Dimitri
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, New York 10003
| | - Lei Jia
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, New York 10003
| | - Vladimir Shafirovich
- Department of Chemistry, New York University, 1001 Silver Center, 100 Washington Square East, New York, New York 10003
| | - Nicholas E. Geacintov
- Department of Chemistry, New York University, 1001 Silver Center, 100 Washington Square East, New York, New York 10003
| | - Suse Broyde
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, New York 10003
| | - David A. Scicchitano
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, New York 10003
| |
Collapse
|
26
|
Salmon AB, Ljungman M, Miller RA. Cells from long-lived mutant mice exhibit enhanced repair of ultraviolet lesions. J Gerontol A Biol Sci Med Sci 2008; 63:219-31. [PMID: 18375871 PMCID: PMC2711434 DOI: 10.1093/gerona/63.3.219] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibroblasts isolated from long-lived hypopituitary dwarf mice are resistant to many cell stresses, including ultraviolet (UV) light and methyl methane sulfonate (MMS), which induce cell death by producing DNA damage. Here we report that cells from Snell dwarf mice recover more rapidly than controls from the inhibition of RNA synthesis induced by UV damage. Recovery of messenger RNA (mRNA) synthesis in particular is more rapid in dwarf cells, suggesting enhanced repair of the actively transcribing genes in dwarf-derived cells. At early time points, there was no difference in the repair of cyclobutane pyrimidine dimers (CPD) or 6-4 photoproducts (6-4PP) in the whole genome, nor was there any significant difference in the repair of UV lesions in specific genes. However, at later time points we found that more lesions had been removed from the genome of dwarf-derived cells. We have also found that cells from dwarf mice express higher levels of the nucleotide excision repair proteins XPC and CSA, suggesting a causal link to enhanced DNA repair. Overall, these data suggest a mechanism for the UV resistance of Snell dwarf-derived fibroblasts that could contribute to the delay of aging and neoplasia in these mice.
Collapse
Affiliation(s)
- Adam B. Salmon
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI
| | - Mats Ljungman
- Department of Radiation Oncology, Division of Radiation & Cancer Biology, University of, Michigan Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| | - Richard A. Miller
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI
- Department of Pathology, Geriatrics Center, and VA Medical Center, University of Michigan, 3001 BSRB Box 2200, Ann Arbor, MI 48109-2200
| |
Collapse
|
27
|
Tornaletti S, Park-Snyder S, Hanawalt PC. G4-forming sequences in the non-transcribed DNA strand pose blocks to T7 RNA polymerase and mammalian RNA polymerase II. J Biol Chem 2008; 283:12756-62. [PMID: 18292094 DOI: 10.1074/jbc.m705003200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA sequences rich in runs of guanine have the potential to form G4 DNA, a four-stranded non-canonical DNA structure stabilized by formation and stacking of G quartets, planar arrays of four hydrogen-bonded guanines. It was reported recently that G4 DNA can be generated in Escherichia coli during transcription of plasmids containing G-rich sequences in the non-transcribed strand. In addition, a stable RNA/DNA hybrid is formed with the transcribed strand. These novel structures, termed G loops, are suppressed in recQ(+) strains, suggesting that their persistence may generate genomic instability and that the RecQ helicase may be involved in their dissolution. However, little is known about how such non-canonical DNA structures are processed when encountered by an elongating polymerase. To assess whether G4-forming sequences interfere with transcription, we studied their effect on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. We used a reconstituted transcription system in vitro with purified polymerase and initiation factors and with substrates containing G-rich sequences in either the transcribed or non-transcribed strand downstream of the T7 promoter or the adenovirus major late promoter. We report that G-rich sequences located in the transcribed strand do not affect transcription by either polymerase, but when the sequences are located in the non-transcribed strand, they partially arrest both polymerases. The efficiency of arrest increases with negative supercoiling and also with multiple rounds of transcription compared with single events.
Collapse
Affiliation(s)
- Silvia Tornaletti
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA.
| | | | | |
Collapse
|
28
|
Dimitri A, Goodenough AK, Guengerich FP, Broyde S, Scicchitano DA. Transcription processing at 1,N2-ethenoguanine by human RNA polymerase II and bacteriophage T7 RNA polymerase. J Mol Biol 2008; 375:353-66. [PMID: 18022639 PMCID: PMC2262288 DOI: 10.1016/j.jmb.2007.10.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 10/16/2007] [Accepted: 10/18/2007] [Indexed: 10/22/2022]
Abstract
The DNA lesion 1,N(2)-ethenoguanine (1,N(2)-epsilon G) is formed endogenously as a by-product of lipid peroxidation or by reaction with epoxides that result from the metabolism of the industrial pollutant vinyl chloride, a known human carcinogen. DNA replication past 1,N(2)-epsilon G and site-specific mutagenesis studies on mammalian cells have established the highly mutagenic and genotoxic properties of the damaged base. However, there is as yet no information on the processing of this lesion during transcription. Here, we report the results of transcription past a site-specifically modified 1,N(2)-epsilon G DNA template. This lesion contains an exocyclic ring obstructing the Watson-Crick hydrogen-bonding edge of guanine. Our results show that 1,N(2)-epsilon G acts as a partial block to the bacteriophage T7 RNA polymerase (RNAP), which allows nucleotide incorporation in the growing RNA with the selectivity A>G>(C=-1 deletion)>>U. In contrast, 1,N(2)-epsilon G poses an absolute block to human RNAP II elongation, and nucleotide incorporation opposite the lesion is not observed. Computer modeling studies show that the more open active site of T7 RNAP allows lesion bypass when the 1,N(2)-epsilon G adopts the syn-conformation. This orientation places the exocyclic ring in a collision-free empty pocket of the polymerase, and the observed base incorporation preferences are in agreement with hydrogen-bonding possibilities between the incoming nucleotides and the Hoogsteen edge of the lesion. On the other hand, in the more crowded active site of the human RNAP II, the modeling studies show that both syn- and anti-conformations of the 1,N(2)-epsilon G are sterically impermissible. Polymerase stalling is currently believed to trigger the transcription-coupled nucleotide excision repair machinery. Thus, our data suggest that this repair pathway is likely engaged in the clearance of the 1,N(2)-epsilon G from actively transcribed DNA.
Collapse
Affiliation(s)
| | - Angela K. Goodenough
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - F. Peter Guengerich
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232
- Department of Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37232
| | - Suse Broyde
- Department of Biology, New York University, NY, NY, 10003, USA
| | | |
Collapse
|
29
|
Lin Y, Wilson JH. Transcription-induced CAG repeat contraction in human cells is mediated in part by transcription-coupled nucleotide excision repair. Mol Cell Biol 2007; 27:6209-17. [PMID: 17591697 PMCID: PMC1952160 DOI: 10.1128/mcb.00739-07] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 05/16/2007] [Accepted: 06/13/2007] [Indexed: 02/02/2023] Open
Abstract
Expansions of CAG repeat tracts in the germ line underlie several neurological diseases. In human patients and mouse models, CAG repeat tracts display an ongoing instability in neurons, which may exacerbate disease symptoms. It is unclear how repeats are destabilized in nondividing cells, but it cannot involve DNA replication. We showed previously that transcription through CAG repeats induces their instability (Y. Lin, V. Dion, and J. H. Wilson, Nat. Struct. Mol. Biol. 13:179-180). Here, we present a genetic analysis of the link between transcription-induced repeat instability and nucleotide excision repair (NER) in human cells. We show that short interfering RNA-mediated knockdown of CSB, a component specifically required for transcription-coupled NER (TC-NER), and knockdowns of ERCC1 and XPG, which incise DNA adjacent to damage, stabilize CAG repeat tracts. These results suggest that TC-NER is involved in the pathway for transcription-induced CAG repeat instability. In contrast, knockdowns of OGG1 and APEX1, key components involved in base excision repair, did not affect repeat instability. In addition, repeats are stabilized by knockdown of transcription factor IIS, consistent with a requirement for RNA polymerase II (RNAPII) to backtrack from a transcription block. Repeats also are stabilized by knockdown of either BRCA1 or BARD1, which together function as an E3 ligase that can ubiquitinate arrested RNAPII. Treatment with the proteasome inhibitor MG132, which stabilizes repeats, confirms proteasome involvement. We integrate these observations into a tentative pathway for transcription-induced CAG repeat instability that can account for the contractions observed here and potentially for the contractions and expansions seen with human diseases.
Collapse
Affiliation(s)
- Yunfu Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
30
|
Smith AJ, Szczelkun MD, Savery NJ. Controlling the motor activity of a transcription-repair coupling factor: autoinhibition and the role of RNA polymerase. Nucleic Acids Res 2007; 35:1802-11. [PMID: 17329375 PMCID: PMC1874598 DOI: 10.1093/nar/gkm019] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 12/22/2006] [Accepted: 01/02/2007] [Indexed: 11/24/2022] Open
Abstract
Motor proteins that couple ATP hydrolysis to movement along nucleic acids play a variety of essential roles in DNA metabolism. Often these enzymes function as components of macromolecular complexes, and DNA translocation by the motor protein drives movement of other components of the complex. In order to understand how the activity of motor proteins is regulated within multi-protein complexes we have studied the bacterial transcription-repair coupling factor, Mfd, which is a helicase superfamily 2 member that binds to RNA polymerase (RNAP) and removes stalled transcription complexes from DNA. Using an oligonucleotide displacement assay that monitors protein movement on double-stranded DNA we show that Mfd has little motor activity in isolation, but exhibits efficient oligonucleotide displacement activity when bound to a stalled transcription complex. Deletion of the C-terminal domain of Mfd increases the ATPase activity of the protein and allows efficient oligo-displacement in the absence of RNAP. Our results suggest that an autoinhibitory domain ensures the motor activity of Mfd is only functional within the correct macromolecular context: recruitment of Mfd to a stalled transcription complex relieves the autoinhibition and unmasks the motor activity.
Collapse
Affiliation(s)
| | | | - Nigel J. Savery
- DNA-Protein Interactions Unit, Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
31
|
Abstract
This chapter describes the technologies used in our respective laboratories to study the incidence and repair of lesions induced in specific DNA sequences by ultraviolet light, chemical carcinogens, and products of cellular metabolism. The Southern blot method is suitable for analysis of damage and repair in the individual DNA strands of specific restriction fragments up to 25,000 nucleotides in length, whereas the ligation-mediated polymerase chain reaction approach permits analysis of shorter sequences at the nucleotide level. Both methods have unique advantages and limitations for particular applications.
Collapse
Affiliation(s)
- Graciela Spivak
- Department of Biological Sciences, Stanford University, California, USA
| | | | | |
Collapse
|
32
|
Kisby GE, Olivas A, Standley M, Lu X, Pattee P, O’Malley J, Li X, Muniz J, Nagalla SR. Genotoxicants target distinct molecular networks in neonatal neurons. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:1703-12. [PMID: 17107856 PMCID: PMC1665395 DOI: 10.1289/ehp.9073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Exposure of the brain to environmental agents during critical periods of neuronal development is considered a key factor underlying many neurologic disorders. OBJECTIVES In this study we examined the influence of genotoxicants on cerebellar function during early development by measuring global gene expression changes. METHODS We measured global gene expression in immature cerebellar neurons (i.e., granule cells) after treatment with two distinct alkylating agents, methylazoxymethanol (MAM) and nitrogen mustard (HN2). Granule cell cultures were treated for 24 hr with MAM (10-1,000 microM) or HN2 (0.1-20 microM) and examined for cell viability, DNA damage, and markers of apoptosis. RESULTS Neuronal viability was significantly reduced (p < 0.01) at concentrations > 500 microM for MAM and > 1.0 microM for HN2; this correlated with an increase in both DNA damage and markers of apoptosis. Neuronal cultures treated with sublethal concentrations of MAM (100 microM) or HN2 (1.0 microM) were then examined for gene expression using large-scale mouse cDNA microarrays (27,648). Gene expression results revealed that a) global gene expression was predominantly up-regulated by both genotoxicants; b) the number of down-regulated genes was approximately 3-fold greater for HN2 than for MAM; and c) distinct classes of molecules were influenced by MAM (i.e, neuronal differentiation, the stress and immune response, and signal transduction) and HN2 (i.e, protein synthesis and apoptosis). CONCLUSIONS These studies demonstrate that individual genotoxicants induce distinct gene expression signatures. Further study of these molecular networks may explain the variable response of the developing brain to different types of environmental genotoxicants.
Collapse
Affiliation(s)
- Glen E. Kisby
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, Portland, Oregon
| | - Antoinette Olivas
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, Portland, Oregon
| | - Melissa Standley
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Xinfang Lu
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Patrick Pattee
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Jean O’Malley
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Xiaorong Li
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, Portland, Oregon
| | - Juan Muniz
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, Portland, Oregon
| | - Srinavasa R. Nagalla
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Address correspondence to S. Nagalla, Department of Pediatrics, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239 USA. Telephone: (503) 494-1928. Fax: (503) 494-4821. E-mail:
| |
Collapse
|
33
|
Kisby GE, Standley M, Park T, Olivas A, Fei S, Jacob T, Reddy A, Lu X, Pattee P, Nagalla SR. Proteomic Analysis of the Genotoxicant Methylazoxymethanol (MAM)-Induced Changes in the Developing Cerebellum. J Proteome Res 2006; 5:2656-65. [PMID: 17022636 DOI: 10.1021/pr060126g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The genotoxicant methylazoxymethanol (MAM) is a widely used developmental neurotoxin, and its glucoside is an etiological factor for western Pacific amyotrophic lateral sclerosis-parkinsonism-dementia complex (ALS/PDC). Identification of global protein expression changes that occur in response to MAM in the developing cerebellum could provide valuable insight into the potential mechanisms involved in the neurodegeneration process. We have utilized fluorescence 2-dimensional differential gel electrophoresis (2D-DIGE), to determine the protein expression changes that occur during normal cerebellar development and in response to MAM. Three day-old postnatal C57BL/6 mice (PND3) received a single injection of MAM, and the cerebella of postnatal day 4 (PND4) and day 22 (PND22) were analyzed. Approximately, 1400 unique spots were matched and quantified in all samples. Comparison of PND4 and PND22 developing cerebellum showed that a significant fraction of the proteome (approximately 68%) changes at this stage. The immediate response of the developing cerebellum to MAM was minimal (approximately 10%). However, significant differences (27%) were noted 14 days after MAM exposure. In contrast, the transcriptome changes were more pronounced at 24 h compared to 14 days. MAM targeted several proteins networks including transport (e.g., alpha-synuclein), cytoskeletal (e.g., beta-tubulin, vimentin), and mitochondrial (e.g., Atp5b) proteins. Immunochemistry confirmed several of the changes in protein expression (alpha-synuclein). Comparison with gene expression changes revealed that the temporal changes observed in the transcriptome and proteome are not correlative. These studies demonstrate for the first time the potential networks involved during neuronal development and neurodegenerative processes that are perturbed by MAM.
Collapse
Affiliation(s)
- G E Kisby
- Center for Research on Occupational and Environmental Toxicology (CROET) and Center for Biomarker Discovery, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Saxowsky TT, Doetsch PW. RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis? Chem Rev 2006; 106:474-88. [PMID: 16464015 DOI: 10.1021/cr040466q] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Tina T Saxowsky
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
35
|
Abstract
FLIP is an antiapoptotic protein that has been demonstrated to play an important role in inflammation, cancer, and autoimmune diseases. However, it is not known whether increased expression of FLIP (FLICE inhibitory protein) in thyrocytes would alter the development of the thyroid and/or pathogenesis of thyroiditis. To examine the effects of overexpression of this antiapoptotic molecule on the thyroid, we have developed transgenic mouse lines that specifically express FLIP in thyrocytes. A DNA construct designed with an in-frame coding sequence for the E8 protein, a viral FLIP, was put under the control of the thyroglobulin (Tg) promoter (the Tg-FLIP transgene). In 8 of 12 resultant transgenic mouse lines, FLIP expression in thyrocytes driven by the Tg promoter was documented, and confirmed at RNA and protein levels. These Tg-FLIP transgenic mice were monitored for 1 year. Throughout the entire observation period, the transgenic mice remained alive and healthy without evidence of thyroid dysfunction. Adult mice were able to breed. Histologic examination of thyroids obtained at various time points did not reveal significant differences between transgenic mice and their control littermates. Therefore, transgenic mice with thyrocyte-specific expression of FLIP have normal thyroid development with no significant changes in thyroid cell death or proliferation.
Collapse
Affiliation(s)
- Su He Wang
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0648, USA
| | | | | | | |
Collapse
|
36
|
Scicchitano DA. Transcription past DNA adducts derived from polycyclic aromatic hydrocarbons. Mutat Res 2005; 577:146-54. [PMID: 15922365 DOI: 10.1016/j.mrfmmm.2005.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 03/22/2005] [Accepted: 03/22/2005] [Indexed: 12/20/2022]
Abstract
The ability of a DNA lesion to block transcription is a function of many variables: (1) the ability of the RNA polymerase active site to accommodate the damaged base; (2) the size and shape of the adduct, which includes the specific modified base; (3) the stereochemistry of the adduct; (4) the base incorporated into the growing transcript; (5) and the local DNA sequence. Each of these parameters, either alone or in combination, can influence how a particular lesion in the genome will affect transcription elongation, resulting in potential clearance of the lesion via transcription-coupled DNA repair or in the formation of truncated or full-length transcripts that might encode defective proteins.
Collapse
Affiliation(s)
- David A Scicchitano
- Department of Biology, 1009 Silver Center, 100 Washington Square East, New York University, New York, NY 10003, USA.
| |
Collapse
|
37
|
Tornaletti S. Transcription arrest at DNA damage sites. Mutat Res 2005; 577:131-45. [PMID: 15904937 DOI: 10.1016/j.mrfmmm.2005.03.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2005] [Revised: 03/08/2005] [Accepted: 03/08/2005] [Indexed: 11/16/2022]
Abstract
Transcription arrest by RNA polymerase II at a DNA damage site on the transcribed strand is considered an essential step in initiation of transcription-coupled repair (TCR), a specialized repair pathway, which specifically removes lesions from transcribed strands of expressed genes. To understand how initiation of TCR occurs, it is necessary to characterize the properties of the transcription complex when it encounters a lesion in its path. The analysis of different types of arrested complexes should help us understand how an arrested RNA polymerase may signal the repair proteins to initiate a repair event. This article will review the recent literature describing how the presence of DNA damage along the DNA affects transcription elongation by RNA polymerase II and its implications for the initial steps of TCR.
Collapse
Affiliation(s)
- Silvia Tornaletti
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA.
| |
Collapse
|
38
|
Spivak G, Hanawalt PC. Host cell reactivation of plasmids containing oxidative DNA lesions is defective in Cockayne syndrome but normal in UV-sensitive syndrome fibroblasts. DNA Repair (Amst) 2005; 5:13-22. [PMID: 16129663 DOI: 10.1016/j.dnarep.2005.06.017] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 06/27/2005] [Accepted: 06/30/2005] [Indexed: 11/21/2022]
Abstract
UV-sensitive syndrome (UV(S)S) is a human DNA repair-deficient disease with mild clinical manifestations. No neurological or developmental abnormalities or predisposition to cancer have been reported. In contrast, Cockayne syndrome (CS) patients exhibit severe developmental and neurological defects, in addition to photosensitivity. The cellular and biochemical responses of UV(S)S and CS cells to UV are indistinguishable, and result from defective transcription-coupled repair (TCR) of photoproducts in expressed genes. We propose that UV(S)S patients develop normally because they are proficient in repair of oxidative base damage. Consistent with our model, we show that Cockayne syndrome cells from complementation groups A and B (CS-A, CS-B) are more sensitive to treatment with hydrogen peroxide than wild type or UV(S)S cells. Using a host cell reactivation assay with plasmids containing UV-induced photoproducts, we find that expression of the plasmid-encoded lacZ gene is reduced in the TCR-deficient CS-B and UV(S)S cells. When the plasmids contain the oxidative base lesion thymine glycol, CS-B cells are defective in recovery of expression, whereas UV(S)S cells show levels of expression similar to those in wild type cells. 8-oxoguanine in the plasmids result in similarly defective host cell reactivation in CS-A and CS-B cells; abasic sites or single strand breaks in the plasmids cause similar decreases in expression in all the cell lines examined. Repair of thymine glycols in the lacZ gene was measured in plasmids extracted from transfected cells; removal of the lesions is efficient and without strand bias in all the cell lines tested.
Collapse
Affiliation(s)
- Graciela Spivak
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA.
| | | |
Collapse
|