1
|
Li P, Gai X, Li Q, Yang Q, Yu X. DNA-PK participates in pre-rRNA biogenesis independent of DNA double-strand break repair. Nucleic Acids Res 2024; 52:6360-6375. [PMID: 38682589 PMCID: PMC11194077 DOI: 10.1093/nar/gkae316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Although DNA-PK inhibitors (DNA-PK-i) have been applied in clinical trials for cancer treatment, the biomarkers and mechanism of action of DNA-PK-i in tumor cell suppression remain unclear. Here, we observed that a low dose of DNA-PK-i and PARP inhibitor (PARP-i) synthetically suppresses BRCA-deficient tumor cells without inducing DNA double-strand breaks (DSBs). Instead, we found that a fraction of DNA-PK localized inside of nucleoli, where we did not observe obvious DSBs. Moreover, the Ku proteins recognize pre-rRNA that facilitates DNA-PKcs autophosphorylation independent of DNA damage. Ribosomal proteins are also phosphorylated by DNA-PK, which regulates pre-rRNA biogenesis. In addition, DNA-PK-i acts together with PARP-i to suppress pre-rRNA biogenesis and tumor cell growth. Collectively, our studies reveal a DNA damage repair-independent role of DNA-PK-i in tumor suppression.
Collapse
Affiliation(s)
- Peng Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaochen Gai
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Qilin Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Qianqian Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Pozzi E, Giorgio E, Mancini C, Lo Buono N, Augeri S, Ferrero M, Di Gregorio E, Riberi E, Vinciguerra M, Nanetti L, Bianchi FT, Sassi MP, Costanzo V, Mariotti C, Funaro A, Cavalieri S, Brusco A. In vitro dexamethasone treatment does not induce alternative ATM transcripts in cells from Ataxia-Telangiectasia patients. Sci Rep 2020; 10:20182. [PMID: 33214630 PMCID: PMC7677391 DOI: 10.1038/s41598-020-77352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 11/05/2020] [Indexed: 11/17/2022] Open
Abstract
Short term treatment with low doses of glucocorticoid analogues has been shown to ameliorate neurological symptoms in Ataxia-Telangiectasia (A-T), a rare autosomal recessive multisystem disease that mainly affects the cerebellum, immune system, and lungs. Molecular mechanisms underlying this clinical observation are unclear. We aimed at evaluating the effect of dexamethasone on the induction of alternative ATM transcripts (ATMdexa1). We showed that dexamethasone cannot induce an alternative ATM transcript in control and A-T lymphoblasts and primary fibroblasts, or in an ATM-knockout HeLa cell line. We also demonstrated that some of the reported readouts associated with ATMdexa1 are due to cellular artifacts and the direct induction of γH2AX by dexamethasone via DNA-PK. Finally, we suggest caution in interpreting dexamethasone effects in vitro for the results to be translated into a rational use of the drug in A-T patients.
Collapse
Affiliation(s)
- Elisa Pozzi
- Department of Medical Sciences, University of Torino, via Santena 19, 10126, Turin, Italy
| | - Elisa Giorgio
- Department of Medical Sciences, University of Torino, via Santena 19, 10126, Turin, Italy
| | - Cecilia Mancini
- Department of Medical Sciences, University of Torino, via Santena 19, 10126, Turin, Italy
| | - Nicola Lo Buono
- Laboratory of Immune-Mediated Diseases, San Raffaele Diabetes Research Institute (DRI), 20132, Milan, Italy
| | - Stefania Augeri
- Department of Medical Sciences, University of Torino, via Santena 19, 10126, Turin, Italy
| | - Marta Ferrero
- Department of Medical Sciences, University of Torino, via Santena 19, 10126, Turin, Italy
| | - Eleonora Di Gregorio
- Unit of Medical Genetics, "Città Della Salute E Della Scienza" University Hospital, 10126, Turin, Italy
| | - Evelise Riberi
- Department of Public Health and Pediatrics, University of Torino, 10126, Turin, Italy
| | - Maria Vinciguerra
- DNA Metabolism Laboratory, FIRC Institute of Molecular Oncology (IFOM), 20139, Milan, Italy
| | - Lorenzo Nanetti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133, Milan, Italy
| | - Federico Tommaso Bianchi
- Department of Molecular Biotechnologies and Health Sciences, Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, TO, Italy
| | - Maria Paola Sassi
- Istituto Nazionale di RIcerca Metrologica INRIM, 10135, Turin, Italy
| | - Vincenzo Costanzo
- DNA Metabolism Laboratory, FIRC Institute of Molecular Oncology (IFOM), 20139, Milan, Italy
| | - Caterina Mariotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133, Milan, Italy
| | - Ada Funaro
- Department of Medical Sciences, University of Torino, via Santena 19, 10126, Turin, Italy
| | - Simona Cavalieri
- Department of Medical Sciences, University of Torino, via Santena 19, 10126, Turin, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, via Santena 19, 10126, Turin, Italy.
- Unit of Medical Genetics, "Città Della Salute E Della Scienza" University Hospital, 10126, Turin, Italy.
| |
Collapse
|
3
|
Anisenko A, Kan M, Shadrina O, Brattseva A, Gottikh M. Phosphorylation Targets of DNA-PK and Their Role in HIV-1 Replication. Cells 2020; 9:E1907. [PMID: 32824372 PMCID: PMC7464883 DOI: 10.3390/cells9081907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
The DNA dependent protein kinase (DNA-PK) is a trimeric nuclear complex consisting of a large protein kinase and the Ku heterodimer. The kinase activity of DNA-PK is required for efficient repair of DNA double-strand breaks (DSB) by non-homologous end joining (NHEJ). We also showed that the kinase activity of DNA-PK is essential for post-integrational DNA repair in the case of HIV-1 infection. Besides, DNA-PK is known to participate in such cellular processes as protection of mammalian telomeres, transcription, and some others where the need for its phosphorylating activity is not clearly elucidated. We carried out a systematic search and analysis of DNA-PK targets described in the literature and identified 67 unique DNA-PK targets phosphorylated in response to various in vitro and/or in vivo stimuli. A functional enrichment analysis of DNA-PK targets and determination of protein-protein associations among them were performed. For 27 proteins from these 67 DNA-PK targets, their participation in the HIV-1 life cycle was demonstrated. This information may be useful for studying the functioning of DNA-PK in various cellular processes, as well as in various stages of HIV-1 replication.
Collapse
Affiliation(s)
- Andrey Anisenko
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (O.S.); (M.G.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia;; (M.K.); (A.B.)
| | - Marina Kan
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia;; (M.K.); (A.B.)
| | - Olga Shadrina
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (O.S.); (M.G.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia;; (M.K.); (A.B.)
| | - Anna Brattseva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia;; (M.K.); (A.B.)
| | - Marina Gottikh
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (O.S.); (M.G.)
| |
Collapse
|
4
|
Risso-Ballester J, Sanjuán R. High Fidelity Deep Sequencing Reveals No Effect of ATM, ATR, and DNA-PK Cellular DNA Damage Response Pathways on Adenovirus Mutation Rate. Viruses 2019; 11:v11100938. [PMID: 31614688 PMCID: PMC6832117 DOI: 10.3390/v11100938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Most DNA viruses exhibit relatively low rates of spontaneous mutation. However, the molecular mechanisms underlying DNA virus genetic stability remain unclear. In principle, mutation rates should not depend solely on polymerase fidelity, but also on factors such as DNA damage and repair efficiency. Most eukaryotic DNA viruses interact with the cellular DNA damage response (DDR), but the role of DDR pathways in preventing mutations in the virus has not been tested empirically. To address this goal, we serially transferred human adenovirus type 5 in cells in which the telangiectasia-mutated PI3K-related protein kinase (ATM), the ATM/Rad3-related (ATR) kinase, and the DNA-dependent protein kinase (DNA-PK) were chemically inactivated, as well as in control cells displaying normal DDR pathway functioning. High-fidelity deep sequencing of these viral populations revealed mutation frequencies in the order of one-millionth, with no detectable effect of the inactivation of DDR mediators ATM, ATR, and DNA-PK on adenovirus sequence variability. This suggests that these DDR pathways do not play a major role in determining adenovirus genetic diversity.
Collapse
Affiliation(s)
- Jennifer Risso-Ballester
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980 València, Spain.
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980 València, Spain.
| |
Collapse
|
5
|
Wilson MD, Durocher D. Reading chromatin signatures after DNA double-strand breaks. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0280. [PMID: 28847817 DOI: 10.1098/rstb.2016.0280] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2017] [Indexed: 12/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) are DNA lesions that must be accurately repaired in order to preserve genomic integrity and cellular viability. The response to DSBs reshapes the local chromatin environment and is largely orchestrated by the deposition, removal and detection of a complex set of chromatin-associated post-translational modifications. In particular, the nucleosome acts as a central signalling hub and landing platform in this process by organizing the recruitment of repair and signalling factors, while at the same time coordinating repair with other DNA-based cellular processes. While current research has provided a descriptive overview of which histone marks affect DSB repair, we are only beginning to understand how these marks are interpreted to foster an efficient DSB response. Here we review how the modified chromatin surrounding DSBs is read, with a focus on the insights gleaned from structural and biochemical studies.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Marcus D Wilson
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Daniel Durocher
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| |
Collapse
|
6
|
Hayakawa K, Hirosawa M, Tani R, Yoneda C, Tanaka S, Shiota K. H2A O-GlcNAcylation at serine 40 functions genomic protection in association with acetylated H2AZ or γH2AX. Epigenetics Chromatin 2017; 10:51. [PMID: 29084613 PMCID: PMC5663087 DOI: 10.1186/s13072-017-0157-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022] Open
Abstract
Background We have previously reported a novel O-GlcNAc modification at serine 40 (S40) of H2A (H2AS40Gc). S40-type H2A isoforms susceptible to O-GlcNAcylation are evolutionarily new and restricted to the viviparous animals; however, the biological function of H2AS40Gc is largely unknown. H2A isoforms are consisted of S40 and alanine 40 (A40) type and this residue on H2A is located in the L1 of the globular domain, which is also known as a variable portion that distinguishes between the canonical and non-canonical H2A variants. In this study, by considering the similarity between the S40-type H2A and histone H2A variants, we explored the function of H2AS40Gc in mouse embryonic stem cells (mESCs). Results We found several similarities between the S40-type H2A isoforms and histone H2A variants such H2AZ and H2AX. mRNA of S40-type H2A isoforms (H2A1 N and H2A3) had a poly(A) tail and was produced throughout the cell cycle in contrast to that of A40-type. Importantly, H2AS40Gc level increased owing to chemical-induced DNA damage, similar to phosphorylated H2AX (γH2AX) and acetylated H2AZ (AcH2AZ). H2AS40Gc was accumulated at the restricted area (± 1.5 kb) of DNA damage sites induced by CRISPR/CAS9 system in contrast to accumulation of γH2AX, which was widely scattered. Overexpression of the wild-type (WT) H2A3, but not the S40 to A40 mutation (S40A-mutant), protected the mESC genome against chemical-induced DNA damage. Furthermore, 3 h after the DNA damage treatment, the genome was almost recovered in WT mESCs, whereas the damage advanced further in the S40A-mutant mESCs, suggesting functions of H2AS40Gc in the DNA repair mechanism. Furthermore, the S40A mutant prevented the accumulation of the DNA repair apparatus such as DNA-PKcs and Rad51 at the damage site. Co-immunoprecipitation experiment in WT and S40A-mutant mESCs revealed that H2AS40Gc physiologically bound to AcH2AZ at the initial phase upon DNA damage, followed by binding with γH2AX during the DNA damage repair process. Conclusions These data suggest that H2AS40Gc functions to maintain genome integrity through the DNA repair mechanism in association with AcH2AZ and γH2AX. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0157-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Koji Hayakawa
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Mitsuko Hirosawa
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Ruiko Tani
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Chikako Yoneda
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Satoshi Tanaka
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kunio Shiota
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo, 113-8657, Japan. .,Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.
| |
Collapse
|
7
|
Huang D, Feng X, Liu Y, Deng Y, Chen H, Chen D, Fang L, Cai Y, Liu H, Wang L, Wang J, Yang Z. AQP9-induced cell cycle arrest is associated with RAS activation and improves chemotherapy treatment efficacy in colorectal cancer. Cell Death Dis 2017. [PMID: 28640255 PMCID: PMC5520935 DOI: 10.1038/cddis.2017.282] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aquaporin-9 (AQP9) expression is associated with arsenic sensitivity in leukemia cells. However, the role of AQP9 in regulating tumor sensitivity to adjuvant chemotherapy in colorectal cancer (CRC) has not been elucidated. In this study, we demonstrated that AQP9 can serve as an independent predictive marker for adjuvant chemotherapy in CRC. Patients with high AQP9 expression had higher rate of disease-free survival (DFS) than those with low AQP9 expression. Upregulation of AQP9 was associated with enhanced chemosensitivity to 5-fluorouracil (5-FU) both in vitro and in vivo. Overexpression of AQP9 resulted in an increased intracellular level of 5-FU in CRC cells, hence leading to a higher percentage of apoptosis after 5-FU treatment. Moreover, AQP9 is positively associated with RAS activation and other downstream signaling molecules in CRC. AQP9 overexpression resulted in p21 upregulation and induced S-phase arrest. Taken together, AQP9 enhances the cytotoxic response to 5-FU in CRC cells by simultaneously inducing S-phase arrest via activation of RAS signaling and facilitating drug uptake. Our results suggest that AQP9 might be a novel predictor for the benefit of 5-FU-based chemotherapy in CRC. The identification of AQP9-induced tumor sensitivity to 5-FU highlights the role of AQP9 in regulating chemosensitivity in CRC.
Collapse
Affiliation(s)
- Dandan Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
| | - Xingzhi Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
| | - Yiting Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
| | - Yanhong Deng
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China.,Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Hao Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
| | - Daici Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
| | - Lekun Fang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
| | - Yue Cai
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China.,Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Huanliang Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
| | - Lei Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
| | - Jianping Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
| | - Zihuan Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
| |
Collapse
|
8
|
Wang R, Zheng X, Zhang L, Zhou B, Hu H, Li Z, Zhang L, Lin Y, Wang X. Histone H4 expression is cooperatively maintained by IKKβ and Akt1 which attenuates cisplatin-induced apoptosis through the DNA-PK/RIP1/IAPs signaling cascade. Sci Rep 2017; 7:41715. [PMID: 28139737 PMCID: PMC5282510 DOI: 10.1038/srep41715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/23/2016] [Indexed: 02/05/2023] Open
Abstract
While chromatin remodeling mediated by post-translational modification of histone is extensively studied in carcinogenesis and cancer cell’s response to chemotherapy and radiotherapy, little is known about the role of histone expression in chemoresistance. Here we report a novel chemoresistance mechanism involving histone H4 expression. Extended from our previous studies showing that concurrent blockage of the NF-κB and Akt signaling pathways sensitizes lung cancer cells to cisplatin-induced apoptosis, we for the first time found that knockdown of Akt1 and the NF-κB-activating kinase IKKβ cooperatively downregulated histone H4 expression, which increased cisplatin-induced apoptosis in lung cancer cells. The enhanced cisplatin cytotoxicity in histone H4 knockdown cells was associated with proteasomal degradation of RIP1, accumulation of cellular ROS and degradation of IAPs (cIAP1 and XIAP). The cisplatin-induced DNA-PK activation was suppressed in histone H4 knockdown cells, and inhibiting DNA-PK reduced expression of RIP1 and IAPs in cisplatin-treated cells. These results establish a novel mechanism by which NF-κB and Akt contribute to chemoresistance involving a signaling pathway consisting of histone H4, DNA-PK, RIP1 and IAPs that attenuates ROS-mediated apoptosis, and targeting this pathway may improve the anticancer efficacy of platinum-based chemotherapy.
Collapse
Affiliation(s)
- Ruixue Wang
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xuelian Zheng
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Zhang
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Zhou
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Huaizhong Hu
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiping Li
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Zhang
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Immunology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yong Lin
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr., SE., Albuquerque NM 87108, USA
| | - Xia Wang
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Immunology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Low doses of X-rays induce prolonged and ATM-independent persistence of γH2AX foci in human gingival mesenchymal stem cells. Oncotarget 2016; 6:27275-87. [PMID: 26314960 PMCID: PMC4694989 DOI: 10.18632/oncotarget.4739] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/10/2015] [Indexed: 12/11/2022] Open
Abstract
Diagnostic imaging delivering low doses of radiation often accompany human mesenchymal stem cells (MSCs)-based therapies. However, effects of low dose radiation on MSCs are poorly characterized. Here we examine patterns of phosphorylated histone H2AX (γH2AX) and phospho-S1981 ATM (pATM) foci formation in human gingiva-derived MSCs exposed to X-rays in time-course and dose-response experiments. Both γH2AX and pATM foci accumulated linearly with dose early after irradiation (5–60 min), with a maximum induction observed at 30–60 min (37 ± 3 and 32 ± 3 foci/cell/Gy for γH2AX and pATM, respectively). The number of γH2AX foci produced by intermediate doses (160 and 250 mGy) significantly decreased (40–60%) between 60 and 240 min post-irradiation, indicating rejoining of DNA double-strand breaks. In contrast, γH2AX foci produced by low doses (20–80 mGy) did not change after 60 min. The number of pATM foci between 60 and 240 min decreased down to control values in a dose-independent manner. Similar kinetics was observed for pATM foci co-localized with γH2AX foci. Collectively, our results suggest differential DNA double-strand break signaling and processing in response to low vs. intermediate doses of X-rays in human MSCs. Furthermore, mechanisms governing the prolonged persistence of γH2AX foci in these cells appear to be ATM-independent.
Collapse
|
10
|
Chen Q, Yu X. OGT restrains the expansion of DNA damage signaling. Nucleic Acids Res 2016; 44:9266-9278. [PMID: 27458206 PMCID: PMC5100584 DOI: 10.1093/nar/gkw663] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022] Open
Abstract
O-linked N-acetylglucosamine linkage (O-GlcNAcylation) to serine or threonine residues regulates numerous biological processes; however, its role in DNA damage response remains elusive. Here, we found that O-GlcNAcylation is induced by DNA damage response. O-GlcNAc transferase (OGT), the solo enzyme for O-GlcNAcylation, relocates to the sites of DNA damage and induces the O-GlcNAcylation of histone H2AX and mediator of DNA damage checkpoint 1 (MDC1). The O-GlcNAcylation negatively regulates DNA double-strand break-induced phosphorylation of H2AX and MDC1 by restraining the expansion of these phosphorylation events from the sites of DNA damage. Therefore, our study reveals the molecular mechanism and biological function of OGT-dependent O-GlcNAcylation in response to DNA damage.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
11
|
Singh S, Colonna G, Di Bernardo G, Bergantino F, Cammarota M, Castello G, Costantini S. The gene expression profiling of hepatocellular carcinoma by a network analysis approach shows a dominance of intrinsically disordered proteins (IDPs) between hub nodes. MOLECULAR BIOSYSTEMS 2015; 11:2933-2945. [PMID: 26267014 DOI: 10.1039/c5mb00434a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have analyzed the transcriptomic data from patients with hepatocellular carcinoma (HCC) after viral HCV infection at the various stages of the disease by means of a networking analysis using the publicly available E-MTAB-950 dataset. The data was compared with those obtained in our group from HepG2 cells, a cancer cell line that lacks the viral infection. By sequential pruning of data, and also taking into account the data from cells of healthy patients as blanks, we were able to obtain a distribution of hub genes for the various stages that characterize the disease and finally, we isolated a metabolic sub-net specific to HCC alone. The general picture is that the basic organization to energetically and metabolically sustain the cells in both the normal and diseased conditions is the same, but a complex cluster of sub-networks controlled by hub genes drives the HCC progression with high metabolic flexibility and plasticity. In particular, we have extracted a sub-net of genes strictly correlated to other hub genes of the network from HepG2 cells, but specific for the HCC and mainly devoted to: (i) control at chromatin levels of cell division; (ii) control of ergastoplasmatic stress through protein degradation and misfolding; (iii) control of the immune response also through an increase of mature T-cells in the thymus. This sub-net is characterized by 26 hub genes coding for intrinsically disordered proteins with a high ability to interact with numerous molecular partners. Moreover, we have also noted that periphery molecules, that is, with one or very few interactions (e.g., cytokines or post-translational enzymes), which do not have a central role in the clusters that make up the global metabolic network, essentially have roles as information transporters. The results evidence a strong presence of intrinsically disordered proteins with key roles as hubs in the sub-networks that characterize the various stages of the disease, conferring a structural plasticity to the net nodes but an inherent functional versatility to the whole metabolic net. Thus, our present article provides a novel way of targeting the intrinsic disorder in HCC networks to dampen the cancer effects and provides new insight into the potential mechanisms of HCC. Taken together, the present findings suggest novel targets to design strategies for drug design and may support a rational intervention in the pharmacotherapy of HCC and other associated diseases.
Collapse
Affiliation(s)
- Sakshi Singh
- Dottorato in Biologia Computazionale, Dipartimento di Biochimica, Biofisica e Patologia generale, Seconda Università degli Studi di Napoli, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Woods DS, Sears CR, Turchi JJ. Recognition of DNA Termini by the C-Terminal Region of the Ku80 and the DNA-Dependent Protein Kinase Catalytic Subunit. PLoS One 2015; 10:e0127321. [PMID: 25978375 PMCID: PMC4433226 DOI: 10.1371/journal.pone.0127321] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/13/2015] [Indexed: 12/12/2022] Open
Abstract
DNA double strand breaks (DSBs) can be generated by endogenous cellular processes or exogenous agents in mammalian cells. These breaks are highly variable with respect to DNA sequence and structure and all are recognized in some context by the DNA-dependent protein kinase (DNA-PK). DNA-PK is a critical component necessary for the recognition and repair of DSBs via non-homologous end joining (NHEJ). Previously studies have shown that DNA-PK responds differentially to variations in DSB structure, but how DNA-PK senses differences in DNA substrate sequence and structure is unknown. Here we explore the enzymatic mechanisms by which DNA-PK is activated by various DNA substrates and provide evidence that the DNA-PK is differentially activated by DNA structural variations as a function of the C-terminal region of Ku80. Discrimination based on terminal DNA sequence variations, on the other hand, is independent of the Ku80 C-terminal interactions and likely results exclusively from DNA-dependent protein kinase catalytic subunit interactions with the DNA. We also show that sequence differences in DNA termini can drastically influence DNA repair through altered DNA-PK activation. These results indicate that even subtle differences in DNA substrates influence DNA-PK activation and ultimately the efficiency of DSB repair.
Collapse
Affiliation(s)
- Derek S. Woods
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Catherine R. Sears
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - John J. Turchi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
13
|
Osipov AN, Smetanina NM, Pustovalova MV, Arkhangelskaya E, Klokov D. The formation of DNA single-strand breaks and alkali-labile sites in human blood lymphocytes exposed to 365-nm UVA radiation. Free Radic Biol Med 2014; 73:34-40. [PMID: 24816295 DOI: 10.1016/j.freeradbiomed.2014.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
The potency of UVA radiation, representing 90% of solar UV light reaching the earth's surface, to induce human skin cancer is the subject of continuing controversy. This study was undertaken to investigate the role of reactive oxygen species in DNA damage produced by the exposure of human cells to UVA radiation. This knowledge is important for better understanding of UV-induced carcinogenesis. We measured DNA single-strand breaks and alkali-labile sites in human lymphocytes exposed ex vivo to various doses of 365-nm UV photons compared to X-rays and hydrogen peroxide using the comet assay. We demonstrated that the UVA-induced DNA damage increased in a linear dose-dependent manner. The rate of DNA single-strand breaks and alkali-labile sites after exposure to 1J/cm(2) was similar to the rate induced by exposure to 1 Gy of X-rays or 25 μM hydrogen peroxide. The presence of either the hydroxyl radical scavenger dimethyl sulfoxide or the singlet oxygen quencher sodium azide resulted in a significant reduction in the UVA-induced DNA damage, suggesting a role for these reactive oxygen species in mediating UVA-induced DNA single-strand breaks and alkali-labile sites. We also showed that chromatin relaxation due to hypertonic conditions resulted in increased damage in both untreated and UVA-treated cells. The effect was the most significant in the presence of 0.5M Na(+), implying a role for histone H1. Our data suggest that the majority of DNA single-strand breaks and alkali-labile sites after exposure of human lymphocytes to UVA are produced by reactive oxygen species (the hydroxyl radical and singlet oxygen) and that the state of chromatin may substantially contribute to the outcome of such exposures.
Collapse
Affiliation(s)
- Andreyan N Osipov
- Burnasyan Federal Medical Biophysical Center, Federal Medical Biological Agency, Moscow 123182, Russia; Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nadezhda M Smetanina
- Burnasyan Federal Medical Biophysical Center, Federal Medical Biological Agency, Moscow 123182, Russia
| | - Margarita V Pustovalova
- Burnasyan Federal Medical Biophysical Center, Federal Medical Biological Agency, Moscow 123182, Russia
| | - Ekaterina Arkhangelskaya
- Burnasyan Federal Medical Biophysical Center, Federal Medical Biological Agency, Moscow 123182, Russia; Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Dmitry Klokov
- Chalk River Laboratories, Atomic Energy of Canada Limited, Chalk River, ON K0J1P0, Canada.
| |
Collapse
|
14
|
Kang GY, Pyun BJ, Seo HR, Jin YB, Lee HJ, Lee YJ, Lee YS. Inhibition of Snail1-DNA-PKcs protein-protein interface sensitizes cancer cells and inhibits tumor metastasis. J Biol Chem 2013; 288:32506-32516. [PMID: 24085291 DOI: 10.1074/jbc.m113.479840] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our previous study suggested that the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) interacts with Snail1, which affects genomic instability, sensitivity to DNA-damaging agents, and migration of tumor cells by reciprocal regulation between DNA-PKcs and Snail1. Here, we further investigate that a peptide containing 7-amino acid sequences (amino acids 15-21) of Snail1 (KPNYSEL, SP) inhibits the endogenous interaction between DNA-PKcs and Snail1 through primary interaction with DNA-PKcs. SP restored the inhibited DNA-PKcs repair activity and downstream pathways. On the other hand, DNA-PKcs-mediated phosphorylation of Snail1 was inhibited by SP, which resulted in decreased Snail1 stability and Snail1 functions. However, these phenomena were only shown in p53 wild-type cells, not in p53-defective cells. From these results, it is suggested that interfering with the protein interaction between DNA-PKcs and Snail1 might be an effective strategy for sensitizing cancer cells and inhibiting tumor migration, especially in both Snail1-overexpressing and DNA-PKcs-overexpressing cancer cells with functional p53.
Collapse
Affiliation(s)
- Ga-Young Kang
- From the College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750
| | - Bo-Jeong Pyun
- From the College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750
| | - Haeng Ran Seo
- the Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706
| | - Yeung Bae Jin
- the Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup-si, Jeollabuk-do 580-185, Korea
| | - Hae-June Lee
- the Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706
| | - Yoon-Jin Lee
- the Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706
| | - Yun-Sil Lee
- From the College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750,.
| |
Collapse
|
15
|
Davidson D, Amrein L, Panasci L, Aloyz R. Small Molecules, Inhibitors of DNA-PK, Targeting DNA Repair, and Beyond. Front Pharmacol 2013; 4:5. [PMID: 23386830 PMCID: PMC3560216 DOI: 10.3389/fphar.2013.00005] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/08/2013] [Indexed: 12/13/2022] Open
Abstract
Many current chemotherapies function by damaging genomic DNA in rapidly dividing cells ultimately leading to cell death. This therapeutic approach differentially targets cancer cells that generally display rapid cell division compared to normal tissue cells. However, although these treatments are initially effective in arresting tumor growth and reducing tumor burden, resistance and disease progression eventually occur. A major mechanism underlying this resistance is increased levels of cellular DNA repair. Most cells have complex mechanisms in place to repair DNA damage that occurs due to environmental exposures or normal metabolic processes. These systems, initially overwhelmed when faced with chemotherapy induced DNA damage, become more efficient under constant selective pressure and as a result chemotherapies become less effective. Thus, inhibiting DNA repair pathways using target specific small molecule inhibitors may overcome cellular resistance to DNA damaging chemotherapies. Non-homologous end joining a major mechanism for the repair of double-strand breaks (DSB) in DNA is regulated in part by the serine/threonine kinase, DNA dependent protein kinase (DNA-PK). The DNA-PK holoenzyme acts as a scaffold protein tethering broken DNA ends and recruiting other repair molecules. It also has enzymatic activity that may be involved in DNA damage signaling. Because of its’ central role in repair of DSBs, DNA-PK has been the focus of a number of small molecule studies. In these studies specific DNA-PK inhibitors have shown efficacy in synergizing chemotherapies in vitro. However, compounds currently known to specifically inhibit DNA-PK are limited by poor pharmacokinetics: these compounds have poor solubility and have high metabolic lability in vivo leading to short serum half-lives. Future improvement in DNA-PK inhibition will likely be achieved by designing new molecules based on the recently reported crystallographic structure of DNA-PK. Computer based drug design will not only assist in identifying novel functional moieties to replace the metabolically labile morpholino group but will also facilitate the design of molecules to target the DNA-PKcs/Ku80 interface or one of the autophosphorylation sites.
Collapse
Affiliation(s)
- David Davidson
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University Montreal, QC, Canada
| | | | | | | |
Collapse
|
16
|
Lim HK, Asharani PV, Hande MP. Enhanced genotoxicity of silver nanoparticles in DNA repair deficient Mammalian cells. Front Genet 2012; 3:104. [PMID: 22707954 PMCID: PMC3374476 DOI: 10.3389/fgene.2012.00104] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 05/21/2012] [Indexed: 11/25/2022] Open
Abstract
Silver nanoparticles (Ag-np) have been used in medicine and commercially due to their anti-microbial properties. Therapeutic potentials of these nanoparticles are being explored extensively despite the lack of information on their mechanism of action at molecular and cellular level. Here, we have investigated the DNA damage response and repair following Ag-np treatment in mammalian cells. Studies have shown that Ag-np exerts genotoxicity through double-strand breaks (DSBs). DNA-PKcs, the catalytic subunit of DNA dependent protein kinase, is an important caretaker of the genome which is known to be the main player mediating Non-homologous End-Joining (NHEJ) repair pathway. We hypothesize that DNA-PKcs is responsible for the repair of Ag-np induced DNA damage. In vitro studies have been carried out to investigate both cytotoxicity and genotoxicity induced by Ag-np in normal human cells, DNA-PKcs proficient, and deficient mammalian cells. Chemical inhibition of DNA-PKcs activity with NU7026, an ATP-competitive inhibitor of DNA-PKcs, has been performed to further validate the role of DNA-PKcs in this model. Our results suggest that Ag-np induced more prominent dose-dependent decrease in cell viability in DNA-PKcs deficient or inhibited cells. The deficiency or inhibition of DNA-PKcs renders the cells with higher susceptibility to DNA damage and genome instability which in turn contributed to greater cell cycle arrest/cell death. These findings support the fact that DNA-PKcs is involved in the repair of Ag-np induced genotoxicity and NHEJ repair pathway and DNA-PKcs particularly is activated to safeguard the genome upon Ag-np exposure.
Collapse
Affiliation(s)
- Hui Kheng Lim
- Genome Stability Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | | | | |
Collapse
|
17
|
Schneider L, Fumagalli M, d'Adda di Fagagna F. Terminally differentiated astrocytes lack DNA damage response signaling and are radioresistant but retain DNA repair proficiency. Cell Death Differ 2011; 19:582-91. [PMID: 21979466 DOI: 10.1038/cdd.2011.129] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The impact and consequences of damage generation into genomic DNA, especially in the form of DNA double-strand breaks, and of the DNA-damage response (DDR) pathways that are promptly activated, have been elucidated in great detail. Most of this research, however, has been performed on proliferating, often cancerous, cell lines. In a mammalian body, the majority of cells are terminally differentiated (TD), and derives from a small pool of self-renewing somatic stem cells. Here, we comparatively studied DDR signaling and radiosensitivity in neural stem cells (NSC) and their TD-descendants, astrocytes - the predominant cells in the mammalian brain. Astrocytes have important roles in brain physiology, development and plasticity. We discovered that NSC activate canonical DDR upon exposure to ionizing radiation. Strikingly, astrocytes proved radioresistant, lacked functional DDR signaling, with key DDR genes such as ATM being repressed at the transcriptional level. Nevertheless, astrocytes retain the expression of non-homologous end-joining (NHEJ) genes and indeed they are DNA repair proficient. Unlike in NSC, in astrocytes DNA-PK seems to be the PI3K-like protein kinase responsible for γH2AX signal generation upon DNA damage. We also demonstrate the lack of functional DDR signaling activation in vivo in astrocytes of irradiated adult mouse brains, although adjacent neurons activate the DDR.
Collapse
Affiliation(s)
- L Schneider
- IFOM Foundation - The FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy.
| | | | | |
Collapse
|
18
|
The NF90/NF45 complex participates in DNA break repair via nonhomologous end joining. Mol Cell Biol 2011; 31:4832-43. [PMID: 21969602 DOI: 10.1128/mcb.05849-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor 90 (NF90), an RNA-binding protein implicated in the regulation of gene expression, exists as a heterodimeric complex with NF45. We previously reported that depletion of the NF90/NF45 complex results in a multinucleated phenotype. Time-lapse microscopy revealed that binucleated cells arise by incomplete abscission of progeny cells followed by fusion. Multinucleate cells arose through aberrant division of binucleated cells and displayed abnormal metaphase plates and anaphase chromatin bridges suggestive of DNA repair defects. NF90 and NF45 are known to interact with the DNA-dependent protein kinase (DNA-PK), which is involved in telomere maintenance and DNA repair by nonhomologous end joining (NHEJ). We hypothesized that NF90 modulates the activity of DNA-PK. In an in vitro NHEJ assay system, DNA end joining was reduced by NF90/NF45 immunodepletion or by RNA digestion to an extent similar to that for catalytic subunit DNA-PKcs immunodepletion. In vivo, NF90/NF45-depleted cells displayed increased γ-histone 2A.X foci, indicative of an accumulation of double-strand DNA breaks (DSBs), and increased sensitivity to ionizing radiation consistent with decreased DSB repair. Further, NF90/NF45 knockdown reduced end-joining activity in vivo. These results identify the NF90/NF45 complex as a regulator of DNA damage repair mediated by DNA-PK and suggest that structured RNA may modulate this process.
Collapse
|
19
|
Zhang Z, Wang Y, Song T, Gao J, Wu G, Zhang J, Qian X. DNA double helix unwinding triggers transcription block-dependent apoptosis: a semiquantitative probe of the response of ATM, RNAPII, and p53 to two DNA intercalators. Chem Res Toxicol 2010; 22:483-91. [PMID: 19182866 DOI: 10.1021/tx800288v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have previously shown the binding modes of two DNA interacting analogues (1)a {3-(4-methyl-piperazin)-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile} and (3)a {3-(3-dimethylamino-propylamino)-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile} with the DNA double helix. In this study, we have determined the notably different DNA damage signal pathway elicited by (1)a and (3)a due to the different extents to which they unwind the DNA double helix. First, we have identified that ataxia-telangiectasia-mutated (ATM) protein kinase can respond to DNA double helix unwinding caused by both (1)a and (3)a. In addition, the amount of ATM activation is consistent with the degree to which the DNA double helix was unwound. Consequently, we used (1)a and (3)a to semiquantitatively probe the response of RNA polymerase II (RNAPII) and p53 toward DNA double helix unwinding in vivo. By means of flow cytometry, immunocytochemistry, ChIP, quantitative real-time polymerase chain reaction, and Western blot analyses, we measured the level of p53 and RNAPII phosphorylation, in addition to the dynamics of the RNAPII distribution along the c-Myc gene. These results provided novel evidence for the impact of subtle DNA structural changes on the activity of RNAPII and p53. Moreover, DNA double helix conformational damage-dependent apoptosis was studied for the first time. These results indicated that (1)a can induce transcriptional blockage following a shift of the unphosphorylated IIa form of RNAPII to the phosphorylated IIo form, while (3)a is unable to induce the same effect. Subsequently, p53 accumulation and phosphorylation events occur that lead to apoptosis in the case of (1)a exposure. This suggests that the transcriptional blockage is also correlated to the degree of double helix unwinding. Furthermore, we found that the degree of DNA conformational damage determines whether or not apoptosis occurs through transcriptional blockage. Under our experimental conditions, ATM does not participate in the downstream events even when it has been activated. Thus, p53-mediated apoptosis may be independently triggered by transcriptional blockage.
Collapse
Affiliation(s)
- Zhichao Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Podhorecka M, Skladanowski A, Bozko P. H2AX Phosphorylation: Its Role in DNA Damage Response and Cancer Therapy. J Nucleic Acids 2010; 2010. [PMID: 20811597 PMCID: PMC2929501 DOI: 10.4061/2010/920161] [Citation(s) in RCA: 396] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/28/2010] [Accepted: 07/05/2010] [Indexed: 11/20/2022] Open
Abstract
Double-strand breaks (DSBs) are the most deleterious DNA lesions, which, if left unrepaired, may have severe consequences for cell survival, as they lead to chromosome aberrations, genomic instability, or cell death. Various physical, chemical, and biological factors are involved in DSB induction. Cells respond to DNA damage by activating the so-called DNA damage response (DDR), a complex molecular mechanism developed to detect and repair DNA damage. The formation of DSBs triggers activation of many factors, including phosphorylation of the histone variant H2AX, producing gammaH2AX. Phosphorylation of H2AX plays a key role in DDR and is required for the assembly of DNA repair proteins at the sites containing damaged chromatin as well as for activation of checkpoints proteins which arrest the cell cycle progression. In general, analysis of gammaH2AX expression can be used to detect the genotoxic effect of different toxic substances. When applied to clinical samples from cancer patients, evaluation of gammaH2AX levels may allow not only to monitor the efficiency of anticancer treatment but also to predict of tumor cell sensitivity to DNA damaging anticancer agents and toxicity of anticancer treatment toward normal cells.
Collapse
Affiliation(s)
- Monika Podhorecka
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20081 Lublin, Poland
| | | | | |
Collapse
|
21
|
An J, Huang YC, Xu QZ, Zhou LJ, Shang ZF, Huang B, Wang Y, Liu XD, Wu DC, Zhou PK. DNA-PKcs plays a dominant role in the regulation of H2AX phosphorylation in response to DNA damage and cell cycle progression. BMC Mol Biol 2010; 11:18. [PMID: 20205745 PMCID: PMC2844398 DOI: 10.1186/1471-2199-11-18] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 03/06/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND When DNA double-strand breaks (DSB) are induced by ionizing radiation (IR) in cells, histone H2AX is quickly phosphorylated into gamma-H2AX (p-S139) around the DSB site. The necessity of DNA-PKcs in regulating the phosphorylation of H2AX in response to DNA damage and cell cycle progression was investigated. RESULTS The level of gamma H2AX in HeLa cells increased rapidly with a peak level at 0.25 - 1.0 h after 4 Gy gamma irradiation. SiRNA-mediated depression of DNA-PKcs resulted in a strikingly decreased level of gamma H2AX. An increased gamma H2AX was also induced in the ATM deficient cell line AT5BIVA at 0.5 - 1.0 h after 4 Gy gamma rays, and this IR-increased gamma H2AX in ATM deficient cells was dramatically abolished by the PIKK inhibitor wortmannin and the DNA-PKcs specific inhibitor NU7026. A high level of constitutive expression of gamma H2AX was observed in another ATM deficient cell line ATS4. The alteration of gamma H2AX level associated with cell cycle progression was also observed. HeLa cells with siRNA-depressed DNA-PKcs (HeLa-H1) or normal level DNA-PKcs (HeLa-NC) were synchronized at the G1 phase with the thymidine double-blocking method. At approximately 5 h after the synchronized cells were released from the G1 block, the S phase cells were dominant (80%) for both HeLa-H1 and HeLa-NC cells. At 8 - 9 h after the synchronized cells released from the G1 block, the proportion of G2/M population reached 56 - 60% for HeLa-NC cells, which was higher than that for HeLa H1 cells (33 - 40%). Consistently, the proportion of S phase for HeLa-NC cells decreased to approximately 15%; while a higher level (26 - 33%) was still maintained for the DNA-PKcs depleted HeLa-H1 cells during this period. In HeLa-NC cells, the gamma H2AX level increased gradually as the cells were released from the G1 block and entered the G2/M phase. However, this gamma H2AX alteration associated with cell cycle progressing was remarkably suppressed in the DNA-PKcs depleted HeLa-H1 cells, while wortmannin and NU7026 could also suppress this cell cycle related phosphorylation of H2AX. Furthermore, inhibition of GSK3 beta activity with LiCl or specific siRNA could up-regulate the gamma H2AX level and prolong the time of increased gamma H2AX to 10 h or more after 4 Gy. GSK3 beta is a negative regulation target of DNA-PKcs/Akt signaling via phosphorylation on Ser9, which leads to its inactivation. Depression of DNA-PKcs in HeLa cells leads to a decreased phosphorylation of Akt on Ser473 and its target GSK3 beta on Ser9, which, in other words, results in an increased activation of GSK3 beta. In addition, inhibition of PDK (another up-stream regulator of Akt/GSK3 beta) by siRNA can also decrease the induction of gamma H2AX in response to both DNA damage and cell cycle progression. CONCLUSION DNA-PKcs plays a dominant role in regulating the phosphorylation of H2AX in response to both DNA damage and cell cycle progression. It can directly phosphorylate H2AX independent of ATM and indirectly modulate the phosphorylation level of gamma H2AX via the Akt/GSK3 beta signal pathway.
Collapse
Affiliation(s)
- Jing An
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Darzynkiewicz Z, Traganos F, Wlodkowic D. Impaired DNA damage response--an Achilles' heel sensitizing cancer to chemotherapy and radiotherapy. Eur J Pharmacol 2009; 625:143-50. [PMID: 19836377 DOI: 10.1016/j.ejphar.2009.05.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 05/15/2009] [Accepted: 05/19/2009] [Indexed: 12/21/2022]
Abstract
Despite the progress in targeting particular molecular abnormalities specific to different cancers (targeted therapy), chemo- and radiotherapies are still the most effective of all anticancer modalities. Induction of DNA damage and inhibition of cell proliferation are the objects of most chemotherapeutic agents and radiation. Their effectiveness was initially thought to be due to the high rate of proliferation of cancer cells. However, normal cell proliferation rate in some tissues often exceeds that of curable tumors. Most tumors have impaired DNA damage response (DDR) and the evidence is forthcoming that this confers sensitivity to chemo- or radiotherapy. DDR is a complex set of events which elicits a plethora of molecular interactions engaging signaling pathways designed to: (a) halt cell cycle progression and division to prevent transfer of DNA damage to progeny cells; (b) increase the accessibility of the damaged sites to the DNA repair machinery; (c) engage DNA repair mechanisms and (d) activate the apoptotic pathway when DNA cannot be successfully repaired. A defective DDR makes cancer cells unable to effectively stop cell cycle progression, engage in DNA repair and/or trigger the apoptotic program when treated with DNA damaging drugs. With continued exposure to the drug, such cells accumulate DNA damage which leads to their reproductive death that may have features of cell senescence. Cancers with nonfunctional BRCA1 and BRCA2 are particularly sensitive to combined treatment with DNA damaging drugs and inhibitors of poly(ADP-ribose) polymerase. Antitumor strategies are being designed to treat cancers having particular defects in their DDR, concurrent with protecting normal cells.
Collapse
Affiliation(s)
- Zbigniew Darzynkiewicz
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY, USA.
| | | | | |
Collapse
|
23
|
Tanshinone IIA triggers p53 responses and apoptosis by RNA polymerase II upon DNA minor groove binding. Biochem Pharmacol 2009; 78:1316-22. [PMID: 19591811 DOI: 10.1016/j.bcp.2009.06.110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 11/22/2022]
Abstract
Our previous work has shown that tanshinone IIA (Tan IIA) is a DNA minor groove binder instead of an intercalator as previously thought. In this study, we have further demonstrated that the molecular antitumor pharmacology of Tan IIA is dependent on its groove-binding capability. First, we investigated the structure damage to duplex DNA upon Tan IIA binding using circular dichroism spectra. Subsequently, we performed western blot, flow cytometry analysis, chromatin immunoprecipitation, and quantitative real-time PCR to illustrate the RNAPII degradation, phosphorylation, and distribution along the transcribed gene in H22 cells exposed to Tan IIA. In addition, p53 activation and apoptosis induction in both cultured H22 cells and in mice bearing the ascitic-type H22 were measured following Tan IIA treatment. It was revealed that Tan IIA decreases the level of RNAPII by altering DNA structure. At the low dose range (0.2-4 microM) of Tan IIA exposure, the DNA structure damage results in the inhibition of RNAPII binding to DNA and the initiation of RNAPII phosphorylation, while higher concentrations of Tan IIA (4-20 microM) cause complete phosphorylation and degradation of RNAPII followed by p53 activation and apoptosis. A similar apoptosis induction by RNAPII was observed in animals. Apoptosis of tumor cells from ascitic fluid was not detected until RNAPII levels were downregulated by Tan IIA, which requires 40 mg/kg body weight of Tan IIA. It was concluded that DNA-conformational-damage-dependent RNAPII response upon groove binding is the molecular basis of the antitumor property of Tan IIA, in vivo and in vitro.
Collapse
|
24
|
Baure J, Izadi A, Suarez V, Giedzinski E, Cleaver JE, Fike JR, Limoli CL. Histone H2AX phosphorylation in response to changes in chromatin structure induced by altered osmolarity. Mutagenesis 2009; 24:161-7. [PMID: 19064695 PMCID: PMC2648872 DOI: 10.1093/mutage/gen064] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 10/29/2008] [Accepted: 10/31/2008] [Indexed: 11/12/2022] Open
Abstract
DNA strand breaks trigger marked phosphorylation of histone H2AX (i.e. gamma-H2AX). While DNA double-strand breaks (DSBs) provide a strong stimulus for this event, the accompanying structural alterations in chromatin may represent the actual signal that elicits gamma-H2AX. Our data show that changes in chromatin structure are sufficient to elicit extensive gamma-H2AX formation in the relative absence of DNA strand breaks. Cells subjected to hypotonic (0.05 M) treatment exhibit gamma-H2AX levels that are equivalent to those found after the induction of 80-200 DNA DSBs (i.e. 2-5 Gy). Despite this significant increase in phosphorylation, cell survival remains relatively unaffected (<10% cytotoxicity), and there is no significant increase in apoptosis. Nuclear staining profiles indicate that gamma-H2AX-positive cells induced under altered tonicity exhibit variable levels of staining, ranging from uniform pan staining to discrete punctate foci more characteristic of DNA strand breakage. The capability to induce significant gamma-H2AX formation under altered tonicity in the relative absence of DNA strand breaks suggests that this histone modification evolved in response to changes in chromatin structure.
Collapse
Affiliation(s)
| | - Atefeh Izadi
- Department of Radiation Oncology, University of California, Irvine Medical Sciences I, Room B-149, Irvine, CA 92697-2695, USA
| | - Vannina Suarez
- Department of Radiation Oncology, University of California, Irvine Medical Sciences I, Room B-149, Irvine, CA 92697-2695, USA
| | - Erich Giedzinski
- Department of Radiation Oncology, University of California, Irvine Medical Sciences I, Room B-149, Irvine, CA 92697-2695, USA
| | - James E. Cleaver
- Auerback Melanoma Laboratory, UCSF Cancer Center, University of California, San Francisco, CA 94143, USA
| | | | - Charles L. Limoli
- Department of Radiation Oncology, University of California, Irvine Medical Sciences I, Room B-149, Irvine, CA 92697-2695, USA
| |
Collapse
|
25
|
Burdak-Rothkamm S, Rothkamm K, Prise KM. ATM acts downstream of ATR in the DNA damage response signaling of bystander cells. Cancer Res 2008; 68:7059-65. [PMID: 18757420 PMCID: PMC2528059 DOI: 10.1158/0008-5472.can-08-0545] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study identifies ataxia-telangiectasia mutated (ATM) as a further component of the complex signaling network of radiation-induced DNA damage in nontargeted bystander cells downstream of ataxia-telangiectasia and Rad3-related (ATR) and provides a rationale for molecular targeted modulation of these effects. In directly irradiated cells, ATR, ATM, and DNA-dependent protein kinase (DNA-PK) deficiency resulted in reduced cell survival as predicted by the known important role of these proteins in sensing DNA damage. A decrease in clonogenic survival was also observed in ATR/ATM/DNA-PK-proficient, nonirradiated bystander cells, but this effect was completely abrogated in ATR and ATM but not DNA-PK-deficient bystander cells. ATM activation in bystander cells was found to be dependent on ATR function. Furthermore, the induction and colocalization of ATR, 53BP1, ATM-S1981P, p21, and BRCA1 foci in nontargeted cells was shown, suggesting their involvement in bystander DNA damage signaling and providing additional potential targets for its modulation. 53BP1 bystander foci were induced in an ATR-dependent manner predominantly in S-phase cells, similar to gammaH2AX foci induction. In conclusion, these results provide a rationale for the differential modulation of targeted and nontargeted effects of radiation.
Collapse
Affiliation(s)
- Susanne Burdak-Rothkamm
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom.
| | | | | |
Collapse
|
26
|
Srivastava N, Gochhait S, de Boer P, Bamezai RNK. Role of H2AX in DNA damage response and human cancers. Mutat Res 2008; 681:180-188. [PMID: 18804552 DOI: 10.1016/j.mrrev.2008.08.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/12/2008] [Accepted: 08/22/2008] [Indexed: 12/25/2022]
Abstract
H2AX, the evolutionarily conserved variant of histone H2A, has been identified as one of the key histones to undergo various post-translational modifications in response to DNA double-strand breaks (DSBs). By virtue of these modifications, that include acetylation, phosphorylation and ubiquitination, H2AX marks the damaged DNA double helix, facilitating local recruitment and retention of DNA repair and chromatin remodeling factors to restore genomic integrity. These modifications are essential for effective DSB repair, so is their removal for cell, to recover from checkpoint arrest. Because of these vital roles during DSB signaling and also its activation during early cancer stages, H2AX is emerging as an intriguing gene in tumor biology, supported further by frequent deletion of the region harboring this gene. This review focuses on the insights gained from recent studies on dynamic regulation of H2AX in DSB repair. Also, posing future challenges in the area of chromatin reorganization and retention of epigenetic signature post-DSB-repair with implication of its haploinsufficiency in human cancers.
Collapse
Affiliation(s)
- Niloo Srivastava
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University (JNU), Aruna Asafali Marg, New Delhi 110067, India
| | - Sailesh Gochhait
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University (JNU), Aruna Asafali Marg, New Delhi 110067, India
| | - Peter de Boer
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, The Netherlands
| | - Rameshwar N K Bamezai
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University (JNU), Aruna Asafali Marg, New Delhi 110067, India.
| |
Collapse
|
27
|
Chromatin structure influences the sensitivity of DNA to gamma-radiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2398-414. [PMID: 18706456 DOI: 10.1016/j.bbamcr.2008.07.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/11/2008] [Accepted: 07/11/2008] [Indexed: 11/23/2022]
Abstract
For the first time, DNA double-strand breaks (DSBs) were directly visualized in functionally and structurally different chromatin domains of human cells. The results show that genetically inactive condensed chromatin is much less susceptible to DSB induction by gamma-rays than expressed, decondensed domains. Higher sensitivity of open chromatin for DNA damage was accompanied by more efficient DSB repair. These findings follow from comparing DSB induction and repair in two 11 Mbp-long chromatin regions, one with clusters of highly expressed genes and the other, gene-poor, containing mainly genes having only low transcriptional activity. The same conclusions result from experiments with whole chromosome territories, differing in gene density and consequently in chromatin condensation. It follows from our further results that this lower sensitivity of DNA to the damage by ionizing radiation in heterochromatin is not caused by the simple chromatin condensation but very probably by the presence of a higher amount of proteins compared to genetically active and decondensed chromatin. In addition, our results show that some agents potentially used for cell killing in cancer therapy (TSA, hypotonic and hypertonic) influence cell survival of irradiated cells via changes in chromatin structure and efficiency of DSB repair in different ways.
Collapse
|
28
|
Banuelos CA, Banáth JP, MacPhail SH, Zhao J, Reitsema T, Olive PL. Radiosensitization by the histone deacetylase inhibitor PCI-24781. Clin Cancer Res 2008; 13:6816-26. [PMID: 18006784 DOI: 10.1158/1078-0432.ccr-07-1126] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE PCI-24781 is a novel broad spectrum histone deacetylase inhibitor that is currently in phase I clinical trials. The ability of PCI-24781 to act as a radiation sensitizer and the mechanisms of radiosensitization were examined. EXPERIMENTAL DESIGN Exponentially growing human SiHa cervical and WiDr colon carcinoma cells were exposed to 0.1 to 10 micromol/L PCI-24781 in vitro for 2 to 20 h before irradiation and 0 to 4 h after irradiation. Single cells and sorted populations were analyzed for histone acetylation, H2AX phosphorylation, cell cycle distribution, apoptotic fraction, and clonogenic survival. RESULTS PCI-24781 treatment for 4 h increased histone H3 acetylation and produced a modest increase in gammaH2AX but negligible cell killing or radiosensitization. Treatment for 24 h resulted in up to 80% cell kill and depletion of cells in S phase. Toxicity reached maximum levels at a drug concentration of approximately 1 micromol/L, and cells in G(1) phase at the end of treatment were preferentially spared. A similar dose-modifying factor (DMF(0.1) = 1.5) was observed for SiHa cells exposed for 24 h at 0.1 to 3 micromol/L, and more radioresistant WiDr cells showed less sensitization (DMF(0.1) = 1.2). Limited radiosensitization and less killing were observed in noncycling human fibroblasts. Cell sorting experiments confirmed that depletion of S-phase cells was not a major mechanism of radiosensitization and that inner noncycling cells of SiHa spheroids could be sensitized by nontoxic doses. PCI-24781 pretreatment increased the fraction of cells with gammaH2AX foci 24 h after irradiation but did not affect the initial rate of loss of radiation-induced gammaH2AX or the rate of rejoining of DNA double-strand breaks. CONCLUSIONS PCI-24781 shows promise as a radiosensitizing agent that may compromise the accuracy of repair of radiation damage.
Collapse
Affiliation(s)
- Carmen A Banuelos
- Medical Biophysics Department, British Columbia Cancer Research Center, 675 W. 10th Avenue, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Han W, Zhu L, Jiang E, Wang J, Chen S, Bao L, Zhao Y, Xu A, Yu Z, Wu L. Elevated sodium chloride concentrations enhance the bystander effects induced by low dose alpha-particle irradiation. Mutat Res 2007; 624:124-31. [PMID: 17560616 DOI: 10.1016/j.mrfmmm.2007.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Revised: 04/20/2007] [Accepted: 04/25/2007] [Indexed: 05/15/2023]
Abstract
Previous studies have shown that high NaCl can be genotoxic, either alone or combined with irradiation. However, little is known about the relationship between environmental NaCl at elevated conditions and radiation-induced bystander effects (RIBE). RIBE, which has been considered as non-targeted bystander responses, has been demonstrated to occur widely in various cell lines. In the present study, RIBE under the elevated NaCl culture condition was assessed in AG 1522 cells by both the induction of gamma-H2AX, a reliable marker of DNA double-strand break (DSB) for the early process (<1h post irradiation), and the generation of micronuclei (MN), a sensitive marker for relative long process of RIBE. Our results showed that in the absence of irradiation, NaCl at elevated concentration such as 8.0, 9.0 and 10.0g/L did not significantly increase the frequency of gamma-H2AX foci-positive cells and the number of foci per positive cell comparing with that NaCl at a normal concentration (6.8g/L). However, with 0.2cGy alpha-particle irradiation, the induced fraction of gamma-H2AX foci-positive cells and the number of induced gamma-H2AX foci per positive cell were significantly increased in both irradiated and adjacent non-irradiated regions. Similarly, the induction of MN by 0.2cGy alpha-particle irradiation also increased with the elevated NaCl concentrations. With N(G)-methyl-l-arginine, an inhibitor of nitric oxide synthase, the induced fraction of foci-positive cells was effectively inhibited both in 0.2cGy alpha-particle irradiated and adjacent non-irradiated regions under either normal or elevated NaCl conditions. These results suggested that the cultures with elevated NaCl medium magnified the damage effects induced by the low dose alpha-particle irradiation and nitric oxide generated by irradiation was also very important in this process.
Collapse
Affiliation(s)
- Wei Han
- Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tanaka T, Huang X, Halicka HD, Zhao H, Traganos F, Albino AP, Dai W, Darzynkiewicz Z. Cytometry of ATM activation and histone H2AX phosphorylation to estimate extent of DNA damage induced by exogenous agents. Cytometry A 2007; 71:648-61. [PMID: 17622968 PMCID: PMC3855668 DOI: 10.1002/cyto.a.20426] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This review covers the topic of cytometric assessment of activation of Ataxia telangiectasia mutated (ATM) protein kinase and histone H2AX phosphorylation on Ser139 in response to DNA damage, particularly the damage that involves formation of DNA double-strand breaks. Briefly described are molecular mechanisms associated with activation of ATM and the downstream events that lead to recruitment of DNA repair machinery, engagement of cell cycle checkpoints, and activation of apoptotic pathway. Examples of multiparameter analysis of ATM activation and H2AX phosphorylation vis-a-vis cell cycle phase position and induction of apoptosis that employ flow- and laser scanning-cytometry are provided. They include cells treated with a variety of exogenous genotoxic agents, such as ionizing and UV radiation, DNA topoisomerase I (topotecan) and II (mitoxantrone, etoposide) inhibitors, nitric oxide-releasing aspirin, DNA replication inhibitors (aphidicolin, hydroxyurea, thymidine), and complex environmental carcinogens such as present in tobacco smoke. Also presented is an approach to identify DNA replicating (BrdU incorporating) cells based on selective photolysis of DNA that triggers H2AX phosphorylation. Listed are strategies to distinguish ATM activation and H2AX phosphorylation induced by primary DNA damage by genotoxic agents from those effects triggered by DNA fragmentation that takes place during apoptosis. While we review most published data, recent new findings also are included. Examples of multivariate analysis of ATM activation and H2AX phosphorylation presented in this review illustrate the advantages of cytometric flow- and image-analysis of these events in terms of offering a sensitive and valuable tool in studies of factors that induce DNA damage and/or affect DNA repair and allow one to explore the linkage between DNA damage, cell cycle checkpoints and initiation of apoptosis.
Collapse
Affiliation(s)
- Toshiki Tanaka
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595
- Department of Pathology, New York Medical College, Valhalla, New York 10595
- First Department of Surgery, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Xuan Huang
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595
- Department of Pathology, New York Medical College, Valhalla, New York 10595
| | - H. Dorota Halicka
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595
- Department of Pathology, New York Medical College, Valhalla, New York 10595
| | - Hong Zhao
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595
- Department of Pathology, New York Medical College, Valhalla, New York 10595
| | - Frank Traganos
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595
- Department of Pathology, New York Medical College, Valhalla, New York 10595
| | | | - Wei Dai
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Zbigniew Darzynkiewicz
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595
- Department of Pathology, New York Medical College, Valhalla, New York 10595
| |
Collapse
|
31
|
Tanaka T, Huang X, Jorgensen E, Gietl D, Traganos F, Darzynkiewicz Z, Albino AP. ATM activation accompanies histone H2AX phosphorylation in A549 cells upon exposure to tobacco smoke. BMC Cell Biol 2007; 8:26. [PMID: 17594478 PMCID: PMC1919366 DOI: 10.1186/1471-2121-8-26] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 06/26/2007] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In response to DNA damage or structural alterations of chromatin, histone H2AX may be phosphorylated on Ser139 by phosphoinositide 3-kinase related protein kinases (PIKKs) such as ataxia telangiectasia mutated (ATM), ATM-and Rad-3 related (ATR) kinase, or by DNA dependent protein kinase (DNA-PKcs). When DNA damage primarily involves formation of DNA double-strand breaks (DSBs), H2AX is preferentially phosphorylated by ATM rather than by the other PIKKs. We have recently reported that brief exposure of human pulmonary adenocarcinoma A549 cells or normal human bronchial epithelial cells (NHBE) to cigarette smoke (CS) induced phosphorylation of H2AX. RESULTS We report here that H2AX phosphorylation in A549 cells induced by CS was accompanied by activation of ATM, as revealed by ATM phosphorylation on Ser1981 (ATM-S1981P) detected immunocytochemically and by Western blotting. No cell cycle-phase specific differences in kinetics of ATM activation and H2AX phosphorylation were observed. When cells were exposed to CS from cigarettes with different tobacco and filter combinations, the expression levels of ATM-S1981P correlated well with the increase in expression of phosphorylated H2AX (gammaH2AX) (R = 0.89). In addition, we note that while CS-induced gammaH2AX expression was localized within discrete foci, the activated ATM was distributed throughout the nucleoplasm. CONCLUSION These data implicate ATM as the PIKK that phosphorylates H2AX in response to DNA damage caused by CS. Based on current understanding of ATM activation, expression and localization, these data would suggest that, in addition to inducing potentially carcinogenic DSB lesions, CS may also trigger other types of DNA lesions and cause chromatin alterations. As checkpoint kinase (Chk) 1, Chk2 and the p53 tumor suppressor gene are known to be phosphorylated by ATM, the present data indicate that exposure to CS may lead to their phosphorylation, with the downstream consequences related to the halt in cell cycle progression and increased propensity to undergo apoptosis. Defining the nature and temporal sequence of molecular events that are disrupted by CS through activation and eventual dysregulation of normal defense mechanisms such as ATM and its downstream effectors may allow a more precise understanding of how CS promotes cancer development.
Collapse
Affiliation(s)
- Toshiki Tanaka
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY, 10595, USA
| | - Xuan Huang
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY, 10595, USA
| | - Ellen Jorgensen
- Vector Research Ltd., 712 Fifth Ave., New York, NY 10019, USA
| | - Diana Gietl
- Vector Research Ltd., 712 Fifth Ave., New York, NY 10019, USA
| | - Frank Traganos
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY, 10595, USA
| | - Zbigniew Darzynkiewicz
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY, 10595, USA
| | | |
Collapse
|
32
|
Houben A, Demidov D, Caperta AD, Karimi R, Agueci F, Vlasenko L. Phosphorylation of histone H3 in plants--a dynamic affair. ACTA ACUST UNITED AC 2007; 1769:308-15. [PMID: 17320987 DOI: 10.1016/j.bbaexp.2007.01.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 01/08/2007] [Accepted: 01/11/2007] [Indexed: 01/15/2023]
Abstract
Histones are the main protein components of chromatin: they undergo extensive post-translational modifications, particularly acetylation, methylation, phosphorylation, ubiquitination and ADP-ribosylation which modify the structural/functional properties of chromatin. Post-translational modifications of the N-terminal tails of the core histones within the nucleosome particle are thought to act as signals from the chromatin to the cell, for various processes. Thus, in many ways histone tails can be viewed as complex protein-protein interaction surfaces that are regulated by numerous post-translational modifications. Histone phosphorylation has been linked to chromosome condensation/segregation, activation of transcription, apoptosis and DNA damage repair. In plants, the cell cycle dependent phosphorylation of histone H3 has been described; it is hyperphosphorylated at serines 10/28 and at threonines 3/11 during both mitosis and meiosis in patterns that are specifically coordinated in both space and time. Although this post-translational modification is highly conserved, data show that the chromosomal distribution of individual modifications can differ between groups of eukaryotes. Initial results indicate that members of the plant Aurora kinase family have the capacity to control cell cycle regulated histone H3 phosphorylation, and in addition we describe other potential H3 kinases and discuss their functions.
Collapse
Affiliation(s)
- Andreas Houben
- Leibniz-Institute of Plant Genetics and Crop Plant Research, Chromosome Structure and Function Group, Corrensstrasse 3, D-06466 Gatersleben, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Zhou C, Li Z, Diao H, Yu Y, Zhu W, Dai Y, Chen FF, Yang J. DNA damage evaluated by gammaH2AX foci formation by a selective group of chemical/physical stressors. Mutat Res 2006; 604:8-18. [PMID: 16423555 PMCID: PMC2756993 DOI: 10.1016/j.mrgentox.2005.12.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2005] [Revised: 11/11/2005] [Accepted: 12/01/2005] [Indexed: 05/06/2023]
Abstract
It has been reported that the phosphorylated form of histone variant H2AX (gammaH2AX) plays an important role in the recruitment of DNA repair and checkpoint proteins to sites of DNA damage, particularly at double strand breaks (DSBs). Using gammaH2AX foci formation as an indicator for DNA damage, several chemicals/stress factors were chosen to assess their ability to induce gammaH2AX foci in a 24h time frame in a human amnion FL cell line. Two direct-acting genotoxins, methyl methanesulfonate (MMS) and N-ethyl-N-nitrosourea (ENU), can induce gammaH2AX foci formation in a time- and dose-dependent manner. Similarly, an indirect-acting genotoxin, benzo[a]pyrene (BP), also induced the formation of gammaH2AX foci in a time- and dose-dependent manner. Another indirect genotoxin, 2-acetyl-aminofluorene (AAF), did not induce gammaH2AX foci formation in FL cells; however, AAF can induce gammaH2AX foci formation in Chinese hamster CHL cells. Neutral comet assays also revealed the induction of DNA strand breaks by these agents. In contrast, epigenetic carcinogens azathioprine and cyclosporine A, as well as non-carcinogen dimethyl sulfoxide, did not induce gammaH2AX foci formation in FL cells. In addition, heat shock and hypertonic saline did not induce gammaH2AX foci. Cell survival analyses indicated that the induction of gammaH2AX is not correlated with the cytotoxic effects of these agents/factors. Taken together, these results suggest that gammaH2AX foci formation could be used for evaluating DNA damage; however, the different cell types used may play an important role in determining gammaH2AX foci formation induced by a specific agent.
Collapse
Affiliation(s)
- Chunxian Zhou
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Zhongxiang Li
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Huiling Diao
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Yanke Yu
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Wen Zhu
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Yayun Dai
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Fanqing F. Chen
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94210, USA
| | - Jun Yang
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| |
Collapse
|