1
|
Ramirez-Otero MA, Costanzo V. "Bridging the DNA divide": Understanding the interplay between replication- gaps and homologous recombination proteins RAD51 and BRCA1/2. DNA Repair (Amst) 2024; 141:103738. [PMID: 39084178 DOI: 10.1016/j.dnarep.2024.103738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
A key but often neglected component of genomic instability is the emergence of single-stranded DNA (ssDNA) gaps during DNA replication in the absence of functional homologous recombination (HR) proteins, such as RAD51 and BRCA1/2. Research in prokaryotes has shed light on the dual role of RAD51's bacterial ortholog, RecA, in HR and the protection of replication forks, emphasizing its essential role in preventing the formation of ssDNA gaps, which is vital for cellular viability. This phenomenon was corroborated in eukaryotic cells deficient in HR, where the formation of ssDNA gaps within newly synthesized DNA and their subsequent processing by the MRE11 nuclease were observed. Without functional HR proteins, cells employ alternative ssDNA gap-filling mechanisms to ensure survival, though this compensatory response can compromise genomic stability. A notable example is the involvement of the translesion synthesis (TLS) polymerase POLζ, along with the repair protein POLθ, in the suppression of replicative ssDNA gaps. Persistent ssDNA gaps may result in replication fork collapse, chromosomal anomalies, and cell death, which contribute to cancer progression and resistance to therapy. Elucidating the processes that avert ssDNA gaps and safeguard replication forks is critical for enhancing cancer treatment approaches by exploiting the vulnerabilities of cancer cells in these pathways.
Collapse
Affiliation(s)
| | - Vincenzo Costanzo
- IFOM ETS - The AIRC Institute of Molecular Oncology, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
2
|
Schreuder A, Wendel TJ, Dorresteijn CGV, Noordermeer SM. (Single-stranded DNA) gaps in understanding BRCAness. Trends Genet 2024; 40:757-771. [PMID: 38789375 DOI: 10.1016/j.tig.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024]
Abstract
The tumour-suppressive roles of BRCA1 and 2 have been attributed to three seemingly distinct functions - homologous recombination, replication fork protection, and single-stranded (ss)DNA gap suppression - and their relative importance is under debate. In this review, we examine the origin and resolution of ssDNA gaps and discuss the recent advances in understanding the role of BRCA1/2 in gap suppression. There are ample data showing that gap accumulation in BRCA1/2-deficient cells is linked to genomic instability and chemosensitivity. However, it remains unclear whether there is a causative role and the function of BRCA1/2 in gap suppression cannot unambiguously be dissected from their other functions. We therefore conclude that the three functions of BRCA1 and 2 are closely intertwined and not mutually exclusive.
Collapse
Affiliation(s)
- Anne Schreuder
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Tiemen J Wendel
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Carlo G V Dorresteijn
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
| | - Sylvie M Noordermeer
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Dixit S, Nagraj T, Bhattacharya D, Saxena S, Sahoo S, Chittela RK, Somyajit K, Nagaraju G. RTEL1 helicase counteracts RAD51-mediated homologous recombination and fork reversal to safeguard replicating genomes. Cell Rep 2024; 43:114594. [PMID: 39116203 DOI: 10.1016/j.celrep.2024.114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/23/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Homologous recombination (HR) plays an essential role in the repair of DNA double-strand breaks (DSBs), replication stress responses, and genome maintenance. However, unregulated HR during replication can impair genome duplication and compromise genome stability. The mechanisms underlying HR regulation during DNA replication are obscure. Here, we find that RTEL1 helicase, RAD51, and RAD51 paralogs are enriched at stalled replication sites. The absence of RTEL1 leads to an increase in the RAD51-mediated HR and fork reversal during replication and affects genome-wide replication, which can be rescued by co-depleting RAD51 and RAD51 paralogs. Interestingly, co-depletion of fork remodelers such as SMARCAL1/ZRANB3/HLTF/FBH1 and expression of HR-defective RAD51 mutants also rescues replication defects in RTEL1-deficient cells. The anti-recombinase function of RTEL1 during replication depends on its interaction with PCNA and helicase activity. Together, our data identify the role of RTEL1 helicase in restricting RAD51-mediated fork reversal and HR activity to facilitate error-free genome duplication.
Collapse
Affiliation(s)
- Suruchi Dixit
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | - Tarun Nagraj
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | | | - Sneha Saxena
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | - Satyaranjan Sahoo
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | - Rajani Kant Chittela
- Applied Genomics Section, Bioscience Group, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Kumar Somyajit
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India; Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark.
| | - Ganesh Nagaraju
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
4
|
Li S, Tang M, Xiong Y, Feng X, Wang C, Nie L, Huang M, Zhang H, Yin L, Zhu D, Yang C, Ma T, Chen J. Systematic investigation of BRCA1-A, -B, and -C complexes and their functions in DNA damage response and DNA repair. Oncogene 2024; 43:2621-2634. [PMID: 39068216 DOI: 10.1038/s41388-024-03108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
BRCA1, a breast cancer susceptibility gene, has emerged as a central mediator that brings together multiple signaling complexes in response to DNA damage. The A, B, and C complexes of BRCA1, which are formed based on their phosphorylation-dependent interactions with the BRCA1-C-terminal domains, contribute to the roles of BRCA1 in DNA repair and cell cycle checkpoint control. However, their functions in DNA damage response remain to be fully appreciated. Specifically, there has been no systematic investigation of the roles of BRCA1-A, -B, and -C complexes in the regulation of BRCA1 localization and functions, in part because of cellular lethality associated with loss of CtIP protein, which is an essential component in BRCA1-C complex. To systematically investigate the functions of these complexes in DNA damage response, we depleted a key component in each of these complexes. We used the degradation tag system to inducibly deplete endogenous CtIP and obtained a series of RAP80/FANCJ/CtIP single-, double-, and triple-knockout cells. We showed that loss of BRCA1-B/FANCJ and BRCA1-C/CtIP, but not BRCA1-A/RAP80, resulted in reduced cell proliferation and increased sensitivity to DNA damage. BRCA1-C/CtIP and BRCA1-A/RAP80 were involved in BRCA1 recruitment to sites of DNA damage. However, BRCA1-A/RAP80 was not essential for damage-induced BRCA1 localization. Instead, RAP80/H2AX and CtIP have redundant roles in BRCA1 recruitment. Altogether, our systematic analysis uncovers functional differences between BRCA1-A, -B, and -C complexes and provides new insights into the roles of these BRCA1-associated protein complexes in DNA damage response and DNA repair.
Collapse
Affiliation(s)
- Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Xiong
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ling Yin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dandan Zhu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chang Yang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tiantian Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Gong Y, Wang Z, Zong W, Shi R, Sun W, Wang S, Peng B, Takeda S, Wang ZQ, Xu X. PARP1 UFMylation ensures the stability of stalled replication forks. Proc Natl Acad Sci U S A 2024; 121:e2322520121. [PMID: 38657044 PMCID: PMC11066985 DOI: 10.1073/pnas.2322520121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/19/2024] [Indexed: 04/26/2024] Open
Abstract
The S-phase checkpoint involving CHK1 is essential for fork stability in response to fork stalling. PARP1 acts as a sensor of replication stress and is required for CHK1 activation. However, it is unclear how the activity of PARP1 is regulated. Here, we found that UFMylation is required for the efficient activation of CHK1 by UFMylating PARP1 at K548 during replication stress. Inactivation of UFL1, the E3 enzyme essential for UFMylation, delayed CHK1 activation and inhibits nascent DNA degradation during replication blockage as seen in PARP1-deficient cells. An in vitro study indicated that PARP1 is UFMylated at K548, which enhances its catalytic activity. Correspondingly, a PARP1 UFMylation-deficient mutant (K548R) and pathogenic mutant (F553L) compromised CHK1 activation, the restart of stalled replication forks following replication blockage, and chromosome stability. Defective PARP1 UFMylation also resulted in excessive nascent DNA degradation at stalled replication forks. Finally, we observed that PARP1 UFMylation-deficient knock-in mice exhibited increased sensitivity to replication stress caused by anticancer treatments. Thus, we demonstrate that PARP1 UFMylation promotes CHK1 activation and replication fork stability during replication stress, thus safeguarding genome integrity.
Collapse
Affiliation(s)
- Yamin Gong
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong518060, China
- Leibniz Institute on Aging–Fritz Lipmann Institute, Jena07745, Germany
| | - Zhifeng Wang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong518060, China
| | - Wen Zong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Ruifeng Shi
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong518060, China
- Leibniz Institute on Aging–Fritz Lipmann Institute, Jena07745, Germany
| | - Wenli Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Sijia Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong518060, China
| | - Shunichi Takeda
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong518060, China
| | - Zhao-Qi Wang
- Leibniz Institute on Aging–Fritz Lipmann Institute, Jena07745, Germany
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
- Faculty of Biology and Pharmacy, Friedrich-Schiller University of Jena, Jena07743, Germany
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong518060, China
| |
Collapse
|
6
|
Minello A, Carreira A. BRCA1/2 Haploinsufficiency: Exploring the Impact of Losing one Allele. J Mol Biol 2024; 436:168277. [PMID: 37714298 DOI: 10.1016/j.jmb.2023.168277] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Since their discovery in the late 20th century, significant progress has been made in elucidating the functions of the tumor suppressor proteins BRCA1 and BRCA2. These proteins play vital roles in maintaining genome integrity, including DNA repair, replication fork protection, and chromosome maintenance. It is well-established that germline mutations in BRCA1 and BRCA2 increase the risk of breast and ovarian cancer; however, the precise mechanism underlying tumor formation in this context is not fully understood. Contrary to the long-standing belief that the loss of the second wild-type allele is necessary for tumor development, a growing body of evidence suggests that tumorigenesis can occur despite the presence of a single functional allele. This entails that heterozygosity in BRCA1/2 confers haploinsufficiency, where a single copy of the gene is not sufficient to fully suppress tumor formation. Here we provide an overview of the findings and the ongoing debate regarding BRCA haploinsufficiency. We further put out the challenges in studying this topic and discuss its potential relevance in the prevention and treatment of BRCA-related cancers.
Collapse
Affiliation(s)
- Anna Minello
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Aura Carreira
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France; Genome Instability and Cancer Predisposition Lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid 28049, Spain.
| |
Collapse
|
7
|
Vugic D, Dumoulin I, Martin C, Minello A, Alvaro-Aranda L, Gomez-Escudero J, Chaaban R, Lebdy R, von Nicolai C, Boucherit V, Ribeyre C, Constantinou A, Carreira A. Replication gap suppression depends on the double-strand DNA binding activity of BRCA2. Nat Commun 2023; 14:446. [PMID: 36707518 PMCID: PMC9883520 DOI: 10.1038/s41467-023-36149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Replication stress (RS) is a major source of genomic instability and is intrinsic to cancer cells. RS is also the consequence of chemotherapeutic drugs for treating cancer. However, adaptation to RS is also a mechanism of resistance to chemotherapy. BRCA2 deficiency results in replication stress in human cells. BRCA2 protein's main functions include DNA repair by homologous recombination (HR) both at induced DNA double-strand breaks (DSB) and spontaneous replicative lesions. At stalled replication forks, BRCA2 protects the DNA from aberrant nucleolytic degradation and is thought to limit the appearance of ssDNA gaps by arresting replication and via post-replicative HR. However, whether and how BRCA2 acts to limit the formation of ssDNA gaps or mediate their repair, remains ill-defined. Here, we use breast cancer variants affecting different domains of BRCA2 to shed light on this function. We demonstrate that the N-terminal DNA binding domain (NTD), and specifically, its dsDNA binding activity, is required to prevent and repair/fill-in ssDNA gaps upon nucleotide depletion but not to limit PARPi-induced ssDNA gaps. Thus, these findings suggest that nucleotide depletion and PARPi trigger gaps via distinct mechanisms and that the NTD of BRCA2 prevents nucleotide depletion-induced ssDNA gaps.
Collapse
Affiliation(s)
- Domagoj Vugic
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Isaac Dumoulin
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Charlotte Martin
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Anna Minello
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Lucia Alvaro-Aranda
- Genome Instability and Cancer Predisposition lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, 28049, Spain
| | - Jesus Gomez-Escudero
- Genome Instability and Cancer Predisposition lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, 28049, Spain
| | - Rady Chaaban
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
- Genome Instability and Cancer Predisposition lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, 28049, Spain
| | - Rana Lebdy
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Catharina von Nicolai
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Virginie Boucherit
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Cyril Ribeyre
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Angelos Constantinou
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Aura Carreira
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France.
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France.
- Genome Instability and Cancer Predisposition lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, 28049, Spain.
| |
Collapse
|
8
|
Moise AC, Kay JE, Engelward BP. Transgenic mice harboring direct repeat substrates reveal key underlying causes of homologous recombination in vivo. DNA Repair (Amst) 2022; 120:103419. [DOI: 10.1016/j.dnarep.2022.103419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022]
|
9
|
RAD51 paralogs: Expanding roles in replication stress responses and repair. Curr Opin Pharmacol 2022; 67:102313. [PMID: 36343481 DOI: 10.1016/j.coph.2022.102313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Mammalian RAD51 paralogs are essential for cell survival and are critical for RAD51-mediated repair of DNA double-strand breaks (DSBs) by homologous recombination (HR). However, the molecular mechanism by which RAD51 paralogs participate in HR is largely unclear. Germline mutations in RAD51 paralogs are associated with breast and ovarian cancers and Fanconi anemia-like disorder, underscoring the crucial roles of RAD51 paralogs in genome maintenance and tumor suppression. Despite their discovery over three decades ago, the essential functions of RAD51 paralogs in cell survival and genome stability remain obscure. Recent studies unravel DSB repair independent functions of RAD51 paralogs in replication stress responses. Here, we highlight the recent findings that uncovered the novel functions of RAD51 paralogs in replication fork progression, its stability, and restart and discuss RAD51 paralogs as a potential therapeutic target for cancer treatment.
Collapse
|
10
|
Homologous Recombination as a Fundamental Genome Surveillance Mechanism during DNA Replication. Genes (Basel) 2021; 12:genes12121960. [PMID: 34946909 PMCID: PMC8701046 DOI: 10.3390/genes12121960] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Accurate and complete genome replication is a fundamental cellular process for the proper transfer of genetic material to cell progenies, normal cell growth, and genome stability. However, a plethora of extrinsic and intrinsic factors challenge individual DNA replication forks and cause replication stress (RS), a hallmark of cancer. When challenged by RS, cells deploy an extensive range of mechanisms to safeguard replicating genomes and limit the burden of DNA damage. Prominent among those is homologous recombination (HR). Although fundamental to cell division, evidence suggests that cancer cells exploit and manipulate these RS responses to fuel their evolution and gain resistance to therapeutic interventions. In this review, we focused on recent insights into HR-mediated protection of stress-induced DNA replication intermediates, particularly the repair and protection of daughter strand gaps (DSGs) that arise from discontinuous replication across a damaged DNA template. Besides mechanistic underpinnings of this process, which markedly differ depending on the extent and duration of RS, we highlight the pathophysiological scenarios where DSG repair is naturally silenced. Finally, we discuss how such pathophysiological events fuel rampant mutagenesis, promoting cancer evolution, but also manifest in adaptative responses that can be targeted for cancer therapy.
Collapse
|
11
|
Hayward SB, Ciccia A. Towards a CRISPeR understanding of homologous recombination with high-throughput functional genomics. Curr Opin Genet Dev 2021; 71:171-181. [PMID: 34583241 PMCID: PMC8671205 DOI: 10.1016/j.gde.2021.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
CRISPR-dependent genome editing enables the study of genes and mutations on a large scale. Here we review CRISPR-based functional genomics technologies that generate gene knockouts and single nucleotide variants (SNVs) and discuss how their use has provided new important insights into the function of homologous recombination (HR) genes. In particular, we highlight discoveries from CRISPR screens that have contributed to define the response to PARP inhibition in cells deficient for the HR genes BRCA1 and BRCA2, uncover genes whose loss causes synthetic lethality in combination with BRCA1/2 deficiency, and characterize the function of BRCA1/2 SNVs of uncertain clinical significance. Further use of these approaches, combined with next-generation CRISPR-based technologies, will aid to dissect the genetic network of the HR pathway, define the impact of HR mutations on cancer etiology and treatment, and develop novel targeted therapies for HR-deficient tumors.
Collapse
Affiliation(s)
- Samuel B Hayward
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, United States.
| |
Collapse
|
12
|
Cantor SB. Revisiting the BRCA-pathway through the lens of replication gap suppression: "Gaps determine therapy response in BRCA mutant cancer". DNA Repair (Amst) 2021; 107:103209. [PMID: 34419699 PMCID: PMC9049047 DOI: 10.1016/j.dnarep.2021.103209] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022]
Abstract
The toxic lesion emanating from chemotherapy that targets the DNA was initially debated, but eventually the DNA double strand break (DSB) ultimately prevailed. The reasoning was in part based on the perception that repairing a fractured chromosome necessitated intricate processing or condemned the cell to death. Genetic evidence for the DSB model was also provided by the extreme sensitivity of cells that were deficient in DSB repair. In particular, sensitivity characterized cells harboring mutations in the hereditary breast/ovarian cancer genes, BRCA1 or BRCA2, that function in the repair of DSBs by homologous recombination (HR). Along with functions in HR, BRCA proteins were found to prevent DSBs by protecting stalled replication forks from nuclease degradation. Coming full-circle, BRCA mutant cancer cells that gained resistance to genotoxic chemotherapy often displayed restored DNA repair by HR and/or restored fork protection (FP) implicating that the therapy was tolerated when DSB repair was intact or DSBs were prevented. Despite this well-supported paradigm that has been the impetus for targeted cancer therapy, here we argue that the toxic DNA lesion conferring response is instead single stranded DNA (ssDNA) gaps. We discuss the evidence that persistent ssDNA gaps formed in the wake of DNA replication rather than DSBs are responsible for cell killing following treatment with genotoxic chemotherapeutic agents. We also highlight that proteins, such as BRCA1, BRCA2, and RAD51 known for canonical DSB repair also have critical roles in normal replication as well as replication gap suppression (RGS) and repair. We review the literature that supports the idea that widespread gap induction proximal to treatment triggers apoptosis in a process that does not need or stem from DSB induction. Lastly, we discuss the clinical evidence for gaps and how to exploit them to enhance genotoxic chemotherapy response.
Collapse
Affiliation(s)
- Sharon B Cantor
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, LRB 415, 364 Plantation St., Worcester, MA 01605, USA.
| |
Collapse
|
13
|
Ngo LP, Kaushal S, Chaim IA, Mazzucato P, Ricciardi C, Samson LD, Nagel ZD, Engelward BP. CometChip analysis of human primary lymphocytes enables quantification of inter-individual differences in the kinetics of repair of oxidative DNA damage. Free Radic Biol Med 2021; 174:89-99. [PMID: 34324980 PMCID: PMC8477454 DOI: 10.1016/j.freeradbiomed.2021.07.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 01/15/2023]
Abstract
Although DNA repair is known to impact susceptibility to cancer and other diseases, relatively few population studies have been performed to evaluate DNA repair kinetics in people due to the difficulty of assessing DNA repair in a high-throughput manner. Here we use the CometChip, a high-throughput comet assay, to explore inter-individual variation in repair of oxidative damage to DNA, a known risk factor for aging, cancer and other diseases. DNA repair capacity after H2O2-induced DNA oxidation damage was quantified in peripheral blood mononuclear cells (PBMCs). For 10 individuals, blood was drawn at several times over the course of 4-6 weeks. In addition, blood was drawn once from each of 56 individuals. DNA damage levels were quantified prior to exposure to H2O2 and at 0, 15, 30, 60, and 120-min post exposure. We found that there is significant variability in DNA repair efficiency among individuals. When subdivided into quartiles by DNA repair efficiency, we found that the average t1/2 is 81 min for the slowest group and 24 min for the fastest group. This work shows that the CometChip can be used to uncover significant differences in repair kinetics among people, pointing to its utility in future epidemiological and clinical studies.
Collapse
Affiliation(s)
- Le P Ngo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; MIT Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Simran Kaushal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; MIT Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Isaac A Chaim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; MIT Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Patrizia Mazzucato
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; MIT Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Catherine Ricciardi
- MIT Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; MIT Clinical Research Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; MIT Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Zachary D Nagel
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; MIT Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
14
|
Cong K, Peng M, Kousholt AN, Lee WTC, Lee S, Nayak S, Krais J, VanderVere-Carozza PS, Pawelczak KS, Calvo J, Panzarino NJ, Turchi JJ, Johnson N, Jonkers J, Rothenberg E, Cantor SB. Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. Mol Cell 2021; 81:3128-3144.e7. [PMID: 34216544 PMCID: PMC9089372 DOI: 10.1016/j.molcel.2021.06.011] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/19/2021] [Accepted: 06/09/2021] [Indexed: 01/04/2023]
Abstract
Mutations in BRCA1 or BRCA2 (BRCA) is synthetic lethal with poly(ADP-ribose) polymerase inhibitors (PARPi). Lethality is thought to derive from DNA double-stranded breaks (DSBs) necessitating BRCA function in homologous recombination (HR) and/or fork protection (FP). Here, we report instead that toxicity derives from replication gaps. BRCA1- or FANCJ-deficient cells, with common repair defects but distinct PARPi responses, reveal gaps as a distinguishing factor. We further uncouple HR, FP, and fork speed from PARPi response. Instead, gaps characterize BRCA-deficient cells, are diminished upon resistance, restored upon resensitization, and, when exposed, augment PARPi toxicity. Unchallenged BRCA1-deficient cells have elevated poly(ADP-ribose) and chromatin-associated PARP1, but aberrantly low XRCC1 consistent with defects in backup Okazaki fragment processing (OFP). 53BP1 loss resuscitates OFP by restoring XRCC1-LIG3 that suppresses the sensitivity of BRCA1-deficient cells to drugs targeting OFP or generating gaps. We highlight gaps as a determinant of PARPi toxicity changing the paradigm for synthetic lethal interactions.
Collapse
Affiliation(s)
- Ke Cong
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Min Peng
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Arne Nedergaard Kousholt
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Wei Ting C Lee
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Silviana Lee
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sumeet Nayak
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - John Krais
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | - Jennifer Calvo
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nicholas J Panzarino
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - John J Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; NERx Biosciences, 212 W. 10th St., Suite A480, Indianapolis, IN 46202, USA
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Sharon B Cantor
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
15
|
Zhang Q, Xu Y, Zhang Z, Li J, Xia Q, Chen Y. Folliculin deficient renal cancer cells exhibit BRCA1 A complex expression impairment and sensitivity to PARP1 inhibitor olaparib. Gene 2021; 769:145243. [PMID: 33069804 DOI: 10.1016/j.gene.2020.145243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Deficiency of folliculin (FLCN) may lead to renal cell carcinoma (RCC) in patients with Birt-Hogg-Dubé (BHD) disease. In this study, we investigated the cytotoxicity induced by PARP inhibitor olaparib in FLCN deficient RCC cells, and the interaction between FLCN and BRCA1 A complex-regulated DNA repair pathway. METHODS AND MATERIALS FLCN expressing (ACHN and UOK257-F) and FLCN deficient (ACHN-2 and UOK257) cell lines were used in this research. Cell viability was detected by clonogenic assay and MTT assay. Flow cytometry and TUNEL assay were used to detect apoptosis. Autophagy in cells was measured by MDC assay, western blot, and transmission electron microscopy. Co-immunoprecipitation, immunofluorescence and western blot experiments were performed to determine the interaction between FLCN protein and BRCA1 A complex. The in vivo experiments were performed in a xenograft model by inoculating UOK 257 in nude mice. RESULTS RCC cells with FLCN protein deficiency were more sensitive to olaparib treatment than the cells with FLCN expression. Olaparib treatment led to more severe autophagy and apoptosis in FLCN deficient ACHN-2 and UOK257 cells compared to the FLCN expressing ACHN and UOK257-F cells. Decreased BRCA1 A complex expression and disruption of DNA repair ability were detected in FLCN-deficient cells, suggesting that FLCN deficiency impaired BRCA1 A complex expression and sensitized cells to PARP inhibitor olaparib. CONCLUSIONS RCC cells deficient in FLCN are sensitive to olaparib treatment due to the impairment of BRCA1 A complex associated DNA repair ability. The results suggest that PARP inhibitor, such as olaparib, may be a potentially effective therapeutic approach for kidney tumors with deficiency of FLCN protein.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Zhiyu Zhang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Jianyi Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yougen Chen
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
16
|
Verma P, Zhou Y, Cao Z, Deraska PV, Deb M, Arai E, Li W, Shao Y, Puentes L, Li Y, Patankar S, Mach RH, Faryabi RB, Shi J, Greenberg RA. ALC1 links chromatin accessibility to PARP inhibitor response in homologous recombination-deficient cells. Nat Cell Biol 2021; 23:160-171. [PMID: 33462394 PMCID: PMC7880902 DOI: 10.1038/s41556-020-00624-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/08/2020] [Indexed: 01/29/2023]
Abstract
The response to poly(ADP-ribose) polymerase inhibitors (PARPi) is dictated by homologous recombination (HR) DNA repair and the abundance of lesions that trap PARP enzymes. It remains unclear, however, if the established role of PARP in promoting chromatin accessibility impacts viability in these settings. Using a CRISPR-based screen, we identified the PAR-binding chromatin remodeller ALC1/CHD1L as a key determinant of PARPi toxicity in HR-deficient cells. ALC1 loss reduced viability of breast cancer gene (BRCA)-mutant cells and enhanced sensitivity to PARPi by up to 250-fold, while overcoming several resistance mechanisms. ALC1 deficiency reduced chromatin accessibility concomitant with a decrease in the association of base damage repair factors. This resulted in an accumulation of replication-associated DNA damage, increased PARP trapping and a reliance on HR. These findings establish PAR-dependent chromatin remodelling as a mechanistically distinct aspect of PARPi responses and therapeutic target in HR-deficient cancers.
Collapse
Affiliation(s)
- Priyanka Verma
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yeqiao Zhou
- Departments of Pathology and Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zhendong Cao
- Department of Cancer Biology, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Peter V. Deraska
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Moniher Deb
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Eri Arai
- Department of Cancer Biology, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Weihua Li
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yue Shao
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Laura Puentes
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yiwen Li
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sonali Patankar
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robert B. Faryabi
- Departments of Pathology and Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Junwei Shi
- Department of Cancer Biology, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA,Address correspondence to: ;
| | - Roger A. Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA,Address correspondence to: ;
| |
Collapse
|
17
|
Nayak S, Calvo JA, Cantor SB. Targeting translesion synthesis (TLS) to expose replication gaps, a unique cancer vulnerability. Expert Opin Ther Targets 2021; 25:27-36. [PMID: 33416413 PMCID: PMC7837368 DOI: 10.1080/14728222.2021.1864321] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/11/2020] [Indexed: 02/09/2023]
Abstract
Introduction: Translesion synthesis (TLS) is a DNA damage tolerance (DDT) mechanism that employs error-prone polymerases to bypass replication blocking DNA lesions, contributing to a gain in mutagenesis and chemo-resistance. However, recent findings illustrate an emerging role for TLS in replication gap suppression (RGS), distinct from its role in post-replication gap filling. Here, TLS protects cells from replication stress (RS)-induced toxic single-stranded DNA (ssDNA) gaps that accumulate in the wake of active replication. Intriguingly, TLS-mediated RGS is specifically observed in several cancer cell lines and contributes to their survival. Thus, targeting TLS has the potential to uniquely eradicate tumors without harming non-cancer tissues. Areas Covered: This review provides an innovative perspective on the role of TLS beyond its canonical function of lesion bypass or post-replicative gap filling. We provide a comprehensive analysis that underscores the emerging role of TLS as a cancer adaptation necessary to overcome the replication stress response (RSR), an anti-cancer barrier. Expert Opinion: TLS RGS is critical for tumorigenesis and is a new hallmark of cancer. Although the exact mechanism and extent of TLS dependency in cancer is still emerging, TLS inhibitors have shown promise as an anti-cancer therapy in selectively targeting this unique cancer vulnerability.
Collapse
Affiliation(s)
- Sumeet Nayak
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School , Worcester, MA USA
| | - Jennifer A Calvo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School , Worcester, MA USA
| | - Sharon B Cantor
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School , Worcester, MA USA
| |
Collapse
|
18
|
Nath S, Nagaraju G. FANCJ helicase promotes DNA end resection by facilitating CtIP recruitment to DNA double-strand breaks. PLoS Genet 2020; 16:e1008701. [PMID: 32251466 PMCID: PMC7162537 DOI: 10.1371/journal.pgen.1008701] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/16/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
FANCJ helicase mutations are known to cause hereditary breast and ovarian cancers as well as bone marrow failure syndrome Fanconi anemia. FANCJ plays an important role in the repair of DNA inter-strand crosslinks and DNA double-strand breaks (DSBs) by homologous recombination (HR). Nonetheless, the molecular mechanism by which FANCJ controls HR mediated DSB repair is obscure. Here, we show that FANCJ promotes DNA end resection by recruiting CtIP to the sites of DSBs. This recruitment of CtIP is dependent on FANCJ K1249 acetylation. Notably, FANCJ acetylation is dependent on FANCJ S990 phosphorylation by CDK. The CDK mediated phosphorylation of FANCJ independently facilitates its interaction with BRCA1 at damaged DNA sites and promotes DNA end resection by CtIP recruitment. Strikingly, mutational studies reveal that ATP binding competent but hydrolysis deficient FANCJ partially supports end resection, indicating that in addition to the scaffolding role of FANCJ in CtIP recruitment, its helicase activity is important for promoting end resection. Together, these data unravel a novel function of FANCJ helicase in DNA end resection and provide mechanistic insights into its role in repairing DSBs by HR and in genome maintenance. Homologous recombination has been considered as an error-free pathway in repairing DSBs and maintaining genome stability. Cyclin-dependent kinases (CDKs) and various factors including MRE11, CtIP, EXO1, and BLM helicase participate in DNA end resection to promote HR mediated DSB repair. Despite the identification of FANCJ helicase role in HR and tumor suppression, the molecular mechanism by which FANCJ helicase participates in HR is obscure. Here, we show that FANCJ helicase controls DNA end resection by recruiting CtIP to the sites of DSBs. The loading of CtIP is dependent on FANCJ acetylation which is mediated by CDK dependent phosphorylation of FANCJ. Moreover, in addition to FANCJ mediated CtIP recruitment, its helicase activity is also essential for DNA end resection. Our data identify FANCJ as a novel player in the DNA end resection and provide insights into its role in HR mediated DSB repair.
Collapse
Affiliation(s)
- Sarmi Nath
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Ganesh Nagaraju
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
19
|
Vinutha K, Pavan G, Pattar S, Kumari NS, Vidya S. Aqueous extract from Madhuca indica bark protects cells from oxidative stress caused by electron beam radiation: in vitro, in vivo and in silico approach. Heliyon 2019; 5:e01749. [PMID: 31193873 PMCID: PMC6543085 DOI: 10.1016/j.heliyon.2019.e01749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/18/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
In an endeavor to find the novel natural radioprotector to secure normal cells surrounding cancerous cell during radiation exposure, Madhuca indica (M. indica) aqueous stem bark extract was evaluated for radioprotective activity using in vitro, in vivo, and in silico models. M. indica extract exhibited concentration dependent protective effect on electron beam radiation (EBR) induced damage to pBR322 DNA; the highest protection was achieved at 150 μg concentrations. Similarly, M. indica extract (400 mg/kg) administrated to mice prior to irradiation protected DNA from the radiation damage, which was confirmed by inhibiting comet parameters. The study showed a significant increase in the levels of glutathione and superoxide dismutase levels. The study also revealed that administration of M. Indica at the different dose to mice significantly reduced EBR induced MDA, sialic acid and nitric acid levels. Further extract prevented histophatological changes of skin and liver. In contrast, protein-protein interaction studies were performed to find the hub protein, involved in radiation-induced DNA damage. Among 437 proteins that are found expressed during radiation, p53 was found to be a master protein regulating the whole pathway. Molecular interaction between p53 and M. indica extract was predicted by quantitative structure-activity relationship and ADMET properties. Biomolecules such as quercetin, myricetin, and 7-hydroxyflavone were found to be promising inhibitors of p53 protein and may help in the protection of EBR induced DNA damage during cancer treatment.
Collapse
Affiliation(s)
- K. Vinutha
- Department of Biotechnology, NMAM Institute of Technology, 574110, Udupi (Dist), Nitte, Karnataka, India
| | - Gollapalli Pavan
- Department of Biotechnology Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Guntur (Dt), Andhra Pradesh, 522203, India
| | - Sharath Pattar
- National Bureau of Agriculturally Important Insects, P.Bag No: 2491, H.A. Farm Post, Bellary Rd, Hebbal, Bengaluru, Karnataka, 560024, India
| | - N Suchetha Kumari
- University Enclave, Medical Sciences Complex, Deralakatte, Mangalore, 575018, India
| | - S.M. Vidya
- Department of Biotechnology, NMAM Institute of Technology, 574110, Udupi (Dist), Nitte, Karnataka, India
| |
Collapse
|
20
|
Billing D, Horiguchi M, Wu-Baer F, Taglialatela A, Leuzzi G, Nanez SA, Jiang W, Zha S, Szabolcs M, Lin CS, Ciccia A, Baer R. The BRCT Domains of the BRCA1 and BARD1 Tumor Suppressors Differentially Regulate Homology-Directed Repair and Stalled Fork Protection. Mol Cell 2018; 72:127-139.e8. [PMID: 30244837 DOI: 10.1016/j.molcel.2018.08.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/23/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
The BRCA1 tumor suppressor preserves genome integrity through both homology-directed repair (HDR) and stalled fork protection (SFP). In vivo, BRCA1 exists as a heterodimer with the BARD1 tumor suppressor, and both proteins harbor a phosphate-binding BRCT domain. Here, we compare mice with mutations that ablate BRCT phospho-recognition by Bard1 (Bard1S563F and Bard1K607A) or Brca1 (Brca1S1598F). Brca1S1598F abrogates both HDR and SFP, suggesting that both pathways are likely impaired in most BRCA1 mutant tumors. Although not affecting HDR, the Bard1 mutations ablate poly(ADP-ribose)-dependent recruitment of BRCA1/BARD1 to stalled replication forks, resulting in fork degradation and chromosome instability. Nonetheless, Bard1S563F/S563F and Bard1K607A/K607A mice, unlike Brca1S1598F/S1598F mice, are not tumor prone, indicating that HDR alone is sufficient to suppress tumor formation in the absence of SFP. Nevertheless, because SFP, unlike HDR, is also impaired in heterozygous Brca1/Bard1 mutant cells, SFP and HDR may contribute to distinct stages of tumorigenesis in BRCA1/BARD1 mutation carriers.
Collapse
Affiliation(s)
- David Billing
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michiko Horiguchi
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Foon Wu-Baer
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Angelo Taglialatela
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Giuseppe Leuzzi
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Silvia Alvarez Nanez
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wenxia Jiang
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shan Zha
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthias Szabolcs
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chyuan-Sheng Lin
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alberto Ciccia
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Richard Baer
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
21
|
Nath S, Somyajit K, Mishra A, Scully R, Nagaraju G. FANCJ helicase controls the balance between short- and long-tract gene conversions between sister chromatids. Nucleic Acids Res 2017; 45:8886-8900. [PMID: 28911102 PMCID: PMC5587752 DOI: 10.1093/nar/gkx586] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/28/2017] [Indexed: 01/01/2023] Open
Abstract
The FANCJ DNA helicase is linked to hereditary breast and ovarian cancers as well as bone marrow failure disorder Fanconi anemia (FA). Although FANCJ has been implicated in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR), the molecular mechanism underlying the tumor suppressor functions of FANCJ remains obscure. Here, we demonstrate that FANCJ deficient human and hamster cells exhibit reduction in the overall gene conversions in response to a site-specific chromosomal DSB induced by I-SceI endonuclease. Strikingly, the gene conversion events were biased in favour of long-tract gene conversions in FANCJ depleted cells. The fine regulation of short- (STGC) and long-tract gene conversions (LTGC) by FANCJ was dependent on its interaction with BRCA1 tumor suppressor. Notably, helicase activity of FANCJ was essential for controlling the overall HR and in terminating the extended repair synthesis during sister chromatid recombination (SCR). Moreover, cells expressing FANCJ pathological mutants exhibited defective SCR with an increased frequency of LTGC. These data unravel the novel function of FANCJ helicase in regulating SCR and SCR associated gene amplification/duplications and imply that these functions of FANCJ are crucial for the genome maintenance and tumor suppression.
Collapse
Affiliation(s)
- Sarmi Nath
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Kumar Somyajit
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Anup Mishra
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ralph Scully
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, USA
| | - Ganesh Nagaraju
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
22
|
Zhang T, Zhang Z, Li F, Hu Q, Liu H, Tang M, Ma W, Huang J, Songyang Z, Rong Y, Zhang S, Chen BP, Zhao Y. Looping-out mechanism for resolution of replicative stress at telomeres. EMBO Rep 2017; 18:1412-1428. [PMID: 28615293 DOI: 10.15252/embr.201643866] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/29/2017] [Accepted: 05/08/2017] [Indexed: 01/03/2023] Open
Abstract
Repetitive DNA is prone to replication fork stalling, which can lead to genome instability. Here, we find that replication fork stalling at telomeres leads to the formation of t-circle-tails, a new extrachromosomal structure that consists of circular telomeric DNA with a single-stranded tail. Structurally, the t-circle-tail resembles cyclized leading or lagging replication intermediates that are excised from the genome by topoisomerase II-mediated cleavage. We also show that the DNA damage repair machinery NHEJ is required for the formation of t-circle-tails and for the resolution of stalled replication forks, suggesting that NHEJ, which is normally constitutively suppressed at telomeres, is activated in the context of replication stress. Inhibition of NHEJ or knockout of DNA-PKcs impairs telomere replication, leading to multiple-telomere sites (MTS) and telomere shortening. Collectively, our results support a "looping-out" mechanism, in which the stalled replication fork is cut out and cyclized to form t-circle-tails, and broken DNA is religated. The telomere loss induced by replication stress may serve as a new factor that drives replicative senescence and cell aging.
Collapse
Affiliation(s)
- Tianpeng Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, China
| | - Zepeng Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, China
| | - Feng Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qian Hu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, China
| | - Haiying Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, China
| | - Mengfan Tang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenbin Ma
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junjiu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yikang Rong
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shichuan Zhang
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| | - Benjamin Pc Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yong Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China .,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, China
| |
Collapse
|
23
|
Brandt S, Samartzis EP, Zimmermann AK, Fink D, Moch H, Noske A, Dedes KJ. Lack of MRE11-RAD50-NBS1 (MRN) complex detection occurs frequently in low-grade epithelial ovarian cancer. BMC Cancer 2017; 17:44. [PMID: 28073364 PMCID: PMC5223425 DOI: 10.1186/s12885-016-3026-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND BRCA1/2-deficient ovarian carcinomas are recognized as target for Poly (ADP-ribose) polymerase (PARP) inhibitors. BRCA1 and BRCA2 proteins are involved in homologous recombination repair of double-strand DNA breaks. The relevance of other homologous recombination repair proteins, e.g. MRE11, RAD50, NBS1 (MRN complex) in ovarian carcinomas is unclear. The objective of this study was to investigate the prevalence of lack of MRE11, RAD50, NBS1 protein detection in epithelial ovarian cancer (EOC). METHODS A tissue microarray (TMA) with 134 EOC was immunohistochemically evaluated for MRE11, RAD50 and NBS1. Data was analysed for associations with clinicopathological parameters, histological subtype, patient overall survival and mismatch repair (MMR) protein status. Sensitivity towards the PARP inhibitor BMN673 was tested in two ovarian cancer cell lines (TOV-21 and OVTOKO) using colony formation assays. RESULTS Lack of MRN complex protein detection was seen in 41% (55/134) of EOC and was more frequent in low-grade (57.6%; 19/33) than in high-grade EOC (18.8%; 36/101; n = 134; p = 0.04). There was an association with the ovarian carcinoma subtype (60.3%; 35/58 lack of detection in type I versus 26.3%; 20/76 in type II; n = 134; p < 0.001) as well as undetectable DNA mismatch repair proteins MLH1 and MSH2 (89.3%; 25/28; n = 131; p < 0.001). MRE11 knockdown led to moderately increased sensitivity towards the PARP inhibitor BMN673 in one ovarian carcinoma cell line in vitro. CONCLUSIONS Frequent lack of MRE11, RAD50, NBS1 protein detection in type I human ovarian carcinomas is observed in EOC and our data suggests further investigation regarding sensitivity to PARP-inhibition in tumours lacking MRE11 expression.
Collapse
MESH Headings
- Acid Anhydride Hydrolases
- Adenocarcinoma, Clear Cell/drug therapy
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Mucinous/drug therapy
- Adenocarcinoma, Mucinous/metabolism
- Adenocarcinoma, Mucinous/pathology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/metabolism
- Cell Cycle Proteins/metabolism
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/metabolism
- Cystadenocarcinoma, Serous/pathology
- DNA Repair Enzymes/metabolism
- DNA-Binding Proteins/metabolism
- Endometrial Neoplasms/drug therapy
- Endometrial Neoplasms/metabolism
- Endometrial Neoplasms/pathology
- Female
- Follow-Up Studies
- Humans
- MRE11 Homologue Protein
- Middle Aged
- Neoplasm Grading
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Nuclear Proteins/metabolism
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Prognosis
- Survival Rate
Collapse
Affiliation(s)
- Simone Brandt
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Daniel Fink
- Department of Gynecology, University Hospital Zurich, CH- 8091 Zurich, Switzerland
| | - Holger Moch
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Aurelia Noske
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Konstantin J. Dedes
- Department of Gynecology, University Hospital Zurich, CH- 8091 Zurich, Switzerland
| |
Collapse
|
24
|
Hartlerode AJ, Willis NA, Rajendran A, Manis JP, Scully R. Complex Breakpoints and Template Switching Associated with Non-canonical Termination of Homologous Recombination in Mammalian Cells. PLoS Genet 2016; 12:e1006410. [PMID: 27832076 PMCID: PMC5104497 DOI: 10.1371/journal.pgen.1006410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 10/07/2016] [Indexed: 12/11/2022] Open
Abstract
A proportion of homologous recombination (HR) events in mammalian cells resolve by "long tract" gene conversion, reflecting copying of several kilobases from the donor sister chromatid prior to termination. Cells lacking the major hereditary breast/ovarian cancer predisposition genes, BRCA1 or BRCA2, or certain other HR-defective cells, reveal a bias in favor of long tract gene conversion, suggesting that this aberrant HR outcome might be connected with genomic instability. If termination of gene conversion occurs in regions lacking homology with the second end of the break, the normal mechanism of HR termination by annealing (i.e., homologous pairing) is not available and termination must occur by as yet poorly defined non-canonical mechanisms. Here we use a previously described HR reporter to analyze mechanisms of non-canonical termination of long tract gene conversion in mammalian cells. We find that non-canonical HR termination can occur in the absence of the classical non-homologous end joining gene XRCC4. We observe obligatory use of microhomology (MH)-mediated end joining and/or nucleotide addition during rejoining with the second end of the break. Notably, non-canonical HR termination is associated with complex breakpoints. We identify roles for homology-mediated template switching and, potentially, MH-mediated template switching/microhomology-mediated break-induced replication, in the formation of complex breakpoints at sites of non-canonical HR termination. This work identifies non-canonical HR termination as a potential contributor to genomic instability and to the formation of complex breakpoints in cancer.
Collapse
Affiliation(s)
- Andrea J. Hartlerode
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicholas A. Willis
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anbazhagan Rajendran
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - John P. Manis
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ralph Scully
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
25
|
Martinez JS, Baldeyron C, Carreira A. Molding BRCA2 function through its interacting partners. Cell Cycle 2016; 14:3389-95. [PMID: 26566862 DOI: 10.1080/15384101.2015.1093702] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The role of the tumor suppressor BRCA2 has been shaped over 2 decades thanks to the discovery of its protein and nucleic acid partners, biochemical and structural studies of the protein, and the functional evaluation of germline variants identified in breast cancer patients. Yet, the pathogenic and functional effect of many germline mutations in BRCA2 remains undetermined, and the heterogeneity of BRCA2-associated tumors challenges the identification of causative variants that drive tumorigenesis. In this review, we propose an overview of the established and emerging interacting partners and functional pathways attributed to BRCA2, and we speculate on how variants altering these functions may contribute to cancer susceptibility.
Collapse
Affiliation(s)
- Juan S Martinez
- a Institut Curie; Centre de Recherche ; Orsay , France.,b CNRS UMR3348; Genotoxic Stress and Cancer; Centre Universitaire ; Orsay , France
| | - Céline Baldeyron
- a Institut Curie; Centre de Recherche ; Orsay , France.,b CNRS UMR3348; Genotoxic Stress and Cancer; Centre Universitaire ; Orsay , France
| | - Aura Carreira
- a Institut Curie; Centre de Recherche ; Orsay , France.,b CNRS UMR3348; Genotoxic Stress and Cancer; Centre Universitaire ; Orsay , France
| |
Collapse
|
26
|
Foertsch F, Szambowska A, Weise A, Zielinski A, Schlott B, Kraft F, Mrasek K, Borgmann K, Pospiech H, Grosse F, Melle C. S100A11 plays a role in homologous recombination and genome maintenance by influencing the persistence of RAD51 in DNA repair foci. Cell Cycle 2016; 15:2766-79. [PMID: 27590262 DOI: 10.1080/15384101.2016.1220457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is an essential process in maintenance of chromosomal stability. A key player of HR is the strand exchange factor RAD51 whose assembly at sites of DNA damage is tightly regulated. We detected an endogenous complex of RAD51 with the calcium-binding protein S100A11, which is localized at sites of DNA repair in HaCaT cells as well as in normal human epidermal keratinocytes (NHEK) synchronized in S phase. In biochemical assays, we revealed that S100A11 enhanced the RAD51 strand exchange activity. When cells expressing a S100A11 mutant lacking the ability to bind Ca(2+), a prolonged persistence of RAD51 in repair sites and nuclear γH2AX foci was observed suggesting an incomplete DNA repair. The same phenotype became apparent when S100A11 was depleted by RNA interference. Furthermore, down-regulation of S100A11 resulted in both reduced sister chromatid exchange confirming the restriction of the recombination capacity of the cells, and in an increase of chromosomal aberrations reflecting the functional requirement of S100A11 for the maintenance of genomic stability. Our data indicate that S100A11 is involved in homologous recombination by regulating the appearance of RAD51 in DSB repair sites. This function requires the calcium-binding activity of S100A11.
Collapse
Affiliation(s)
- Franziska Foertsch
- a Biomolecular Photonics Group , Jena University Hospital , Jena , Germany
| | - Anna Szambowska
- b Research Group Biochemistry, Leibniz Institute on Aging - Fritz Lipmann Institute , Jena , Germany
| | - Anja Weise
- c Institute of Human Genetics , Jena University Hospital , Jena , Germany
| | - Alexandra Zielinski
- d Radiobiology & Experimental Radiooncology , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Bernhard Schlott
- b Research Group Biochemistry, Leibniz Institute on Aging - Fritz Lipmann Institute , Jena , Germany
| | - Florian Kraft
- c Institute of Human Genetics , Jena University Hospital , Jena , Germany
| | - Kristin Mrasek
- c Institute of Human Genetics , Jena University Hospital , Jena , Germany
| | - Kerstin Borgmann
- d Radiobiology & Experimental Radiooncology , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Helmut Pospiech
- b Research Group Biochemistry, Leibniz Institute on Aging - Fritz Lipmann Institute , Jena , Germany.,e Faculty of Biochemistry and Molecular Medicine , University of Oulu , Finland
| | - Frank Grosse
- b Research Group Biochemistry, Leibniz Institute on Aging - Fritz Lipmann Institute , Jena , Germany
| | - Christian Melle
- a Biomolecular Photonics Group , Jena University Hospital , Jena , Germany
| |
Collapse
|
27
|
Willis NA, Scully R. Spatial separation of replisome arrest sites influences homologous recombination quality at a Tus/Ter-mediated replication fork barrier. Cell Cycle 2016; 15:1812-20. [PMID: 27136113 DOI: 10.1080/15384101.2016.1172149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Escherichia coli replication fork arrest complex Tus/Ter mediates site-specific replication fork arrest and homologous recombination (HR) on a mammalian chromosome, inducing both conservative "short tract" gene conversion (STGC) and error-prone "long tract" gene conversion (LTGC) products. We showed previously that bidirectional fork arrest is required for the generation of STGC products at Tus/Ter-stalled replication forks and that the HR mediators BRCA1, BRCA2 and Rad51 mediate STGC but suppress LTGC at Tus/Ter-arrested forks. Here, we report the impact of Ter array length on Tus/Ter-induced HR, comparing HR reporters containing arrays of 6, 9, 15 or 21 Ter sites-each targeted to the ROSA26 locus of mouse embryonic stem (ES) cells. Increasing Ter copy number within the array beyond 6 did not affect the magnitude of Tus/Ter-induced HR but biased HR in favor of LTGC. A "lock"-defective Tus mutant, F140A, known to exhibit higher affinity than wild type (wt)Tus for duplex Ter, reproduced these effects. In contrast, increasing Ter copy number within the array reduced HR induced by the I-SceI homing endonuclease, but produced no consistent bias toward LTGC. Thus, the mechanisms governing HR at Tus/Ter-arrested replication forks are distinct from those governing HR at an enzyme-induced chromosomal double strand break (DSB). We propose that increased spatial separation of the 2 arrested forks encountering an extended Tus/Ter barrier impairs the coordination of DNA ends generated by the processing of the stalled forks, thereby favoring aberrant LTGC over conservative STGC.
Collapse
Affiliation(s)
- Nicholas A Willis
- a Department of Medicine , Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston , MA , USA
| | - Ralph Scully
- a Department of Medicine , Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston , MA , USA
| |
Collapse
|
28
|
Abstract
Chromosome rearrangement plays a causal role in tumorigenesis by contributing to the inactivation of tumor suppressor genes, the dysregulated expression or amplification of oncogenes and the generation of novel gene fusions. Chromosome breaks are important intermediates in this process. How, when and where these breaks arise and the specific mechanisms engaged in their repair strongly influence the resulting patterns of chromosome rearrangement. Here, we review recent progress in understanding how certain distinctive features of the cancer genome, including clustered mutagenesis, tandem segmental duplications, complex breakpoints, chromothripsis, chromoplexy and chromoanasynthesis may arise.
Collapse
|
29
|
Thakur RS, Basavaraju S, Khanduja JS, Muniyappa K, Nagaraju G. Mycobacterium tuberculosis RecG protein but not RuvAB or RecA protein is efficient at remodeling the stalled replication forks: implications for multiple mechanisms of replication restart in mycobacteria. J Biol Chem 2015; 290:24119-39. [PMID: 26276393 DOI: 10.1074/jbc.m115.671164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 11/06/2022] Open
Abstract
Aberrant DNA replication, defects in the protection, and restart of stalled replication forks are major causes of genome instability in all organisms. Replication fork reversal is emerging as an evolutionarily conserved physiological response for restart of stalled forks. Escherichia coli RecG, RuvAB, and RecA proteins have been shown to reverse the model replication fork structures in vitro. However, the pathways and the mechanisms by which Mycobacterium tuberculosis, a slow growing human pathogen, responds to different types of replication stress and DNA damage are unclear. Here, we show that M. tuberculosis RecG rescues E. coli ΔrecG cells from replicative stress. The purified M. tuberculosis RecG (MtRecG) and RuvAB (MtRuvAB) proteins catalyze fork reversal of model replication fork structures with and without a leading strand single-stranded DNA gap. Interestingly, single-stranded DNA-binding protein suppresses the MtRecG- and MtRuvAB-mediated fork reversal with substrates that contain lagging strand gap. Notably, our comparative studies with fork structures containing template damage and template switching mechanism of lesion bypass reveal that MtRecG but not MtRuvAB or MtRecA is proficient in driving the fork reversal. Finally, unlike MtRuvAB, we find that MtRecG drives efficient reversal of forks when fork structures are tightly bound by protein. These results provide direct evidence and valuable insights into the underlying mechanism of MtRecG-catalyzed replication fork remodeling and restart pathways in vivo.
Collapse
Affiliation(s)
- Roshan Singh Thakur
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Shivakumar Basavaraju
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Jasbeer Singh Khanduja
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - K Muniyappa
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Ganesh Nagaraju
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
30
|
Alpatov R, Lesch BJ, Nakamoto-Kinoshita M, Blanco A, Chen S, Stützer A, Armache KJ, Simon MD, Xu C, Ali M, Murn J, Prisic S, Kutateladze TG, Vakoc CR, Min J, Kingston RE, Fischle W, Warren ST, Page DC, Shi Y. A chromatin-dependent role of the fragile X mental retardation protein FMRP in the DNA damage response. Cell 2014; 157:869-81. [PMID: 24813610 DOI: 10.1016/j.cell.2014.03.040] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 02/04/2014] [Accepted: 03/20/2014] [Indexed: 01/18/2023]
Abstract
Fragile X syndrome, a common form of inherited intellectual disability, is caused by loss of the fragile X mental retardation protein FMRP. FMRP is present predominantly in the cytoplasm, where it regulates translation of proteins that are important for synaptic function. We identify FMRP as a chromatin-binding protein that functions in the DNA damage response (DDR). Specifically, we show that FMRP binds chromatin through its tandem Tudor (Agenet) domain in vitro and associates with chromatin in vivo. We also demonstrate that FMRP participates in the DDR in a chromatin-binding-dependent manner. The DDR machinery is known to play important roles in developmental processes such as gametogenesis. We show that FMRP occupies meiotic chromosomes and regulates the dynamics of the DDR machinery during mouse spermatogenesis. These findings suggest that nuclear FMRP regulates genomic stability at the chromatin interface and may impact gametogenesis and some developmental aspects of fragile X syndrome.
Collapse
Affiliation(s)
- Roman Alpatov
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Bluma J Lesch
- Howard Hughes Medical Institute, Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Mika Nakamoto-Kinoshita
- Departments of Human Genetics, Biochemistry, and Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andres Blanco
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Shuzhen Chen
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra Stützer
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Karim J Armache
- Massachusetts General Hospital, Department of Molecular Biology and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Matthew D Simon
- Massachusetts General Hospital, Department of Molecular Biology and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Chao Xu
- Structural Genomics Consortium and Department of Physiology, University of Toronto, Toronto ON M5G 1L7, Canada
| | - Muzaffar Ali
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jernej Murn
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sladjana Prisic
- Division of Infectious Diseases, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Jinrong Min
- Structural Genomics Consortium and Department of Physiology, University of Toronto, Toronto ON M5G 1L7, Canada
| | - Robert E Kingston
- Massachusetts General Hospital, Department of Molecular Biology and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Stephen T Warren
- Departments of Human Genetics, Biochemistry, and Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David C Page
- Howard Hughes Medical Institute, Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Yang Shi
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Willis NA, Chandramouly G, Huang B, Kwok A, Follonier C, Deng C, Scully R. BRCA1 controls homologous recombination at Tus/Ter-stalled mammalian replication forks. Nature 2014; 510:556-9. [PMID: 24776801 PMCID: PMC4118467 DOI: 10.1038/nature13295] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 03/31/2014] [Indexed: 01/08/2023]
Abstract
Replication fork stalling can promote genomic instability, predisposing to cancer and other diseases. Stalled replication forks may be processed by sister chromatid recombination (SCR), generating error-free or error-prone homologous recombination (HR) outcomes. In mammalian cells, a long-standing hypothesis proposes that the major hereditary breast/ovarian cancer predisposition gene products, BRCA1 and BRCA2, control HR/SCR at stalled replication forks. Although BRCA1 and BRCA2 affect replication fork processing, direct evidence that BRCA gene products regulate homologous recombination at stalled chromosomal replication forks is lacking, due to a dearth of tools for studying this process. Here we report that the Escherichia coli Tus/Ter complex can be engineered to induce site-specific replication fork stalling and chromosomal HR/SCR in mouse cells. Tus/Ter-induced homologous recombination entails processing of bidirectionally arrested forks. We find that the Brca1 carboxy (C)-terminal tandem BRCT repeat and regions of Brca1 encoded by exon 11-two Brca1 elements implicated in tumour suppression-control Tus/Ter-induced homologous recombination. Inactivation of either Brca1 or Brca2 increases the absolute frequency of 'long-tract' gene conversions at Tus/Ter-stalled forks, an outcome not observed in response to a site-specific endonuclease-mediated chromosomal double-strand break. Therefore, homologous recombination at stalled forks is regulated differently from homologous recombination at double-strand breaks arising independently of a replication fork. We propose that aberrant long-tract homologous recombination at stalled replication forks contributes to genomic instability and breast/ovarian cancer predisposition in BRCA mutant cells.
Collapse
Affiliation(s)
- Nicholas A. Willis
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215
| | - Gurushankar Chandramouly
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215
| | - Bin Huang
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215
| | - Amy Kwok
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215
| | - Cindy Follonier
- Princeton University, 101 Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Chuxia Deng
- NIDDK, National Institutes of Health, Building 10, Room 9N105, 10 Center Dr., Bethesda, MD 20814
| | - Ralph Scully
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215
| |
Collapse
|
32
|
Chandramouly G, Kwok A, Huang B, Willis NA, Xie A, Scully R. BRCA1 and CtIP suppress long-tract gene conversion between sister chromatids. Nat Commun 2014; 4:2404. [PMID: 23994874 PMCID: PMC3838905 DOI: 10.1038/ncomms3404] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 08/05/2013] [Indexed: 12/14/2022] Open
Abstract
BRCA1 controls early steps of the synthesis-dependent strand annealing (SDSA) pathway of homologous recombination, but has no known role following Rad51-mediated synapsis. Here we show that BRCA1 influences post-synaptic homologous recombination events, controlling the balance between short- (STGC) and long-tract gene conversion (LTGC) between sister chromatids. Brca1 mutant cells reveal a bias towards LTGC that is corrected by expression of wild type but not cancer-predisposing BRCA1 alleles. The LTGC bias is enhanced by depletion of CtIP but reversed by inhibition of 53BP1, implicating DNA end resection as a contributor to the STGC/LTGC balance. The impact of BRCA1/CtIP loss on the STGC/LTGC balance is abolished when the second (non-invading) end of the break is unable to support termination of STGC by homologous pairing (“annealing”). This suggests that BRCA1/CtIP-mediated processing of the second end of the break controls the annealing step that normally terminates SDSA, thereby suppressing the error-prone LTGC outcome.
Collapse
|
33
|
Tarsounas M, Tijsterman M. Genomes and G-quadruplexes: for better or for worse. J Mol Biol 2013; 425:4782-9. [PMID: 24076189 DOI: 10.1016/j.jmb.2013.09.026] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/13/2013] [Accepted: 09/20/2013] [Indexed: 02/01/2023]
Abstract
Genomic integrity is crucial for correct chromosome segregation and physiological rates of cell proliferation. Mutations, deletions and translocations, hallmarks of human tumors, drive the aberrant proliferation and metastatic behavior of cancer cells. These chromosomal rearrangements often occur at genomic sites susceptible to breakage during DNA replication, including regions with G-quadruplex (G4)-forming potential. G4s are stable secondary structures that guanine-rich single-stranded DNA can readily adopt in vitro. However, their formation in eukaryotic cells has remained elusive and thus a subject of debate ever since they were first described. Recent work has more convincingly implicated G4s in a variety of biological processes including telomere maintenance, gene expression, epigenetic regulation and DNA replication. However, the downside of employing thermodynamically very stable alternative DNA structures as regulatory entities lies in their potential to also interfere with normal DNA metabolic processes, such as transcription and replication, which require readability of each base to faithfully transmit genetic information. Indeed, it has become clear that G4 structures can pose prominent barriers to replication fork progression and that they are also intrinsically recombinogenic. Here, we discuss mechanisms that cells evolved to counteract these detrimental effects, thereby ensuring the faithful inheritance of G4-containing genomes.
Collapse
Affiliation(s)
- Madalena Tarsounas
- Telomere and Genome Stability Group, The Cancer Research UK/Medical Research Council, Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus, Oxford OX3 7DQ, UK.
| | | |
Collapse
|
34
|
Scully R, Xie A. Double strand break repair functions of histone H2AX. Mutat Res 2013; 750:5-14. [PMID: 23916969 DOI: 10.1016/j.mrfmmm.2013.07.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 12/12/2022]
Abstract
Chromosomal double strand breaks provoke an extensive reaction in neighboring chromatin, characterized by phosphorylation of histone H2AX on serine 139 of its C-terminal tail (to form "γH2AX"). The γH2AX response contributes to the repair of double strand breaks encountered in a variety of different contexts, including those induced by ionizing radiation, physiologically programmed breaks that characterize normal immune cell development and the pathological exposure of DNA ends triggered by telomere dysfunction. γH2AX also participates in the evolutionarily conserved process of sister chromatid recombination, a homologous recombination pathway involved in the suppression of genomic instability during DNA replication and directly implicated in tumor suppression. At a biochemical level, the γH2AX response provides a compelling example of how the "histone code" is adapted to the regulation of double strand break repair. Here, we review progress in research aimed at understanding how γH2AX contributes to double strand break repair in mammalian cells.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States.
| | | |
Collapse
|
35
|
Abdelbaqi K, Di Paola D, Rampakakis E, Zannis-Hadjopoulos M. Ku protein levels, localization and association to replication origins in different stages of breast tumor progression. J Cancer 2013; 4:358-70. [PMID: 23781282 PMCID: PMC3677623 DOI: 10.7150/jca.6289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/23/2013] [Indexed: 11/05/2022] Open
Abstract
Human origins of DNA replication are specific sequences within the genome whereby DNA replication is initiated. A select group of proteins, known as the pre-replication (pre-RC) complex, in whose formation the Ku protein (Ku70/Ku86) was shown to play a role, bind to replication origins to initiate DNA replication. In this study, we have examined the involvement of Ku in breast tumorigenesis and tumor progression and found that the Ku protein expression levels in human breast metastatic (MCF10AC1a) cells were higher in the chromatin fraction compared to hyperplastic (MCF10AT) and normal (MCF10A) human breast cells, but remained constant in both the nuclear and cytoplasmic fractions. In contrast, in human intestinal cells, the Ku expression level was relatively constant for all cell fractions. Nascent DNA abundance and chromatin association of Ku70/86 revealed that the c-myc origin activity in MCF10AC1a is 2.5 to 5-fold higher than in MCF10AT and MCF10A, respectively, and Ku was bound to the c-myc origin more abundantly in MCF10AC1a, by approximately 1.5 to 4.2-fold higher than in MCF10AT and MCF10A, respectively. In contrast, similar nascent DNA abundance and chromatin association was found for all cell lines for the lamin B2 origin, associated with the constitutively active housekeeping lamin B2 gene. Electrophoretic mobility shift assays (EMSAs) performed on the nuclear extracts (NEs) of the three cell types revealed the presence of protein-DNA replication complexes on both the c-myc and lamin B2 origins, but an increase in binding activity was observed from normal, to transformed, to cancer cells for the c-myc origin, whereas no such difference was seen for the lamin B2 origin. Overall, the results suggest that increased Ku chromatin association, beyond wild type levels, alters cellular processes, which have been implicated in tumorigenesis.
Collapse
Affiliation(s)
- Khalil Abdelbaqi
- 1. Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada H3G 1Y6; ; 2. Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
36
|
Folkins AK, Longacre TA. Hereditary gynaecological malignancies: advances in screening and treatment. Histopathology 2012; 62:2-30. [DOI: 10.1111/his.12028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ann K Folkins
- Department of Pathology; Stanford University School of Medicine; Stanford; CA; USA
| | - Teri A Longacre
- Department of Pathology; Stanford University School of Medicine; Stanford; CA; USA
| |
Collapse
|
37
|
Hu CM, Yeh MT, Tsao N, Chen CW, Gao QZ, Chang CY, Lee MH, Fang JM, Sheu SY, Lin CJ, Tseng MC, Chen YJ, Chang ZF. Tumor cells require thymidylate kinase to prevent dUTP incorporation during DNA repair. Cancer Cell 2012; 22:36-50. [PMID: 22789537 DOI: 10.1016/j.ccr.2012.04.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 01/03/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
Abstract
The synthesis of dTDP is unique because there is a requirement for thymidylate kinase (TMPK). All other dNDPs including dUDP are directly produced by ribonucleotide reductase (RNR). We report the binding of TMPK and RNR at sites of DNA damage. In tumor cells, when TMPK function is blocked, dUTP is incorporated during DNA double-strand break (DSB) repair. Disrupting RNR recruitment to damage sites or reducing the expression of the R2 subunit of RNR prevents the impairment of DNA repair by TMPK intervention, indicating that RNR contributes to dUTP incorporation during DSB repair. We identified a cell-permeable nontoxic inhibitor of TMPK that sensitizes tumor cells to doxorubicin in vitro and in vivo, suggesting its potential as a therapeutic option.
Collapse
Affiliation(s)
- Chun-Mei Hu
- Graduate Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 11221 Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang B. BRCA1 tumor suppressor network: focusing on its tail. Cell Biosci 2012; 2:6. [PMID: 22369660 PMCID: PMC3315748 DOI: 10.1186/2045-3701-2-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/27/2012] [Indexed: 02/07/2023] Open
Abstract
Germline mutations of the BRCA1 tumor suppressor gene are a major cause of familial breast and ovarian cancer. BRCA1 plays critical roles in the DNA damage response that regulates activities of multiple repair and checkpoint pathways for maintaining genome stability. The BRCT domains of BRCA1 constitute a phospho-peptide binding domain recognizing a phospho-SPxF motif (S, serine; P, proline; × varies; F, phenylalanine). The BRCT domains are frequently targeted by clinically important mutations and most of these mutations disrupt the binding surface of the BRCT domains to phosphorylated peptides. The BRCT domain and its capability to bind phosphorylated protein is required for the tumor suppressor function of BRCA1. Through its BRCT phospho-binding ability BRCA1 forms at least three mutually exclusive complexes by binding to phosphorylated proteins Abraxas, Bach1 and CTIP. The A, B and C complexes, at lease partially undertake BRCA1's role in mechanisms of cell cycle checkpoint and DNA repair that maintain genome stability, thus may play important roles in BRCA1's tumor suppressor function.
Collapse
Affiliation(s)
- Bin Wang
- Department of Genetics, The University of Texas M,D, Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1010, Houston, TX 77030, USA.
| |
Collapse
|
39
|
Abstract
The proteins encoded by the two major breast cancer susceptibility genes, BRCA1 and BRCA2, work in a common pathway of genome protection. However, the two proteins work at different stages in the DNA damage response (DDR) and in DNA repair. BRCA1 is a pleiotropic DDR protein that functions in both checkpoint activation and DNA repair, whereas BRCA2 is a mediator of the core mechanism of homologous recombination. The links between the two proteins are not well understood, but they must exist to explain the marked similarity of human cancer susceptibility that arises with germline mutations in these genes. As discussed here, the proteins work in concert to protect the genome from double-strand DNA damage during DNA replication.
Collapse
Affiliation(s)
- Rohini Roy
- Molecular Biology Program and Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | | | | |
Collapse
|
40
|
Golla RM, Li M, Shen Y, Ji M, Yan Y, Fu K, Greiner TC, McKeithan TW, Chan WC. Inhibition of poly(ADP-ribose) polymerase (PARP) and ataxia telangiectasia mutated (ATM) on the chemosensitivity of mantle cell lymphoma to agents that induce DNA strand breaks. Hematol Oncol 2011; 30:175-9. [PMID: 22170260 DOI: 10.1002/hon.1020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 02/02/2023]
Abstract
There is a high incidence of genomic aberration of ataxia telangiectasia mutated (ATM) and genes encoding proteins involved in the ATM pathway in mantle cell lymphoma (MCL). It has been shown that poly(ADP-ribose) polymerase inhibitor (PARPi) strongly enhances the cytotoxicity of agents, causing single-strand DNA breaks in cells with impaired homologous recombination repair. Here, we show that PARPi AG14361 potentiates the cytotoxicity induced by topotecan treatment in MCL cell lines, which was not dependent on either TP53 or CHEK2 status. Inhibition and/or knockdown of ATM and BRCA2 did not potentiate the cytotoxic effect of treatment with PARPi and topotecan. With loss of function of ATM, other kinases can still mediate activation of ATM substrates as demonstrated by continued phosphorylation of CHEK2 (Thr-68), although attenuated and delayed. These results suggest that PARPi may enhance the therapeutic efficacy of DNA damaging agents on MCL through TP53-independent mechanisms without requiring the inhibition of either ATM or BRCA2.
Collapse
Affiliation(s)
- Radha M Golla
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Somyajit K, Subramanya S, Nagaraju G. Distinct roles of FANCO/RAD51C protein in DNA damage signaling and repair: implications for Fanconi anemia and breast cancer susceptibility. J Biol Chem 2011; 287:3366-80. [PMID: 22167183 DOI: 10.1074/jbc.m111.311241] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RAD51C, a RAD51 paralog, has been implicated in homologous recombination (HR), and germ line mutations in RAD51C are known to cause Fanconi anemia (FA)-like disorder and breast and ovarian cancers. The role of RAD51C in the FA pathway of DNA interstrand cross-link (ICL) repair and as a tumor suppressor is obscure. Here, we report that RAD51C deficiency leads to ICL sensitivity, chromatid-type errors, and G(2)/M accumulation, which are hallmarks of the FA phenotype. We find that RAD51C is dispensable for ICL unhooking and FANCD2 monoubiquitination but is essential for HR, confirming the downstream role of RAD51C in ICL repair. Furthermore, we demonstrate that RAD51C plays a vital role in the HR-mediated repair of DNA lesions associated with replication. Finally, we show that RAD51C participates in ICL and double strand break-induced DNA damage signaling and controls intra-S-phase checkpoint through CHK2 activation. Our analyses with pathological mutants of RAD51C that were identified in FA and breast and ovarian cancers reveal that RAD51C regulates HR and DNA damage signaling distinctly. Together, these results unravel the critical role of RAD51C in the FA pathway of ICL repair and as a tumor suppressor.
Collapse
Affiliation(s)
- Kumar Somyajit
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
42
|
Bodvarsdottir SK, Steinarsdottir M, Bjarnason H, Eyfjord JE. Dysfunctional telomeres in human BRCA2 mutated breast tumors and cell lines. Mutat Res 2011; 729:90-9. [PMID: 22019625 DOI: 10.1016/j.mrfmmm.2011.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 08/16/2011] [Accepted: 10/06/2011] [Indexed: 10/16/2022]
Abstract
In the present study the possible involvement of telomeres in chromosomal instability of breast tumors and cell lines from BRCA2 mutation carriers was examined. Breast tumors from BRCA2 mutation carriers showed significantly higher frequency of chromosome end-to-end fusions (CEFs) than tumors from non-carriers despite normal telomere DNA content. Frequent CEFs were also found in four different BRCA2 heterozygous breast epithelial cell lines, occasionally with telomere signal at the fusion point, indicating telomere capping defects. Extrachromosomal telomeric repeat (ECTR) DNA was frequently found scattered around metaphase chromosomes and interstitial telomere sequences (ITSs) were also common. Telomere sister chromatid exchanges (T-SCEs), characteristic of cells using alternative lengthening of telomeres (ALT), were frequently detected in all heterozygous BRCA2 cell lines as well as the two ALT positive cell lines tested. Even though T-SCE frequency was similar in BRCA2 heterozygous and ALT positive cell lines they differed in single telomere signal loss and ITSs. Chromatid type alterations were more prominent in the BRCA2 heterozygous cell lines that may have propensity for telomere based chromosome healing. Telomere dysfunction-induced foci (TIFs) formation, identified by co-localization of telomeres and γ-H2AX, supported telomere associated DNA damage response in BRCA2 heterozygous cell lines. TIFs were found in interphase nuclei, at chromosome ends, ITSs and ECTR DNA. In conclusion, our results suggest that BRCA2 has an important role in telomere stabilization by repressing CEFs through telomere capping and the prevention of telomere loss by replication stabilization.
Collapse
|
43
|
Pathania S, Nguyen J, Hill SJ, Scully R, Adelmant GO, Marto JA, Feunteun J, Livingston DM. BRCA1 is required for postreplication repair after UV-induced DNA damage. Mol Cell 2011; 44:235-51. [PMID: 21963239 DOI: 10.1016/j.molcel.2011.09.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/06/2011] [Accepted: 07/25/2011] [Indexed: 12/21/2022]
Abstract
BRCA1 contributes to the response to UV irradiation. Utilizing its BRCT motifs, it is recruited during S/G2 to UV-damaged sites in a DNA replication-dependent but nucleotide excision repair (NER)-independent manner. More specifically, at UV-stalled replication forks, it promotes photoproduct excision, suppression of translesion synthesis, and the localization and activation of replication factor C complex (RFC) subunits. The last function, in turn, triggers post-UV checkpoint activation and postreplicative repair. These BRCA1 functions differ from those required for DSBR.
Collapse
Affiliation(s)
- Shailja Pathania
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Chandramouly G, Willis NA, Scully R. A protective role for BRCA2 at stalled replication forks. Breast Cancer Res 2011; 13:314. [PMID: 21996371 PMCID: PMC3262192 DOI: 10.1186/bcr2918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The hereditary breast and ovarian cancer predisposition genes BRCA1 and BRCA2 account for the lion's share of heritable breast cancer risk in the human population. Loss of function of either gene results in defective homologous recombination (HR) and triggers genomic instability, accelerating breast tumorigenesis. A long-standing hypothesis proposes that BRCA1 and BRCA2 mediate HR following attempted replication across damaged DNA, ensuring error-free processing of the stalled replication fork. A recent paper describes a new replication fork protective function of BRCA2, which appears to collaborate with its HR function to suppress genomic instability.
Collapse
Affiliation(s)
- Gurushankar Chandramouly
- Department of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | |
Collapse
|
45
|
Nagathihalli NS, Nagaraju G. RAD51 as a potential biomarker and therapeutic target for pancreatic cancer. Biochim Biophys Acta Rev Cancer 2011; 1816:209-18. [PMID: 21807066 DOI: 10.1016/j.bbcan.2011.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 07/14/2011] [Accepted: 07/16/2011] [Indexed: 11/30/2022]
Abstract
Chemotherapy is a very important therapeutic strategy for cancer treatment. The failure of conventional and molecularly targeted chemotherapeutic regimes for the treatment of pancreatic cancer highlights a desperate need for novel therapeutic interventions. Chemotherapy often fails to eliminate all tumor cells because of intrinsic or acquired drug resistance, which is the most common cause of tumor recurrence. Overexpression of RAD51 protein, a key player in DNA repair/recombination has been observed in many cancer cells and its hyperexpression is implicated in drug resistance. Recent studies suggest that RAD51 overexpression contributes to the development, progression and drug resistance of pancreatic cancer cells. Here we provide a brief overview of the available pieces of evidence in support of the role of RAD51 in pancreatic tumorigenesis and drug resistance, and hypothesize that RAD51 could serve as a potential biomarker for diagnosis of pancreatic cancer. We discuss the possible involvement of RAD51 in the drug resistance associated with epithelial to mesenchymal transition and with cancer stem cells. Finally, we speculate that targeting RAD51 in pancreatic cancer cells may be a novel approach for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Nagaraj S Nagathihalli
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232-6860, USA.
| | | |
Collapse
|
46
|
Balestrieri C, Vanoni M, Hautaniemi S, Alberghina L, Chiaradonna F. Integrative transcriptional analysis between human and mouse cancer cells provides a common set of transformation associated genes. Biotechnol Adv 2011; 30:16-29. [PMID: 21736933 DOI: 10.1016/j.biotechadv.2011.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/13/2011] [Accepted: 06/13/2011] [Indexed: 12/26/2022]
Abstract
Mouse functional genomics is largely used to investigate relevant aspects of mammalian physiology and pathology. To which degree mouse models may offer accurate representations of molecular events underlining human diseases such as cancer is not yet fully established. Herein we compare gene expression signatures between a set of human cancer cell lines (NCI-60 cell collection) and a mouse cellular model of oncogenic K-ras dependent transformation in order to identify their closeness at the transcriptional level. The results of our integrative and comparative analysis show that in both species as compared to normal cells or tissues the transformation process involves the activation of a transcriptional response. Furthermore, the cellular mouse model of K-ras dependent transformation has a good degree of similarity with several human cancer cell lines and in particular with cell lines containing oncogenic Ras mutations. Moreover both species have similar genetic signatures that are associated to the same altered cellular pathways (e.g. Spliceosome and Proteasome) or to deregulation of the same genes (e.g. cyclin D1, AHSA1 and HNRNPD) detected in the comparison between cancer cells versus normal cells or tissues. In summary, we report one of the first in-depth analysis of global gene expression profiles of a K-ras dependent mouse cell model of transformation and a large collection of human cancer cells as compared to their normal counterparts. Taken together our findings show a strong correlation in the transcriptional and pathway alteration responses between the two species, therefore validating the use of the mouse model as an appropriate tool to investigate human cancer, and indicating that the comparative analysis, as described here, offers a useful approach to identify cancer-specific gene signatures.
Collapse
Affiliation(s)
- C Balestrieri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | | | | | | | | |
Collapse
|
47
|
Abstract
Deficiencies in DNA damage response and repair not only can result in genome instability and cancer predisposition, but also can render the cancer cells intrinsically more vulnerable to certain types of DNA damage insults. Particularly, replication stress is both a hallmark of human cancers and a common instigator for genome instability and cell death. Here, we review our work based on the genetic knockout studies on Blm and Recql5, two members of the mammalian RecQ helicase family. These studies have uncovered a unique partnership between these two helicases in the implementation of proper mitigation strategies under different circumstances to promote DNA replication and cell survival and suppress genome instability and cancer. In particular, current studies have revealed the presence of a novel Recql5/RECQL5-dependent mechanism for suppressing replication fork collapse in response to global replication fork stalling following exposure to camptothecin (CPT), a topoisomerase I inhibitor, and a potent inhibitor of DNA replication. The unique partnership between Blm and Recql5 in coping with the challenge imposed by replication stress is discussed. In addition, given that irinotecan and topotecan, two CPT derivatives, are currently used in clinic for treating human cancer patients with very promising results, the potential implication of the new findings from these studies in anticancer treatments is also discussed.
Collapse
Affiliation(s)
- Xincheng Lu
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou 325027, China
| | | | | |
Collapse
|
48
|
Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 2011; 145:529-42. [PMID: 21565612 PMCID: PMC3261725 DOI: 10.1016/j.cell.2011.03.041] [Citation(s) in RCA: 991] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/27/2011] [Accepted: 03/22/2011] [Indexed: 01/11/2023]
Abstract
Breast cancer suppressor BRCA2 is critical for maintenance of genomic integrity and resistance to agents that damage DNA or collapse replication forks, presumably through homology-directed repair of double-strand breaks (HDR). Using single-molecule DNA fiber analysis, we show here that nascent replication tracts created before fork stalling with hydroxyurea are degraded in the absence of BRCA2 but are stable in wild-type cells. BRCA2 mutational analysis reveals that a conserved C-terminal site involved in stabilizing RAD51 filaments, but not in loading RAD51 onto DNA, is essential for this fork protection but dispensable for HDR. RAD51 filament disruption in wild-type cells phenocopies BRCA2 deficiency. BRCA2 prevents chromosomal aberrations on replication stalling, which are alleviated by inhibition of MRE11, the nuclease responsible for this form of fork instability. Thus, BRCA2 prevents rather than repairs nucleolytic lesions at stalled replication forks to maintain genomic integrity and hence likely suppresses tumorigenesis through this replication-specific function.
Collapse
Affiliation(s)
- Katharina Schlacher
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095 USA
| | - Nicole Christ
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| | - Nicolas Siaud
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| | - Akinori Egashira
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| | - Hong Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095 USA
- Institute for Molecular Medicine, University of California, Los Angeles, CA 90095 USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| |
Collapse
|
49
|
Dedes KJ, Wilkerson PM, Wetterskog D, Weigelt B, Ashworth A, Reis-Filho JS. Synthetic lethality of PARP inhibition in cancers lacking BRCA1 and BRCA2 mutations. Cell Cycle 2011; 10:1192-9. [PMID: 21487248 PMCID: PMC3117132 DOI: 10.4161/cc.10.8.15273] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 02/23/2011] [Indexed: 02/07/2023] Open
Abstract
Utilizing the concept of synthetic lethality has provided new opportunities for the development of targeted therapies, by allowing the targeting of loss of function genetic aberrations. In cancer cells with BRCA1 or BRCA2 loss of function, which harbor deficiency of DNA repair by homologous recombination, inhibition of PARP1 enzymatic activity leads to an accumulation of single strand breaks that are converted to double strand breaks but cannot be repaired by homologous recombination. Inhibition of PARP has therefore been advanced as a novel targeted therapy for cancers harboring BRCA1/2 mutations. Preclinical and preliminary clinical evidence, however, suggests a potentially broader scope for PARP inhibitors. Loss of function of various proteins involved in double strand break repair other than BRCA1/2 has been suggested to be synthetically lethal with PARP inhibition. Inactivation of these genes has been reported in a subset of human cancers and might therefore constitute predictive biomarkers for PARP inhibition. Here we discuss the evidence that the clinical use of PARP inhibition may be broader than targeting of cancers in BRCA1/2 germ-line mutation carriers.
Collapse
Affiliation(s)
- Konstantin J Dedes
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | | | | | | | | | | |
Collapse
|
50
|
Hartlerode A, Odate S, Shim I, Brown J, Scully R. Cell cycle-dependent induction of homologous recombination by a tightly regulated I-SceI fusion protein. PLoS One 2011; 6:e16501. [PMID: 21408059 PMCID: PMC3052302 DOI: 10.1371/journal.pone.0016501] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 12/30/2010] [Indexed: 01/05/2023] Open
Abstract
Double-strand break repair is executed by two major repair pathways: non-homologous end joining (NHEJ) and homologous recombination (HR). Whereas NHEJ contributes to the repair of ionizing radiation (IR)-induced double strand breaks (DSBs) throughout the cell cycle, HR acts predominantly during the S and G2 phases of the cell cycle. The rare-cutting restriction endonuclease, I-SceI, is in common use to study the repair of site-specific chromosomal DSBs in vertebrate cells. To facilitate analysis of I-SceI-induced DSB repair, we have developed a stably expressed I-SceI fusion protein that enables precise temporal control of I-SceI activation, and correspondingly tight control of the timing of onset of site-specific chromosome breakage. I-SceI-induced HR showed a strong, positive linear correlation with the percentage of cells in S phase, and was negatively correlated with the G1 fraction. Acute depletion of BRCA1, a key regulator of HR, disrupted the relationship between S phase fraction and I-SceI-induced HR, consistent with the hypothesis that BRCA1 regulates HR during S phase.
Collapse
Affiliation(s)
- Andrea Hartlerode
- Department of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Shobu Odate
- Department of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Inbo Shim
- Department of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Jenifer Brown
- Department of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Ralph Scully
- Department of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| |
Collapse
|