1
|
McCullough AK, Minko IG, Luzadder MM, Zuckerman JT, Vartanian VL, Jaruga P, Dizdaroglu M, Lloyd RS. Role of NEIL1 in genome maintenance. DNA Repair (Amst) 2025; 148:103820. [PMID: 40010204 PMCID: PMC12068694 DOI: 10.1016/j.dnarep.2025.103820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
Phylogenetic analyses of DNA glycosylases that function in the initiation step of base excision repair reveal a high degree of conservation within the genes encoding Nei-like DNA glycosylase 1 (NEIL1). In concert with other glycosylases, this enzyme is an important player in cleansing both nuclear and mitochondrial genomes of a wide variety of damaged DNA bases. The relative efficiency of NEIL1 to catalyze release of ring-opened formamido-pyrimidines (Fapy) and alkylated-Fapy adducts, multiple ring-saturated pyrimidines, secondary oxidation products of 8-oxoguanine, and psoralen-derived crosslinks is augmented by pre-mRNA editing at codon 242, resulting in cells containing both NEIL1-Lys242 and edited Arg242. The biological significance of NEIL1 was revealed through investigations of mutagenesis and carcinogenesis in murine models, primarily using aflatoxin B1 (AFB1) as a genotoxicant challenge, which forms stable AFB1-FapyGua adducts. Specifically, Neil1 knockout mice were > 3-fold more susceptible to AFB1-induced carcinogenesis as compared to either wild-type or nucleotide excision repair-deficient Xpa-/- mice. These data are well-supported by duplex sequencing analyses that showed increased AFB1-induced mutagenesis in Neil1-/- mice relative to wild-type or Xpa-/- mice. Given the biological impact of Neil1 deficiencies in cancer, metabolic syndrome, and neurodegeneration, extrapolation to humans carrying single nucleotide polymorphisms (SNPs) in NEIL1 may suggest that deleterious variants could increase disease risk following various genotoxicant exposures. To address this hypothesis, we have undertaken a systematic characterization of human NEIL1 SNP variants that are distributed throughout the world. The goal of this review is to provide comprehensive analyses of the biochemistry and biology of NEIL1.
Collapse
Affiliation(s)
- Amanda K McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, United States
| | - Irina G Minko
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States
| | - Michael M Luzadder
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States
| | - Jamie T Zuckerman
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States
| | - Vladimir L Vartanian
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States
| | - Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
2
|
Le Meur RA, Pecen TJ, Le Meur KV, Nagel ZD, Chazin WJ. Molecular basis and functional consequences of the interaction between the base excision repair DNA glycosylase NEIL1 and RPA. J Biol Chem 2024; 300:107579. [PMID: 39025455 PMCID: PMC11387677 DOI: 10.1016/j.jbc.2024.107579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
NEIL1 is a DNA glycosylase that recognizes and initiates base excision repair of oxidized bases. The ubiquitous ssDNA binding scaffolding protein, replication protein A (RPA), modulates NEIL1 activity in a manner that depends on DNA structure. Interaction between NEIL1 and RPA has been reported, but the molecular basis of this interaction has yet to be investigated. Using a combination of NMR spectroscopy and isothermal titration calorimetry (ITC), we show that NEIL1 interacts with RPA through two contact points. An interaction with the RPA32C protein recruitment domain was mapped to a motif in the common interaction domain (CID) of NEIL1 and a dissociation constant (Kd) of 200 nM was measured. A substantially weaker secondary interaction with the tandem RPA70AB ssDNA binding domains was also mapped to the CID. Together these two contact points reveal NEIL1 has a high overall affinity (Kd ∼ 20 nM) for RPA. A homology model of the complex of RPA32C with the NEIL1 RPA binding motif in the CID was generated and used to design a set of mutations in NEIL1 to disrupt the interaction, which was confirmed by ITC. The mutant NEIL1 remains catalytically active against a thymine glycol lesion in duplex DNA in vitro. Testing the functional effect of disrupting the NEIL1-RPA interaction in vivo using a Fluorescence Multiplex-Host Cell Reactivation (FM-HCR) reporter assay revealed an unexpected role for NEIL1 in nucleotide excision repair. These findings are discussed in the context of the role of NEIL1 in replication-associated repair.
Collapse
Affiliation(s)
- Rémy A Le Meur
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Turner J Pecen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kateryna V Le Meur
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Zachary D Nagel
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.
| | - Walter J Chazin
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
3
|
Cao JH, Cao CH, Lin JL, Li SY, He LJ, Han K, Chen JW, Li S, Wang X, Xie D, Wang FW. NEIL1 drives the initiation of colorectal cancer through transcriptional regulation of COL17A1. Cell Rep 2024; 43:113654. [PMID: 38175757 DOI: 10.1016/j.celrep.2023.113654] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
Deficiency of DNA repair pathways drives the development of colorectal cancer. However, the role of the base excision repair (BER) pathway in colorectal cancer initiation remains unclear. This study shows that Nei-like DNA glycosylase 1 (NEIL1) is highly expressed in colorectal cancer (CRC) tissues and associated with poorer clinical outcomes. Knocking out neil1 in mice markedly suppresses tumorigenesis and enhances infiltration of CD8+ T cells in intestinal tumors. Furthermore, NEIL1 directly forms a complex with SATB2/c-Myc to enhance the transcription of COL17A1 and subsequently promotes the production of immunosuppressive cytokines in CRC cells. A NEIL1 peptide suppresses intestinal tumorigenesis in ApcMin/+ mice, and targeting NEIL1 demonstrates a synergistic suppressive effect on tumor growth when combined with a nuclear factor κB (NF-κB) inhibitor. These results suggest that combined targeting of NEIL1 and NF-κB may represent a promising strategy for CRC therapy.
Collapse
Affiliation(s)
- Jing-Hua Cao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center of Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Chen-Hui Cao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center of Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Jin-Long Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center of Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Si-Yu Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center of Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Long-Jun He
- Department of Endoscopy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Kai Han
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jie-Wei Chen
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Si Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center of Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Xin Wang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center of Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - Feng-Wei Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center of Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| |
Collapse
|
4
|
Zuckerman JT, Minko IG, Kant M, Jaruga P, Stone MP, Dizdaroglu M, McCullough AK, Lloyd RS. Functional analyses of single nucleotide polymorphic variants of the DNA glycosylase NEIL1 in sub-Saharan African populations. DNA Repair (Amst) 2023; 129:103544. [PMID: 37517321 PMCID: PMC10546947 DOI: 10.1016/j.dnarep.2023.103544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
Nei-like glycosylase 1 (NEIL1) is a DNA repair enzyme that initiates the base excision repair (BER) pathway to cleanse the human genome of damage. The substrate specificity of NEIL1 includes several common base modifications formed under oxidative stress conditions, as well as the imidazole ring open adducts that are induced by alkylating agents following initial modification at N7 guanine. An example of the latter is the persistent and mutagenic 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua) adduct, resulting from the alkylating agent aflatoxin B1 (AFB1) exo-8-9-epoxide. Naturally occurring single nucleotide polymorphic (SNP) variants of NEIL1 are hypothesized to be associated with an increased risk for development of early-onset hepatocellular carcinoma (HCC), especially in environments with high exposures to aflatoxins and chronic inflammation from viral infections and alcohol consumption. Given that AFB1 exposures and hepatitis B viral (HBV) infections represent a major problem in the developing countries of sub-Saharan Africa, it is pertinent to study SNP NEIL1 variants that are present in this geographic region. In this investigation, we characterized the three most common NEIL1 variants found in this region: P321A, R323G, and I182M. Biochemical analyses were conducted to determine the proficiencies of these variants in initiating the repair of DNA lesions. Our data show that damage recognition and excision activities of P321A and R323G were near that of wild-type (WT) NEIL1 for both thymine glycol (ThyGly) and AFB1-FapyGua. The substrate specificities of these variants with respect to various oxidatively-induced base lesions were also similar to that of WT. In contrast, the I182M variant was unstable, such that it precipitated under a variety of conditions and underwent rapid inactivation at a biologically relevant temperature, with partial stabilization being observed in the presence of undamaged DNA. This study provides insight regarding the potential increased risk for early-onset HCC in human populations carrying the NEIL1 I182M variant.
Collapse
Affiliation(s)
- Jamie T Zuckerman
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States
| | - Irina G Minko
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States
| | - Melis Kant
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Michael P Stone
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, United States
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Amanda K McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, United States
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
5
|
Diatlova EA, Mechetin GV, Zharkov DO. Distinct Mechanisms of Target Search by Endonuclease VIII-like DNA Glycosylases. Cells 2022; 11:cells11203192. [PMID: 36291061 PMCID: PMC9600533 DOI: 10.3390/cells11203192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 12/02/2022] Open
Abstract
Proteins that recognize specific DNA sequences or structural elements often find their cognate DNA lesions in a processive mode, in which an enzyme binds DNA non-specifically and then slides along the DNA contour by one-dimensional diffusion. Opposite to the processive mechanism is distributive search, when an enzyme binds, samples and releases DNA without significant lateral movement. Many DNA glycosylases, the repair enzymes that excise damaged bases from DNA, use processive search to find their cognate lesions. Here, using a method based on correlated cleavage of multiply damaged oligonucleotide substrates we investigate the mechanism of lesion search by three structurally related DNA glycosylases—bacterial endonuclease VIII (Nei) and its mammalian homologs NEIL1 and NEIL2. Similarly to another homologous enzyme, bacterial formamidopyrimidine–DNA glycosylase, NEIL1 seems to use a processive mode to locate its targets. However, the processivity of Nei was notably lower, and NEIL2 exhibited almost fully distributive action on all types of substrates. Although one-dimensional diffusion is often regarded as a universal search mechanism, our results indicate that even proteins sharing a common fold may be quite different in the ways they locate their targets in DNA.
Collapse
Affiliation(s)
- Evgeniia A. Diatlova
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Grigory V. Mechetin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
6
|
Sharma N, Thompson MK, Arrington JF, Terry DM, Chakravarthy S, Prevelige PE, Prakash A. Novel interaction interfaces mediate the interaction between the NEIL1 DNA glycosylase and mitochondrial transcription factor A. Front Cell Dev Biol 2022; 10:893806. [PMID: 35938152 PMCID: PMC9354671 DOI: 10.3389/fcell.2022.893806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
The maintenance of human mitochondrial DNA (mtDNA) is critical for proper cellular function as damage to mtDNA, if left unrepaired, can lead to a diverse array of pathologies. Of the pathways identified to participate in DNA repair within the mitochondria, base excision repair (BER) is the most extensively studied. Protein-protein interactions drive the step-by-step coordination required for the successful completion of this pathway and are important for crosstalk with other mitochondrial factors involved in genome maintenance. Human NEIL1 is one of seven DNA glycosylases that initiates BER in both the nuclear and mitochondrial compartments. In the current work, we scrutinized the interaction between NEIL1 and mitochondrial transcription factor A (TFAM), a protein that is essential for various aspects of mtDNA metabolism. We note, for the first time, that both the N- and C- terminal domains of NEIL1 interact with TFAM revealing a unique NEIL1 protein-binding interface. The interaction between the two proteins, as observed biochemically, appears to be transient and is most apparent at concentrations of low salt. The presence of DNA (or RNA) also positively influences the interaction between the two proteins, and molar mass estimates indicate that duplex DNA is required for complex formation at higher salt concentrations. Hydrogen deuterium exchange mass spectrometry data reveal that both proteins exchange less deuterium upon DNA binding, indicative of an interaction, and the addition of NEIL1 to the TFAM-DNA complex alters the interaction landscape. The transcriptional activity of TFAM appears to be independent of NEIL1 expression under normal cellular conditions, however, in the presence of DNA damage, we observe a significant reduction in the mRNA expression of TFAM-transcribed mitochondrial genes in the absence of NEIL1. Overall, our data indicate that the interaction between NEIL1 and TFAM can be modulated by local environment such as salt concentrations, protein availability, the presence of nucleic acids, as well as the presence of DNA damage.
Collapse
Affiliation(s)
- Nidhi Sharma
- Department of Biochemistry and Molecular Biology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Marlo K. Thompson
- Department of Biochemistry and Molecular Biology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Jennifer F. Arrington
- Department of Biochemistry and Molecular Biology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Dava M. Terry
- Department of Biochemistry and Molecular Biology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Srinivas Chakravarthy
- Advanced Photon Source, Illinois Institute of Technology, Chicago, IL, United States
| | - Peter E. Prevelige
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Aishwarya Prakash
- Department of Biochemistry and Molecular Biology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
7
|
Torgasheva NA, Diatlova EA, Grin IR, Endutkin AV, Mechetin GV, Vokhtantsev IP, Yudkina AV, Zharkov DO. Noncatalytic Domains in DNA Glycosylases. Int J Mol Sci 2022; 23:ijms23137286. [PMID: 35806289 PMCID: PMC9266487 DOI: 10.3390/ijms23137286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Many proteins consist of two or more structural domains: separate parts that have a defined structure and function. For example, in enzymes, the catalytic activity is often localized in a core fragment, while other domains or disordered parts of the same protein participate in a number of regulatory processes. This situation is often observed in many DNA glycosylases, the proteins that remove damaged nucleobases thus initiating base excision DNA repair. This review covers the present knowledge about the functions and evolution of such noncatalytic parts in DNA glycosylases, mostly concerned with the human enzymes but also considering some unique members of this group coming from plants and prokaryotes.
Collapse
Affiliation(s)
- Natalia A. Torgasheva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
| | - Inga R. Grin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Ivan P. Vokhtantsev
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
| | - Anna V. Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
8
|
Chakraborty A, Tapryal N, Islam A, Mitra S, Hazra T. Transcription coupled base excision repair in mammalian cells: So little is known and so much to uncover. DNA Repair (Amst) 2021; 107:103204. [PMID: 34390916 DOI: 10.1016/j.dnarep.2021.103204] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/06/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
Oxidized bases in the genome has been implicated in various human pathologies, including cancer, aging and neurological diseases. Their repair is initiated with excision by DNA glycosylases (DGs) in the base excision repair (BER) pathway. Among the five oxidized base-specific human DGs, OGG1 and NTH1 preferentially excise oxidized purines and pyrimidines, respectively, while NEILs remove both oxidized purines and pyrimidines. However, little is known about why cells possess multiple DGs with overlapping substrate specificities. Studies of the past decades revealed that some DGs are involved in repair of oxidized DNA base lesions in the actively transcribed regions. Preferential removal of lesions from the transcribed strands of active genes, called transcription-coupled repair (TCR), was discovered as a distinct sub-pathway of nucleotide excision repair; however, such repair of oxidized DNA bases had not been established until our recent demonstration of NEIL2's role in TC-BER of the nuclear genome. We have shown that NEIL2 forms a distinct transcriptionally active, repair proficient complex. More importantly, we for the first time reconstituted TC-BER using purified components. These studies are important for characterizing critical requirement for the process. However, because NEIL2 cannot remove all types of oxidized bases, it is unlikely to be the only DNA glycosylase involved in TC-BER. Hence, we postulate TC-BER process to be universally involved in maintaining the functional integrity of active genes, especially in post-mitotic, non-growing cells. We further postulate that abnormal bases (e.g., uracil), and alkylated and other small DNA base adducts are also repaired via TC-BER. In this review, we have provided an overview of the various aspects of TC-BER in mammalian cells with the hope of generating significant interest of many researchers in the field. Further studies aimed at better understanding the mechanistic aspects of TC-BER could help elucidate the linkage of TC-BER deficiency to various human pathologies.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Nisha Tapryal
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Azharul Islam
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sankar Mitra
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Tapas Hazra
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
9
|
Yeo J, Lotsof ER, Anderson-Steele BM, David SS. RNA Editing of the Human DNA Glycosylase NEIL1 Alters Its Removal of 5-Hydroxyuracil Lesions in DNA. Biochemistry 2021; 60:1485-1497. [PMID: 33929180 DOI: 10.1021/acs.biochem.1c00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Editing of the pre-mRNA of the DNA repair glycosylase NEIL1 results in substitution of a Lys with Arg in the lesion recognition loop of the enzyme. Unedited (UE, Lys242) NEIL1 removes thymine glycol lesions in DNA ∼30 times faster than edited (Ed, Arg242) NEIL1. Herein, we evaluated recognition and excision mediated by UE and Ed NEIL1 of 5-hydroxyuracil (5-OHU), a highly mutagenic lesion formed via oxidation of cytosine. Both NEIL1 isoforms catalyzed low levels of 5-OHU excision in single-stranded DNA, bubble and bulge DNA contexts and in duplex DNA base paired with A. Removal of 5-OHU in base pairs with G, T, and C was found to be faster and proceed to a higher overall extent with UE than with Ed NEIL1. In addition, the presence of mismatches adjacent to 5-OHU magnified the hampered activity of the Ed isoform. However, Ed NEIL1 was found to exhibit higher affinity for 5-OHU:G and 5-OHU:C duplexes than UE NEIL1. These results suggest that NEIL1 plays an important role in detecting and capturing 5-OHU lesions in inappropriate contexts, in a manner that does not lead to excision, to prevent mutations and strand breaks. Indeed, inefficient removal of 5-OHU by NEIL1 from 5-OHU:A base pairs formed during replication would thwart mutagenesis. Notably, nonproductive engagement of 5-OHU by Ed NEIL1 suggests the extent of 5-OHU repair will be reduced under cellular conditions, such as inflammation, that increase the extent of NEIL1 RNA editing. Tipping the balance between the two NEIL1 isoforms may be a significant factor leading to genome instability.
Collapse
Affiliation(s)
- Jongchan Yeo
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Elizabeth R Lotsof
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Brittany M Anderson-Steele
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Sheila S David
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
10
|
Wallace SS. Molecular radiobiology and the origins of the base excision repair pathway: an historical perspective. Int J Radiat Biol 2021; 99:891-902. [DOI: 10.1080/09553002.2021.1908639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Susan S. Wallace
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
11
|
Displacement of Slow-Turnover DNA Glycosylases by Molecular Traffic on DNA. Genes (Basel) 2020; 11:genes11080866. [PMID: 32751599 PMCID: PMC7465369 DOI: 10.3390/genes11080866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
In the base excision repair pathway, the initiating enzymes, DNA glycosylases, remove damaged bases and form long-living complexes with the abasic DNA product, but can be displaced by AP endonucleases. However, many nuclear proteins can move along DNA, either actively (such as DNA or RNA polymerases) or by passive one-dimensional diffusion. In most cases, it is not clear whether this movement is disturbed by other bound proteins or how collisions with moving proteins affect the bound proteins, including DNA glycosylases. We have used a two-substrate system to study the displacement of human OGG1 and NEIL1 DNA glycosylases by DNA polymerases in both elongation and diffusion mode and by D4, a passively diffusing subunit of a viral DNA polymerase. The OGG1–DNA product complex was disrupted by DNA polymerase β (POLβ) in both elongation and diffusion mode, Klenow fragment (KF) in the elongation mode and by D4. NEIL1, which has a shorter half-life on DNA, was displaced more efficiently. Hence, both possibly specific interactions with POLβ and nonspecific collisions (KF, D4) can displace DNA glycosylases from DNA. The protein movement along DNA was blocked by very tightly bound Cas9 RNA-targeted nuclease, providing an upper limit on the efficiency of obstacle clearance.
Collapse
|
12
|
Recognition of DNA adducts by edited and unedited forms of DNA glycosylase NEIL1. DNA Repair (Amst) 2019; 85:102741. [PMID: 31733589 DOI: 10.1016/j.dnarep.2019.102741] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022]
Abstract
Pre-mRNA encoding human NEIL1 undergoes editing by adenosine deaminase ADAR1 that converts a single adenosine to inosine, and this conversion results in an amino acid change of lysine 242 to arginine. Previous investigations of the catalytic efficiencies of the two forms of the enzyme revealed differential release of thymine glycol (ThyGly) from synthetic oligodeoxynucleotides, with the unedited form, NEIL1 K242 being ≈30-fold more efficient than the edited NEIL1 K242R. In contrast, when these enzymes were reacted with oligodeoxynucleotides containing guanidinohydantoin or spiroiminohydantoin, the edited K242R form was ≈3-fold more efficient than the unedited NEIL1. However, no prior studies have investigated the efficiencies of these two forms of NEIL1 on either high-molecular weight DNA containing multiple oxidatively-induced base damages, or oligodeoxynucleotides containing a bulky alkylated formamidopyrimidine. To understand the extent of changes in substrate recognition, γ-irradiated calf thymus DNA was treated with either edited or unedited NEIL1 and the released DNA base lesions analyzed by gas chromatography-tandem mass spectrometry. Of all the measured DNA lesions, imidazole ring-opened 4,6-diamino-5-formamidopyrimidine (FapyAde) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) were preferentially released by both NEIL1 enzymes with K242R being ≈1.3 and 1.2-fold more efficient than K242 on excision of FapyAde and FapyGua, respectively. Consistent with the prior literature, large differences (≈7.5 to 12-fold) were measured in the excision of ThyGly from genomic DNA by the unedited versus edited NEIL1. In contrast, the edited NEIL1 was more efficient (≈3 to 5-fold) on release of 5-hydroxycytosine. Excision kinetics on DNA containing a site-specific aflatoxin B1-FapyGua adduct revealed an ≈1.4-fold higher rate by the unedited NEIL1. Molecular modeling provides insight into these differential substrate specificities. The results of this study and in particular, the comparison of substrate specificities of unedited and edited NEIL1 using biologically and clinically important base lesions, are critical for defining its role in preservation of genomic integrity.
Collapse
|
13
|
Yang B, Figueroa DM, Hou Y, Babbar M, Baringer SL, Croteau DL, Bohr VA. NEIL1 stimulates neurogenesis and suppresses neuroinflammation after stress. Free Radic Biol Med 2019; 141:47-58. [PMID: 31175982 PMCID: PMC7526462 DOI: 10.1016/j.freeradbiomed.2019.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
Cellular exposure to ionizing radiation leads to oxidatively generated DNA damage, which has been implicated in neurodegenerative diseases. DNA damage is repaired by the evolutionarily conserved base excision repair (BER) system. Exposure of mice to ionizing radiation affects neurogenesis and neuroinflammation. However, the consequences of deficient DNA repair on adult neurogenesis and neuroinflammation are poorly understood despite their potential relevance for homeostasis. We previously reported that loss of NEIL1, an important DNA glycosylase involved in BER, is associated with deficiencies in spatial memory, olfaction, and protection against ischemic stroke in mice. Here, we show that Neil1-/- mice display an anxiety-mediated behavior in the open field test, a deficient recognitive memory in novel object recognition and increased neuroinflammatory response under basal conditions. Further, mice lacking NEIL1 have decreased neurogenesis and deficient resolution of neuroinflammation following gamma irradiation (IR)-induced stress compared to WT mice. Neil1-/- IR-exposed mice also exhibit increased DNA damage and apoptosis in the hippocampus. Interestingly, behavioral tests two weeks after IR showed impaired stress response in the Neil1-/- mice. Our data indicate that NEIL1 plays an important role in adult neurogenesis and in the resolution of neuroinflammation.
Collapse
Affiliation(s)
- Beimeng Yang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - David M Figueroa
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yujun Hou
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Mansi Babbar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Stephanie L Baringer
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA; Danish Center for Healthy Aging, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
14
|
Sharma N, Chakravarthy S, Longley MJ, Copeland WC, Prakash A. The C-terminal tail of the NEIL1 DNA glycosylase interacts with the human mitochondrial single-stranded DNA binding protein. DNA Repair (Amst) 2018; 65:11-19. [PMID: 29522991 PMCID: PMC5911420 DOI: 10.1016/j.dnarep.2018.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/11/2022]
Abstract
The 16.5 kb mitochondrial genome is subjected to damage from reactive oxygen species (ROS) generated in the cell during normal cellular metabolism and external sources such as ionizing radiation and ultraviolet light. ROS cause harmful damage to DNA bases that could result in mutagenesis and various diseases, if not properly repaired. The base excision repair (BER) pathway is the primary pathway involved in maintaining the integrity of mtDNA. Several enzymes that partake in BER within the nucleus have also been identified in the mitochondria. The nei-like (NEIL) DNA glycosylases initiate BER by excising oxidized pyrimidine bases and others such as the ring-opened formamidopyrimidine and the hydantoin lesions. During BER, the NEIL enzymes interact with proteins that are involved with DNA replication and transcription. In the current manuscript, we detected NEIL1 in purified mitochondrial extracts from human cells and showed that NEIL1 interacts with the human mitochondrial single-stranded DNA binding protein (mtSSB) via its C-terminal tail using protein painting, far-western analysis, and gel-filtration chromatography. Finally, we scrutinized the NEIL1-mtSSB interaction in the presence and absence of a partial-duplex DNA substrate using a combination of multi-angle light scattering (MALS) and small-angle X-ray scattering (SAXS). The data indicate that NEIL1 and homotetrameric mtSSB form a larger ternary complex in presence of DNA, however, the tetrameric form of mtSSB gets disrupted by NEIL1 in the absence of DNA as revealed by the formation of a smaller NEIL1-mtSSBmonomer complex.
Collapse
Affiliation(s)
- Nidhi Sharma
- University of South Alabama, Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL 36604, United States
| | - Srinivas Chakravarthy
- Illinois Institute of Technology, Advanced Photon Source, Bldg. 435B/Sector 18, 9700 S. Cass Avenue, Argonne, IL 60439-4860, United States
| | - Matthew J Longley
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, United States
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, United States
| | - Aishwarya Prakash
- University of South Alabama, Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL 36604, United States.
| |
Collapse
|
15
|
Galick HA, Marsden CG, Kathe S, Dragon JA, Volk L, Nemec AA, Wallace SS, Prakash A, Doublié S, Sweasy JB. The NEIL1 G83D germline DNA glycosylase variant induces genomic instability and cellular transformation. Oncotarget 2017; 8:85883-85895. [PMID: 29156764 PMCID: PMC5689654 DOI: 10.18632/oncotarget.20716] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023] Open
Abstract
Base excision repair (BER) is a key genome maintenance pathway. The NEIL1 DNA glycosylase recognizes oxidized bases, and likely removes damage in advance of the replication fork. The rs5745906 SNP of the NEIL1 gene is a rare human germline variant that encodes the NEIL1 G83D protein, which is devoid of DNA glycosylase activity. Here we show that expression of G83D NEIL1 in MCF10A immortalized but non-transformed mammary epithelial cells leads to replication fork stress. Upon treatment with hydrogen peroxide, we observe increased levels of stalled replication forks in cells expressing G83D NEIL1 versus cells expressing the wild-type (WT) protein. Double-strand breaks (DSBs) arise in G83D-expressing cells during the S and G2/M phases of the cell cycle. Interestingly, these breaks result in genomic instability in the form of high levels of chromosomal aberrations and micronuclei. Cells expressing G83D also grow in an anchorage independent manner, suggesting that the genomic instability results in a carcinogenic phenotype. Our results are consistent with the idea that an inability to remove oxidative damage in an efficient manner at the replication fork leads to genomic instability and mutagenesis. We suggest that individuals who harbor the G83D NEIL1 variant face an increased risk for human cancer.
Collapse
Affiliation(s)
- Heather A Galick
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - Carolyn G Marsden
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - Scott Kathe
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - Julie A Dragon
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - Lindsay Volk
- Present address: University of New Mexico, Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Antonia A Nemec
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - Aishwarya Prakash
- Present address: University of South Alabama, Mitchell Cancer Institute, Mobile, AL, 36604, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - Joann B Sweasy
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA.,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| |
Collapse
|
16
|
Maher RL, Marsden CG, Averill AM, Wallace SS, Sweasy JB, Pederson DS. Human cells contain a factor that facilitates the DNA glycosylase-mediated excision of oxidized bases from occluded sites in nucleosomes. DNA Repair (Amst) 2017; 57:91-97. [PMID: 28709015 PMCID: PMC5569575 DOI: 10.1016/j.dnarep.2017.06.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 11/29/2022]
Abstract
Reactive oxygen species generate some 20,000 base lesions per human cell per day. The vast majority of these potentially mutagenic or cytotoxic lesions are subject to base excision repair (BER). Although chromatin remodelers have been shown to enhance the excision of oxidized bases from nucleosomes in vitro, it is not clear that they are recruited to and act at sites of BER in vivo. To test the hypothesis that cells possess factors that enhance BER in chromatin, we assessed the capacity of nuclear extracts from human cells to excise thymine glycol (Tg) lesions from exogenously added, model nucleosomes. The DNA glycosylase NTHL1 in these extracts was able to excise Tg from both naked DNA and sites in nucleosomes that earlier studies had shown to be sterically accessible. However, the same extracts were able to excise lesions from sterically-occluded sites in nucleosomes only after the addition of Mg2+/ATP. Gel mobility shift assays indicated that nucleosomes remain largely intact following the Mg2+/ATP -dependent excision reaction. Size exclusion chromatography indicated that the NTHL1-stimulating activity has a relatively low molecular weight, close to that of NTHL1 and other BER glycosylases; column fractions that contained the very large chromatin remodeling complexes did not exhibit this same stimulatory activity. These results indicate that cells possess a factor(s) that promotes the initiation of BER in chromatin, but differs from most known chromatin remodeling complexes.
Collapse
Affiliation(s)
- R L Maher
- Department of Microbiology and Molecular Genetics, and The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - C G Marsden
- Department of Microbiology and Molecular Genetics, and The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - A M Averill
- Department of Microbiology and Molecular Genetics, and The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - S S Wallace
- Department of Microbiology and Molecular Genetics, and The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - J B Sweasy
- Department of Microbiology and Molecular Genetics, and The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA; Departments of Therapeutic Radiology and Human Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - D S Pederson
- Department of Microbiology and Molecular Genetics, and The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
17
|
Rangaswamy S, Pandey A, Mitra S, Hegde ML. Pre-Replicative Repair of Oxidized Bases Maintains Fidelity in Mammalian Genomes: The Cowcatcher Role of NEIL1 DNA Glycosylase. Genes (Basel) 2017; 8:E175. [PMID: 28665322 PMCID: PMC5541308 DOI: 10.3390/genes8070175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/16/2017] [Accepted: 06/24/2017] [Indexed: 02/06/2023] Open
Abstract
Genomic fidelity in the humans is continuously challenged by genotoxic reactive oxygen species (ROS) generated both endogenously during metabolic processes, and by exogenous agents. Mispairing of most ROS-induced oxidized base lesions during DNA replication induces mutations. Although bulky base adducts induced by ultraviolet light and other environmental mutagens block replicative DNA polymerases, most oxidized base lesions do not block DNA synthesis. In 8-oxo-G:A mispairs generated by the incorporation of A opposite unrepaired 8-oxo-G, A is removed by MutYH (MYH) for post-replicative repair, and other oxidized base lesions must be repaired prior to replication in order to prevent mutation fixation. Our earlier studies documented S phase-specific overexpression of endonuclease VIII-like 1 (NEIL1) DNA glycosylase (DG), one of five oxidized base excision repair (BER)-initiating enzymes in mammalian cells, and its high affinity for replication fork-mimicking single-stranded (ss)DNA substrates. We recently provided experimental evidence for the role of NEIL1 in replicating-strand repair, and proposed the "cowcatcher" model of pre-replicative BER, where NEIL1's nonproductive binding to the lesion base in ssDNA template blocks DNA chain elongation, causing fork regression. Repair of the lesion in the then re-annealed duplex is carried out by NEIL1 in association with the DNA replication proteins. In this commentary, we highlight the critical role of pre-replicative BER in preventing mutagenesis, and discuss the distinction between pre-replicative vs. post-replicative BER.
Collapse
Affiliation(s)
- Suganya Rangaswamy
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Arvind Pandey
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
- Houston Methodist Neurological Institute, Houston, TX 77030, USA.
| |
Collapse
|
18
|
No cancer predisposition or increased spontaneous mutation frequencies in NEIL DNA glycosylases-deficient mice. Sci Rep 2017; 7:4384. [PMID: 28663564 PMCID: PMC5491499 DOI: 10.1038/s41598-017-04472-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/16/2017] [Indexed: 02/07/2023] Open
Abstract
Base excision repair (BER) is a major pathway for removal of DNA base lesions and maintenance of genomic stability, which is essential in cancer prevention. DNA glycosylases recognize and remove specific lesions in the first step of BER. The existence of a number of these enzymes with overlapping substrate specificities has been thought to be the reason why single knock-out models of individual DNA glycosylases are not cancer prone. In this work we have characterized DNA glycosylases NEIL1 and NEIL2 (Neil1−/−/Neil2−/−) double and NEIL1, NEIL2 and NEIL3 (Neil1−/−/Neil2−/−/Neil3−/−) triple knock-out mouse models. Unexpectedly, our results show that these mice are not prone to cancer and have no elevated mutation frequencies under normal physiological conditions. Moreover, telomere length is not affected and there was no accumulation of oxidative DNA damage compared to wild-type mice. These results strengthen the hypothesis that the NEIL enzymes are not simply back-up enzymes for each other but enzymes that have distinct functions beyond canonical repair.
Collapse
|
19
|
Limpose KL, Corbett AH, Doetsch PW. BERing the burden of damage: Pathway crosstalk and posttranslational modification of base excision repair proteins regulate DNA damage management. DNA Repair (Amst) 2017. [PMID: 28629773 DOI: 10.1016/j.dnarep.2017.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA base damage and non-coding apurinic/apyrimidinic (AP) sites are ubiquitous types of damage that must be efficiently repaired to prevent mutations. These damages can occur in both the nuclear and mitochondrial genomes. Base excision repair (BER) is the frontline pathway for identifying and excising damaged DNA bases in both of these cellular compartments. Recent advances demonstrate that BER does not operate as an isolated pathway but rather dynamically interacts with components of other DNA repair pathways to modulate and coordinate BER functions. We define the coordination and interaction between DNA repair pathways as pathway crosstalk. Numerous BER proteins are modified and regulated by post-translational modifications (PTMs), and PTMs could influence pathway crosstalk. Here, we present recent advances on BER/DNA repair pathway crosstalk describing specific examples and also highlight regulation of BER components through PTMs. We have organized and reported functional interactions and documented PTMs for BER proteins into a consolidated summary table. We further propose the concept of DNA repair hubs that coordinate DNA repair pathway crosstalk to identify central protein targets that could play a role in designing future drug targets.
Collapse
Affiliation(s)
- Kristin L Limpose
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, United States
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States.
| | - Paul W Doetsch
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, United States; Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States; Department of Biochemistry, Emory University, Atlanta, GA, 30322, United States.
| |
Collapse
|
20
|
Fleming AM, Burrows CJ. Formation and processing of DNA damage substrates for the hNEIL enzymes. Free Radic Biol Med 2017; 107:35-52. [PMID: 27880870 PMCID: PMC5438787 DOI: 10.1016/j.freeradbiomed.2016.11.030] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/13/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are harnessed by the cell for signaling at the same time as being detrimental to cellular components such as DNA. The genome and transcriptome contain instructions that can alter cellular processes when oxidized. The guanine (G) heterocycle in the nucleotide pool, DNA, or RNA is the base most prone to oxidation. The oxidatively-derived products of G consistently observed in high yields from hydroxyl radical, carbonate radical, or singlet oxygen oxidations under conditions modeling the cellular reducing environment are discussed. The major G base oxidation products are 8-oxo-7,8-dihydroguanine (OG), 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), spiroiminodihydantoin (Sp), and 5-guanidinohydantoin (Gh). The yields of these products show dependency on the oxidant and the reaction context that includes nucleoside, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), and G-quadruplex DNA (G4-DNA) structures. Upon formation of these products in cells, they are recognized by the DNA glycosylases in the base excision repair (BER) pathway. This review focuses on initiation of BER by the mammalian Nei-like1-3 (NEIL1-3) glycosylases for removal of 2Ih, Sp, and Gh. The unique ability of the human NEILs to initiate removal of the hydantoins in ssDNA, bulge-DNA, bubble-DNA, dsDNA, and G4-DNA is outlined. Additionally, when Gh exists in a G4 DNA found in a gene promoter, NEIL-mediated repair is modulated by the plasticity of the G4-DNA structure provided by additional G-runs flanking the sequence. On the basis of these observations and cellular studies from the literature, the interplay between DNA oxidation and BER to alter gene expression is discussed.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850, United States.
| |
Collapse
|
21
|
Prakash A, Moharana K, Wallace SS, Doublié S. Destabilization of the PCNA trimer mediated by its interaction with the NEIL1 DNA glycosylase. Nucleic Acids Res 2017; 45:2897-2909. [PMID: 27994037 PMCID: PMC5389659 DOI: 10.1093/nar/gkw1282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/11/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022] Open
Abstract
The base excision repair (BER) pathway repairs oxidized lesions in the DNA that result from reactive oxygen species generated in cells. If left unrepaired, these damaged DNA bases can disrupt cellular processes such as replication. NEIL1 is one of the 11 human DNA glycosylases that catalyze the first step of the BER pathway, i.e. recognition and excision of DNA lesions. NEIL1 interacts with essential replication proteins such as the ring-shaped homotrimeric proliferating cellular nuclear antigen (PCNA). We isolated a complex formed between NEIL1 and PCNA (±DNA) using size exclusion chromatography (SEC). This interaction was confirmed using native gel electrophoresis and mass spectrometry. Stokes radii measured by SEC hinted that PCNA in complex with NEIL1 (±DNA) was no longer a trimer. Height measurements and images obtained by atomic force microscopy also demonstrated the dissociation of the PCNA homotrimer in the presence of NEIL1 and DNA, while small-angle X-ray scattering analysis confirmed the NEIL1 mediated PCNA trimer dissociation and formation of a 1:1:1 NEIL1-DNA-PCNA(monomer) complex. Furthermore, ab initio shape reconstruction provides insights into the solution structure of this previously unreported complex. Together, these data point to a potential mechanistic switch between replication and BER.
Collapse
Affiliation(s)
- Aishwarya Prakash
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604-1405, USA
| | - Kedar Moharana
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405-0068, USA
| | - Susan S. Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405-0068, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405-0068, USA
| |
Collapse
|
22
|
Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 771:99-127. [PMID: 28342455 DOI: 10.1016/j.mrrev.2017.02.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 02/07/2023]
Abstract
Endogenous and exogenous reactive species cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. As a result, a plethora of mutagenic and/or cytotoxic products are formed in cellular DNA. This type of DNA damage is repaired by base excision repair, although nucleotide excision repair also plays a limited role. DNA glycosylases remove modified DNA bases from DNA by hydrolyzing the glycosidic bond leaving behind an apurinic/apyrimidinic (AP) site. Some of them also possess an accompanying AP-lyase activity that cleaves the sugar-phosphate chain of DNA. Since the first discovery of a DNA glycosylase, many studies have elucidated the mechanisms of action, substrate specificities and excision kinetics of these enzymes present in all living organisms. For this purpose, most studies used single- or double-stranded oligodeoxynucleotides with a single DNA lesion embedded at a defined position. High-molecular weight DNA with multiple base lesions has been used in other studies with the advantage of the simultaneous investigation of many DNA base lesions as substrates. Differences between the substrate specificities and excision kinetics of DNA glycosylases have been found when these two different substrates were used. Some DNA glycosylases possess varying substrate specificities for either purine-derived lesions or pyrimidine-derived lesions, whereas others exhibit cross-activity for both types of lesions. Laboratory animals with knockouts of the genes of DNA glycosylases have also been used to provide unequivocal evidence for the substrates, which had previously been found in in vitro studies, to be the actual substrates in vivo as well. On the basis of the knowledge gained from the past studies, efforts are being made to discover small molecule inhibitors of DNA glycosylases that may be used as potential drugs in cancer therapy.
Collapse
|
23
|
Yang C, Sengupta S, Hegde PM, Mitra J, Jiang S, Holey B, Sarker AH, Tsai MS, Hegde ML, Mitra S. Regulation of oxidized base damage repair by chromatin assembly factor 1 subunit A. Nucleic Acids Res 2016; 45:739-748. [PMID: 27794043 PMCID: PMC5314755 DOI: 10.1093/nar/gkw1024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 01/27/2023] Open
Abstract
Reactive oxygen species (ROS), generated both endogenously and in response to exogenous stress, induce point mutations by mis-replication of oxidized bases and other lesions in the genome. Repair of these lesions via base excision repair (BER) pathway maintains genomic fidelity. Regulation of the BER pathway for mutagenic oxidized bases, initiated by NEIL1 and other DNA glycosylases at the chromatin level remains unexplored. Whether single nucleotide (SN)-BER of a damaged base requires histone deposition or nucleosome remodeling is unknown, unlike nucleosome reassembly which is shown to be required for other DNA repair processes. Here we show that chromatin assembly factor (CAF)-1 subunit A (CHAF1A), the p150 subunit of the histone H3/H4 chaperone, and its partner anti-silencing function protein 1A (ASF1A), which we identified in human NEIL1 immunoprecipitation complex, transiently dissociate from chromatin bound NEIL1 complex in G1 cells after induction of oxidative base damage. CHAF1A inhibits NEIL1 initiated repair in vitro. Subsequent restoration of the chaperone-BER complex in cell, presumably after completion of repair, suggests that histone chaperones sequester the repair complex for oxidized bases in non-replicating chromatin, and allow repair when oxidized bases are induced in the genome.
Collapse
Affiliation(s)
- Chunying Yang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Shiladitya Sengupta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA .,Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Pavana M Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Shuai Jiang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Brooke Holey
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Altaf H Sarker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Miaw-Sheue Tsai
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.,Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.,Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA .,Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| |
Collapse
|
24
|
Massaad MJ, Zhou J, Tsuchimoto D, Chou J, Jabara H, Janssen E, Glauzy S, Olson BG, Morbach H, Ohsumi TK, Schmitz K, Kyriacos M, Kane J, Torisu K, Nakabeppu Y, Notarangelo LD, Chouery E, Megarbane A, Kang PB, Al-Idrissi E, Aldhekri H, Meffre E, Mizui M, Tsokos GC, Manis JP, Al-Herz W, Wallace SS, Geha RS. Deficiency of base excision repair enzyme NEIL3 drives increased predisposition to autoimmunity. J Clin Invest 2016; 126:4219-4236. [PMID: 27760045 DOI: 10.1172/jci85647] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 09/06/2016] [Indexed: 12/17/2022] Open
Abstract
Alterations in the apoptosis of immune cells have been associated with autoimmunity. Here, we have identified a homozygous missense mutation in the gene encoding the base excision repair enzyme Nei endonuclease VIII-like 3 (NEIL3) that abolished enzymatic activity in 3 siblings from a consanguineous family. The NEIL3 mutation was associated with fatal recurrent infections, severe autoimmunity, hypogammaglobulinemia, and impaired B cell function in these individuals. The same homozygous NEIL3 mutation was also identified in an asymptomatic individual who exhibited elevated levels of serum autoantibodies and defective peripheral B cell tolerance, but normal B cell function. Further analysis of the patients revealed an absence of LPS-responsive beige-like anchor (LRBA) protein expression, a known cause of immunodeficiency. We next examined the contribution of NEIL3 to the maintenance of self-tolerance in Neil3-/- mice. Although Neil3-/- mice displayed normal B cell function, they exhibited elevated serum levels of autoantibodies and developed nephritis following treatment with poly(I:C) to mimic microbial stimulation. In Neil3-/- mice, splenic T and B cells as well as germinal center B cells from Peyer's patches showed marked increases in apoptosis and cell death, indicating the potential release of self-antigens that favor autoimmunity. These findings demonstrate that deficiency in NEIL3 is associated with increased lymphocyte apoptosis, autoantibodies, and predisposition to autoimmunity.
Collapse
|
25
|
Lee AJ, Wallace SS. Visualizing the Search for Radiation-damaged DNA Bases in Real Time. Radiat Phys Chem Oxf Engl 1993 2016; 128:126-133. [PMID: 27818579 DOI: 10.1016/j.radphyschem.2016.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.
Collapse
Affiliation(s)
- Andrea J Lee
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Burlington, Vermont, 05405, USA
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Burlington, Vermont, 05405, USA
| |
Collapse
|
26
|
Hegde PM, Dutta A, Sengupta S, Mitra J, Adhikari S, Tomkinson AE, Li GM, Boldogh I, Hazra TK, Mitra S, Hegde ML. The C-terminal Domain (CTD) of Human DNA Glycosylase NEIL1 Is Required for Forming BERosome Repair Complex with DNA Replication Proteins at the Replicating Genome: DOMINANT NEGATIVE FUNCTION OF THE CTD. J Biol Chem 2015; 290:20919-20933. [PMID: 26134572 DOI: 10.1074/jbc.m115.642918] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 12/21/2022] Open
Abstract
The human DNA glycosylase NEIL1 was recently demonstrated to initiate prereplicative base excision repair (BER) of oxidized bases in the replicating genome, thus preventing mutagenic replication. A significant fraction of NEIL1 in cells is present in large cellular complexes containing DNA replication and other repair proteins, as shown by gel filtration. However, how the interaction of NEIL1 affects its recruitment to the replication site for prereplicative repair was not investigated. Here, we show that NEIL1 binarily interacts with the proliferating cell nuclear antigen clamp loader replication factor C, DNA polymerase δ, and DNA ligase I in the absence of DNA via its non-conserved C-terminal domain (CTD); replication factor C interaction results in ∼8-fold stimulation of NEIL1 activity. Disruption of NEIL1 interactions within the BERosome complex, as observed for a NEIL1 deletion mutant (N311) lacking the CTD, not only inhibits complete BER in vitro but also prevents its chromatin association and reduced recruitment at replication foci in S phase cells. This suggests that the interaction of NEIL1 with replication and other BER proteins is required for efficient repair of the replicating genome. Consistently, the CTD polypeptide acts as a dominant negative inhibitor during in vitro repair, and its ectopic expression sensitizes human cells to reactive oxygen species. We conclude that multiple interactions among BER proteins lead to large complexes, which are critical for efficient BER in mammalian cells, and the CTD interaction could be targeted for enhancing drug/radiation sensitivity of tumor cells.
Collapse
Affiliation(s)
- Pavana M Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030
| | - Arijit Dutta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030; Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Shiladitya Sengupta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030
| | - Sanjay Adhikari
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030
| | - Alan E Tomkinson
- Department of Internal Medicine and University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131
| | - Guo-Min Li
- Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Istvan Boldogh
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Tapas K Hazra
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030; Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555; Weill Medical College of Cornell University, New York, New York.
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030; Weill Medical College of Cornell University, New York, New York; Houston Methodist Neurological Institute, Houston, Texas 77030.
| |
Collapse
|
27
|
Panigrahi SK, Hopkins KM, Lieberman HB. Regulation of NEIL1 protein abundance by RAD9 is important for efficient base excision repair. Nucleic Acids Res 2015; 43:4531-46. [PMID: 25873625 PMCID: PMC4482081 DOI: 10.1093/nar/gkv327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/31/2015] [Indexed: 11/21/2022] Open
Abstract
RAD9 participates in DNA damage-induced cell cycle checkpoints and DNA repair. As a member of the RAD9-HUS1-RAD1 (9-1-1) complex, it can sense DNA damage and recruit ATR to damage sites. RAD9 binding can enhance activities of members of different DNA repair pathways, including NEIL1 DNA glycosylase, which initiates base excision repair (BER) by removing damaged DNA bases. Moreover, RAD9 can act independently of 9-1-1 as a gene-specific transcription factor. Herein, we show that mouse Rad9−/− relative to Rad9+/+ embryonic stem (ES) cells have reduced levels of Neil1 protein. Also, human prostate cancer cells, DU145 and PC-3, knocked down for RAD9 demonstrate reduced NEIL1 abundance relative to controls. We found that Rad9 is required for Neil1 protein stability in mouse ES cells, whereas it regulates NEIL1 transcription in the human cells. RAD9 depletion enhances sensitivity to UV, gamma rays and menadione, but ectopic expression of RAD9 or NEIL1 restores resistance. Glycosylase/apurinic lyase activity was reduced in Rad9−/− mouse ES and RAD9 knocked-down human prostate cancer whole cell extracts, relative to controls. Neil1 or Rad9 addition restored this incision activity. Thus, we demonstrate that RAD9 regulates BER by controlling NEIL1 protein levels, albeit by different mechanisms in human prostate cancer versus mouse ES cells.
Collapse
Affiliation(s)
- Sunil K Panigrahi
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Kevin M Hopkins
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Howard B Lieberman
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
28
|
Fomina EE, Pestryakov PE, Kretov DA, Zharkov DO, Ovchinnikov LP, Curmi PA, Lavrik OI. Inhibition of abasic site cleavage in bubble DNA by multifunctional protein YB-1. J Mol Recognit 2015; 28:117-23. [DOI: 10.1002/jmr.2435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/11/2014] [Accepted: 09/13/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Elizaveta E. Fomina
- Institute of Chemical Biology and Fundamental Medicine; Siberian Branch of Russian Academy of Sciences; Novosibirsk 630090 Russia
| | - Pavel E. Pestryakov
- Institute of Chemical Biology and Fundamental Medicine; Siberian Branch of Russian Academy of Sciences; Novosibirsk 630090 Russia
| | - Dmitry A. Kretov
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR829; Université Evry-Val d'Essonne; Evry France
- Institute of Protein Research; Russian Academy of Sciences; Pushchino Moscow region 142290 Russia
| | - Dmitry O. Zharkov
- Institute of Chemical Biology and Fundamental Medicine; Siberian Branch of Russian Academy of Sciences; Novosibirsk 630090 Russia
- Novosibirsk State University; Novosibirsk 630090 Russia
| | - Lev P. Ovchinnikov
- Institute of Protein Research; Russian Academy of Sciences; Pushchino Moscow region 142290 Russia
| | - Patrick A. Curmi
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR829; Université Evry-Val d'Essonne; Evry France
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine; Siberian Branch of Russian Academy of Sciences; Novosibirsk 630090 Russia
- Novosibirsk State University; Novosibirsk 630090 Russia
- Altai State University; Barnaul 656049 Russia
| |
Collapse
|
29
|
Dutta A, Yang C, Sengupta S, Mitra S, Hegde ML. New paradigms in the repair of oxidative damage in human genome: mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins. Cell Mol Life Sci 2015; 72:1679-98. [PMID: 25575562 DOI: 10.1007/s00018-014-1820-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 11/30/2022]
Abstract
Oxidized bases in the mammalian genome, which are invariably mutagenic due to their mispairing property, are continuously induced by endogenous reactive oxygen species and more abundantly after oxidative stress. Unlike bulky base adducts induced by UV and other environmental mutagens in the genome that block replicative DNA polymerases, oxidatively damaged bases such as 5-hydroxyuracil, produced by oxidative deamination of cytosine in the template strand, do not block replicative polymerases and thus need to be repaired prior to replication to prevent mutation. Following up our earlier studies, which showed that the Nei endonuclease VIII like 1 (NEIL1) DNA glycosylase, one of the five base excision repair (BER)-initiating enzymes in mammalian cells, has enhanced expression during the S-phase and higher affinity for replication fork-mimicking single-stranded (ss) DNA substrates, we recently provided direct experimental evidence for NEIL1's role in replicating template strand repair. The key requirement for this event, which we named as the 'cow-catcher' mechanism of pre-replicative BER, is NEIL1's non-productive binding (substrate binding without product formation) to the lesion base in ss DNA template to stall DNA synthesis, causing fork regression. Repair of the lesion in reannealed duplex is then carried out by NEIL1 in association with the DNA replication proteins. NEIL1 (and other BER-initiating enzymes) also interact with several accessory and non-canonical proteins including the heterogeneous nuclear ribonucleoprotein U and Y-box-binding protein 1 as well as high mobility group box 1 protein, whose precise roles in BER are still obscure. In this review, we have discussed the recent advances in our understanding of oxidative genome damage repair pathways with particular focus on the pre-replicative template strand repair and the role of scaffold factors like X-ray repairs cross-complementing protein 1 and poly (ADP-ribose) polymerase 1 and other accessory proteins guiding distinct BER sub-pathways.
Collapse
Affiliation(s)
- Arijit Dutta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | | | | | | | | |
Collapse
|
30
|
Oxidatively induced DNA damage and its repair in cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:212-45. [PMID: 25795122 DOI: 10.1016/j.mrrev.2014.11.002] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
Abstract
Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.
Collapse
|
31
|
Yamamoto R, Ohshiro Y, Shimotani T, Yamamoto M, Matsuyama S, Ide H, Kubo K. Hypersensitivity of mouse NEIL1-knockdown cells to hydrogen peroxide during S phase. JOURNAL OF RADIATION RESEARCH 2014; 55:707-712. [PMID: 24706997 PMCID: PMC4100011 DOI: 10.1093/jrr/rru021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 02/14/2014] [Accepted: 02/21/2014] [Indexed: 06/03/2023]
Abstract
Oxidative base damage occurs spontaneously due to reactive oxygen species generated as byproducts of respiration and other pathological processes in mammalian cells. Many oxidized bases are mutagenic and/or toxic, and most are repaired through the base excision repair pathway. Human endonuclease VIII-like protein 1 (hNEIL1) is thought to play an important role during the S phase of the cell cycle by removing oxidized bases in DNA replication fork-like (bubble) structures, and the protein level of hNEIL1 is increased in S phase. Compared with hNEIL1, there is relatively little information on the properties of the mouse ortholog mNEIL1. Since mouse cell nuclei lack endonuclease III-like protein (NTH) activity, in contrast to human cell nuclei, mNEIL1 is a major DNA glycosylase for repair of oxidized pyrimidines in mouse nuclei. In this study, we made mNEIL1-knockdown cells using an shRNA expression vector and examined the cell cycle-related variation in hydrogen peroxide (H2O2) sensitivity. Hypersensitivity to H2O2 caused by mNEIL1 knockdown was more significant in S phase than in G1 phase, suggesting that mNEIL1 has an important role during S phase, similarly to hNEIL1.
Collapse
Affiliation(s)
- Ryohei Yamamoto
- Department of Advanced Pathobiology, Graduate School of Life & Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Yukari Ohshiro
- Department of Advanced Pathobiology, Graduate School of Life & Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Tatsuhiko Shimotani
- Department of Advanced Pathobiology, Graduate School of Life & Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Mizuki Yamamoto
- Department of Advanced Pathobiology, Graduate School of Life & Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Satoshi Matsuyama
- Department of Advanced Pathobiology, Graduate School of Life & Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Hiroshi Ide
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Kihei Kubo
- Department of Advanced Pathobiology, Graduate School of Life & Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
32
|
Human DNA Glycosylase NEIL1's Interactions with Downstream Repair Proteins Is Critical for Efficient Repair of Oxidized DNA Base Damage and Enhanced Cell Survival. Biomolecules 2014; 2:564-78. [PMID: 23926464 PMCID: PMC3733129 DOI: 10.3390/biom2040564] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
NEIL1 is unique among the oxidatively damaged base repair-initiating DNA glycosylases in the human genome due to its S phase-specific activation and ability to excise substrate base lesions from single-stranded DNA. We recently characterized NEIL1’s specific binding to downstream canonical repair and non-canonical accessory proteins, all of which involve NEIL1’s disordered C-terminal segment as the common interaction domain (CID). This domain is dispensable for NEIL1’s base excision and abasic (AP) lyase activities, but is required for its interactions with other repair proteins. Here, we show that truncated NEIL1 lacking the CID is markedly deficient in initiating in vitro repair of 5-hydroxyuracil (an oxidative deamination product of C) in a plasmid substrate compared to the wild-type NEIL1, thus suggesting a critical role of CID in the coordination of overall repair. Furthermore, while NEIL1 downregulation significantly sensitized human embryonic kidney (HEK) 293 cells to reactive oxygen species (ROS), ectopic wild-type NEIL1, but not the truncated mutant, restored resistance to ROS. These results demonstrate that cell survival and NEIL1-dependent repair of oxidative DNA base damage require interactions among repair proteins, which could be explored as a cancer therapeutic target in order to increase the efficiency of chemo/radiation treatment.
Collapse
|
33
|
Lee AJ, Warshaw DM, Wallace SS. Insights into the glycosylase search for damage from single-molecule fluorescence microscopy. DNA Repair (Amst) 2014; 20:23-31. [PMID: 24560296 DOI: 10.1016/j.dnarep.2014.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/13/2013] [Accepted: 01/22/2014] [Indexed: 12/21/2022]
Abstract
The first step of base excision repair utilizes glycosylase enzymes to find damage within a genome. A persistent question in the field of DNA repair is how glycosylases interact with DNA to specifically find and excise target damaged bases with high efficiency and specificity. Ensemble studies have indicated that glycosylase enzymes rely upon both sliding and distributive modes of search, but ensemble methods are limited in their ability to directly observe these modes. Here we review insights into glycosylase scanning behavior gathered through single-molecule fluorescence studies of enzyme interactions with DNA and provide a context for these results in relation to ensemble experiments.
Collapse
Affiliation(s)
- Andrea J Lee
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Stafford Hall, Burlington, VT 05405-0084, USA.
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, The University of Vermont, Health Science Research Facility, 149 Beaumont Avenue, Burlington, VT 05405-0075, USA.
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Stafford Hall, Burlington, VT 05405-0084, USA.
| |
Collapse
|
34
|
Wallace SS. DNA glycosylases search for and remove oxidized DNA bases. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:691-704. [PMID: 24123395 PMCID: PMC3997179 DOI: 10.1002/em.21820] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 05/19/2023]
Abstract
This review article presents, an overview of the DNA glycosylases that recognize oxidized DNA bases using the Fpg/Nei family of DNA glycosylases as models for how structure can inform function. For example, even though human NEIL1 and the plant and fungal orthologs lack the zinc finger shown to be required for binding, DNA crystal structures revealed a "zincless finger" with the same properties. Moreover, the "lesion recognition loop" is not involved in lesion recognition, rather, it stabilizes 8-oxoG in the active site pocket. Unlike the other Fpg/Nei family members, Neil3 lacks two of the three void-filling residues that stabilize the DNA duplex and interact with the opposite strand to the damage which may account for its preference for lesions in single-stranded DNA. Also single-molecule approaches show that DNA glycosylases search for their substrates in a sea of undamaged DNA by using a wedge residue that is inserted into the DNA helix to probe for the presence of damage.
Collapse
Affiliation(s)
- Susan S. Wallace
- Department of Microbiology and Molecular Genetics The Markey Center for Molecular Genetics The University of Vermont Stafford Hall, 95 Carrigan Drive Burlington, VT 05405-0068, USA Tel: (802) 656-2164; Fax: (802) 656-8749
| |
Collapse
|
35
|
Maher RL, Prasad A, Rizvanova O, Wallace SS, Pederson DS. Contribution of DNA unwrapping from histone octamers to the repair of oxidatively damaged DNA in nucleosomes. DNA Repair (Amst) 2013; 12:964-71. [PMID: 24051050 DOI: 10.1016/j.dnarep.2013.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/22/2013] [Accepted: 08/24/2013] [Indexed: 11/27/2022]
Abstract
Reactive oxygen species generate ~20,000 oxidative lesions in the DNA of every cell, every day. Most of these lesions are located within nucleosomes, which package DNA in chromatin and impede base excision repair (BER). We demonstrated previously that periodic, spontaneous partial unwrapping of DNA from the underlying histone octamer enables BER enzymes to bind to oxidative lesions that would otherwise be sterically inaccessible. In the present study, we asked if these periodic DNA unwrapping events are frequent enough to account for the estimated rates of BER in vivo. We measured rates of excision of oxidative lesions from sites in nucleosomes that are accessible only during unwrapping episodes. Using reaction conditions appropriate for presteady-state kinetic analyses, we derived lesion exposure rates for both 601 and 5S rDNA-based nucleosomes. Although DNA unwrapping-mediated exposure of a lesion ~16NT from the nucleosome edge occurred ~7-8 times per minute, exposure rates fell dramatically for lesions located 10 or more NT further in from the nucleosome edge. The rates likely are too low to account for observed rates of BER in cells. Thus, chromatin remodeling, either BER-specific or that associated with transcription, replication, or other DNA repair processes, probably contributes to efficient BER in vivo.
Collapse
Affiliation(s)
- Robyn L Maher
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
36
|
Prereplicative repair of oxidized bases in the human genome is mediated by NEIL1 DNA glycosylase together with replication proteins. Proc Natl Acad Sci U S A 2013; 110:E3090-9. [PMID: 23898192 DOI: 10.1073/pnas.1304231110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Base oxidation by endogenous and environmentally induced reactive oxygen species preferentially occurs in replicating single-stranded templates in mammalian genomes, warranting prereplicative repair of the mutagenic base lesions. It is not clear how such lesions (which, unlike bulky adducts, do not block replication) are recognized for repair. Furthermore, strand breaks caused by base excision from ssDNA by DNA glycosylases, including Nei-like (NEIL) 1, would generate double-strand breaks during replication, which are not experimentally observed. NEIL1, whose deficiency causes a mutator phenotype and is activated during the S phase, is present in the DNA replication complex isolated from human cells, with enhanced association with DNA in S-phase cells and colocalization with replication foci containing DNA replication proteins. Furthermore, NEIL1 binds to 5-hydroxyuracil, the oxidative deamination product of C, in replication protein A-coated ssDNA template and inhibits DNA synthesis by DNA polymerase δ. We postulate that, upon encountering an oxidized base during replication, NEIL1 initiates prereplicative repair by acting as a "cowcatcher" and preventing nascent chain growth. Regression of the stalled replication fork, possibly mediated by annealing helicases, then allows lesion repair in the reannealed duplex. This model is supported by our observations that NEIL1, whose deficiency slows nascent chain growth in oxidatively stressed cells, is stimulated by replication proteins in vitro. Furthermore, deficiency of the closely related NEIL2 alone does not affect chain elongation, but combined NEIL1/2 deficiency further inhibits DNA replication. These results support a mechanism of NEIL1-mediated prereplicative repair of oxidized bases in the replicating strand, with NEIL2 providing a backup function.
Collapse
|
37
|
Noren Hooten N, Fitzpatrick M, Kompaniez K, Jacob KD, Moore BR, Nagle J, Barnes J, Lohani A, Evans MK. Coordination of DNA repair by NEIL1 and PARP-1: a possible link to aging. Aging (Albany NY) 2013; 4:674-85. [PMID: 23104860 PMCID: PMC3517938 DOI: 10.18632/aging.100492] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidative DNA damage accumulates with age and is repaired primarily via the base excision repair (BER) pathway. This process is initiated by DNA glycosylases, which remove damaged bases in a substrate-specific manner. The DNA glycosylases human 8-oxoguanine-DNA glycosylase (OGG1) and NEIL1, a mammalian homolog ofEscherichia coli endonuclease VIII, have overlapping yet distinct substrate specificity. Recently, we reported that OGG1 binds to the Poly(ADP-ribose) polymerase 1 (PARP-1), a DNA damage sensor protein that poly(ADP-ribosyl)ates nuclear proteins in response to DNA damage and other cellular signals. Here, we show that NEIL1 and PARP-1 bind both in vitro and in vivo. PARP-1 binds to the C-terminal-100 amino acids of NEIL1 and NEIL1 binds to the BRCT domain of PARP-1. NEIL1 stimulates the poly(ADP-ribosyl)ation activity of PARP-1. Furthermore, NEIL-deficient fibroblasts have impaired poly(ADP-ribosyl)ation of cellular proteins after DNA damage, which can be rescued by NEIL1 expression. Additionally, PARP-1 inhibits NEIL1 incision activity in a concentration-dependent manner. Consistent with the idea of impaired DNA repair during aging, we observed differential binding of PARP-1 to recombinant NEIL1 in older mice compared to younger mice. These data further support the idea that dynamic interplay between different base excision repair proteins is important for efficient BER.
Collapse
Affiliation(s)
- Nicole Noren Hooten
- Laboratory of Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hegde ML, Tsutakawa SE, Hegde PM, Holthauzen LMF, Li J, Oezguen N, Hilser VJ, Tainer JA, Mitra S. The disordered C-terminal domain of human DNA glycosylase NEIL1 contributes to its stability via intramolecular interactions. J Mol Biol 2013; 425:2359-71. [PMID: 23542007 DOI: 10.1016/j.jmb.2013.03.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/09/2013] [Accepted: 03/13/2013] [Indexed: 12/22/2022]
Abstract
NEIL1 [Nei (endonuclease VIII)-like protein 1], one of the five mammalian DNA glycosylases that excise oxidized DNA base lesions in the human genome to initiate base excision repair, contains an intrinsically disordered C-terminal domain (CTD; ~100 residues), not conserved in its Escherichia coli prototype Nei. Although dispensable for NEIL1's lesion excision and AP lyase activities, this segment is required for efficient in vivo enzymatic activity and may provide an interaction interface for many of NEIL1's interactions with other base excision repair proteins. Here, we show that the CTD interacts with the folded domain in native NEIL1 containing 389 residues. The CTD is poised for local folding in an ordered structure that is induced in the purified fragment by osmolytes. Furthermore, deletion of the disordered tail lacking both Tyr and Trp residues causes a red shift in NEIL1's intrinsic Trp-specific fluorescence, indicating a more solvent-exposed environment for the Trp residues in the truncated protein, which also exhibits reduced stability compared to the native enzyme. These observations are consistent with stabilization of the native NEIL1 structure via intramolecular, mostly electrostatic, interactions that were disrupted by mutating a positively charged (Lys-rich) cluster of residues (amino acids 355-360) near the C-terminus. Small-angle X-ray scattering (SAXS) analysis confirms the flexibility and dynamic nature of NEIL1's CTD, a feature that may be critical to providing specificity for NEIL1's multiple, functional interactions.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Reddy PT, Jaruga P, Kirkali G, Tuna G, Nelson BC, Dizdaroglu M. Identification and Quantification of Human DNA Repair Protein NEIL1 by Liquid Chromatography/Isotope-Dilution Tandem Mass Spectrometry. J Proteome Res 2013; 12:1049-61. [DOI: 10.1021/pr301037t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Prasad T. Reddy
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg,
Maryland 20899, United States
| | - Pawel Jaruga
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg,
Maryland 20899, United States
| | - Güldal Kirkali
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg,
Maryland 20899, United States
| | - Gamze Tuna
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg,
Maryland 20899, United States
- Department of Biochemistry, School
of Medicine, Dokuz Eylul University, Izmir,
Turkey
| | - Bryant C. Nelson
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg,
Maryland 20899, United States
| | - Miral Dizdaroglu
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg,
Maryland 20899, United States
| |
Collapse
|
40
|
Liu M, Doublié S, Wallace SS. Neil3, the final frontier for the DNA glycosylases that recognize oxidative damage. Mutat Res 2012; 743-744:4-11. [PMID: 23274422 DOI: 10.1016/j.mrfmmm.2012.12.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/18/2012] [Indexed: 11/17/2022]
Abstract
DNA glycosylases are the enzymes that initiate the Base Excision Repair (BER) process that protects all organisms from the mutagenic and/or cytotoxic effects of DNA base lesions. Endonuclease VIII like proteins (Neil1, Neil2 and Neil3) are found in vertebrate genomes and are homologous to the well-characterized bacterial DNA glycosylases, Formamidopyrimidine DNA glycosylase (Fpg) and Endonuclease VIII (Nei). Since the initial discovery of the Neil proteins, much progress has been made on characterizing Neil1 and Neil2. It was not until recently, however, that Neil3 was shown to be a functional DNA glycosylase having a different substrate specificity and unusual structural features compared with other Fpg/Nei homologs. Although the biological functions of Neil3 still remain an enigma, this review highlights recent biochemical and structural data that may ultimately shed light on its biological role.
Collapse
Affiliation(s)
- Minmin Liu
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Dr., Burlington, VT 05405-0086, United States.
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Dr., Burlington, VT 05405-0086, United States
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Dr., Burlington, VT 05405-0086, United States.
| |
Collapse
|
41
|
Prasad R, Williams JG, Hou EW, Wilson SH. Pol β associated complex and base excision repair factors in mouse fibroblasts. Nucleic Acids Res 2012; 40:11571-82. [PMID: 23042675 PMCID: PMC3526277 DOI: 10.1093/nar/gks898] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During mammalian base excision repair (BER) of lesion-containing DNA, it is proposed that toxic strand-break intermediates generated throughout the pathway are sequestered and passed from one step to the next until repair is complete. This stepwise process is termed substrate channeling. A working model evaluated here is that a complex of BER factors may facilitate the BER process. FLAG-tagged DNA polymerase (pol) β was expressed in mouse fibroblasts carrying a deletion in the endogenous pol β gene, and the cell extract was subjected to an ‘affinity-capture’ procedure using anti-FLAG antibody. The pol β affinity-capture fraction (ACF) was found to contain several BER factors including polymerase-1, X-ray cross-complementing factor1-DNA ligase III and enzymes involved in processing 3′-blocked ends of BER intermediates, e.g. polynucleotide kinase and tyrosyl-DNA phosphodiesterase 1. In contrast, DNA glycosylases, apurinic/aprymidinic endonuclease 1 and flap endonuclease 1 and several other factors involved in BER were not present. Some of the BER factors in the pol β ACF were in a multi-protein complex as observed by sucrose gradient centrifugation. The pol β ACF was capable of substrate channeling for steps in vitro BER and was proficient in in vitro repair of substrates mimicking a 3′-blocked topoisomerase I covalent intermediate or an oxidative stress-induced 3′-blocked intermediate.
Collapse
Affiliation(s)
- Rajendra Prasad
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
42
|
Hegde ML, Banerjee S, Hegde PM, Bellot LJ, Hazra TK, Boldogh I, Mitra S. Enhancement of NEIL1 protein-initiated oxidized DNA base excision repair by heterogeneous nuclear ribonucleoprotein U (hnRNP-U) via direct interaction. J Biol Chem 2012; 287:34202-11. [PMID: 22902625 DOI: 10.1074/jbc.m112.384032] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Repair of oxidized base lesions in the human genome, initiated by DNA glycosylases, occurs via the base excision repair pathway using conserved repair and some non-repair proteins. However, the functions of the latter noncanonical proteins in base excision repair are unclear. Here we elucidated the role of heterogeneous nuclear ribonucleoprotein-U (hnRNP-U), identified in the immunoprecipitate of human NEIL1, a major DNA glycosylase responsible for oxidized base repair. hnRNP-U directly interacts with NEIL1 in vitro via the NEIL1 common interacting C-terminal domain, which is dispensable for its enzymatic activity. Their in-cell association increases after oxidative stress. hnRNP-U stimulates the NEIL1 in vitro base excision activity for 5-hydroxyuracil in duplex, bubble, forked, or single-stranded DNA substrate, primarily by enhancing product release. Using eluates from FLAG-NEIL1 immunoprecipitates from human cells, we observed 3-fold enhancement in complete repair activity after oxidant treatment. The lack of such enhancement in hnRNP-U-depleted cells suggests its involvement in repairing enhanced base damage after oxidative stress. The NEIL1 disordered C-terminal region binds to hnRNP-U at equimolar ratio with high affinity (K(d) = ∼54 nm). The interacting regions in hnRNP-U, mapped to both termini, suggest their proximity in the native protein; these are also disordered, based on PONDR (Predictor of Naturally Disordered Regions) prediction and circular dichroism spectra. Finally, depletion of hnRNP-U and NEIL1 epistatically sensitized human cells at low oxidative genome damage, suggesting that the hnRNP-U protection of cells after oxidative stress is largely due to enhancement of NEIL1-mediated repair.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555-1079, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Pestryakov P, Zharkov DO, Grin I, Fomina EE, Kim ER, Hamon L, Eliseeva IA, Petruseva IO, Curmi PA, Ovchinnikov LP, Lavrik OI. Effect of the multifunctional proteins RPA, YB-1, and XPC repair factor on AP site cleavage by DNA glycosylase NEIL1. J Mol Recognit 2012; 25:224-33. [PMID: 22434712 DOI: 10.1002/jmr.2182] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
DNA glycosylases are key enzymes in the first step of base excision DNA repair, recognizing DNA damage and catalyzing the release of damaged nucleobases. Bifunctional DNA glycosylases also possess associated apurinic/apyrimidinic (AP) lyase activity that nick the damaged DNA strand at an abasic (or AP) site, formed either spontaneously or at the first step of repair. NEIL1 is a bifunctional DNA glycosylase capable of processing lesions, including AP sites, not only in double-stranded but also in single-stranded DNA. Here, we show that proteins participating in DNA damage response, YB-1 and RPA, affect AP site cleavage by NEIL1. Stimulation of the AP lyase activity of NEIL1 was observed when an AP site was located in a 60 nt-long double-stranded DNA. Both RPA and YB-1 inhibited AP site cleavage by NEIL1 when the AP site was located in single-stranded DNA. Taking into account a direct interaction of YB-1 with the AP site, located in single-stranded DNA, and the high affinity of both YB-1 and RPA for single-stranded DNA, this behavior is presumably a consequence of a competition with NEIL1 for the DNA substrate. Xeroderma pigmentosum complementation group C protein (XPC), a key protein of another DNA repair pathway, was shown to interact directly with AP sites but had no effect on AP site cleavage by NEIL1.
Collapse
Affiliation(s)
- Pavel Pestryakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Prospect Lavrentieva 8, Novosibirsk, 630090, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Neurauter CG, Luna L, Bjørås M. Release from quiescence stimulates the expression of human NEIL3 under the control of the Ras dependent ERK-MAP kinase pathway. DNA Repair (Amst) 2012; 11:401-9. [PMID: 22365498 DOI: 10.1016/j.dnarep.2012.01.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 12/25/2022]
Abstract
Base excision repair (BER) is believed to be the predominant pathway for the repair of oxidative DNA damage. BER is initiated by lesion-specific DNA glycosylases that recognize and remove the damaged base. NEIL1, NEIL2 and NEIL3 are three mammalian members of the Fpg/Nei DNA glycosylase family with similar enzymatic properties. In this study we showed that both the transcription and protein levels of hNEIL3 fluctuated during the cell cycle. Based on predicted promoter elements of cell cycle-regulated genes and microarray data from various reports, we suggest that hNEIL3 repression in quiescent cells might be mediated by the DREAM (DP1, RB p130, E2F4 and MuvB core complex) complex. Release from G0 by mitogenic stimulation showed an induction of hNEIL3 in early S phase under the control of the Ras dependent ERK-MAP kinase pathway. In contrast, the total expression of hNEIL1 was downregulated upon release from quiescence while the expression of hNEIL2 was cell cycle independent. Notably, hNEIL3 showed a similar regulation pattern as the replication protein hFEN1 supporting a function of hNEIL3 in replication associated repair. Thus, it appears that specialized functions of the NEILs are ensured by their expression patterns.
Collapse
Affiliation(s)
- Christine Gran Neurauter
- Department of Microbiology, University of Oslo, Oslo University Hospital, Rikshospitalet, Norway
| | | | | |
Collapse
|
45
|
Hegde ML, Mantha AK, Hazra TK, Bhakat KK, Mitra S, Szczesny B. Oxidative genome damage and its repair: implications in aging and neurodegenerative diseases. Mech Ageing Dev 2012; 133:157-68. [PMID: 22313689 DOI: 10.1016/j.mad.2012.01.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 01/03/2012] [Accepted: 01/13/2012] [Indexed: 01/19/2023]
Abstract
Reactive oxygen species (ROS), generated endogenously during respiration or exogenously by genotoxic agents, induce oxidized bases and single-strand breaks (SSBs) in DNA that are repaired via the base excision/SSB repair (BER/SSBR) pathway in both the nucleus and mitochondria. Tightly regulated BER/SSBR with multiple sub-pathways is highly complex, and is linked to the replication and transcription. The repair-initiating DNA glycosylases (DGs) or AP-endonuclease (APE1) control the sub-pathway by stably interacting with downstream proteins usually via their common interacting domain (CID). A nonconserved CID with disordered structure usually located at one of the termini includes the sequences for covalent modifications and/or organelle targeting. While the DGs are individually dispensable, the SSBR-initiating APE1 and polynucleotide kinase 3' phosphatase (PNKP) are essential. BER/SSBR of mammalian nuclear and mitochondrial genomes share the same early enzymes. Accumulation of oxidative damage in nuclear and mitochondrial genomes has been implicated in aging and various neurological disorders. While defects in BER/SSBR proteins have been linked to hereditary neurodegenerative diseases, our recent studies implicated transition metal-induced inhibition of NEIL family DGs in sporadic diseases. This review focuses on the recent advances in repair of oxidatively damages in mammalian genomes and their linkage to aging and neurological disorders.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1079, USA
| | | | | | | | | | | |
Collapse
|
46
|
Wallace SS, Murphy DL, Sweasy JB. Base excision repair and cancer. Cancer Lett 2012; 327:73-89. [PMID: 22252118 DOI: 10.1016/j.canlet.2011.12.038] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 12/20/2011] [Accepted: 12/24/2011] [Indexed: 01/13/2023]
Abstract
Base excision repair is the system used from bacteria to man to remove the tens of thousands of endogenous DNA damages produced daily in each human cell. Base excision repair is required for normal mammalian development and defects have been associated with neurological disorders and cancer. In this paper we provide an overview of short patch base excision repair in humans and summarize current knowledge of defects in base excision repair in mouse models and functional studies on short patch base excision repair germ line polymorphisms and their relationship to cancer. The biallelic germ line mutations that result in MUTYH-associated colon cancer are also discussed.
Collapse
Affiliation(s)
- Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, 05405-0068, United States.
| | | | | |
Collapse
|
47
|
The Fpg/Nei family of DNA glycosylases: substrates, structures, and search for damage. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:71-91. [PMID: 22749143 DOI: 10.1016/b978-0-12-387665-2.00004-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the initial stages of the base excision DNA repair pathway, DNA glycosylases are responsible for locating and removing the majority of endogenous oxidative base lesions. The bifunctional formamidopyrimidine DNA glycosylase (Fpg) and endonuclease VIII (Nei) are members of the Fpg/Nei family, one of the two families of glycosylases that recognize oxidized DNA bases, the other being the HhH/GPD (or Nth) superfamily. Structural and biochemical developments over the past decades have led to novel insights into the mechanism of damage recognition by the Fpg/Nei family of enzymes. Despite the overall structural similarity among members of this family, these enzymes exhibit distinct features that make them unique. This review summarizes the current structural knowledge of the Fpg/Nei family members, emphasizes their substrate specificities, and describes how these enzymes search for lesions.
Collapse
|
48
|
Hegde ML, Izumi T, Mitra S. Oxidized base damage and single-strand break repair in mammalian genomes: role of disordered regions and posttranslational modifications in early enzymes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:123-53. [PMID: 22749145 DOI: 10.1016/b978-0-12-387665-2.00006-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oxidative genome damage induced by reactive oxygen species includes oxidized bases, abasic (AP) sites, and single-strand breaks, all of which are repaired via the evolutionarily conserved base excision repair/single-strand break repair (BER/SSBR) pathway. BER/SSBR in mammalian cells is complex, with preferred and backup sub-pathways, and is linked to genome replication and transcription. The early BER/SSBR enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic endonuclease 1 (APE1), form complexes with downstream repair (and other noncanonical) proteins via pairwise interactions. Furthermore, a unique feature of mammalian early BER/SSBR enzymes is the presence of a disordered terminal extension that is absent in their Escherichia coli prototypes. These nonconserved segments usually contain organelle-targeting signals, common interaction interfaces, and sites of posttranslational modifications that may be involved in regulating their repair function including lesion scanning. Finally, the linkage of BER/SSBR deficiency to cancer, aging, and human neurodegenerative diseases, and therapeutic targeting of BER/SSBR are discussed.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | |
Collapse
|
49
|
Hegde ML, Hazra TK, Mitra S. Functions of disordered regions in mammalian early base excision repair proteins. Cell Mol Life Sci 2010; 67:3573-87. [PMID: 20714778 PMCID: PMC2996047 DOI: 10.1007/s00018-010-0485-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 11/30/2022]
Abstract
Reactive oxygen species, generated endogenously and induced as a toxic response, produce several dozen oxidized or modified bases and/or single-strand breaks in mammalian and other genomes. These lesions are predominantly repaired via the conserved base excision repair (BER) pathway. BER is initiated with excision of oxidized or modified bases by DNA glycosylases leading to formation of abasic (AP) site or strand break at the lesion site. Structural analysis by experimental and modeling approaches shows the presence of a disordered segment commonly localized at the N- or C-terminus as a characteristic signature of mammalian DNA glycosylases which is absent in their bacterial prototypes. Recent studies on unstructured regions in DNA metabolizing proteins have indicated their essential role in interaction with other proteins and target DNA recognition. In this review, we have discussed the unique presence of disordered segments in human DNA glycosylases, and AP endonuclease involved in the processing of glycosylase products, and their critical role in regulating repair functions. These disordered segments also include sites for posttranslational modifications and nuclear localization signal. The teleological basis for their structural flexibility is discussed.
Collapse
Affiliation(s)
- Muralidhar L. Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1079 USA
| | - Tapas K. Hazra
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1079 USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555-1079 USA
| | - Sankar Mitra
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1079 USA
| |
Collapse
|