1
|
Tumbale PP, Jurkiw TJ, Krahn JM, Bokil NV, Admiraal SJ, Pedersen LC, Williams JS, Kunkel TA, O’Brien PJ, Williams R. Molecular basis for RNA discrimination by human DNA ligase 1. Nucleic Acids Res 2025; 53:gkaf299. [PMID: 40239996 PMCID: PMC12000876 DOI: 10.1093/nar/gkaf299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
DNA ligase 1 (LIG1) finalizes DNA replication and repair by catalyzing the joining of DNA nicks. LIG1 is highly specific for DNA-DNA junctions over DNA-RNA junctions, discriminating strongly against a single ribonucleotide at the 5' side of the nick. This selectivity of LIG1 prevents futile and potentially mutagenic DNA-RNA cleavage and re-ligation cycles during Okazaki fragment maturation or ribonucleotide excision repair of genome-embedded ribonucleotide monophosphates (rNMPs), but the determinants of LIG1 rNMP discrimination are ill-defined. We report structural and kinetic analysis of LIG1 DNA-RNA complexes showing that LIG1 employs an aromatic steric gate to stabilize the enzyme-substrate complex and directly exclude rNMP-containing polynucleotides. Mutation of this RNA gate compromises the adenylyl-transfer and nick-sealing reactions but decreases the discrimination against an rNMP-containing substrate by ∼3600-fold. Our results establish the role of the conserved steric gate in ribonucleotide discrimination by high-fidelity (HiFi) DNA ligases at each step of the ligation reaction, which has parallels to the ribonucleotide discrimination by HiFi DNA polymerases.
Collapse
Affiliation(s)
- Percy P Tumbale
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC 27709, United States
| | - Thomas J Jurkiw
- Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, United States
| | - Juno M Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC 27709, United States
| | - Neha V Bokil
- Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, United States
| | - Suzanne J Admiraal
- Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, United States
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC 27709, United States
| | - Jessica S Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC 27709, United States
| | - Tom A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC 27709, United States
| | - Patrick J O’Brien
- Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, United States
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC 27709, United States
| |
Collapse
|
2
|
Bai D, Cao Z, Attada N, Song J, Zhu C. Single-cell parallel analysis of DNA damage and transcriptome reveals selective genome vulnerability. Nat Methods 2025:10.1038/s41592-025-02632-3. [PMID: 40128288 DOI: 10.1038/s41592-025-02632-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/18/2025] [Indexed: 03/26/2025]
Abstract
Maintenance of genome integrity is paramount to molecular programs in multicellular organisms. Throughout the lifespan, various endogenous and environmental factors pose persistent threats to the genome, which can result in DNA damage. Understanding the functional consequences of DNA damage requires investigating their preferred genomic distributions and influences on gene regulatory programs. However, such analysis is hindered by both the complex cell-type compositions within organs and the high background levels due to the stochasticity of damage formation. To address these challenges, we developed Paired-Damage-seq for joint analysis of oxidative and single-stranded DNA damage with gene expression in single cells. We applied this approach to cultured HeLa cells and the mouse brain as a proof of concept. Our results indicated the associations between damage formation and epigenetic changes. The distribution of oxidative DNA damage hotspots exhibits cell-type-specific patterns; this selective genome vulnerability, in turn, can predict cell types and dysregulated molecular programs that contribute to disease risks.
Collapse
Affiliation(s)
| | - Zhenkun Cao
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Jinghui Song
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chenxu Zhu
- New York Genome Center, New York, NY, USA.
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Jaisal M, Sannapureddi RKR, Ash S, Sathyamoorthy B. Ribose Sugar Alters Conformational Sampling of G⋅T Mismatched Duplex DNA. Chem Asian J 2025; 20:e202401335. [PMID: 39871698 DOI: 10.1002/asia.202401335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
Polymerases erroneously incorporate Guanine-Thymine (dG⋅dT) mismatches in genomic DNA that further evades repair by transient sampling of tautomeric/ionic states compromising fidelity of repairing dG⋅dT mismatches. In conjunction, significant frequency of ribose (mis)incorporation in duplex DNA permits for misincorporated-mismatch in the genome. Ribose incorporated G (rG) mismatched with T (rG⋅dT) is the most stable across all misincorporated-mismatch calling into question the conformational consequences of the ribose sugar in addition to the mismatch. In this work, the effects of single rG⋅dT is investigated within a dodecamer DNA duplex employing solution-state NMR spectroscopy, partial anisotropic measurements in conjunction with molecular dynamics simulations to evaluate the impact on base pairs and the overall duplex structure. It is observed that rG⋅dT pairs exhibit enhanced flexibility in both base-pair and sugar dynamics compared to dG⋅dT, and the perturbations are enhanced in comparison to a ribose incorporated adenine-thymine (rA-dT) pair. The structural perturbations compared between rG⋅dT and dG⋅dT provides clues on plausible recognition modes of ribonucleotide excision repair (RER) pathway that looks for misincorporated ribose and mismatch repair (MMR) enzymes that scout for a mismatch.
Collapse
Affiliation(s)
- Manjula Jaisal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Bhauri bypass road, Bhauri, Madhya Pradesh, India-, 462066
| | - Rajesh Kumar Reddy Sannapureddi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Bhauri bypass road, Bhauri, Madhya Pradesh, India-, 462066
| | - Subhaprad Ash
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Bhauri bypass road, Bhauri, Madhya Pradesh, India-, 462066
| | - Bharathwaj Sathyamoorthy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Bhauri bypass road, Bhauri, Madhya Pradesh, India-, 462066
| |
Collapse
|
4
|
Jaruga P, Kant M, Dizdaroglu M. Production, Isolation, and Characterization of Stable Isotope-Labeled Standards for Mass Spectrometric Measurements of Oxidatively-Damaged Nucleosides in RNA. ACS OMEGA 2025; 10:1519-1530. [PMID: 39829548 PMCID: PMC11740632 DOI: 10.1021/acsomega.4c09310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
RNA undergoes oxidatively induced damage in living organisms analogous to DNA. RNA is even more vulnerable to damage than DNA due to its greater abundance, single-strandedness, lack of repair and chromatin proteins shield, and instability, among other effects. RNA damage can adversely affect gene expression, leading to protein synthesis alterations, cell death, and other detrimental biological consequences. Growing indications suggest the involvement of oxidatively induced RNA damage in the pathogenesis of various human diseases, aging, and age-related diseases. Oxidatively induced damage can cause modifications to all four heterocyclic bases in RNA. Precise measurement of such modifications in RNA is essential for understanding the biological effects of oxidatively induced RNA damage. In the past, mass spectrometry has been used for this purpose. In mass spectrometric measurements, the use of stable isotope-labeled analogues of analytes as internal standards is essential for accurate quantifications. Past work utilized a stable isotope-labeled analogue of 8-hydroxyguanosine only as an internal standard. Thus, far, no stable isotope-labeled analogues of other oxidatively modified RNA nucleosides were available. In the present work, we report on the preparation, isolation, and characterization of the 13C- and 15N-labeled analogues of a variety of modified pyrimidine- and purine-derived RNA nucleosides. We also show the application of these internal standards for the measurement of oxidatively induced RNA damage in several commercially available RNA samples and in DNA along with DNA damage.
Collapse
Affiliation(s)
- Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | | | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
5
|
Boysen G, Alexandrov L, Rahbari R, Nookaew I, Ussery D, Chao MR, Hu CW, Cooke M. Investigating the origins of the mutational signatures in cancer. Nucleic Acids Res 2025; 53:gkae1303. [PMID: 39778866 PMCID: PMC11707540 DOI: 10.1093/nar/gkae1303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/17/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025] Open
Abstract
Most of the risk factors associated with chronic and complex diseases, such as cancer, stem from exogenous and endogenous exposures experienced throughout an individual's life, collectively known as the exposome. These exposures can modify DNA, which can subsequently lead to the somatic mutations found in all normal and tumor tissues. Understanding the precise origins of specific somatic mutations has been challenging due to multitude of DNA adducts (i.e. the DNA adductome) and their diverse positions within the genome. Thus far, this limitation has prevented researchers from precisely linking exposures to DNA adducts and DNA adducts to subsequent mutational outcomes. Indeed, many common mutations observed in human cancers appear to originate from error-prone endogenous processes. Consequently, it remains unclear whether these mutations result from exposure-induced DNA adducts, or arise indirectly from endogenous processes or are a combination of both. In this review, we summarize approaches that aim to bridge our understanding of the mechanism by which exposure leads to DNA damage and then to mutation and highlight some of the remaining challenges and shortcomings to fully supporting this paradigm. We emphasize the need to integrate cellular DNA adductomics, long read-based mapping, single-molecule duplex sequencing of native DNA molecules and advanced computational analysis. This proposed holistic approach aims to unveil the causal connections between key DNA modifications and the mutational landscape, whether they originate from external exposures, internal processes or a combination of both, thereby addressing key questions in cancer biology.
Collapse
Affiliation(s)
- Gunnar Boysen
- Department of Environmental Health Science, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
- The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Raheleh Rahbari
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Intawat Nookaew
- Department of BioMedical Informatics, The University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Dave Ussery
- Department of BioMedical Informatics, The University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Jianguo N Rd, South District, Taichung 40201, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Jianguo N Rd, South District, Taichung 40201, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Jianguo N Rd, South District, Taichung 40201, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, 4202 E. Fowler Avenue, Tampa, FL 33612, USA
| |
Collapse
|
6
|
Thomas R, Zaksauskaite R, Al-Kandari N, Hyde A, Abugable A, El-Khamisy S, van Eeden F. Second generation lethality in RNAseH2a knockout zebrafish. Nucleic Acids Res 2024; 52:11014-11028. [PMID: 39217460 PMCID: PMC11472149 DOI: 10.1093/nar/gkae725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Removal of ribonucleotides from DNA by RNaseH2 is essential for genome stability, and its impacted function causes the neurodegenerative disease, Aicardi Goutières Syndrome. We have created a zebrafish rnaseh2a mutant to model this process. Surprisingly, RNaseH2a knockouts show little phenotypic abnormality at adulthood in the first generation, unlike mouse knockout models, which are early embryonic lethal. However, the second generation offspring show reduced development, increased ribonucleotide incorporation and upregulation of key inflammatory markers, resulting in both maternal and paternal embryonic lethality. Thus, neither fathers or mothers can generate viable offspring even when crossed to wild-type partners. Despite their survival, rnaseh2a-/- adults show an accumulation of ribonucleotides in both the brain and testes that is not present in early development. Our data suggest that homozygotes possess RNaseH2 independent compensatory mechanisms that are inactive or overwhelmed by the inherited ribonucleotides in their offspring, or that zebrafish have a yet unknown tolerance mechanism. Additionally, we identify ribodysgenesis, the rapid removal of rNMPs and subsequently lethal fragmentation of DNA as responsible for maternal and paternal embryonic lethality.
Collapse
Affiliation(s)
- Ruth C Thomas
- Bateson Centre, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Healthy Lifespan Institute, Sheffield Institute for Neuroscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Ringaile Zaksauskaite
- Bateson Centre, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Healthy Lifespan Institute, Sheffield Institute for Neuroscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Norah Y Al-Kandari
- Bateson Centre, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Healthy Lifespan Institute, Sheffield Institute for Neuroscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Anne Cathrine Hyde
- Bateson Centre, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Healthy Lifespan Institute, Sheffield Institute for Neuroscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Arwa A Abugable
- Healthy Lifespan Institute, Sheffield Institute for Neuroscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Sherif F El-Khamisy
- Bateson Centre, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Healthy Lifespan Institute, Sheffield Institute for Neuroscience, University of Sheffield, Sheffield S10 2TN, UK
- The Institute of Cancer Therapeutics, University of Bradford, BD7 1DP, UK
| | - Freek J van Eeden
- Bateson Centre, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Healthy Lifespan Institute, Sheffield Institute for Neuroscience, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
7
|
Balu KE, Tang Q, Almohdar D, Ratcliffe J, Kalaycioğlu M, Çağlayan M. Structures of LIG1 uncover the mechanism of sugar discrimination against 5'-RNA-DNA junctions during ribonucleotide excision repair. J Biol Chem 2024; 300:107688. [PMID: 39159820 PMCID: PMC11418127 DOI: 10.1016/j.jbc.2024.107688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
Ribonucleotides in DNA cause several types of genome instability and can be removed by ribonucleotide excision repair (RER) that is finalized by DNA ligase 1 (LIG1). However, the mechanism by which LIG1 discriminates the RER intermediate containing a 5'-RNA-DNA lesion generated by RNase H2-mediated cleavage of ribonucleotides at atomic resolution remains unknown. Here, we determine X-ray structures of LIG1/5'-rG:C at the initial step of ligation where AMP is bound to the active site of the ligase and uncover a large conformational change downstream the nick resulting in a shift at Arg(R)871 residue in the Adenylation domain of the ligase. Furthermore, we demonstrate a diminished ligation of the nick DNA substrate with a 5'-ribonucleotide in comparison to an efficient end joining of the nick substrate with a 3'-ribonucleotide by LIG1. Finally, our results demonstrate that mutations at the active site residues of the ligase and LIG1 disease-associated variants significantly impact the ligation efficiency of RNA-DNA heteroduplexes harboring "wrong" sugar at 3'- or 5'-end of nick. Collectively, our findings provide a novel atomic insight into proficient sugar discrimination by LIG1 during the processing of the most abundant form of DNA damage in cells, genomic ribonucleotides, during the initial step of the RER pathway.
Collapse
Affiliation(s)
- Kanal Elamparithi Balu
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Qun Tang
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Danah Almohdar
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Jacob Ratcliffe
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Mustafa Kalaycioğlu
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
8
|
Bugallo A, Segurado M. Unraveling the complexity of asymmetric DNA replication: Advancements in ribonucleotide mapping techniques and beyond. Genomics 2024; 116:110908. [PMID: 39106913 DOI: 10.1016/j.ygeno.2024.110908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
DNA replication is a fundamental process for cell proliferation, governed by intricate mechanisms involving leading and lagging strand synthesis. In eukaryotes, canonical DNA replication occurs during the S phase of the cell cycle, facilitated by various components of the replicative machinery at sites known as replication origins. Leading and lagging strands exhibit distinct replication dynamics, with leading strand replication being relatively straightforward compared to the complex synthesis of lagging strands involving Okazaki fragment maturation. Central to DNA synthesis are DNA polymerases, with Polα, Polε, and Polδ playing pivotal roles, each specializing in specific tasks during replication. Notably, leading and lagging strands are replicated by different polymerases, contributing to the division of labor in DNA replication. Understanding the enzymology of asymmetric DNA replication has been challenging, with methods relying on ribonucleotide incorporation and next-generation sequencing techniques offering comprehensive insights. These methodologies, such as HydEn-seq, PU-seq, ribose-seq, and emRiboSeq, offer insights into polymerase activity and strand synthesis, aiding in understanding DNA replication dynamics. Recent advancements include novel conditional mutants for ribonucleotide excision repair, enzymatic cleavage alternatives, and unified pipelines for data analysis. Further developments in adapting techniques to different organisms, studying non-canonical polymerases, and exploring new sequencing platforms hold promise for expanding our understanding of DNA replication dynamics. Integrating strand-specific information into single-cell studies could offer novel insights into enzymology, opening avenues for future research and applications in repair and replication biology.
Collapse
Affiliation(s)
- Alberto Bugallo
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | - Mónica Segurado
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain; Departamento de Microbiología y Genética (USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain.
| |
Collapse
|
9
|
Hinrichs R, Graumann PL. Visual Evidence for the Recruitment of Four Enzymes with RNase Activity to the Bacillus subtilis Replication Forks. Cells 2024; 13:1381. [PMID: 39195267 PMCID: PMC11352351 DOI: 10.3390/cells13161381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Removal of RNA/DNA hybrids for the maturation of Okazaki fragments on the lagging strand, or due to misincorporation of ribonucleotides by DNA polymerases, is essential for all types of cells. In prokaryotic cells such as Escherichia coli, DNA polymerase 1 and RNase HI are supposed to remove RNA from Okazaki fragments, but many bacteria lack HI-type RNases, such as Bacillus subtilis. Previous work has demonstrated in vitro that four proteins are able to remove RNA from RNA/DNA hybrids, but their actual contribution to DNA replication is unclear. We have studied the dynamics of DNA polymerase A (similar to Pol 1), 5'->3' exonuclease ExoR, and the two endoribonucleases RNase HII and HIII in B. subtilis using single-molecule tracking. We found that all four enzymes show a localization pattern similar to that of replicative DNA helicase. By scoring the distance of tracks to replication forks, we found that all four enzymes are enriched at DNA replication centers. After inducing UV damage, RNase HIII was even more strongly recruited to the replication forks, and PolA showed a more static behavior, indicative of longer binding events, whereas RNase HII and ExoR showed no response. Inhibition of replication by 6(p hydroxyphenylazo)-uracil (HPUra) demonstrated that both RNase HII and RNase HIII are directly involved in the replication. We found that the absence of ExoR increases the likelihood of RNase HIII at the forks, indicating that substrate availability rather than direct protein interactions may be a major driver for the recruitment of RNases to the lagging strands. Thus, B. subtilis replication forks appear to be an intermediate between E. coli type and eukaryotic replication forks and employ a multitude of RNases, rather than any dedicated enzyme for RNA/DNA hybrid removal.
Collapse
Affiliation(s)
- Rebecca Hinrichs
- Centre for Synthetic Microbiology (SYNMIKRO), Philipps Universität Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Peter L. Graumann
- Centre for Synthetic Microbiology (SYNMIKRO), Philipps Universität Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| |
Collapse
|
10
|
Xiao X, Huang J. Enzyme-Responsive Supramolecular Self-Assembly in Small Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39018035 DOI: 10.1021/acs.langmuir.4c01762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Enzyme-responsive molecular assemblies have recently made remarkable progress, owing to their widespread applications. As a class of catalysts with high specificity and efficiency, enzymes play a critical role in producing new molecules and maintaining metabolic stability in living organisms. Therefore, the study of enzyme-responsive assembly aids in understanding the origin of life and the physiological processes occurring within living bodies, contributing to further advancements across various disciplines. In this Review, we summarize three kinds of enzyme-responsive assembly systems in amphiphiles: enzyme-triggered assembly, disassembly, and structural transformation. Furthermore, motivated by the fact that biological macromolecules and complex structures all originated with small molecules, our focus lies on the small amphiphiles (e.g., peptides, surfactants, fluorescent molecules, and drug molecules). We also provide an outlook on the potential of enzyme-responsive assembly systems for biomimetic development and hope this Review will attract more attention to this emerging research branch at the intersection of assembly chemistry and biological science.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
11
|
Balu KE, Gulkis M, Almohdar D, Çağlayan M. Structures of LIG1 provide a mechanistic basis for understanding a lack of sugar discrimination against a ribonucleotide at the 3'-end of nick DNA. J Biol Chem 2024; 300:107216. [PMID: 38522520 PMCID: PMC11035063 DOI: 10.1016/j.jbc.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
Human DNA ligase 1 (LIG1) is the main replicative ligase that seals Okazaki fragments during nuclear replication and finalizes DNA repair pathways by joining DNA ends of the broken strand breaks in the three steps of the ligation reaction. LIG1 can tolerate the RNA strand upstream of the nick, yet an atomic insight into the sugar discrimination mechanism by LIG1 against a ribonucleotide at the 3'-terminus of nick DNA is unknown. Here, we determined X-ray structures of LIG1/3'-RNA-DNA hybrids and captured the ligase during pre- and post-step 3 the ligation reaction. Furthermore, the overlays of 3'-rA:T and 3'-rG:C step 3 structures with step 2 structures of canonical 3'-dA:T and 3'-dG:C uncover a network of LIG1/DNA interactions through Asp570 and Arg871 side chains with 2'-OH of the ribose at nick showing a final phosphodiester bond formation and the other ligase active site residues surrounding the AMP site. Finally, we demonstrated that LIG1 can ligate the nick DNA substrates with pre-inserted 3'-ribonucleotides as efficiently as Watson-Crick base-paired ends in vitro. Together, our findings uncover a novel atomic insight into a lack of sugar discrimination by LIG1 and the impact of improper sugar on the nick sealing of ribonucleotides at the last step of DNA replication and repair.
Collapse
Affiliation(s)
- Kanal Elamparithi Balu
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Mitchell Gulkis
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Danah Almohdar
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
12
|
Mullins EA, Salay LE, Durie CL, Bradley NP, Jackman JE, Ohi MD, Chazin WJ, Eichman BF. A mechanistic model of primer synthesis from catalytic structures of DNA polymerase α-primase. Nat Struct Mol Biol 2024; 31:777-790. [PMID: 38491139 PMCID: PMC11102853 DOI: 10.1038/s41594-024-01227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 01/12/2024] [Indexed: 03/18/2024]
Abstract
The mechanism by which polymerase α-primase (polα-primase) synthesizes chimeric RNA-DNA primers of defined length and composition, necessary for replication fidelity and genome stability, is unknown. Here, we report cryo-EM structures of Xenopus laevis polα-primase in complex with primed templates representing various stages of DNA synthesis. Our data show how interaction of the primase regulatory subunit with the primer 5' end facilitates handoff of the primer to polα and increases polα processivity, thereby regulating both RNA and DNA composition. The structures detail how flexibility within the heterotetramer enables synthesis across two active sites and provide evidence that termination of DNA synthesis is facilitated by reduction of polα and primase affinities for the varied conformations along the chimeric primer-template duplex. Together, these findings elucidate a critical catalytic step in replication initiation and provide a comprehensive model for primer synthesis by polα-primase.
Collapse
Affiliation(s)
- Elwood A Mullins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Lauren E Salay
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Clarissa L Durie
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Noah P Bradley
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Walter J Chazin
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
13
|
Grasso L, Fonzino A, Manzari C, Leonardi T, Picardi E, Gissi C, Lazzaro F, Pesole G, Muzi-Falconi M. Detection of ribonucleotides embedded in DNA by Nanopore sequencing. Commun Biol 2024; 7:491. [PMID: 38654143 PMCID: PMC11039623 DOI: 10.1038/s42003-024-06077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Ribonucleotides represent the most common non-canonical nucleotides found in eukaryotic genomes. The sources of chromosome-embedded ribonucleotides and the mechanisms by which unrepaired rNMPs trigger genome instability and human pathologies are not fully understood. The available sequencing technologies only allow to indirectly deduce the genomic location of rNMPs. Oxford Nanopore Technologies (ONT) may overcome such limitation, revealing the sites of rNMPs incorporation in genomic DNA directly from raw sequencing signals. We synthesized two types of DNA molecules containing rNMPs at known or random positions and we developed data analysis pipelines for DNA-embedded ribonucleotides detection by ONT. We report that ONT can identify all four ribonucleotides incorporated in DNA by capturing rNMPs-specific alterations in nucleotide alignment features, current intensity, and dwell time. We propose that ONT may be successfully employed to directly map rNMPs in genomic DNA and we suggest a strategy to build an ad hoc basecaller to analyse native genomes.
Collapse
Grants
- IG-21806 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- PRIN2017_2022KJHC7S Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN_2022JA8JY5 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- CN_00000041 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN2017_2022KJHC7S Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- National Research Centers: “High Performance Computing, Big Data and Quantum Computing” (Project no. CN_00000013)
- National Research Centers: “High Performance Computing, Big Data and Quantum Computing” extended Partnerships: MNESYS (Project no. PE_0000006) and Age-It (Project no. PE_00000015). ELIXIR-IT through the empowering project ELIXIRNextGenIT (Grant Code IR0000010).
Collapse
Affiliation(s)
- Lavinia Grasso
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Adriano Fonzino
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università di Bari A. Moro, Via Orabona 4, 70126, Bari, Italy
| | - Caterina Manzari
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università di Bari A. Moro, Via Orabona 4, 70126, Bari, Italy
| | - Tommaso Leonardi
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Via Adamello 16, 20139, Milano, Italy
| | - Ernesto Picardi
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università di Bari A. Moro, Via Orabona 4, 70126, Bari, Italy
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via Amendola 122/O, 70126, Bari, Italy
| | - Carmela Gissi
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università di Bari A. Moro, Via Orabona 4, 70126, Bari, Italy
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via Amendola 122/O, 70126, Bari, Italy
| | - Federico Lazzaro
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| | - Graziano Pesole
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università di Bari A. Moro, Via Orabona 4, 70126, Bari, Italy.
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via Amendola 122/O, 70126, Bari, Italy.
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| |
Collapse
|
14
|
Piguet B, Houseley J. Transcription as source of genetic heterogeneity in budding yeast. Yeast 2024; 41:171-185. [PMID: 38196235 DOI: 10.1002/yea.3926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
Transcription presents challenges to genome stability both directly, by altering genome topology and exposing single-stranded DNA to chemical insults and nucleases, and indirectly by introducing obstacles to the DNA replication machinery. Such obstacles include the RNA polymerase holoenzyme itself, DNA-bound regulatory factors, G-quadruplexes and RNA-DNA hybrid structures known as R-loops. Here, we review the detrimental impacts of transcription on genome stability in budding yeast, as well as the mitigating effects of transcription-coupled nucleotide excision repair and of systems that maintain DNA replication fork processivity and integrity. Interactions between DNA replication and transcription have particular potential to induce mutation and structural variation, but we conclude that such interactions must have only minor effects on DNA replication by the replisome with little if any direct mutagenic outcome. However, transcription can significantly impair the fidelity of replication fork rescue mechanisms, particularly Break Induced Replication, which is used to restart collapsed replication forks when other means fail. This leads to de novo mutations, structural variation and extrachromosomal circular DNA formation that contribute to genetic heterogeneity, but only under particular conditions and in particular genetic contexts, ensuring that the bulk of the genome remains extremely stable despite the seemingly frequent interactions between transcription and DNA replication.
Collapse
|
15
|
Das S, Forrest J, Kuzminov A. Synthetic lethal mutants in Escherichia coli define pathways necessary for survival with RNase H deficiency. J Bacteriol 2023; 205:e0028023. [PMID: 37819120 PMCID: PMC10601623 DOI: 10.1128/jb.00280-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 10/13/2023] Open
Abstract
Ribonucleotides frequently contaminate DNA and, if not removed, cause genomic instability. Consequently, all organisms are equipped with RNase H enzymes to remove RNA-DNA hybrids (RDHs). Escherichia coli lacking RNase HI (rnhA) and RNase HII (rnhB) enzymes, the ∆rnhA ∆rnhB double mutant, accumulates RDHs in its DNA. These RDHs can convert into RNA-containing DNA lesions (R-lesions) of unclear nature that compromise genomic stability. The ∆rnhAB double mutant has severe phenotypes, like growth inhibition, replication stress, sensitivity to ultraviolet radiation, SOS induction, increased chromosomal fragmentation, and defects in nucleoid organization. In this study, we found that RNase HI deficiency also alters wild-type levels of DNA supercoiling. Despite these severe chromosomal complications, ∆rnhAB double mutant survives, suggesting that dedicated pathways operate to avoid or repair R-lesions. To identify these pathways, we systematically searched for mutants synthetic lethal (colethal) with the rnhAB defect using an unbiased color screen and a candidate gene approach. We identified both novel and previously reported rnhAB-colethal and -coinhibited mutants, characterized them, and sorted them into avoidance or repair pathways. These mutants operate in various parts of nucleic acid metabolism, including replication fork progression, R-loop prevention and removal, nucleoid organization, tRNA modification, recombinational repair, and chromosome-dimer resolution, demonstrating the pleiotropic nature of RNase H deficiency. IMPORTANCE Ribonucleotides (rNs) are structurally very similar to deoxyribonucleotides. Consequently, rN contamination of DNA is common and pervasive across all domains of life. Failure to remove rNs from DNA has severe consequences, and all organisms are equipped with RNase H enzymes to remove RNA-DNA hybrids. RNase H deficiency leads to complications in bacteria, yeast, and mouse, and diseases like progressive external ophthalmoplegia (mitochondrial defects in RNASEH1) and Aicardi-Goutières syndrome (defects in RNASEH2) in humans. Escherichia coli ∆rnhAB mutant, deficient in RNases H, has severe chromosomal complications. Despite substantial problems, nearly half of the mutant population survives. We have identified novel and previously confirmed pathways in various parts of nucleic acid metabolism that ensure survival with RNase H deficiency.
Collapse
Affiliation(s)
- Sneha Das
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan Forrest
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
16
|
Mullins EA, Salay LE, Durie CL, Bradley NP, Jackman JE, Ohi MD, Chazin WJ, Eichman BF. A mechanistic model of primer synthesis from catalytic structures of DNA polymerase α-primase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533013. [PMID: 36993335 PMCID: PMC10055150 DOI: 10.1101/2023.03.16.533013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The mechanism by which polymerase α-primase (polα-primase) synthesizes chimeric RNA-DNA primers of defined length and composition, necessary for replication fidelity and genome stability, is unknown. Here, we report cryo-EM structures of polα-primase in complex with primed templates representing various stages of DNA synthesis. Our data show how interaction of the primase regulatory subunit with the primer 5'-end facilitates handoff of the primer to polα and increases polα processivity, thereby regulating both RNA and DNA composition. The structures detail how flexibility within the heterotetramer enables synthesis across two active sites and provide evidence that termination of DNA synthesis is facilitated by reduction of polα and primase affinities for the varied conformations along the chimeric primer/template duplex. Together, these findings elucidate a critical catalytic step in replication initiation and provide a comprehensive model for primer synthesis by polα-primase.
Collapse
|
17
|
Seys FM, Humphreys CM, Tomi-Andrino C, Li Q, Millat T, Yang S, Minton NP. Base editing enables duplex point mutagenesis in Clostridium autoethanogenum at the price of numerous off-target mutations. Front Bioeng Biotechnol 2023; 11:1211197. [PMID: 37496853 PMCID: PMC10366002 DOI: 10.3389/fbioe.2023.1211197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/06/2023] [Indexed: 07/28/2023] Open
Abstract
Base editors are recent multiplex gene editing tools derived from the Cas9 nuclease of Streptomyces pyogenes. They can target and modify a single nucleotide in the genome without inducing double-strand breaks (DSB) of the DNA helix. As such, they hold great potential for the engineering of microbes that lack effective DSB repair pathways such as homologous recombination (HR) or non-homologous end-joining (NHEJ). However, few applications of base editors have been reported in prokaryotes to date, and their advantages and drawbacks have not been systematically reported. Here, we used the base editors Target-AID and Target-AID-NG to introduce nonsense mutations into four different coding sequences of the industrially relevant Gram-positive bacterium Clostridium autoethanogenum. While up to two loci could be edited simultaneously using a variety of multiplexing strategies, most colonies exhibited mixed genotypes and most available protospacers led to undesired mutations within the targeted editing window. Additionally, fifteen off-target mutations were detected by sequencing the genome of the resulting strain, among them seven single-nucleotide polymorphisms (SNP) in or near loci bearing some similarity with the targeted protospacers, one 15 nt duplication, and one 12 kb deletion which removed uracil DNA glycosylase (UDG), a key DNA repair enzyme thought to be an obstacle to base editing mutagenesis. A strategy to process prokaryotic single-guide RNA arrays by exploiting tRNA maturation mechanisms is also illustrated.
Collapse
Affiliation(s)
- François M. Seys
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Christopher M. Humphreys
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Claudio Tomi-Andrino
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Nottingham BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Thomas Millat
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Nigel P. Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
18
|
Dupuy P, Glickman MS. The C-Terminal Acid Phosphatase Module of the RNase HI Enzyme RnhC Controls Rifampin Sensitivity and Light-Dependent Colony Pigmentation of Mycobacterium smegmatis. J Bacteriol 2023; 205:e0043122. [PMID: 36916909 PMCID: PMC10127661 DOI: 10.1128/jb.00431-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/16/2023] [Indexed: 03/16/2023] Open
Abstract
RNase H enzymes participate in various processes that require processing of RNA-DNA hybrids, including DNA replication, transcription, and ribonucleotide excision from DNA. Mycobacteria encode multiple RNase H enzymes, and prior data indicate that RNase HI activity is essential for mycobacterial viability. However, the additional roles of mycobacterial RNase Hs are unknown, including whether RNase HII (RnhB and RnhD) excises chromosomal ribonucleotides misincorporated during DNA replication and whether individual RNase HI enzymes (RnhA and RnhC) mediate additional phenotypes. We find that loss of RNase HII activity in Mycobacterium smegmatis (through combined deletion of rnhB/rnhD) or individual RNase HI enzymes does not affect growth, hydroxyurea sensitivity, or mutagenesis, whereas overexpression (OE) of either RNase HII severely compromises bacterial viability. We also show that deletion of rnhC, which encodes a protein with an N-terminal RNase HI domain and a C-terminal acid phosphatase domain, confers sensitivity to rifampin and oxidative stress as well as loss of light-induced carotenoid pigmentation. These phenotypes are due to loss of the activity of the C-terminal acid phosphatase domain rather than the RNase HI activity, suggesting that the acid phosphatase activity may confer rifampin resistance through the antioxidant properties of carotenoid pigment production. IMPORTANCE Mycobacteria encode multiple RNase H enzymes, with RNase HI being essential for viability. Here, we examine additional functions of RNase H enzymes in mycobacteria. We find that RNase HII is not involved in mutagenesis but is highly toxic when overexpressed. The RNase HI enzyme RnhC is required for tolerance to rifampin, but this role is surprisingly independent of its RNase H activity and is instead mediated by an autonomous C-terminal acid phosphatase domain. This study provides new insights into the functions of the multiple RNase H enzymes of mycobacteria.
Collapse
Affiliation(s)
- Pierre Dupuy
- Immunology Program, Sloan Kettering Institute, New York, New York, USA
| | - Michael S. Glickman
- Immunology Program, Sloan Kettering Institute, New York, New York, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, New York, New York, USA
| |
Collapse
|
19
|
Njeri C, Pepenella S, Battapadi T, Bambara RA, Balakrishnan L. DNA Polymerase Delta Exhibits Altered Catalytic Properties on Lysine Acetylation. Genes (Basel) 2023; 14:genes14040774. [PMID: 37107532 PMCID: PMC10137900 DOI: 10.3390/genes14040774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
DNA polymerase delta is the primary polymerase that is involved in undamaged nuclear lagging strand DNA replication. Our mass-spectroscopic analysis has revealed that the human DNA polymerase δ is acetylated on subunits p125, p68, and p12. Using substrates that simulate Okazaki fragment intermediates, we studied alterations in the catalytic properties of acetylated polymerase and compared it to the unmodified form. The current data show that the acetylated form of human pol δ displays a higher polymerization activity compared to the unmodified form of the enzyme. Additionally, acetylation enhances the ability of the polymerase to resolve complex structures such as G-quadruplexes and other secondary structures that might be present on the template strand. More importantly, the ability of pol δ to displace a downstream DNA fragment is enhanced upon acetylation. Our current results suggest that acetylation has a profound effect on the activity of pol δ and supports the hypothesis that acetylation may promote higher-fidelity DNA replication.
Collapse
Affiliation(s)
- Catherine Njeri
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Sharon Pepenella
- Department of Microbiology and Immunology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Tripthi Battapadi
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Robert A Bambara
- Department of Microbiology and Immunology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Lata Balakrishnan
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Indiana University Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
20
|
Łazowski K, Faraz M, Vaisman A, Ashton NW, Jonczyk P, Fijalkowska IJ, Clausen AR, Woodgate R, Makiela-Dzbenska K. Strand specificity of ribonucleotide excision repair in Escherichia coli. Nucleic Acids Res 2023; 51:1766-1782. [PMID: 36762476 PMCID: PMC9976901 DOI: 10.1093/nar/gkad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
In Escherichia coli, replication of both strands of genomic DNA is carried out by a single replicase-DNA polymerase III holoenzyme (pol III HE). However, in certain genetic backgrounds, the low-fidelity TLS polymerase, DNA polymerase V (pol V) gains access to undamaged genomic DNA where it promotes elevated levels of spontaneous mutagenesis preferentially on the lagging strand. We employed active site mutants of pol III (pol IIIα_S759N) and pol V (pol V_Y11A) to analyze ribonucleotide incorporation and removal from the E. coli chromosome on a genome-wide scale under conditions of normal replication, as well as SOS induction. Using a variety of methods tuned to the specific properties of these polymerases (analysis of lacI mutational spectra, lacZ reversion assay, HydEn-seq, alkaline gel electrophoresis), we present evidence that repair of ribonucleotides from both DNA strands in E. coli is unequal. While RNase HII plays a primary role in leading-strand Ribonucleotide Excision Repair (RER), the lagging strand is subject to other repair systems (RNase HI and under conditions of SOS activation also Nucleotide Excision Repair). Importantly, we suggest that RNase HI activity can also influence the repair of single ribonucleotides incorporated by the replicase pol III HE into the lagging strand.
Collapse
Affiliation(s)
- Krystian Łazowski
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Mahmood Faraz
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Nicholas W Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Piotr Jonczyk
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Iwona J Fijalkowska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Anders R Clausen
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Karolina Makiela-Dzbenska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
21
|
Eghbalsaied S, Kues WA. CRISPR/Cas9-mediated targeted knock-in of large constructs using nocodazole and RNase HII. Sci Rep 2023; 13:2690. [PMID: 36792645 PMCID: PMC9931768 DOI: 10.1038/s41598-023-29789-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
On-target integration of large cassettes via homology-directed repair (HDR) has several applications. However, the HDR-mediated targeted knock-in suffered from low efficiency. In this study, we made several large plasmids (12.1-13.4 kb) which included the CRISPR/Cas9 system along with a puromycin transgene as part of the large DNA donor (5.3-7.1 kb insertion cassettes) and used them to evaluate their targeted integration efficiency into a transgenic murine embryonic fibroblast (MEF) cell line carrying a single copy of a Venus transgene. We established a detection assay by which HDR events could be discriminated from the error-prone non-homologous end-joining (NHEJ) events. Improving the plasmid quality could considerably leverage the cell toxicity impediment of large plasmids. The use of the TILD (targeted integration with linearized dsDNA) cassettes did not improve the HDR rate compared to the circular plasmids. However, the direct inclusion of nocodazole into the electroporation solution significantly improved the HDR rate. Also, simultaneous delivery of RNase HII and the donor plasmids into the electroporated cells considerably improved the HDR events. In conclusion, the results of this study showed that using cell synchronization reagents in the electroporation medium can efficiently induce HDR rate in the mammalian genome.
Collapse
Affiliation(s)
- Shahin Eghbalsaied
- grid.417834.dBiotechnology/Stem Cell Physiology, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Höltystr. 10, 31535 Neustadt, Germany ,grid.411463.50000 0001 0706 2472Department of Animal Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Tehran, Iran ,grid.1008.90000 0001 2179 088XSchool of Biosciences, Royal Parade, The University of Melbourne, Melbourne, VIC Australia
| | - Wilfried A. Kues
- grid.417834.dBiotechnology/Stem Cell Physiology, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Höltystr. 10, 31535 Neustadt, Germany
| |
Collapse
|
22
|
Zhao H, Hartono SR, de Vera KMF, Yu Z, Satchi K, Zhao T, Sciammas R, Sanz L, Chédin F, Barlow J. Senataxin and RNase H2 act redundantly to suppress genome instability during class switch recombination. eLife 2022; 11:e78917. [PMID: 36542058 PMCID: PMC9771370 DOI: 10.7554/elife.78917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Class switch recombination generates distinct antibody isotypes critical to a robust adaptive immune system, and defects are associated with autoimmune disorders and lymphomagenesis. Transcription is required during class switch recombination to recruit the cytidine deaminase AID-an essential step for the formation of DNA double-strand breaks-and strongly induces the formation of R loops within the immunoglobulin heavy-chain locus. However, the impact of R loops on double-strand break formation and repair during class switch recombination remains unclear. Here, we report that cells lacking two enzymes involved in R loop removal-senataxin and RNase H2-exhibit increased R loop formation and genome instability at the immunoglobulin heavy-chain locus without impacting its transcriptional activity, AID recruitment, or class switch recombination efficiency. Senataxin and RNase H2-deficient cells also exhibit increased insertion mutations at switch junctions, a hallmark of alternative end joining. Importantly, these phenotypes were not observed in cells lacking senataxin or RNase H2B alone. We propose that senataxin acts redundantly with RNase H2 to mediate timely R loop removal, promoting efficient repair while suppressing AID-dependent genome instability and insertional mutagenesis.
Collapse
Affiliation(s)
- Hongchang Zhao
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| | - Stella R Hartono
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | | | - Zheyuan Yu
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
- Graduate Group in Biostatistics, University of California, DavisDavisUnited States
| | - Krishni Satchi
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| | - Tracy Zhao
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| | - Roger Sciammas
- Center for Immunology and Infectious Diseases, University of California, DavisDavisUnited States
| | - Lionel Sanz
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Jacqueline Barlow
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| |
Collapse
|
23
|
Nieto NS, Parrott EE, Nelson SW. Ribonucleotide Misincorporation and Reverse Transcriptase Activities of Plasmodium falciparum Apicoplast DNA Polymerase. Biochemistry 2022; 61:2742-2750. [DOI: 10.1021/acs.biochem.2c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nicholas S. Nieto
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa50011, United States
| | - Eric E. Parrott
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa50011, United States
| | - Scott W. Nelson
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa50011, United States
| |
Collapse
|
24
|
McLean EK, Nye TM, Lowder FC, Simmons LA. The Impact of RNA-DNA Hybrids on Genome Integrity in Bacteria. Annu Rev Microbiol 2022; 76:461-480. [PMID: 35655343 PMCID: PMC9527769 DOI: 10.1146/annurev-micro-102521-014450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
During the essential processes of DNA replication and transcription, RNA-DNA hybrid intermediates are formed that pose significant risks to genome integrity when left unresolved. To manage RNA-DNA hybrids, all cells rely on RNase H family enzymes that specifically cleave the RNA portion of the many different types of hybrids that form in vivo. Recent experimental advances have provided new insight into how RNA-DNA hybrids form and the consequences to genome integrity that ensue when persistent hybrids remain unresolved. Here we review the types of RNA-DNA hybrids, including R-loops, RNA primers, and ribonucleotide misincorporations, that form during DNA replication and transcription and discuss how each type of hybrid can contribute to genome instability in bacteria. Further, we discuss how bacterial RNase HI, HII, and HIII and bacterial FEN enzymes contribute to genome maintenance through the resolution of hybrids.
Collapse
Affiliation(s)
- Emma K McLean
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
| | - Taylor M Nye
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
- Current affiliation: Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Frances C Lowder
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
| | - Lyle A Simmons
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
| |
Collapse
|
25
|
Abstract
Bacteria are continuously exposed to numerous endogenous and exogenous DNA-damaging agents. To maintain genome integrity and ensure cell survival, bacteria have evolved several DNA repair pathways to correct different types of DNA damage and non-canonical bases, including strand breaks, nucleotide modifications, cross-links, mismatches and ribonucleotide incorporations. Recent advances in genome-wide screens, the availability of thousands of whole-genome sequences and advances in structural biology have enabled the rapid discovery and characterization of novel bacterial DNA repair pathways and new enzymatic activities. In this Review, we discuss recent advances in our understanding of base excision repair and nucleotide excision repair, and we discuss several new repair processes including the EndoMS mismatch correction pathway and the MrfAB excision repair system.
Collapse
Affiliation(s)
- Katherine J Wozniak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Miranda JA, McKinzie PB, Dobrovolsky VN, Revollo JR. Evaluation of the mutagenic effects of Molnupiravir and N4-hydroxycytidine in bacterial and mammalian cells by HiFi sequencing. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:320-328. [PMID: 36181379 DOI: 10.1002/em.22510] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Molnupiravir (MOV) is used to treat COVID-19. In cells, MOV is converted to the ribonucleoside analog N4-hydroxycytidine (NHC) and incorporated into the SARS-CoV-2 RNA genome during its replication, resulting in RNA mutations. The widespread accumulation of such mutations inhibits SARS-CoV-2 propagation. Although safety assessments by many regulatory agencies across the world have concluded that the genotoxic risks associated with the clinical use of MOV are low, concerns remain that it could induce DNA mutations in patients, particularly because numerous in vitro studies have shown that NHC is a DNA mutagen. In this study, we used HiFi sequencing, a technique that can detect ultralow-frequency substitution mutations in whole genomes, to evaluate the mutagenic effects of MOV in E. coli and of MOV and NHC in mouse lymphoma L5178Y cells and human lymphoblastoid TK6 cells. In all models, exposure to these compounds increased genome-wide mutation frequencies in a dose-dependent manner, and these increases were mainly composed of A:T → G:C transitions. The NHC exposure concentrations used for mammalian cells were comparable to those observed in the plasma of humans who received clinical doses of MOV.
Collapse
Affiliation(s)
- Jaime A Miranda
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Page B McKinzie
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Vasily N Dobrovolsky
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Javier R Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
27
|
Kandabashi M, Yano H, Hara H, Ogawa S, Kamoda K, Ishibashi S, Himeda K, Baba M, Takita T, Yasukawa K. Analysis of ribonucleotide content in the genomic DNA of ribonuclease H2 A subunit (RH2A)-knockout NIH3T3 cells after transient expression of wild-type RH2A or RH2A variants with an Aicardi-Goutières syndrome-causing mutation. J Biochem 2022; 172:225-231. [DOI: 10.1093/jb/mvac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
Summary
Ribonuclease (RNase) H2 is involved in the removal of ribonucleotides embedded in genomic DNA. Eukaryotic RNase H2 is a heterotrimer consisting of the catalytic A subunit (RH2A) and the accessory B and C subunits. This study aimed to compare the cellular activities of wild-type ribonuclease (RNase) H2 and its variants with a mutation causing neuroinflammatory autoimmune disease, Aicardi-Goutières syndrome (AGS). We first analyzed cellular RNase H2 activity and ribonucleotide content in the genomic DNA of RH2A-knockout (KO) mouse fibroblast NIH3T3 cells after transfection with a transient expression plasmid encoding mouse wild-type RH2A. From four hours after transfection, the RNase H2 activity increased, and the amount of ribonucleotides decreased, as compared with the corresponding non-transfected RH2A-KO cells. This demonstrated the rapidness of ribonucleotide turnover in mammalian genomic DNA and the importance of continuous expression of RNase H2 to maintain the ribonucleotide amount low. Next, we expressed mouse RH2A variants with a mutation corresponding to a human AGS-causing mutation in RH2A-KO NIH3T3 cells. Neither increase in RNase H2 activity nor decrease in ribonucleotide amount were observed for G37S; however, both conditions were observed for N213I and R293H. This corresponded with our previous results on the activity of recombinant human RNase H2 variants.
Collapse
Affiliation(s)
- Mako Kandabashi
- Graduate School of Agriculture Division of Food Science and Biotechnology, , Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Haruna Yano
- Graduate School of Agriculture Division of Food Science and Biotechnology, , Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Haruka Hara
- Graduate School of Agriculture Division of Food Science and Biotechnology, , Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Saori Ogawa
- Graduate School of Agriculture Division of Food Science and Biotechnology, , Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kana Kamoda
- Graduate School of Agriculture Division of Food Science and Biotechnology, , Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shu Ishibashi
- Graduate School of Agriculture Division of Food Science and Biotechnology, , Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kohei Himeda
- Graduate School of Agriculture Division of Food Science and Biotechnology, , Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Misato Baba
- Graduate School of Agriculture Division of Food Science and Biotechnology, , Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Teisuke Takita
- Graduate School of Agriculture Division of Food Science and Biotechnology, , Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kiyoshi Yasukawa
- Graduate School of Agriculture Division of Food Science and Biotechnology, , Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
28
|
Lisova AE, Baranovskiy AG, Morstadt LM, Babayeva ND, Tahirov TH. Efficient discrimination against RNA-containing primers by human DNA polymerase ε. Sci Rep 2022; 12:10163. [PMID: 35715491 PMCID: PMC9205888 DOI: 10.1038/s41598-022-14602-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/09/2022] [Indexed: 01/13/2023] Open
Abstract
DNA polymerase ε (Polε) performs bulk synthesis of DNA on the leading strand during genome replication. Polε binds two substrates, a template:primer and dNTP, and catalyzes a covalent attachment of dNMP to the 3' end of the primer. Previous studies have shown that Polε easily inserts and extends ribonucleotides, which may promote mutagenesis and genome instability. In this work, we analyzed the mechanisms of discrimination against RNA-containing primers by human Polε (hPolε), performing binding and kinetic studies at near-physiological salt concentration. Pre-steady-state kinetic studies revealed that hPolεCD extends RNA primers with approximately 3300-fold lower efficiency in comparison to DNA, and addition of one dNMP to the 3' end of an RNA primer increases activity 36-fold. Likewise, addition of one rNMP to the 3' end of a DNA primer reduces activity 38-fold. The binding studies conducted in the presence of 0.15 M NaCl revealed that human hPolεCD has low affinity to DNA (KD of 1.5 µM). Strikingly, a change of salt concentration from 0.1 M to 0.15 M reduces the stability of the hPolεCD/DNA complex by 25-fold. Upon template:primer binding, the incoming dNTP and magnesium ions make hPolε discriminative against RNA and chimeric RNA-DNA primers. In summary, our studies revealed that hPolε discrimination against RNA-containing primers is based on the following factors: incoming dNTP, magnesium ions, a steric gate for the primer 2'OH, and the rigid template:primer binding pocket near the catalytic site. In addition, we showed the importance of conducting functional studies at near-physiological salt concentration.
Collapse
Affiliation(s)
- Alisa E Lisova
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Lucia M Morstadt
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nigar D Babayeva
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
29
|
Jha JS, Yin J, Haldar T, Wang Y, Gates KS. Reconsidering the Chemical Nature of Strand Breaks Derived from Abasic Sites in Cellular DNA: Evidence for 3'-Glutathionylation. J Am Chem Soc 2022; 144:10471-10482. [PMID: 35612610 DOI: 10.1021/jacs.2c02703] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The hydrolytic loss of coding bases from cellular DNA is a common and unavoidable reaction. The resulting abasic sites can undergo β-elimination of the 3'-phosphoryl group to generate a strand break with an electrophilic α,β-unsaturated aldehyde residue on the 3'-terminus. The work reported here provides evidence that the thiol residue of the cellular tripeptide glutathione rapidly adds to the alkenal group on the 3'-terminus of an AP-derived strand break. The resulting glutathionylated adduct is the only major cleavage product observed when β-elimination occurs at an AP site in the presence of glutathione. Formation of the glutathionylated cleavage product is reversible, but in the presence of physiological concentrations of glutathione, the adduct persists for days. Biochemical experiments provided evidence that the 3'-phosphodiesterase activity of the enzyme apurinic/apyrimidinic endonuclease (APE1) can remove the glutathionylated sugar remnant from an AP-derived strand break to generate the 3'OH residue required for repair via base excision or single-strand break repair pathways. The results suggest that a previously unrecognized 3'glutathionylated sugar remnant─and not the canonical α,β-unsaturated aldehyde end group─may be the true strand cleavage product arising from β-elimination at an abasic site in cellular DNA. This work introduces the 3'glutathionylated cleavage product as the major blocking group that must be trimmed to enable repair of abasic site-derived strand breaks by the base excision repair or single-strand break repair pathways.
Collapse
|
30
|
Aditi, Downing SM, Schreiner PA, Kwak YD, Li Y, Shaw TI, Russell HR, McKinnon PJ. Genome instability independent of type I interferon signaling drives neuropathology caused by impaired ribonucleotide excision repair. Neuron 2021; 109:3962-3979.e6. [PMID: 34655526 PMCID: PMC8686690 DOI: 10.1016/j.neuron.2021.09.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/25/2022]
Abstract
Aicardi-Goutières syndrome (AGS) is a monogenic type I interferonopathy characterized by neurodevelopmental defects and upregulation of type I interferon signaling and neuroinflammation. Mutations in genes that function in nucleic acid metabolism, including RNASEH2, are linked to AGS. Ribonuclease H2 (RNASEH2) is a genome surveillance factor critical for DNA integrity by removing ribonucleotides incorporated into replicating DNA. Here we show that RNASEH2 is necessary for neurogenesis and to avoid activation of interferon-responsive genes and neuroinflammation. Cerebellar defects after RNASEH2B inactivation are rescued by p53 but not cGAS deletion, suggesting that DNA damage signaling, not neuroinflammation, accounts for neuropathology. Coincident inactivation of Atm and Rnaseh2 further affected cerebellar development causing ataxia, which was dependent upon aberrant activation of non-homologous end-joining (NHEJ). The loss of ATM also markedly exacerbates cGAS-dependent type I interferon signaling. Thus, DNA damage-dependent signaling rather than type I interferon signaling underlies neurodegeneration in this class of neurodevelopmental/neuroinflammatory disease.
Collapse
Affiliation(s)
- Aditi
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Susanna M Downing
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Patrick A Schreiner
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Young Don Kwak
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yang Li
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Helen R Russell
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA; St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
31
|
Gao C, Lu S, Wang Y, Xu H, Gao X, Gu Y, Xuan H, Wang B, Yuan H, Cao Y. Bismuth Vanadium Oxide Can Promote Growth and Activity in Arabidopsis thaliana. Front Chem 2021; 9:766078. [PMID: 34858942 PMCID: PMC8632446 DOI: 10.3389/fchem.2021.766078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
The excellent properties of nanomaterials have been confirmed in many fields, but their effects on plants are still unclear. In this study, different concentrations of bismuth vanadate (BV) were added to the growth medium to analyze the growth of seedlings, including taproots, lateral roots, leaf stomata, root activity, and superoxide anion O2.- generation. Gene expression levels related to root growth were determined by quantitative PCR in Arabidopsis thaliana. The results showed that BV promoted the growth of taproots and the development of lateral roots, enhanced the length of the extension zone in roots, increased the number and size of leaf stomata and root activity, reduced the accumulation of ROS in seedlings, and changed the expression levels of genes related to polyamines or hormones. At the same time, we investigated the antibacterial activity of BV against a variety of common pathogens causing crop diseases. The results showed that BV could effectively inhibit the growth of Fusarium wilt of cotton and rice sheath blight. These results provide a new prospect for the development of nanomaterial-assisted plants, which is expected to become one of the ways to solve the problem of controlling and promoting the development of plants. At the same time, it also provides a reference for the study of the effect of BV on plants.
Collapse
Affiliation(s)
- Cong Gao
- School of Life Sciences, Nantong University, Nantong, China
| | - Shuai Lu
- School of Life Sciences, Nantong University, Nantong, China
| | - Yongzhou Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Hao Xu
- School of Life Sciences, Nantong University, Nantong, China
| | - Xiaoxiao Gao
- School of Life Sciences, Nantong University, Nantong, China
| | - Yiwen Gu
- School of Life Sciences, Nantong University, Nantong, China
| | - Hongyun Xuan
- School of Life Sciences, Nantong University, Nantong, China
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Huihua Yuan
- School of Life Sciences, Nantong University, Nantong, China
| | - Yunying Cao
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
32
|
Tang J, Zhao W, Hendricks NG, Zhao L. High-Resolution Mapping of Amino Acid Residues in DNA-Protein Cross-Links Enabled by Ribonucleotide-Containing DNA. Anal Chem 2021; 93:13398-13406. [PMID: 34559515 DOI: 10.1021/acs.analchem.1c03481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA-protein cross-links have broad applications in mapping DNA-protein interactions and provide structural insights into macromolecular structures. However, high-resolution mapping of DNA-interacting amino acid residues with tandem mass spectrometry remains challenging due to difficulties in sample preparation and data analysis. Herein, we developed a method for identifying cross-linking amino residues in DNA-protein cross-links at single amino acid resolution. We leveraged the alkaline lability of ribonucleotides and designed ribonucleotide-containing DNA to produce structurally defined nucleic acid-peptide cross-links under our optimized ribonucleotide cleavage conditions. The structurally defined oligonucleotide-peptide heteroconjugates improved ionization, reduced the database search space, and facilitated the identification of cross-linking residues in peptides. We applied the workflow to identifying abasic (AP) site-interacting residues in human mitochondrial transcription factor A (TFAM)-DNA cross-links. With sub-nmol sample input, we obtained high-quality fragmentation spectra for nucleic acid-peptide cross-links and identified 14 cross-linked lysine residues with the home-built AP_CrosslinkFinder program. Semi-quantification based on integrated peak areas revealed that K186 of TFAM is the major cross-linking residue, consistent with K186 being the closest (to the AP modification) lysine residue in solved TFAM:DNA crystal structures. Additional cross-linking lysine residues (K69, K76, K136, K154) support the dynamic characteristics of TFAM:DNA complexes. Overall, our combined workflow using ribonucleotide as a chemically cleavable DNA modification together with optimized sample preparation and data analysis offers a simple yet powerful approach for mapping cross-linking sites in DNA-protein cross-links. The method is amendable to other chemical or photo-cross-linking systems and can be extended to complex biological samples.
Collapse
Affiliation(s)
- Jin Tang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Wenxin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Nathan G Hendricks
- Proteomics Core, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California 92521, United States
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States.,Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
33
|
St Germain C, Zhao H, Barlow JH. Transcription-Replication Collisions-A Series of Unfortunate Events. Biomolecules 2021; 11:1249. [PMID: 34439915 PMCID: PMC8391903 DOI: 10.3390/biom11081249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Transcription-replication interactions occur when DNA replication encounters genomic regions undergoing transcription. Both replication and transcription are essential for life and use the same DNA template making conflicts unavoidable. R-loops, DNA supercoiling, DNA secondary structure, and chromatin-binding proteins are all potential obstacles for processive replication or transcription and pose an even more potent threat to genome integrity when these processes co-occur. It is critical to maintaining high fidelity and processivity of transcription and replication while navigating through a complex chromatin environment, highlighting the importance of defining cellular pathways regulating transcription-replication interaction formation, evasion, and resolution. Here we discuss how transcription influences replication fork stability, and the safeguards that have evolved to navigate transcription-replication interactions and maintain genome integrity in mammalian cells.
Collapse
Affiliation(s)
- Commodore St Germain
- School of Mathematics and Science, Solano Community College, 4000 Suisun Valley Road, Fairfield, CA 94534, USA
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| | - Hongchang Zhao
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| | - Jacqueline H. Barlow
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| |
Collapse
|
34
|
Chen XS, Pomerantz RT. DNA Polymerase θ: A Cancer Drug Target with Reverse Transcriptase Activity. Genes (Basel) 2021; 12:1146. [PMID: 34440316 PMCID: PMC8391894 DOI: 10.3390/genes12081146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
The emergence of precision medicine from the development of Poly (ADP-ribose) polymerase (PARP) inhibitors that preferentially kill cells defective in homologous recombination has sparked wide interest in identifying and characterizing additional DNA repair enzymes that are synthetic lethal with HR factors. DNA polymerase theta (Polθ) is a validated anti-cancer drug target that is synthetic lethal with HR factors and other DNA repair proteins and confers cellular resistance to various genotoxic cancer therapies. Since its initial characterization as a helicase-polymerase fusion protein in 2003, many exciting and unexpected activities of Polθ in microhomology-mediated end-joining (MMEJ) and translesion synthesis (TLS) have been discovered. Here, we provide a short review of Polθ's DNA repair activities and its potential as a drug target and highlight a recent report that reveals Polθ as a naturally occurring reverse transcriptase (RT) in mammalian cells.
Collapse
Affiliation(s)
- Xiaojiang S. Chen
- Molecular and Computational Biology, USC Dornsife Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Richard T. Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
35
|
Apurinic/Apyrimidinic Endonuclease 2 (APE2): An ancillary enzyme for contextual base excision repair mechanisms to preserve genome stability. Biochimie 2021; 190:70-90. [PMID: 34302888 DOI: 10.1016/j.biochi.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 01/03/2023]
Abstract
The genome of living organisms frequently undergoes various types of modifications which are recognized and repaired by the relevant repair mechanisms. These repair pathways are increasingly being deciphered to understand the mechanisms. Base excision repair (BER) is indispensable to maintain genome stability. One of the enigmatic repair proteins of BER, Apurinic/Apyrimidinic Endonuclease 2 (APE2), like APE1, is truly multifunctional and demonstrates the independent and non-redundant function in maintaining the genome integrity. APE2 is involved in ATR-Chk1 mediated DNA damage response. It also resolves topoisomerase1 mediated cleavage complex intermediate which is formed while repairing misincorporated ribonucleotides in the absence of functional RNase H2 mediated excision repair pathway. BER participates in the demethylation pathway and the role of Arabidopsis thaliana APE2 is demonstrated in this process. Moreover, APE2 is synthetically lethal to BRCA1, BRCA2, and RNase H2, and its homolog, APE1 fails to complement the function. Hence, the role of APE2 is not just an alternate to the repair mechanisms but has implications in diverse functional pathways related to the maintenance of genome integrity. This review analyses genomic features of APE2 and delineates its enzyme function as error-prone as well as efficient and accurate repair protein based on the studies on mammalian or its homolog proteins from model systems such as Arabidopsis thaliana, Schizosaccharomyces pombe, Trypanosoma curzi, Xenopus laevis, Danio rerio, Mus musculus, and Homo sapiens.
Collapse
|
36
|
Yeou S, Lee NK. Contribution of a
DNA
Nick to
DNA
Bendability Depending on the Bending Force. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sanghun Yeou
- Department of Physics Pohang University of Science and Technology 77 Cheongam‐Ro, Nam‐Gu, Pohang Gyeongbuk 37673 Korea
| | - Nam Ki Lee
- Department of Chemistry Seoul National University Gwanak‐ro 1, Gwanak‐gu, Seoul 08826 Korea
| |
Collapse
|
37
|
Evolutionary Origins of DNA Repair Pathways: Role of Oxygen Catastrophe in the Emergence of DNA Glycosylases. Cells 2021; 10:cells10071591. [PMID: 34202661 PMCID: PMC8307549 DOI: 10.3390/cells10071591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022] Open
Abstract
It was proposed that the last universal common ancestor (LUCA) evolved under high temperatures in an oxygen-free environment, similar to those found in deep-sea vents and on volcanic slopes. Therefore, spontaneous DNA decay, such as base loss and cytosine deamination, was the major factor affecting LUCA’s genome integrity. Cosmic radiation due to Earth’s weak magnetic field and alkylating metabolic radicals added to these threats. Here, we propose that ancient forms of life had only two distinct repair mechanisms: versatile apurinic/apyrimidinic (AP) endonucleases to cope with both AP sites and deaminated residues, and enzymes catalyzing the direct reversal of UV and alkylation damage. The absence of uracil–DNA N-glycosylases in some Archaea, together with the presence of an AP endonuclease, which can cleave uracil-containing DNA, suggests that the AP endonuclease-initiated nucleotide incision repair (NIR) pathway evolved independently from DNA glycosylase-mediated base excision repair. NIR may be a relic that appeared in an early thermophilic ancestor to counteract spontaneous DNA damage. We hypothesize that a rise in the oxygen level in the Earth’s atmosphere ~2 Ga triggered the narrow specialization of AP endonucleases and DNA glycosylases to cope efficiently with a widened array of oxidative base damage and complex DNA lesions.
Collapse
|
38
|
Guengerich FP, Ghodke PP. Etheno adducts: from tRNA modifications to DNA adducts and back to miscoding ribonucleotides. Genes Environ 2021; 43:24. [PMID: 34130743 PMCID: PMC8207595 DOI: 10.1186/s41021-021-00199-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/03/2021] [Indexed: 11/19/2022] Open
Abstract
Etheno (and ethano) derivatives of nucleic acid bases have an extra 5-membered ring attached. These were first noted as wyosine bases in tRNAs. Some were fluorescent, and the development of etheno derivatives of adenosine, cytosine, and guanosine led to the synthesis of fluorescent analogs of ATP, NAD+, and other cofactors for use in biochemical studies. Early studies with the carcinogen vinyl chloride revealed that these modified bases were being formed in DNA and RNA and might be responsible for mutations and cancer. The etheno bases are also derived from other carcinogenic vinyl monomers. Further work showed that endogenous etheno DNA adducts were present in animals and humans and are derived from lipid peroxidation. The chemical mechanisms of etheno adduct formation involve reactions with bis-electrophiles generated by cytochrome P450 enzymes or lipid peroxidation, which have been established in isotopic labeling studies. The mechanisms by which etheno DNA adducts miscode have been studied with several DNA polymerases, aided by the X-ray crystal structures of these polymerases in mispairing situations and in extension beyond mispairs. Repair of etheno DNA adduct damage is done primarily by glycosylases and also by the direct action of dioxygenases. Some human DNA polymerases (η, κ) can insert bases opposite etheno adducts in DNA and RNA, and the reverse transcriptase activity may be of relevance with the RNA etheno adducts. Further questions involve the extent that the etheno adducts contribute to human cancer.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, 638B Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA.
| | - Pratibha P Ghodke
- Department of Biochemistry, Vanderbilt University School of Medicine, 638B Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| |
Collapse
|
39
|
Chandramouly G, Zhao J, McDevitt S, Rusanov T, Hoang T, Borisonnik N, Treddinick T, Lopezcolorado FW, Kent T, Siddique LA, Mallon J, Huhn J, Shoda Z, Kashkina E, Brambati A, Stark JM, Chen XS, Pomerantz RT. Polθ reverse transcribes RNA and promotes RNA-templated DNA repair. SCIENCE ADVANCES 2021; 7:7/24/eabf1771. [PMID: 34117057 PMCID: PMC8195485 DOI: 10.1126/sciadv.abf1771] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/23/2021] [Indexed: 05/12/2023]
Abstract
Genome-embedded ribonucleotides arrest replicative DNA polymerases (Pols) and cause DNA breaks. Whether mammalian DNA repair Pols efficiently use template ribonucleotides and promote RNA-templated DNA repair synthesis remains unknown. We find that human Polθ reverse transcribes RNA, similar to retroviral reverse transcriptases (RTs). Polθ exhibits a significantly higher velocity and fidelity of deoxyribonucleotide incorporation on RNA versus DNA. The 3.2-Å crystal structure of Polθ on a DNA/RNA primer-template with bound deoxyribonucleotide reveals that the enzyme undergoes a major structural transformation within the thumb subdomain to accommodate A-form DNA/RNA and forms multiple hydrogen bonds with template ribose 2'-hydroxyl groups like retroviral RTs. Last, we find that Polθ promotes RNA-templated DNA repair in mammalian cells. These findings suggest that Polθ was selected to accommodate template ribonucleotides during DNA repair.
Collapse
Affiliation(s)
- Gurushankar Chandramouly
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jiemin Zhao
- Molecular and Computational Biology, USC Dornsife Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Shane McDevitt
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Timur Rusanov
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Trung Hoang
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nikita Borisonnik
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Taylor Treddinick
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Tatiana Kent
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Labiba A Siddique
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joseph Mallon
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jacklyn Huhn
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zainab Shoda
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ekaterina Kashkina
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alessandra Brambati
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Jeremy M Stark
- Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, USC Dornsife Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Richard T Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Pisignano G, Ladomery M. Epigenetic Regulation of Alternative Splicing: How LncRNAs Tailor the Message. Noncoding RNA 2021; 7:ncrna7010021. [PMID: 33799493 PMCID: PMC8005942 DOI: 10.3390/ncrna7010021] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Alternative splicing is a highly fine-tuned regulated process and one of the main drivers of proteomic diversity across eukaryotes. The vast majority of human multi-exon genes is alternatively spliced in a cell type- and tissue-specific manner, and defects in alternative splicing can dramatically alter RNA and protein functions and lead to disease. The eukaryotic genome is also intensively transcribed into long and short non-coding RNAs which account for up to 90% of the entire transcriptome. Over the years, lncRNAs have received considerable attention as important players in the regulation of cellular processes including alternative splicing. In this review, we focus on recent discoveries that show how lncRNAs contribute significantly to the regulation of alternative splicing and explore how they are able to shape the expression of a diverse set of splice isoforms through several mechanisms. With the increasing number of lncRNAs being discovered and characterized, the contribution of lncRNAs to the regulation of alternative splicing is likely to grow significantly.
Collapse
Affiliation(s)
- Giuseppina Pisignano
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
- Correspondence: (G.P.); (M.L.)
| | - Michael Ladomery
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
- Correspondence: (G.P.); (M.L.)
| |
Collapse
|
41
|
Malfatti MC, Antoniali G, Codrich M, Burra S, Mangiapane G, Dalla E, Tell G. New perspectives in cancer biology from a study of canonical and non-canonical functions of base excision repair proteins with a focus on early steps. Mutagenesis 2021; 35:129-149. [PMID: 31858150 DOI: 10.1093/mutage/gez051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Alterations of DNA repair enzymes and consequential triggering of aberrant DNA damage response (DDR) pathways are thought to play a pivotal role in genomic instabilities associated with cancer development, and are further thought to be important predictive biomarkers for therapy using the synthetic lethality paradigm. However, novel unpredicted perspectives are emerging from the identification of several non-canonical roles of DNA repair enzymes, particularly in gene expression regulation, by different molecular mechanisms, such as (i) non-coding RNA regulation of tumour suppressors, (ii) epigenetic and transcriptional regulation of genes involved in genotoxic responses and (iii) paracrine effects of secreted DNA repair enzymes triggering the cell senescence phenotype. The base excision repair (BER) pathway, canonically involved in the repair of non-distorting DNA lesions generated by oxidative stress, ionising radiation, alkylation damage and spontaneous or enzymatic deamination of nucleotide bases, represents a paradigm for the multifaceted roles of complex DDR in human cells. This review will focus on what is known about the canonical and non-canonical functions of BER enzymes related to cancer development, highlighting novel opportunities to understand the biology of cancer and representing future perspectives for designing new anticancer strategies. We will specifically focus on APE1 as an example of a pleiotropic and multifunctional BER protein.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marta Codrich
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Silvia Burra
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
42
|
Tirman S, Cybulla E, Quinet A, Meroni A, Vindigni A. PRIMPOL ready, set, reprime! Crit Rev Biochem Mol Biol 2021; 56:17-30. [PMID: 33179522 PMCID: PMC7906090 DOI: 10.1080/10409238.2020.1841089] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
DNA replication forks are constantly challenged by DNA lesions induced by endogenous and exogenous sources. DNA damage tolerance mechanisms ensure that DNA replication continues with minimal effects on replication fork elongation either by using specialized DNA polymerases, which have the ability to replicate through the damaged template, or by skipping the damaged DNA, leaving it to be repaired after replication. These mechanisms are evolutionarily conserved in bacteria, yeast, and higher eukaryotes, and are paramount to ensure timely and faithful duplication of the genome. The Primase and DNA-directed Polymerase (PRIMPOL) is a recently discovered enzyme that possesses both primase and polymerase activities. PRIMPOL is emerging as a key player in DNA damage tolerance, particularly in vertebrate and human cells. Here, we review our current understanding of the function of PRIMPOL in DNA damage tolerance by focusing on the structural aspects that define its dual enzymatic activity, as well as on the mechanisms that control its chromatin recruitment and expression levels. We also focus on the latest findings on the mitochondrial and nuclear functions of PRIMPOL and on the impact of loss of these functions on genome stability and cell survival. Defining the function of PRIMPOL in DNA damage tolerance is becoming increasingly important in the context of human disease. In particular, we discuss recent evidence pointing at the PRIMPOL pathway as a novel molecular target to improve cancer cell response to DNA-damaging chemotherapy and as a predictive parameter to stratify patients in personalized cancer therapy.
Collapse
Affiliation(s)
- Stephanie Tirman
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Annabel Quinet
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
| | - Alice Meroni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
| |
Collapse
|
43
|
Chang J, Si G, Dong J, Yang Q, Shi Y, Chen Y, Zhou K, Chen J. Transcriptomic analyses reveal the pathways associated with the volatilization and resistance of mercury(II) in the fungus Lecythophora sp. DC-F1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142172. [PMID: 33207499 DOI: 10.1016/j.scitotenv.2020.142172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The biotic enzymatic reduction of mercury II [Hg(II)] to elemental Hg [Hg(0)] is an important pathway for Hg detoxification in natural ecosystems. However, the mechanisms of Hg(II) volatilization and resistance in fungi have not been understood completely. In the present study, we investigated the mechanisms of Hg(II) volatilization and resistance in the fungus Lecythophora sp. DC-F1. Hg(II) volatilization occurred during the investigation via the reduction of Hg(II) to Hg(0) in DC-F1. Comparative transcriptome analyses of DC-F1 revealed 3439 differentially expressed genes under 10 mg/L Hg(II) stress, among which 2770 were up-regulated and 669 were down-regulated. Functional enrichment analyses of genes and pathways further suggested that the Hg(II) resistance of DC-F1 is a multisystem collaborative process with three important transcriptional responses to Hg(II) stress: a mer-mediated Hg detoxification system, a thiol compound metabolism, and a cell reactive oxygen species stress response system. The phylogenetic analysis of merA protein homologs suggests that the Hg(II) reduction by merA is widely distributed in fungi. Overall, this study provides evidence for the reduction of Hg(II) to Hg(0) in fungi via the mer-mediated Hg detoxification system and offers a comprehensive explanation for its role within Hg biogeochemical cycling. These findings offer a strong theoretical basis for the application of fungi in the bioremediation of Hg-contaminated envionments.
Collapse
Affiliation(s)
- Junjun Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management of Yunnan Kunming, 650091, China
| | - Guangzheng Si
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Jia Dong
- International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management of Yunnan Kunming, 650091, China
| | - Qingchen Yang
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Yu Shi
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Yaling Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Kexin Zhou
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jinquan Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management of Yunnan Kunming, 650091, China.
| |
Collapse
|
44
|
El-Sayed WMM, Gombolay AL, Xu P, Yang T, Jeon Y, Balachander S, Newnam G, Tao S, Bowen NE, Brůna T, Borodovsky M, Schinazi RF, Kim B, Chen Y, Storici F. Disproportionate presence of adenosine in mitochondrial and chloroplast DNA of Chlamydomonas reinhardtii. iScience 2020; 24:102005. [PMID: 33490913 PMCID: PMC7809514 DOI: 10.1016/j.isci.2020.102005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/29/2020] [Accepted: 12/23/2020] [Indexed: 11/02/2022] Open
Abstract
Ribonucleoside monophosphates (rNMPs) represent the most common non-standard nucleotides found in the genome of cells. The distribution of rNMPs in DNA has been studied only in limited genomes. Using the ribose-seq protocol and the Ribose-Map bioinformatics toolkit, we reveal the distribution of rNMPs incorporated into the whole genome of a photosynthetic unicellular green alga, Chlamydomonas reinhardtii. We discovered a disproportionate incorporation of adenosine in the mitochondrial and chloroplast DNA, in contrast to the nuclear DNA, relative to the corresponding nucleotide content of these C. reinhardtii organelle genomes. Our results demonstrate that the rNMP content in the DNA of the algal organelles reflects an elevated ATP level present in the algal cells. We reveal specific biases and patterns in rNMP distributions in the algal mitochondrial, chloroplast, and nuclear DNA. Moreover, we identified the C. reinhardtii orthologous genes for all three subunits of the RNase H2 enzyme using GeneMark-EP + gene finder.
Collapse
Affiliation(s)
- Waleed M M El-Sayed
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Marine Microbiology Department, National Institute of Oceanography and Fisheries, Red Sea, 84517, Egypt
| | - Alli L Gombolay
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Penghao Xu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Taehwan Yang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Youngkyu Jeon
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sathya Balachander
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gary Newnam
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sijia Tao
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30309, USA
| | - Nicole E Bowen
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30309, USA
| | - Tomáš Brůna
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mark Borodovsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Raymond F Schinazi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30309, USA
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30309, USA
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
45
|
Zatopek KM, Alpaslan E, Evans T, Sauguet L, Gardner A. Novel ribonucleotide discrimination in the RNA polymerase-like two-barrel catalytic core of Family D DNA polymerases. Nucleic Acids Res 2020; 48:12204-12218. [PMID: 33137176 PMCID: PMC7708050 DOI: 10.1093/nar/gkaa986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Family D DNA polymerase (PolD) is the essential replicative DNA polymerase for duplication of most archaeal genomes. PolD contains a unique two-barrel catalytic core absent from all other DNA polymerase families but found in RNA polymerases (RNAPs). While PolD has an ancestral RNA polymerase catalytic core, its active site has evolved the ability to discriminate against ribonucleotides. Until now, the mechanism evolved by PolD to prevent ribonucleotide incorporation was unknown. In all other DNA polymerase families, an active site steric gate residue prevents ribonucleotide incorporation. In this work, we identify two consensus active site acidic (a) and basic (b) motifs shared across the entire two-barrel nucleotide polymerase superfamily, and a nucleotide selectivity (s) motif specific to PolD versus RNAPs. A novel steric gate histidine residue (H931 in Thermococcus sp. 9°N PolD) in the PolD s-motif both prevents ribonucleotide incorporation and promotes efficient dNTP incorporation. Further, a PolD H931A steric gate mutant abolishes ribonucleotide discrimination and readily incorporates a variety of 2' modified nucleotides. Taken together, we construct the first putative nucleotide bound PolD active site model and provide structural and functional evidence for the emergence of DNA replication through the evolution of an ancestral RNAP two-barrel catalytic core.
Collapse
Affiliation(s)
| | - Ece Alpaslan
- New England Biolabs, 240 County Road Ipswich, MA 01938, USA
| | - Thomas C Evans
- New England Biolabs, 240 County Road Ipswich, MA 01938, USA
| | - Ludovic Sauguet
- Institut Pasteur, Unité de Dynamique Structurale des Macromolécules, 75015 Paris, France
| | | |
Collapse
|
46
|
Marshall CJ, Santangelo TJ. Archaeal DNA Repair Mechanisms. Biomolecules 2020; 10:E1472. [PMID: 33113933 PMCID: PMC7690668 DOI: 10.3390/biom10111472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
Archaea often thrive in environmental extremes, enduring levels of heat, pressure, salinity, pH, and radiation that prove intolerable to most life. Many environmental extremes raise the propensity for DNA damaging events and thus, impact DNA stability, placing greater reliance on molecular mechanisms that recognize DNA damage and initiate accurate repair. Archaea can presumably prosper in harsh and DNA-damaging environments in part due to robust DNA repair pathways but surprisingly, no DNA repair pathways unique to Archaea have been described. Here, we review the most recent advances in our understanding of archaeal DNA repair. We summarize DNA damage types and their consequences, their recognition by host enzymes, and how the collective activities of many DNA repair pathways maintain archaeal genomic integrity.
Collapse
Affiliation(s)
| | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
47
|
Nye TM, McLean EK, Burrage AM, Dennison DD, Kearns DB, Simmons LA. RnhP is a plasmid-borne RNase HI that contributes to genome maintenance in the ancestral strain Bacillus subtilis NCIB 3610. Mol Microbiol 2020; 115:99-115. [PMID: 32896031 DOI: 10.1111/mmi.14601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 01/27/2023]
Abstract
RNA-DNA hybrids form throughout the chromosome during normal growth and under stress conditions. When left unresolved, RNA-DNA hybrids can slow replication fork progression, cause DNA breaks, and increase mutagenesis. To remove hybrids, all organisms use ribonuclease H (RNase H) to specifically degrade the RNA portion. Here we show that, in addition to chromosomally encoded RNase HII and RNase HIII, Bacillus subtilis NCIB 3610 encodes a previously uncharacterized RNase HI protein, RnhP, on the endogenous plasmid pBS32. Like other RNase HI enzymes, RnhP incises Okazaki fragments, ribopatches, and a complementary RNA-DNA hybrid. We show that while chromosomally encoded RNase HIII is required for pBS32 hyper-replication, RnhP compensates for the loss of RNase HIII activity on the chromosome. Consequently, loss of RnhP and RNase HIII impairs bacterial growth. We show that the decreased growth rate can be explained by laggard replication fork progression near the terminus region of the right replichore, resulting in SOS induction and inhibition of cell division. We conclude that all three functional RNase H enzymes are present in B. subtilis NCIB 3610 and that the plasmid-encoded RNase HI contributes to chromosome stability, while the chromosomally encoded RNase HIII is important for chromosome stability and plasmid hyper-replication.
Collapse
Affiliation(s)
- Taylor M Nye
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Emma K McLean
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Devon D Dennison
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
48
|
Subtractive proteomics and systems biology analysis revealed novel drug targets in Mycoplasma genitalium strain G37. Microb Pathog 2020; 145:104231. [DOI: 10.1016/j.micpath.2020.104231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022]
|
49
|
Balachander S, Yang T, Newnam G, El-Sayed WMM, Koh KD, Storici F. Capture of Ribonucleotides in Yeast Genomic DNA Using Ribose-Seq. Methods Mol Biol 2020; 2049:17-37. [PMID: 31602603 DOI: 10.1007/978-1-4939-9736-7_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Experiments conducted in yeast cells have recently shown abundant presence of ribonucleotides (rNMPs) embedded both in nuclear and mitochondrial DNA. Indeed, rNMPs are the most frequent, nonstandard nucleotides found in cellular DNA. rNMPs have a highly reactive 2'-hydroxyl group in the ribose sugar that gives rise to genome instability by altering the structure, function, and properties of DNA. In order to profile rNMPs embedded in yeast genomic DNA, as well as any other genomic DNA of interest, we developed "ribose-seq." Ribose-seq utilizes Arabidopsis thaliana tRNA ligase (AtRNL), which enables ligation of 2'-phosphate termini of DNA molecules terminating with an rNMP to the 5'-phosphate end of the same DNA molecules. Thus, a unique feature of ribose-seq is its capacity to specifically and directly capture the rNMPs present in DNA. Here we describe how ribose-seq is applied to yeast Saccharomyces cerevisiae DNA to capture rNMPs that are incorporated in the yeast genome and build libraries of rNMP incorporation for high-throughput sequencing. We also provide the advancements over our original ribose-seq protocol at the end of Subheading 1, and the specific details are provided in the methods part of this chapter.
Collapse
Affiliation(s)
- Sathya Balachander
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Taehwan Yang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gary Newnam
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Waleed M M El-Sayed
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Marine Microbiology Department, National Institute of Oceanography and Fisheries, Red Sea, Egypt
| | - Kyung Duk Koh
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
50
|
Zhao L, Sumberaz P. Mitochondrial DNA Damage: Prevalence, Biological Consequence, and Emerging Pathways. Chem Res Toxicol 2020; 33:2491-2502. [PMID: 32486637 DOI: 10.1021/acs.chemrestox.0c00083] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria have a plethora of functions within a eukaryotic cell, ranging from energy production, cell signaling, and protein cofactor synthesis to various aspects of metabolism. Mitochondrial dysfunction is known to cause over 200 named disorders and has been implicated in many human diseases and aging. Mitochondria have their own genetic material, mitochondrial DNA (mtDNA), which encodes 13 protein subunits in the oxidative phosphorylation system and a full set of transfer and rRNAs. Although more than 99% of the proteins in mitochondria are nuclear DNA (nDNA)-encoded, the integrity of mtDNA is critical for mitochondrial functions, as evidenced by mitochondrial diseases sourced from mtDNA mutations and depletions and the vital role of fragmented mtDNA molecules in cell signaling pathways. Previous research has shown that mtDNA is an important target of genotoxic assaults by a variety of chemical and physical factors. This Perspective discusses the prevalence of mtDNA damage by comparing the abundance of lesions in mDNA and nDNA and summarizes current knowledge on the biological pathways to cope with mtDNA damage, including mtDNA repair, mtDNA degradation, and mitochondrial fission and fusion. Also, emerging roles of mtDNA damage in mutagenesis and immune responses are reviewed.
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Chemistry and Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521, United States
| | - Philip Sumberaz
- Department of Chemistry and Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|