1
|
Han R, Huang H, Zhu J, Jin X, Wang Y, Xu Y, Xia Z. Adipokines and their potential impacts on susceptibility to myocardial ischemia/reperfusion injury in diabetes. Lipids Health Dis 2024; 23:372. [PMID: 39538244 PMCID: PMC11558907 DOI: 10.1186/s12944-024-02357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Coronary artery disease has a high mortality rate and is a striking public health concern, affecting a substantial portion of the global population. On the early onset of myocardial ischemia, thrombolytic therapy and coronary revascularization could promptly restore the bloodstream and nutrient supply to the ischemic tissue, efficiently preserving less severely injured myocardium. However, the abrupt re-establishment of blood flow triggers the significant discharge of previously accumulated oxidative substances and inflammatory cytokines, leading to further harm referred to as ischemia/reperfusion (I/R) injury. Diabetes significantly raises the vulnerability of the heart to I/R injury due to disrupted glucose and lipid processing, impaired insulin sensitivity and metabolic signaling, and increased inflammatory responses. Numerous studies have indicated that adipokines are crucial in the etiology and pathogenesis of obesity, diabetes, hyperlipidemia, hypertension, and coronary artery disease. Adipokines such as adiponectin, adipsin, visfatin, chemerin, omentin, and apelin, which possess protective properties against inflammatory activity and insulin resistance, have been shown to confer myocardial protection in conditions such as atherosclerosis, myocardial hypertrophy, myocardial I/R injury, and diabetic complications. On the other hand, adipokines such as leptin and resistin, known for their pro-inflammatory characteristics, have been linked to elevated cardiac lipid deposition, insulin resistance, and fibrosis. Meteorin-like (metrnl) exhibits opposite effects in various pathological conditions. However, the data on adipokines in myocardial I/R, especially in diabetes, is still incomplete and controversial. This review focuses on recent research regarding the categorization and function of adipokines in the heart muscle, and the identification of different signaling pathways involved in myocardial I/R injury under diabetic conditions, aiming to facilitate the exploration of therapeutic strategies against myocardial I/R injury in diabetes.
Collapse
Affiliation(s)
- Ronghui Han
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Hemeng Huang
- Department of Emergency, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Jianyu Zhu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Xiaogao Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Yongyan Wang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China.
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Hengqin, Zhuhai, People's Republic of China.
- Faculty of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, People's Republic of China.
| | - Zhengyuan Xia
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China.
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Doan KV, Luongo TS, Ts'olo TT, Lee WD, Frederick DW, Mukherjee S, Adzika GK, Perry CE, Gaspar RB, Walker N, Blair MC, Bye N, Davis JG, Holman CD, Chu Q, Wang L, Rabinowitz JD, Kelly DP, Cappola TP, Margulies KB, Baur JA. Cardiac NAD + depletion in mice promotes hypertrophic cardiomyopathy and arrhythmias prior to impaired bioenergetics. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1236-1248. [PMID: 39294272 DOI: 10.1038/s44161-024-00542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 08/26/2024] [Indexed: 09/20/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential co-factor in metabolic reactions and co-substrate for signaling enzymes. Failing human hearts display decreased expression of the major NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (Nampt) and lower NAD+ levels, and supplementation with NAD+ precursors is protective in preclinical models. Here we show that Nampt loss in adult cardiomyocytes caused depletion of NAD+ along with marked metabolic derangements, hypertrophic remodeling and sudden cardiac deaths, despite unchanged ejection fraction, endurance and mitochondrial respiratory capacity. These effects were directly attributable to NAD+ loss as all were ameliorated by restoring cardiac NAD+ levels with the NAD+ precursor nicotinamide riboside (NR). Electrocardiograms revealed that loss of myocardial Nampt caused a shortening of QT intervals with spontaneous lethal arrhythmias causing sudden cardiac death. Thus, changes in NAD+ concentration can have a profound influence on cardiac physiology even at levels sufficient to maintain energetics.
Collapse
MESH Headings
- Nicotinamide Phosphoribosyltransferase/metabolism
- Nicotinamide Phosphoribosyltransferase/genetics
- NAD/metabolism
- Animals
- Energy Metabolism
- Cardiomyopathy, Hypertrophic/metabolism
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/pathology
- Arrhythmias, Cardiac/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Disease Models, Animal
- Cytokines/metabolism
- Mice, Knockout
- Mice, Inbred C57BL
- Pyridinium Compounds
- Male
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/pathology
- Mice
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Niacinamide/therapeutic use
- Niacinamide/metabolism
- Electrocardiography
Collapse
Grants
- S10 OD025098 NIH HHS
- T32AR53461 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- TL1TR001880 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01HL128349 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01HL141232 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- S10-OD025098 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01HL058493 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01 DK098656 NIDDK NIH HHS
- F32HL145923 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- F32DK127843 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- DP1DK113643 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01 HL165792 NHLBI NIH HHS
- R01CA163591 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
Collapse
Affiliation(s)
- Khanh V Doan
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy S Luongo
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thato T Ts'olo
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Won Dong Lee
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - David W Frederick
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarmistha Mukherjee
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriel K Adzika
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Caroline E Perry
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan B Gaspar
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole Walker
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan C Blair
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole Bye
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James G Davis
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corey D Holman
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qingwei Chu
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Wang
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Daniel P Kelly
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas P Cappola
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth B Margulies
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Zhang Q, Li Z, Li Q, Trammell SA, Schmidt MS, Pires KM, Cai J, Zhang Y, Kenny H, Boudina S, Brenner C, Abel ED. Control of NAD + homeostasis by autophagic flux modulates mitochondrial and cardiac function. EMBO J 2024; 43:362-390. [PMID: 38212381 PMCID: PMC10897141 DOI: 10.1038/s44318-023-00009-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 01/13/2024] Open
Abstract
Impaired autophagy is known to cause mitochondrial dysfunction and heart failure, in part due to altered mitophagy and protein quality control. However, whether additional mechanisms are involved in the development of mitochondrial dysfunction and heart failure in the setting of deficient autophagic flux remains poorly explored. Here, we show that impaired autophagic flux reduces nicotinamide adenine dinucleotide (NAD+) availability in cardiomyocytes. NAD+ deficiency upon autophagic impairment is attributable to the induction of nicotinamide N-methyltransferase (NNMT), which methylates the NAD+ precursor nicotinamide (NAM) to generate N-methyl-nicotinamide (MeNAM). The administration of nicotinamide mononucleotide (NMN) or inhibition of NNMT activity in autophagy-deficient hearts and cardiomyocytes restores NAD+ levels and ameliorates cardiac and mitochondrial dysfunction. Mechanistically, autophagic inhibition causes the accumulation of SQSTM1, which activates NF-κB signaling and promotes NNMT transcription. In summary, we describe a novel mechanism illustrating how autophagic flux maintains mitochondrial and cardiac function by mediating SQSTM1-NF-κB-NNMT signaling and controlling the cellular levels of NAD+.
Collapse
Affiliation(s)
- Quanjiang Zhang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Zhonggang Li
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| | - Qiuxia Li
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Samuel Aj Trammell
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Mark S Schmidt
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Karla Maria Pires
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jinjin Cai
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| | - Yuan Zhang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Helena Kenny
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Sihem Boudina
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Diabetes & Cancer Metabolism, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - E Dale Abel
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
4
|
Liu Y, Wang J, Zhao X, Li W, Liu Y, Li X, Zhao D, Yu J, Ji H, Shao B, Li Z, Wang J, Yang Y, Hao Y, Wu Y, Yuan Y, Du Z. CDR1as promotes arrhythmias in myocardial infarction via targeting the NAMPT-NAD + pathway. Biomed Pharmacother 2023; 165:115267. [PMID: 37542851 DOI: 10.1016/j.biopha.2023.115267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
Cardiac ventricular arrhythmia triggered by acute myocardial infarction (AMI) is a major cause of sudden cardiac death. We have reported previously that an increased serum level of circular RNA CDR1as is a potential biomarker of AMI. However, the possible role of CDR1as in post-infarct arrhythmia remains unclear. This study in MI mice investigated the effects and underlying mechanism of CDR1as in ventricular arrhythmias associated with MI. We showed that knockdown of CDR1as abbreviated the duration of the abnormally prolonged QRS complex and QTc intervals and decreased susceptibility to ventricular arrhythmias. Optical mapping demonstrated knockdown of CDR1as also reduced post-infarct arrhythmia by increasing the conduction velocity and decreasing dispersion of repolarization. Mechanistically, CDR1as led to the depletion of NAD+ and caused mitochondrial dysfunction by directly targeting the NAMPT protein and repressing its expression. Moreover, CDR1as aggravated dysregulation of the NaV1.5 and Kir6.2 channels in cardiomyocytes, a change which was alleviated by the replenishment of NAD+. These findings suggest that anti-CDR1as is a potential therapeutic approach for ischemic arrhythmias.
Collapse
Affiliation(s)
- Yunqi Liu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jiapan Wang
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xiuye Zhao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Wen Li
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yaohua Liu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xingda Li
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Dan Zhao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jie Yu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hongyu Ji
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Bing Shao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zhendong Li
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jia Wang
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yilian Yang
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yan Hao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yuting Wu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Ye Yuan
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; National key laboratory of frigid cardiovascular disease, Harbin, China.
| | - Zhimin Du
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; National key laboratory of frigid cardiovascular disease, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
5
|
Metabolic landscape in cardiac aging: insights into molecular biology and therapeutic implications. Signal Transduct Target Ther 2023; 8:114. [PMID: 36918543 PMCID: PMC10015017 DOI: 10.1038/s41392-023-01378-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Cardiac aging is evident by a reduction in function which subsequently contributes to heart failure. The metabolic microenvironment has been identified as a hallmark of malignancy, but recent studies have shed light on its role in cardiovascular diseases (CVDs). Various metabolic pathways in cardiomyocytes and noncardiomyocytes determine cellular senescence in the aging heart. Metabolic alteration is a common process throughout cardiac degeneration. Importantly, the involvement of cellular senescence in cardiac injuries, including heart failure and myocardial ischemia and infarction, has been reported. However, metabolic complexity among human aging hearts hinders the development of strategies that targets metabolic susceptibility. Advances over the past decade have linked cellular senescence and function with their metabolic reprogramming pathway in cardiac aging, including autophagy, oxidative stress, epigenetic modifications, chronic inflammation, and myocyte systolic phenotype regulation. In addition, metabolic status is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and chronic inflammation. However, further elucidation of the metabolism involvement in cardiac degeneration is still needed. Thus, deciphering the mechanisms underlying how metabolic reprogramming impacts cardiac aging is thought to contribute to the novel interventions to protect or even restore cardiac function in aging hearts. Here, we summarize emerging concepts about metabolic landscapes of cardiac aging, with specific focuses on why metabolic profile alters during cardiac degeneration and how we could utilize the current knowledge to improve the management of cardiac aging.
Collapse
|
6
|
NMR-Based Metabolomic Analysis of Cardiac Tissues Clarifies Molecular Mechanisms of CVB3-Induced Viral Myocarditis and Dilated Cardiomyopathy. Molecules 2022; 27:molecules27186115. [PMID: 36144851 PMCID: PMC9500976 DOI: 10.3390/molecules27186115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Viral myocarditis (VMC), which is defined as inflammation of the myocardium with consequent myocardial injury, may develop chronic disease eventually leading to dilated cardiomyopathy (DCM). Molecular mechanisms underlying the progression from acute VMC (aVMC), to chronic VMC (cVMC) and finally to DCM, are still unclear. Here, we established mouse models of VMC and DCM with Coxsackievirus B3 infection and conducted NMR-based metabolomic analysis of aqueous metabolites extracted from cardiac tissues of three histologically classified groups including aVMC, cVMC and DCM. We showed that these three pathological groups were metabolically distinct from their normal counterparts and identified three impaired metabolic pathways shared by these pathological groups relative to normal controls, including nicotinate and nicotinamide metabolism; alanine, aspartate and glutamate metabolism; and D-glutamine and D-glutamate metabolism. We also identified two extra impaired metabolic pathways in the aVMC group, including glycine, serine and threonine metabolism; and taurine and hypotaurine metabolism Furthermore, we identified potential cardiac biomarkers for metabolically distinguishing these three pathological stages from normal controls. Our results indicate that the metabolomic analysis of cardiac tissues can provide valuable insights into the molecular mechanisms underlying the progression from acute VMC to DCM.
Collapse
|
7
|
Tur J, Badole SL, Manickam R, Chapalamadugu KC, Xuan W, Guida W, Crews JJ, Bisht KS, Tipparaju SM. Cardioprotective Effects of 1-(3,6-Dibromo-carbazol-9-yl)-3-Phenylamino-Propan-2-Ol in Diabetic Hearts via Nicotinamide Phosphoribosyltransferase Activation. J Pharmacol Exp Ther 2022; 382:233-245. [PMID: 35680376 PMCID: PMC9372916 DOI: 10.1124/jpet.122.001122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022] Open
Abstract
Diabetes is associated with increased cardiac injury and sudden death. Nicotinamide phosphoribosyltransferase (Nampt) is an essential enzyme for the NAD+ salvage pathway and is dysregulated in diabetes. Nampt activation results in rescued NADH/NAD+ ratios and provides pharmacological changes necessary for diabetic cardioprotection. Computer docking shows that 1-(3,6-Dibromo-carbazol-9-yl)-3-phenylamino-propan-2-ol (P7C3) allows for enhanced Nampt dimerization and association. To test the pharmacological application, we used male leptin receptor-deficient (db/db) mice and treated them with Nampt activator P7C3. The effects of 4-week P7C3 treatment on cardiac function were evaluated along with molecular signaling changes for phosphorylated protein kinase B (p-AKT), phosphorylated endothelial nitric oxide synthase (p-eNOS), and sirtuin 1 (SIRT1). The cardiac function evaluated by ECG and echocardiography were significantly improved after 4 weeks of P7C3 treatment. Biochemically, higher NADH/NAD+ ratios in diabetic hearts were rescued by P7C3 treatment. Moreover, activities of Nampt and SIRT1 were significantly increased in P7C3-treated diabetic hearts. P7C3 treatment significantly decreased the blood glucose in diabetic mice with 4-week treatment as noted by glucose tolerance test and fasting blood glucose measurements compared with vehicle-treated mice. P7C3 activated Nampt enzymatic activity both in vitro and in the 4-week diabetic mouse hearts, demonstrating the specificity of the small molecule. P7C3 treatment significantly enhanced the expression of cardioprotective signaling of p-AKT, p-eNOS, and Beclin 1 in diabetic hearts. Nampt activator P7C3 allows for decreased infarct size with decreased Troponin I and lactose dehydrogenase (LDH) release, which is beneficial to the heart. Overall, the present study shows that P7C3 activates Nampt and SIRT1 activity and decreases NADH/NAD+ ratio, resulting in improved biochemical signaling providing cardioprotection. SIGNIFICANCE STATEMENT: This study shows that 1-(3,6-Dibromo-carbazol-9-yl)-3-phenylamino-propan-2-ol (P7C3) is effective in treating diabetes and cardiovascular diseases. The novel small molecule is antiarrhythmic and improves the ejection fraction in diabetic hearts. The study successfully demonstrated that P7C3 decreases the infarct size in hearts during myocardial infarction and ischemia-reperfusion injury. Biochemical and cellular signaling show increased NAD+ levels, along with Nampt activity involved in upregulating protective signaling in the diabetic heart. P7C3 has high therapeutic potential for rescuing heart disease.
Collapse
Affiliation(s)
- Jared Tur
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy (J.T., S.L.B., R.M., K.C.C., W.X., S.M.T.) and Department of Chemistry, College of Arts and Sciences (W.G., J.J.C., K.S.B.), University of South Florida, Tampa, Florida, USA
| | - Sachin L Badole
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy (J.T., S.L.B., R.M., K.C.C., W.X., S.M.T.) and Department of Chemistry, College of Arts and Sciences (W.G., J.J.C., K.S.B.), University of South Florida, Tampa, Florida, USA
| | - Ravikumar Manickam
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy (J.T., S.L.B., R.M., K.C.C., W.X., S.M.T.) and Department of Chemistry, College of Arts and Sciences (W.G., J.J.C., K.S.B.), University of South Florida, Tampa, Florida, USA
| | - Kalyan C Chapalamadugu
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy (J.T., S.L.B., R.M., K.C.C., W.X., S.M.T.) and Department of Chemistry, College of Arts and Sciences (W.G., J.J.C., K.S.B.), University of South Florida, Tampa, Florida, USA
| | - Wanling Xuan
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy (J.T., S.L.B., R.M., K.C.C., W.X., S.M.T.) and Department of Chemistry, College of Arts and Sciences (W.G., J.J.C., K.S.B.), University of South Florida, Tampa, Florida, USA
| | - Wayne Guida
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy (J.T., S.L.B., R.M., K.C.C., W.X., S.M.T.) and Department of Chemistry, College of Arts and Sciences (W.G., J.J.C., K.S.B.), University of South Florida, Tampa, Florida, USA
| | - Jaret J Crews
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy (J.T., S.L.B., R.M., K.C.C., W.X., S.M.T.) and Department of Chemistry, College of Arts and Sciences (W.G., J.J.C., K.S.B.), University of South Florida, Tampa, Florida, USA
| | - Kirpal S Bisht
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy (J.T., S.L.B., R.M., K.C.C., W.X., S.M.T.) and Department of Chemistry, College of Arts and Sciences (W.G., J.J.C., K.S.B.), University of South Florida, Tampa, Florida, USA
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy (J.T., S.L.B., R.M., K.C.C., W.X., S.M.T.) and Department of Chemistry, College of Arts and Sciences (W.G., J.J.C., K.S.B.), University of South Florida, Tampa, Florida, USA
| |
Collapse
|
8
|
Lima MF, Amaral AG, Moretto IA, Paiva-Silva FJTN, Pereira FOB, Barbas C, dos Santos AM, Simionato AVC, Rupérez FJ. Untargeted Metabolomics Studies of H9c2 Cardiac Cells Submitted to Oxidative Stress, β-Adrenergic Stimulation and Doxorubicin Treatment: Investigation of Cardiac Biomarkers. Front Mol Biosci 2022; 9:898742. [PMID: 35847971 PMCID: PMC9277393 DOI: 10.3389/fmolb.2022.898742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
One of the biggest challenges in the search for more effective treatments for diseases is understanding their etiology. Cardiovascular diseases (CVD) are an important example of this, given the high number of deaths annually. Oxidative stress (the imbalance between oxidant and antioxidant species in biological system) is one of the factors responsible for CVD occurrence, demanding extensive investigation. Excess of reactive oxygen species (ROS) are primarily responsible for this condition, and clinical and scientific literature have reported a significant increase in ROS when therapeutic drugs, such as doxorubicin and isoproterenol, are administered. In this context, the aim of this study is the investigation of potential biomarkers that might be associated with oxidative stress in cardiomyocytes. For this purpose, H9c2 cardiomyocytes were submitted to oxidative stress conditions by treatment with doxorubicin (DOX), isoproterenol (ISO) and hydrogen peroxide (PER). Metabolomics analyses of the cell extract and the supernatant obtained from the culture medium were then evaluated by CE-ESI(+)-TOF-MS. Following signal processing, statistical analyses, and molecular features annotations, the results indicate changes in the aspartate, serine, pantothenic acid, glycerophosphocholine and glutathione metabolism in the cell extract.
Collapse
Affiliation(s)
- Monica Força Lima
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Alan Gonçalves Amaral
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isabela Aparecida Moretto
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Flávia Oliveira Borges Pereira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Coral Barbas
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Aline Mara dos Santos
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- *Correspondence: Aline Mara dos Santos, ; Francisco Javier Rupérez,
| | - Ana Valéria Colnaghi Simionato
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
- National Institute of Science and Technology in Bioanalytics (INCTBio), Campinas, Brazil
| | - Francisco Javier Rupérez
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- *Correspondence: Aline Mara dos Santos, ; Francisco Javier Rupérez,
| |
Collapse
|
9
|
Nicotinamide riboside kinase-2 inhibits JNK pathway and limits dilated cardiomyopathy in mice with chronic pressure overload. Clin Sci (Lond) 2022; 136:181-196. [PMID: 35048952 DOI: 10.1042/cs20210964] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
Abstract
Nicotinamide riboside kinase-2 (NRK-2) has recently emerged as a critical regulator of cardiac remodeling however, underlying molecular mechanisms is largely unknown. To explore the same, NRK2 knockout (KO) and littermate control mice were subjected to trans-aortic constriction (TAC) or sham surgeries and cardiac function was assessed by serial M-mode echocardiography. A mild cardiac contractile dysfunction was observed in the KOs at the early adaptive phase of remodeling followed by a significant deterioration during the maladaptive cardiac remodeling phase. Consistently, NRK2 KO hearts displayed increased cardiac hypertrophy and heart failure reflected by morphometric parameters as well as increased fetal genes ANP and BNP expressions. Histological assessment revealed an extensive left ventricular (LV) chamber dilatation accompanied by elevated cardiomyopathy and fibrosis in the KO hearts post-TAC. In a gain-of-function model, NRK-2 overexpressing in AC16 cardiomyocytes displayed significantly attenuated fetal genes ANP and BNP expression. Consistently, NRK-2 overexpression attenuated angiotensin II- induced cardiomyocyte death. Mechanistically, we identified NRK-2 as a regulator of JNK MAP kinase and mitochondrial function where NRK-2 overexpression in human cardiomyocytes markedly suppressed the angiotensin II- induced JNK activation and mitochondrial depolarization. Thus, our results demonstrate that NRK-2 plays protective roles in pressure overload- induced dilatative cardiac remodeling and, genetic ablation exacerbates dilated cardiomyopathy, interstitial collagen deposition, and cardiac dysfunction post-TAC due, in part, to increased JNK activation and mitochondrial dysfunction.
Collapse
|
10
|
Piquereau J, Boitard SE, Ventura-Clapier R, Mericskay M. Metabolic Therapy of Heart Failure: Is There a Future for B Vitamins? Int J Mol Sci 2021; 23:30. [PMID: 35008448 PMCID: PMC8744601 DOI: 10.3390/ijms23010030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/17/2023] Open
Abstract
Heart failure (HF) is a plague of the aging population in industrialized countries that continues to cause many deaths despite intensive research into more effective treatments. Although the therapeutic arsenal to face heart failure has been expanding, the relatively short life expectancy of HF patients is pushing towards novel therapeutic strategies. Heart failure is associated with drastic metabolic disorders, including severe myocardial mitochondrial dysfunction and systemic nutrient deprivation secondary to severe cardiac dysfunction. To date, no effective therapy has been developed to restore the cardiac energy metabolism of the failing myocardium, mainly due to the metabolic complexity and intertwining of the involved processes. Recent years have witnessed a growing scientific interest in natural molecules that play a pivotal role in energy metabolism with promising therapeutic effects against heart failure. Among these molecules, B vitamins are a class of water soluble vitamins that are directly involved in energy metabolism and are of particular interest since they are intimately linked to energy metabolism and HF patients are often B vitamin deficient. This review aims at assessing the value of B vitamin supplementation in the treatment of heart failure.
Collapse
Affiliation(s)
- Jérôme Piquereau
- UMR-S 1180, Inserm Unit of Signaling and Cardiovascular Pathophysiology, Faculty of Pharmacy, Université Paris-Saclay, 92296 Chatenay-Malabry, France; (S.E.B.); (R.V.-C.)
| | | | | | - Mathias Mericskay
- UMR-S 1180, Inserm Unit of Signaling and Cardiovascular Pathophysiology, Faculty of Pharmacy, Université Paris-Saclay, 92296 Chatenay-Malabry, France; (S.E.B.); (R.V.-C.)
| |
Collapse
|
11
|
Podyacheva E, Toropova Y. Nicotinamide Riboside for the Prevention and Treatment of Doxorubicin Cardiomyopathy. Opportunities and Prospects. Nutrients 2021; 13:3435. [PMID: 34684434 PMCID: PMC8538727 DOI: 10.3390/nu13103435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/30/2022] Open
Abstract
Despite the progress in the development of new anticancer strategies, cancer is rapidly spreading around the world and remains one of the most common diseases. For more than 40 years, doxorubicin has been widely used in the treatment of solid and hematological tumors. At the same time, the problem of its cardiotoxicity remains unresolved, despite the high efficiency of this drug. Symptomatic therapy is used as a treatment for side-effects of doxorubicin or pathological conditions that have already appeared in their background. To date, there are no treatment methods for doxorubicin cardiomyopathy as such. A drug such as nicotinamide riboside can play an important role in solving this problem. Nicotinamide riboside is a pyridine nucleoside similar to vitamin B3 that acts as a precursor to NAD+. There is no published research on nicotinamide riboside effects on cardiomyopathy, despite the abundance of works devoted to the mechanisms of its effects in various pathologies. The review analyzes information about the effects of nicotinamide riboside on various experimental models of pathologies, its role in the synthesis of NAD+, and also considers the possibility and prospects of its use for the prevention of doxorubicin cardiomyopathy.
Collapse
Affiliation(s)
- Ekaterina Podyacheva
- Research Laboratory of Bioprosthetics and Cardiac Protection, Centre for Experimental Biomodeling, Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint Petersburg, Russia;
| | | |
Collapse
|
12
|
Abstract
Alterations in cardiac energy metabolism contribute to the severity of heart failure. However, the energy metabolic changes that occur in heart failure are complex and are dependent not only on the severity and type of heart failure present but also on the co-existence of common comorbidities such as obesity and type 2 diabetes. The failing heart faces an energy deficit, primarily because of a decrease in mitochondrial oxidative capacity. This is partly compensated for by an increase in ATP production from glycolysis. The relative contribution of the different fuels for mitochondrial ATP production also changes, including a decrease in glucose and amino acid oxidation, and an increase in ketone oxidation. The oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in heart failure associated with diabetes and obesity, myocardial fatty acid oxidation increases, while in heart failure associated with hypertension or ischemia, myocardial fatty acid oxidation decreases. Combined, these energy metabolic changes result in the failing heart becoming less efficient (ie, a decrease in cardiac work/O2 consumed). The alterations in both glycolysis and mitochondrial oxidative metabolism in the failing heart are due to both transcriptional changes in key enzymes involved in these metabolic pathways, as well as alterations in NAD redox state (NAD+ and nicotinamide adenine dinucleotide levels) and metabolite signaling that contribute to posttranslational epigenetic changes in the control of expression of genes encoding energy metabolic enzymes. Alterations in the fate of glucose, beyond flux through glycolysis or glucose oxidation, also contribute to the pathology of heart failure. Of importance, pharmacological targeting of the energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac efficiency, decreasing the energy deficit and improving cardiac function in the failing heart.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle (R.T.)
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.)
| | - E Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City (E.D.A.).,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City (E.D.A.)
| |
Collapse
|
13
|
Tannous C, Deloux R, Karoui A, Mougenot N, Burkin D, Blanc J, Coletti D, Lavery G, Li Z, Mericskay M. NMRK2 Gene Is Upregulated in Dilated Cardiomyopathy and Required for Cardiac Function and NAD Levels during Aging. Int J Mol Sci 2021; 22:3534. [PMID: 33805532 PMCID: PMC8036583 DOI: 10.3390/ijms22073534] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/09/2021] [Accepted: 03/25/2021] [Indexed: 01/16/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a disease of multifactorial etiologies, the risk of which is increased by male sex and age. There are few therapeutic options for patients with DCM who would benefit from identification of common targetable pathways. We used bioinformatics to identify the Nmrk2 gene involved in nicotinamide adenine dinucleotde (NAD) coenzyme biosynthesis as activated in different mouse models and in hearts of human patients with DCM while the Nampt gene controlling a parallel pathway is repressed. A short NMRK2 protein isoform is also known as muscle integrin binding protein (MIBP) binding the α7β1 integrin complex. We investigated the cardiac phenotype of Nmrk2-KO mice to establish its role in cardiac remodeling and function. Young Nmrk2-KO mice developed an eccentric type of cardiac hypertrophy in response to pressure overload rather than the concentric hypertrophy observed in controls. Nmrk2-KO mice developed a progressive DCM-like phenotype with aging, associating eccentric remodeling of the left ventricle and a decline in ejection fraction and showed a reduction in myocardial NAD levels at 24 months. In agreement with involvement of NMRK2 in integrin signaling, we observed a defect in laminin deposition in the basal lamina of cardiomyocytes leading to increased fibrosis at middle age. The α7 integrin was repressed at both transcript and protein level at 24 months. Nmrk2 gene is required to preserve cardiac structure and function, and becomes an important component of the NAD biosynthetic pathways during aging. Molecular characterization of compounds modulating this pathway may have therapeutic potential.
Collapse
Affiliation(s)
- Cynthia Tannous
- Inserm Unit UMR-S 1180 CARPAT, Faculty of Pharmacy, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (C.T.); (R.D.); (A.K.)
- INSERM Unit U1164 / CNRS UMR 8256, Biologie de l’Adaptation et du Vieillissement, Institut de Biologie Paris-Seine, Sorbonne Université, 75006 Paris, France; (J.B.); (D.C.); (Z.L.)
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Robin Deloux
- Inserm Unit UMR-S 1180 CARPAT, Faculty of Pharmacy, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (C.T.); (R.D.); (A.K.)
| | - Ahmed Karoui
- Inserm Unit UMR-S 1180 CARPAT, Faculty of Pharmacy, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (C.T.); (R.D.); (A.K.)
| | - Nathalie Mougenot
- Plateau d’Expérimentation Cœur, Muscle, Vaisseaux PECMV, UMS28, Sorbonne Université, 75013 Paris, France;
| | - Dean Burkin
- Department of Pharmacology, Reno School of Medicine, University of Nevada, Reno, NV 89102, USA;
| | - Jocelyne Blanc
- INSERM Unit U1164 / CNRS UMR 8256, Biologie de l’Adaptation et du Vieillissement, Institut de Biologie Paris-Seine, Sorbonne Université, 75006 Paris, France; (J.B.); (D.C.); (Z.L.)
| | - Dario Coletti
- INSERM Unit U1164 / CNRS UMR 8256, Biologie de l’Adaptation et du Vieillissement, Institut de Biologie Paris-Seine, Sorbonne Université, 75006 Paris, France; (J.B.); (D.C.); (Z.L.)
| | - Gareth Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, 2nd Floor IBR Tower, Edgbaston, Birmingham B15 2TT, UK;
| | - Zhenlin Li
- INSERM Unit U1164 / CNRS UMR 8256, Biologie de l’Adaptation et du Vieillissement, Institut de Biologie Paris-Seine, Sorbonne Université, 75006 Paris, France; (J.B.); (D.C.); (Z.L.)
| | - Mathias Mericskay
- Inserm Unit UMR-S 1180 CARPAT, Faculty of Pharmacy, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (C.T.); (R.D.); (A.K.)
| |
Collapse
|
14
|
Cheng Y, Zeng X, Mai Q, Bai X, Jiang Y, Li J, Fan S, Ding H. Insulin injections inhibits PTZ-induced mitochondrial dysfunction, oxidative stress and neurological deficits via the SIRT1/PGC-1α/SIRT3 pathway. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166124. [PMID: 33727197 DOI: 10.1016/j.bbadis.2021.166124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/12/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
With an associated 20% death risk, epilepsy mainly involves seizures of an unpredictable and recurrent nature. This study was designed to evaluate the neuroprotective effects and underlying mechanisms of insulin on mitochondrial disruption, oxidative stress, cell apoptosis and neurological deficits after epilepsy seizures. Mice were exposed to repetitive injections of pentylenetetrazol at a dose of 37 mg per kg. The influence of insulin was assessed by many biochemical assays, histopathological studies and neurobehavioral experiments. The administration of insulin was proven to increase the latency of seizures while also decreasing their intensity. It also caused a reversal of mitochondrial dysfunction and ameliorated oxidative stress. Additionally, insulin pretreatment upregulated Bcl-2, downregulated Bax, and then played a neuroprotective role against hippocampal neuron apoptosis. Furthermore, when insulin was administered, SIRT1/PGC-1α/SIRT3 signals were activated, possibly due to the fact that insulin's neuroprotective and anti-mitochondrial damage characteristics added to its observed antiepileptic functions. Finally, insulin treatment is thus extremely valuable for effecting improvements in neurological functions, as has been estimated in a series of functional tests. In conclude, the results of this study consequently demonstrate insulin to have significant potential for future application in epilepsy management.
Collapse
Affiliation(s)
- Yahong Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xin Zeng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qianting Mai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xinying Bai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuan Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jinjin Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shiqi Fan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
15
|
Xu W, Li L, Zhang L. NAD + Metabolism as an Emerging Therapeutic Target for Cardiovascular Diseases Associated With Sudden Cardiac Death. Front Physiol 2020; 11:901. [PMID: 32903597 PMCID: PMC7438569 DOI: 10.3389/fphys.2020.00901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to its central role in mediating oxidation reduction in fuel metabolism and bioenergetics, nicotinamide adenine dinucleotide (NAD+) has emerged as a vital co-substrate for a number of proteins involved in diverse cellular processes, including sirtuins, poly(ADP-ribose) polymerases and cyclic ADP-ribose synthetases. The connection with aging and age-associated diseases has led to a new wave of research in the cardiovascular field. Here, we review the basics of NAD+ homeostasis, the molecular physiology and new advances in ischemic-reperfusion injury, heart failure, and arrhythmias, all of which are associated with increased risks for sudden cardiac death. Finally, we summarize the progress of NAD+-boosting therapy in human cardiovascular diseases and the challenges for future studies.
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Le Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lilei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
16
|
Mehmel M, Jovanović N, Spitz U. Nicotinamide Riboside-The Current State of Research and Therapeutic Uses. Nutrients 2020; 12:E1616. [PMID: 32486488 PMCID: PMC7352172 DOI: 10.3390/nu12061616] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Nicotinamide riboside (NR) has recently become one of the most studied nicotinamide adenine dinucleotide (NAD+) precursors, due to its numerous potential health benefits mediated via elevated NAD+ content in the body. NAD+ is an essential coenzyme that plays important roles in various metabolic pathways and increasing its overall content has been confirmed as a valuable strategy for treating a wide variety of pathophysiological conditions. Accumulating evidence on NRs' health benefits has validated its efficiency across numerous animal and human studies for the treatment of a number of cardiovascular, neurodegenerative, and metabolic disorders. As the prevalence and morbidity of these conditions increases in modern society, the great necessity has arisen for a rapid translation of NR to therapeutic use and further establishment of its availability as a nutritional supplement. Here, we summarize currently available data on NR effects on metabolism, and several neurodegenerative and cardiovascular disorders, through to its application as a treatment for specific pathophysiological conditions. In addition, we have reviewed newly published research on the application of NR as a potential therapy against infections with several pathogens, including SARS-CoV-2. Additionally, to support rapid NR translation to therapeutics, the challenges related to its bioavailability and safety are addressed, together with the advantages of NR to other NAD+ precursors.
Collapse
Affiliation(s)
- Mario Mehmel
- Biosynth Carbosynth, Rietlistrasse 4, 9422 Staad, Switzerland;
| | - Nina Jovanović
- Faculty of Biology, Department of Biochemistry and Molecular Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 1, 11000 Belgrade, Serbia;
| | - Urs Spitz
- Biosynth Carbosynth, Axis House, High Street, Compton, Berkshire RG20 6NL, UK
| |
Collapse
|
17
|
Li L, Li H, Tien CL, Jain MK, Zhang L. Kruppel-Like Factor 15 Regulates the Circadian Susceptibility to Ischemia Reperfusion Injury in the Heart. Circulation 2020; 141:1427-1429. [PMID: 32339045 PMCID: PMC7197441 DOI: 10.1161/circulationaha.119.041664] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Le Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77004, USA
- Department of Anesthesiology, Zhujiang hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Hui Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77004, USA
| | - Chih-Liang Tien
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77004, USA
| | - Mukesh K. Jain
- Case Cardiovascular Research Institute, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio 44106, USA
- School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Lilei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77004, USA
| |
Collapse
|
18
|
Ahmad F, Tomar D, Aryal A C S, Elmoselhi AB, Thomas M, Elrod JW, Tilley DG, Force T. Nicotinamide riboside kinase-2 alleviates ischemia-induced heart failure through P38 signaling. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165609. [PMID: 31743747 DOI: 10.1016/j.bbadis.2019.165609] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 01/23/2023]
Abstract
Nicotinamide riboside kinase-2 (NRK-2), a muscle-specific β1 integrin binding protein, predominantly expresses in skeletal muscle with a trace amount expressed in healthy cardiac tissue. NRK-2 expression dramatically increases in mouse and human ischemic heart however, the specific role of NRK-2 in the pathophysiology of ischemic cardiac diseases is unknown. We employed NRK2 knockout (KO) mice to identify the role of NRK-2 in ischemia-induced cardiac remodeling and dysfunction. Following myocardial infarction (MI), or sham surgeries, serial echocardiography was performed in the KO and littermate control mice. Cardiac contractile function rapidly declined and left ventricular interior dimension (LVID) was significantly increased in the ischemic KO vs. control mice at 2 weeks post-MI. An increase in mortality was observed in the KO vs. control group. The KO hearts displayed increased cardiac hypertrophy and heart failure reflected by morphometric analysis. Consistently, histological assessment revealed an extensive and thin scar and dilated LV chamber accompanied with elevated fibrosis in the KOs post-MI. Mechanistically, we observed that loss of NRK-2 enhanced p38α activation following ischemic injury. Consistently, ex vivo studies demonstrated that the gain of NRK-2 function suppresses the p38α as well as fibroblast activation (α-SMA expression) upon TGF-β stimulation, and limits cardiomyocytes death upon hypoxia/re‑oxygenation. Collectively our findings show, for the first time, that NRK-2 plays a critical role in heart failure progression following ischemic injury. NRK-2 deficiency promotes post-MI scar expansion, rapid LV chamber dilatation, cardiac dysfunction and fibrosis possibly due to increased p38α activation.
Collapse
Affiliation(s)
- Firdos Ahmad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| | - Dhanendra Tomar
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Smriti Aryal A C
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Adel B Elmoselhi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Manfred Thomas
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Thomas Force
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
19
|
Li T, Yu SS, Zhou CY, Wang K, Wan YC. MicroRNA-206 inhibition and activation of the AMPK/Nampt signalling pathway enhance sevoflurane post-conditioning-induced amelioration of myocardial ischaemia/reperfusion injury. J Drug Target 2019; 28:80-91. [PMID: 31092059 DOI: 10.1080/1061186x.2019.1616744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tao Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Shan-Shan Yu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Chang-Yu Zhou
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Ke Wang
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Ying-Chun Wan
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
20
|
Brouwers B, Stephens NA, Costford SR, Hopf ME, Ayala JE, Yi F, Xie H, Li JL, Gardell SJ, Sparks LM, Smith SR. Elevated Nicotinamide Phosphoribosyl Transferase in Skeletal Muscle Augments Exercise Performance and Mitochondrial Respiratory Capacity Following Exercise Training. Front Physiol 2018; 9:704. [PMID: 29942262 PMCID: PMC6004371 DOI: 10.3389/fphys.2018.00704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/22/2018] [Indexed: 11/25/2022] Open
Abstract
Mice overexpressing NAMPT in skeletal muscle (NamptTg mice) develop higher exercise endurance and maximal aerobic capacity (VO2max) following voluntary exercise training compared to wild-type (WT) mice. Here, we aimed to investigate the mechanisms underlying by determining skeletal muscle mitochondrial respiratory capacity in NamptTg and WT mice. Body weight and body composition, tissue weight (gastrocnemius, quadriceps, soleus, heart, liver, and epididymal white adipose tissue), skeletal muscle and liver glycogen content, VO2max, skeletal muscle mitochondrial respiratory capacity (measured by high-resolution respirometry), skeletal muscle gene expression (measured by microarray and qPCR), and skeletal muscle protein content (measured by Western blot) were determined following 6 weeks of voluntary exercise training (access to running wheel) in 13-week-old male NamptTg (exercised NamptTg) mice and WT (exercised WT) mice. Daily running distance and running time during the voluntary exercise training protocol were recorded. Daily running distance (p = 0.51) and running time (p = 0.85) were not significantly different between exercised NamptTg mice and exercised WT mice. VO2max was higher in exercised NamptTg mice compared to exercised WT mice (p = 0.02). Body weight (p = 0.92), fat mass (p = 0.49), lean mass (p = 0.91), tissue weight (all p > 0.05), and skeletal muscle (p = 0.72) and liver (p = 0.94) glycogen content were not significantly different between exercised NamptTg mice and exercised WT mice. Complex I oxidative phosphorylation (OXPHOS) respiratory capacity supported by fatty acid substrates (p < 0.01), maximal (complex I+II) OXPHOS respiratory capacity supported by glycolytic (p = 0.02) and fatty acid (p < 0.01) substrates, and maximal uncoupled respiratory capacity supported by fatty acid substrates (p < 0.01) was higher in exercised NamptTg mice compared to exercised WT mice. Transcriptomic analyses revealed differential expression for genes involved in oxidative metabolism in exercised NamptTg mice compared to exercised WT mice, specifically, enrichment for the gene set related to the SIRT3-mediated signaling pathway. SIRT3 protein content correlated with NAMPT protein content (r = 0.61, p = 0.04). In conclusion, NamptTg mice develop higher exercise capacity following voluntary exercise training compared to WT mice, which is paralleled by higher mitochondrial respiratory capacity in skeletal muscle. The changes in SIRT3 targets suggest that these effects are due to remodeling of mitochondrial function.
Collapse
Affiliation(s)
- Bram Brouwers
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, United States
| | - Natalie A Stephens
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, United States
| | - Sheila R Costford
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, United States
| | - Meghan E Hopf
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, United States
| | - Julio E Ayala
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, United States
| | - Fanchao Yi
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, United States
| | - Hui Xie
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, United States
| | - Jian-Liang Li
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, United States
| | - Stephen J Gardell
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, United States
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, United States.,Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, United States
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, United States.,Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, United States
| |
Collapse
|
21
|
Walker MA, Tian R. NAD(H) in mitochondrial energy transduction: implications for health and disease. CURRENT OPINION IN PHYSIOLOGY 2018; 3:101-109. [PMID: 32258851 DOI: 10.1016/j.cophys.2018.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mitochondria are intracellular organelles that oxidize nutrients, make ATP, and fuel eukaryotic life. Their energy providing function is directly dependent on enzymes and coenzymes contained within the organelle. Perhaps, the most important coenzymes for energy yielding reactions are the pyridine nucleotides NAD(H) and NADP(H). Both aerobic and anaerobic metabolism rely on the electron carrying properties of pyridine nucleotides to regulate energy production. The intracellular NAD+/NADH ratio controls the rate of ATP synthesis by regulating flux through NAD(H)-linked dehydrogenases and by activating NAD+ dependent enzymes that post-translationally modify proteins. Thus, mitochondrial energy transduction pathways can be substantially mediated by NAD+; as an electron carrier exerting control over dehydrogenase enzymes or by activating enzymes that affect protein modification. The importance of this is highlighted in the explosion of recent studies linking impaired NAD+ metabolism to human health and disease. Most notably, studies linking changes in NAD+ availability or altered NAD+/NADH ratio to derangements in metabolic and cellular energy transduction processes. In this review, we focus on the most recent investigative efforts to identify the role NAD+ plays in modulating mitochondrial function and also summarize the current knowledge describing the therapeutic application of elevating NAD+ levels via pharmacologic and genetic approaches to treat human disease.
Collapse
Affiliation(s)
- Matthew A Walker
- Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| |
Collapse
|
22
|
Diguet N, Trammell SAJ, Tannous C, Deloux R, Piquereau J, Mougenot N, Gouge A, Gressette M, Manoury B, Blanc J, Breton M, Decaux JF, Lavery GG, Baczkó I, Zoll J, Garnier A, Li Z, Brenner C, Mericskay M. Nicotinamide Riboside Preserves Cardiac Function in a Mouse Model of Dilated Cardiomyopathy. Circulation 2017; 137:2256-2273. [PMID: 29217642 DOI: 10.1161/circulationaha.116.026099] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 11/06/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Myocardial metabolic impairment is a major feature in chronic heart failure. As the major coenzyme in fuel oxidation and oxidative phosphorylation and a substrate for enzymes signaling energy stress and oxidative stress response, nicotinamide adenine dinucleotide (NAD+) is emerging as a metabolic target in a number of diseases including heart failure. Little is known on the mechanisms regulating homeostasis of NAD+ in the failing heart. METHODS To explore possible alterations of NAD+ homeostasis in the failing heart, we quantified the expression of NAD+ biosynthetic enzymes in the human failing heart and in the heart of a mouse model of dilated cardiomyopathy (DCM) triggered by Serum Response Factor transcription factor depletion in the heart (SRFHKO) or of cardiac hypertrophy triggered by transverse aorta constriction. We studied the impact of NAD+ precursor supplementation on cardiac function in both mouse models. RESULTS We observed a 30% loss in levels of NAD+ in the murine failing heart of both DCM and transverse aorta constriction mice that was accompanied by a decrease in expression of the nicotinamide phosphoribosyltransferase enzyme that recycles the nicotinamide precursor, whereas the nicotinamide riboside kinase 2 (NMRK2) that phosphorylates the nicotinamide riboside precursor is increased, to a higher level in the DCM (40-fold) than in transverse aorta constriction (4-fold). This shift was also observed in human failing heart biopsies in comparison with nonfailing controls. We show that the Nmrk2 gene is an AMP-activated protein kinase and peroxisome proliferator-activated receptor α responsive gene that is activated by energy stress and NAD+ depletion in isolated rat cardiomyocytes. Nicotinamide riboside efficiently rescues NAD+ synthesis in response to FK866-mediated inhibition of nicotinamide phosphoribosyltransferase and stimulates glycolysis in cardiomyocytes. Accordingly, we show that nicotinamide riboside supplementation in food attenuates the development of heart failure in mice, more robustly in DCM, and partially after transverse aorta constriction, by stabilizing myocardial NAD+ levels in the failing heart. Nicotinamide riboside treatment also robustly increases the myocardial levels of 3 metabolites, nicotinic acid adenine dinucleotide, methylnicotinamide, and N1-methyl-4-pyridone-5-carboxamide, that can be used as validation biomarkers for the treatment. CONCLUSIONS The data show that nicotinamide riboside, the most energy-efficient among NAD precursors, could be useful for treatment of heart failure, notably in the context of DCM, a disease with few therapeutic options.
Collapse
Affiliation(s)
- Nicolas Diguet
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, Department of Biology of Adaptation and Ageing, CNRS UMR8256, INSERM U1164, Institute of Biology Paris-Seine, DHU FAST, France (N.D., C.T., R.D., A. Gouge, J.B., J.-F.D., Z.L.)
| | - Samuel A J Trammell
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City (S.A.J.T., C.B.)
| | - Cynthia Tannous
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, Department of Biology of Adaptation and Ageing, CNRS UMR8256, INSERM U1164, Institute of Biology Paris-Seine, DHU FAST, France (N.D., C.T., R.D., A. Gouge, J.B., J.-F.D., Z.L.).,Signalling and Cardiovascular Pathophysiology, UMR-S 1180, University Paris-Sud, INSERM, Université Paris- Saclay, Châtenay-Malabry, France (C.T., R.D., J.P., M.G., B.M., M.B., A. Garnier, M.M.)
| | - Robin Deloux
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, Department of Biology of Adaptation and Ageing, CNRS UMR8256, INSERM U1164, Institute of Biology Paris-Seine, DHU FAST, France (N.D., C.T., R.D., A. Gouge, J.B., J.-F.D., Z.L.).,Signalling and Cardiovascular Pathophysiology, UMR-S 1180, University Paris-Sud, INSERM, Université Paris- Saclay, Châtenay-Malabry, France (C.T., R.D., J.P., M.G., B.M., M.B., A. Garnier, M.M.)
| | | | - Nathalie Mougenot
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, Plateforme PECMV, UMS28, Paris, France (N.M.)
| | - Anne Gouge
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, Department of Biology of Adaptation and Ageing, CNRS UMR8256, INSERM U1164, Institute of Biology Paris-Seine, DHU FAST, France (N.D., C.T., R.D., A. Gouge, J.B., J.-F.D., Z.L.)
| | - Mélanie Gressette
- Signalling and Cardiovascular Pathophysiology, UMR-S 1180, University Paris-Sud, INSERM, Université Paris- Saclay, Châtenay-Malabry, France (C.T., R.D., J.P., M.G., B.M., M.B., A. Garnier, M.M.)
| | - Boris Manoury
- Signalling and Cardiovascular Pathophysiology, UMR-S 1180, University Paris-Sud, INSERM, Université Paris- Saclay, Châtenay-Malabry, France (C.T., R.D., J.P., M.G., B.M., M.B., A. Garnier, M.M.)
| | - Jocelyne Blanc
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, Department of Biology of Adaptation and Ageing, CNRS UMR8256, INSERM U1164, Institute of Biology Paris-Seine, DHU FAST, France (N.D., C.T., R.D., A. Gouge, J.B., J.-F.D., Z.L.).,Signalling and Cardiovascular Pathophysiology, UMR-S 1180, University Paris-Sud, INSERM, Université Paris- Saclay, Châtenay-Malabry, France (C.T., R.D., J.P., M.G., B.M., M.B., A. Garnier, M.M.)
| | - Marie Breton
- Signalling and Cardiovascular Pathophysiology, UMR-S 1180, University Paris-Sud, INSERM, Université Paris- Saclay, Châtenay-Malabry, France (C.T., R.D., J.P., M.G., B.M., M.B., A. Garnier, M.M.)
| | - Jean-François Decaux
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, Department of Biology of Adaptation and Ageing, CNRS UMR8256, INSERM U1164, Institute of Biology Paris-Seine, DHU FAST, France (N.D., C.T., R.D., A. Gouge, J.B., J.-F.D., Z.L.)
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, United Kingdom (G.G.L.)
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Hungary (I.B.)
| | - Joffrey Zoll
- Physiology Department, Faculty of Medicine and EA3072, Université de Strasbourg, France (J.Z.)
| | - Anne Garnier
- Signalling and Cardiovascular Pathophysiology, UMR-S 1180, University Paris-Sud, INSERM, Université Paris- Saclay, Châtenay-Malabry, France (C.T., R.D., J.P., M.G., B.M., M.B., A. Garnier, M.M.)
| | - Zhenlin Li
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, Department of Biology of Adaptation and Ageing, CNRS UMR8256, INSERM U1164, Institute of Biology Paris-Seine, DHU FAST, France (N.D., C.T., R.D., A. Gouge, J.B., J.-F.D., Z.L.)
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City (S.A.J.T., C.B.)
| | - Mathias Mericskay
- Signalling and Cardiovascular Pathophysiology, UMR-S 1180, University Paris-Sud, INSERM, Université Paris- Saclay, Châtenay-Malabry, France (C.T., R.D., J.P., M.G., B.M., M.B., A. Garnier, M.M.).
| |
Collapse
|
23
|
Davies JMS, Cillard J, Friguet B, Cadenas E, Cadet J, Cayce R, Fishmann A, Liao D, Bulteau AL, Derbré F, Rébillard A, Burstein S, Hirsch E, Kloner RA, Jakowec M, Petzinger G, Sauce D, Sennlaub F, Limon I, Ursini F, Maiorino M, Economides C, Pike CJ, Cohen P, Salvayre AN, Halliday MR, Lundquist AJ, Jakowec NA, Mechta-Grigoriou F, Mericskay M, Mariani J, Li Z, Huang D, Grant E, Forman HJ, Finch CE, Sun PY, Pomatto LCD, Agbulut O, Warburton D, Neri C, Rouis M, Cillard P, Capeau J, Rosenbaum J, Davies KJA. The Oxygen Paradox, the French Paradox, and age-related diseases. GeroScience 2017; 39:499-550. [PMID: 29270905 PMCID: PMC5745211 DOI: 10.1007/s11357-017-0002-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023] Open
Abstract
A paradox is a seemingly absurd or impossible concept, proposition, or theory that is often difficult to understand or explain, sometimes apparently self-contradictory, and yet ultimately correct or true. How is it possible, for example, that oxygen "a toxic environmental poison" could be also indispensable for life (Beckman and Ames Physiol Rev 78(2):547-81, 1998; Stadtman and Berlett Chem Res Toxicol 10(5):485-94, 1997)?: the so-called Oxygen Paradox (Davies and Ursini 1995; Davies Biochem Soc Symp 61:1-31, 1995). How can French people apparently disregard the rule that high dietary intakes of cholesterol and saturated fats (e.g., cheese and paté) will result in an early death from cardiovascular diseases (Renaud and de Lorgeril Lancet 339(8808):1523-6, 1992; Catalgol et al. Front Pharmacol 3:141, 2012; Eisenberg et al. Nat Med 22(12):1428-1438, 2016)?: the so-called, French Paradox. Doubtless, the truth is not a duality and epistemological bias probably generates apparently self-contradictory conclusions. Perhaps nowhere in biology are there so many apparently contradictory views, and even experimental results, affecting human physiology and pathology as in the fields of free radicals and oxidative stress, antioxidants, foods and drinks, and dietary recommendations; this is particularly true when issues such as disease-susceptibility or avoidance, "healthspan," "lifespan," and ageing are involved. Consider, for example, the apparently paradoxical observation that treatment with low doses of a substance that is toxic at high concentrations may actually induce transient adaptations that protect against a subsequent exposure to the same (or similar) toxin. This particular paradox is now mechanistically explained as "Adaptive Homeostasis" (Davies Mol Asp Med 49:1-7, 2016; Pomatto et al. 2017a; Lomeli et al. Clin Sci (Lond) 131(21):2573-2599, 2017; Pomatto and Davies 2017); the non-damaging process by which an apparent toxicant can activate biological signal transduction pathways to increase expression of protective genes, by mechanisms that are completely different from those by which the same agent induces toxicity at high concentrations. In this review, we explore the influences and effects of paradoxes such as the Oxygen Paradox and the French Paradox on the etiology, progression, and outcomes of many of the major human age-related diseases, as well as the basic biological phenomenon of ageing itself.
Collapse
Affiliation(s)
- Joanna M S Davies
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Josiane Cillard
- Lab de Biologie Cellulaire et Végétale, Faculté de Pharmacie, Université de Rennes, 35043, Rennes Cedex, France
| | - Bertrand Friguet
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - Enrique Cadenas
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- School of Pharmacy, University of Southern California, Los Angeles, CA, 90089-9121, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Rachael Cayce
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Andrew Fishmann
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - David Liao
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Anne-Laure Bulteau
- Institut de Génomique Fonctionnelle de Lyon,ENS de Lyon, CNRS, 69364, Lyon Cedex 07, France
| | - Frédéric Derbré
- Laboratory for Movement, Sport and Health Sciences-EA 1274, M2S, Université de Rennes 2-ENS, Bruz, 35170, Rennes, France
| | - Amélie Rébillard
- Laboratory for Movement, Sport and Health Sciences-EA 1274, M2S, Université de Rennes 2-ENS, Bruz, 35170, Rennes, France
| | - Steven Burstein
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Etienne Hirsch
- INSERM UMR 1127-CNRS UMR 7225, Institut du cerveau et de la moelle épinière-ICM Thérapeutique Expérimentale de la Maladie de Parkinson, Université Pierre et Marie Curie, 75651, Paris Cedex 13, France
| | - Robert A Kloner
- Huntington Medical Research Institutes, Pasadena, CA, 91105, USA
| | - Michael Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Giselle Petzinger
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Delphine Sauce
- Chronic infections and Immune ageing, INSERM U1135, Hopital Pitie-Salpetriere, Pierre et Marie Curie University, 75013, Paris, France
| | | | - Isabelle Limon
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Matilde Maiorino
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Christina Economides
- Los Angeles Cardiology Associates, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Christian J Pike
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Neurobiology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Anne Negre Salvayre
- Lipid peroxidation, Signalling and Vascular Diseases INSERM U1048, 31432, Toulouse Cedex 4, France
| | - Matthew R Halliday
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Adam J Lundquist
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nicolaus A Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | | | - Mathias Mericskay
- Laboratoire de Signalisation et Physiopathologie Cardiovasculaire-Inserm UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, 92296 Châtenay-Malabry, Paris, France
| | - Jean Mariani
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Zhenlin Li
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - David Huang
- Department of Radiation Oncology, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Ellsworth Grant
- Department of Oncology & Hematology, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Henry J Forman
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Los Angeles Cardiology Associates, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Patrick Y Sun
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Onnik Agbulut
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - David Warburton
- Children's Hospital of Los Angeles, Developmental Biology, Regenerative Medicine and Stem Cell Therapeutics program and the Center for Environmental Impact on Global Health Across the Lifespan at The Saban Research Institute, Los Angeles, CA, 90027, USA
- Department of Pediatrics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Christian Neri
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Mustapha Rouis
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - Pierre Cillard
- Lab de Biologie Cellulaire et Végétale, Faculté de Pharmacie, Université de Rennes, 35043, Rennes Cedex, France
| | - Jacqueline Capeau
- DR Saint-Antoine UMR_S938, UPMC, Inserm Faculté de Médecine, Université Pierre et Marie Curie, 75012, Paris, France
| | - Jean Rosenbaum
- Scientific Service of the Embassy of France in the USA, Consulate General of France in Los Angeles, Los Angeles, CA, 90025, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA.
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA.
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA.
| |
Collapse
|
24
|
Carbone F, Liberale L, Bonaventura A, Vecchiè A, Casula M, Cea M, Monacelli F, Caffa I, Bruzzone S, Montecucco F, Nencioni A. Regulation and Function of Extracellular Nicotinamide Phosphoribosyltransferase/Visfatin. Compr Physiol 2017; 7:603-621. [PMID: 28333382 DOI: 10.1002/cphy.c160029] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is an adipokine-enzyme, which was described as to play bioactivities both in the intracellular and in the extracellular environment. However, while the functions of intracellular NAMPT (iNAMPT) are well known, much less is known on extracellular NAMPT (eNAMPT), also called visfatin or pre-B cell colony-enhancing factor. iNAMPT catalyzes the rate-limiting step in the NAD+ biosynthesis pathway from nicotinamide. Its inhibition severely reduces intracellular NAD+ levels, achieving anti-inflammatory and anti-cancer effects. eNAMPT can be detected in the human circulation and in many extracellular environments. Studies show that eNAMPT can act as a growth factor, as an enzyme, and as a cytokine, but its true mechanism of secretion and its physiological functions are still debated. Increased levels of eNAMPT have been associated with different metabolic disorders and cancers. eNAMPT was demonstrated to modulate the pathways involved in the pathophysiology of obesity, diabetes, atherosclerosis, and cardiovascular events by regulating the oxidative stress response, apoptosis, and inflammation. In cancer, eNAMPT was shown to play a pivotal role in modulating cancer cell metabolism, in promoting epithelial-to-mesenchymal transition and in shaping the tumor microenvironment. In line with these functions, circulating eNAMPT levels are frequently increased in cancer patients. Given these pleiotropic roles of eNAMPT in human disease, this protein has attracted attention as a therapeutic target. In this narrative review, we will discuss recent evidence on eNAMPT-driven signalling, highlighting the emerging pathophysiological roles of this protein in different disorders and the potential therapeutic opportunities linked to its targeting. © 2017 American Physiological Society. Compr Physiol 7:603-621, 2017.
Collapse
Affiliation(s)
- Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Alessandra Vecchiè
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Matteo Casula
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Michele Cea
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino-IST, Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino-IST, Genoa, Italy
| | - Irene Caffa
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino-IST, Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino-IST, Genoa, Italy
| |
Collapse
|
25
|
Role of NAD + and mitochondrial sirtuins in cardiac and renal diseases. Nat Rev Nephrol 2017; 13:213-225. [PMID: 28163307 DOI: 10.1038/nrneph.2017.5] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The coenzyme nicotinamide adenine dinucleotide (NAD+) has key roles in the regulation of redox status and energy metabolism. NAD+ depletion is emerging as a major contributor to the pathogenesis of cardiac and renal diseases and NAD+ repletion strategies have shown therapeutic potential as a means to restore healthy metabolism and physiological function. The pleotropic roles of NAD+ enable several possible avenues by which repletion of this coenzyme could have therapeutic efficacy. In particular, NAD+ functions as a co-substrate in deacylation reactions carried out by the sirtuin family of enzymes. These NAD+-dependent deacylases control several aspects of metabolism and a wealth of data suggests that boosting sirtuin activity via NAD+ supplementation might be a promising therapy for cardiac and renal pathologies. This Review summarizes the role of NAD+ metabolism in the heart and kidney, and highlights the mitochondrial sirtuins as mediators of some of the beneficial effects of NAD+-boosting therapies in preclinical animal models. We surmise that modulating the NAD+-sirtuin axis is a clinically relevant approach to develop new therapies for cardiac and renal diseases.
Collapse
|
26
|
Hognogi LDM, Simiti LV. The cardiovascular impact of visfatin - an inflammation predictor biomarker in metabolic syndrome. ACTA ACUST UNITED AC 2016; 89:322-6. [PMID: 27547049 PMCID: PMC4990425 DOI: 10.15386/cjmed-591] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/05/2015] [Accepted: 10/20/2015] [Indexed: 11/23/2022]
Abstract
As it had been already stated by latest research, inflammation is a condition which sits at the very base of atherogenesis, which is the major consequence of the metabolic syndrome. It was stated that adipose tissue impacts all organs by the synthesis of adipokines. Visfatin/NAMPT is a biomarker that was recently discovered in mice (2005). In the beginning it was believed to have insulin-like properties, but afterwards research has found important links between Visfatin and inflammation, endothelial dysfunction and atherosclerosis in coronary artery disease. It was also linked to plaque instability in acute coronary syndromes. More studies are needed though, to clearly state whether Visfatin/NAMPT has a positive or negative role because, up until now, the only sure fact is that its serum levels correlate with the presence of an inflammatory state.
Collapse
Affiliation(s)
- Larisa Diana Mocan Hognogi
- 1st Medical Department, Cardiology Unit, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Luminita Vida Simiti
- 1st Medical Department, Cardiology Unit, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
27
|
Riquelme JA, Chavez MN, Mondaca-Ruff D, Bustamante M, Vicencio JM, Quest AFG, Lavandero S. Therapeutic targeting of autophagy in myocardial infarction and heart failure. Expert Rev Cardiovasc Ther 2016; 14:1007-19. [PMID: 27308848 DOI: 10.1080/14779072.2016.1202760] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Myocardial infarction (MI) is the leading cause of death. When MI is not lethal, heart failure (HF) is a major consequence with high prevalence and poor prognosis. The targeting of autophagy represents a potentially therapeutic approach for the treatment of both pathologies. AREAS COVERED PubMed searches were performed to discuss the current state of the art regarding the role of autophagy in MI and HF. We review available and potential approaches to modulate autophagy from a pharmacological and genetic perspective. We also discuss the targeting of autophagy in myocardial regeneration. Expert commentary: The targeting of autophagy has potential for the treatment of MI and HF. Autophagy is a process that takes place in virtually all cells of the body and thus, in order to evaluate this therapeutic approach in clinical trials, strategies that specifically target this process in the myocardium is required to avoid unwanted effects in other organs.
Collapse
Affiliation(s)
- Jaime A Riquelme
- a Advanced Center for Chronic Disease (ACCDiS) & Center for Molecular Studies of the Cell (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina , Universidad de Chile , Santiago , Chile
| | - Myra N Chavez
- a Advanced Center for Chronic Disease (ACCDiS) & Center for Molecular Studies of the Cell (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina , Universidad de Chile , Santiago , Chile.,b FONDAP Center for Genome Regulation, Facultad de Ciencias , Universidad de Chile , Santiago , Chile
| | - David Mondaca-Ruff
- a Advanced Center for Chronic Disease (ACCDiS) & Center for Molecular Studies of the Cell (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina , Universidad de Chile , Santiago , Chile
| | - Mario Bustamante
- a Advanced Center for Chronic Disease (ACCDiS) & Center for Molecular Studies of the Cell (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina , Universidad de Chile , Santiago , Chile.,c Advanced Center for Chronic Disease (ACCDiS), Division Enfermedades Cardiovasculares, Facultad de Medicina , Pontificia Universidad Catolica de Chile , Santiago , Chile
| | - Jose Miguel Vicencio
- a Advanced Center for Chronic Disease (ACCDiS) & Center for Molecular Studies of the Cell (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina , Universidad de Chile , Santiago , Chile.,d Cancer Institute , University College London , London , UK
| | - Andrew F G Quest
- a Advanced Center for Chronic Disease (ACCDiS) & Center for Molecular Studies of the Cell (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina , Universidad de Chile , Santiago , Chile
| | - Sergio Lavandero
- a Advanced Center for Chronic Disease (ACCDiS) & Center for Molecular Studies of the Cell (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina , Universidad de Chile , Santiago , Chile.,e Department of Internal Medicine, Cardiology Division , University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|