1
|
Wang L, Jia J, Yu X, Luo M, Li J, Khan GJ, He C, Duan H, Zhai K. Molecular mechanism of rapamycin-induced autophagy activation to attenuate smoking-induced COPD. Biochem Biophys Res Commun 2025; 764:151819. [PMID: 40253907 DOI: 10.1016/j.bbrc.2025.151819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/25/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the severe lung and respiratory airway disorders, with high prevalence rate in China. In this paper, we employed network pharmacology predictions to identify autophagy as a signaling pathway associated with COPD. To explore the protective effect of autophagy against COPD and its specific mechanism, we established a mouse model of COPD and administered 3-methyladenine (3-MA) and rapamycin (RAPA) to intervene in autophagy. The lung function of the mice was assessed using an animal pulmonary function analysis system, and lung tissue structure was evaluated through hematoxylin and eosin (HE) staining. The TUNEL staining method was employed to determine the level of apoptosis in lung tissue. Western blot analysis was conducted to measure the expression of autophagy and apoptosis-related proteins, while RT-qPCR was used to assess the expression of apoptosis-related mRNA. The results showed that RAPA effectively improved lung function, attenuated pathological lung injury and increased autophagy level in COPD mice. Apoptosis analysis showed that the apoptosis rate was elevated in COPD and 3- MA mice, whereas it was significantly reduced in RAPA mice. Our findings suggest that stimulation of autophagy may be a potential therapy for the future treatment of COPD.
Collapse
Affiliation(s)
- Li Wang
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Jianhu Jia
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Xinyan Yu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
| | - Mengmeng Luo
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, China
| | - Jie Li
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China; School of Pharmacy, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Ghulam Jilany Khan
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Chenghui He
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Institute of Materia Medica, Key Laboratory of Xinjiang Uygur Medicine, Urumqi, 830004, China.
| | - Hong Duan
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China; School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China.
| | - Kefeng Zhai
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China; School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China.
| |
Collapse
|
2
|
Li J, Yu B, Xue Z, Liang Y, Chen S, Gui T, Liu Z, Zhang L, Peng R. LncRNA OLMALINC promotes osteosarcoma progression through USP1-mediated autophagy suppression. Hum Cell 2025; 38:91. [PMID: 40249458 DOI: 10.1007/s13577-025-01221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025]
Abstract
Osteosarcoma (OS) remains a challenging malignancy with poor prognosis, especially in metastatic or recurrent cases. Despite progress, the molecular mechanisms driving OS, particularly the regulation of autophagy, are not fully understood. Here, through integrated analysis of single-cell and transcriptomic data, we identify a novel long non-coding RNA (lncRNA), OLMALINC, as a critical autophagy regulator in OS. OLMALINC is significantly upregulated in OS tissues, with its expression correlating to poor clinical outcomes. Functional studies show that altering OLMALINC expression impacts OS cell progression and autophagy. Mechanistically, transcriptome analysis and RNA immunoprecipitation reveal Ubiquitin-Specific Peptidase 1 (USP1) as a direct downstream target of OLMALINC. The OLMALINC-USP1 axis inhibits autophagy and activates the hypoxia-inducible factor 1 (HIF-1α) pathway, promoting OS progression. Therapeutically, combining the USP1 inhibitor ML-323 with doxorubicin demonstrated synergistic anti-tumor effects in vitro and in vivo, enhancing autophagy and apoptosis while inhibiting tumor growth. These findings uncover a novel OLMALINC-USP1-HIF-1α axis in OS progression and highlight the potential of combining autophagy modulation with chemotherapy for improved therapeutic outcomes.
Collapse
Affiliation(s)
- Jianping Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bo Yu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhaowen Xue
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yiping Liang
- Department of Basic Research Department, Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Shanchuang Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tao Gui
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zitao Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Lei Zhang
- Department of General Surgery, The Second Affiliated Hospital of Bengbu Medical University, Bengbu, 233080, Anhui, China.
| | - Rui Peng
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Gupta S, Silveira DA, Mombach JCM, Hashimoto RF. DNA Damage-Induced Ferroptosis: A Boolean Model Regulating p53 and Non-Coding RNAs in Drug Resistance. Proteomes 2025; 13:6. [PMID: 39846637 PMCID: PMC11755436 DOI: 10.3390/proteomes13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/04/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
The tumor suppressor p53, in its wild-type form, plays a central role in cellular homeostasis by regulating senescence, apoptosis, and autophagy within the DNA damage response (DDR). Recent findings suggest that wild-type p53 also governs ferroptosis, an iron-dependent cell death process driven by lipid peroxidation. Post-translational modifications of p53 generate proteoforms that significantly enhance its functional diversity in regulating these mechanisms. A key target in this process is the cystine/glutamate transporter (xCT), which is essential for redox balance and ferroptosis resistance. Additionally, p53-induced miR-34c-5p suppresses cancer cell proliferation and drug resistance by modulating Myc, an oncogene further influenced by non-coding RNAs like circular RNA NOTCH1 (CricNOTCH1) and long non-coding RNA MALAT1. However, the exact role of these molecules in ferroptosis remains unclear. To address this, we introduce the first dynamic Boolean model that delineates the influence of these ncRNAs and p53 on ferroptosis, apoptosis, and senescence within the DDR context. Validated through gain- and loss-of-function perturbations, our model closely aligns with experimental observations in cancers such as oral squamous cell carcinoma, nasopharyngeal carcinoma, and osteosarcoma. The model identifies crucial positive feedback loops (CricNOTCH1/miR-34c/Myc, MALAT1/miR-34c/Myc, and Myc/xCT) and highlights the therapeutic potential of using p53 proteoforms and ncRNAs to combat drug resistance and induce cancer cell death.
Collapse
Affiliation(s)
- Shantanu Gupta
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
| | | | - José Carlos M. Mombach
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil;
| | - Ronaldo F. Hashimoto
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
| |
Collapse
|
4
|
Rahdan F, Abedi F, Dianat-Moghadam H, Sani MZ, Taghizadeh M, Alizadeh E. Autophagy-based therapy for hepatocellular carcinoma: from standard treatments to combination therapy, oncolytic virotherapy, and targeted nanomedicines. Clin Exp Med 2024; 25:13. [PMID: 39621122 PMCID: PMC11611955 DOI: 10.1007/s10238-024-01527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
Human hepatocellular carcinoma (HCC) has been identified as a significant cause of mortality worldwide. In recent years, extensive research has been conducted to understand the underlying mechanisms of autophagy in the pathogenesis of the disease, with the aim of developing novel therapeutic agents. Targeting autophagy with conventional therapies in invasive HCC has opened up new opportunities for treatment. However, the emergence of resistance and the immunosuppressive tumor environment highlight the need for combination therapy or specific targeting, as well as an efficient drug delivery system to ensure targeted tumor areas receive sufficient doses without affecting normal cells or tissues. In this review, we discuss the findings of several studies that have explored autophagy as a potential therapeutic approach in HCC. We also outline the potential and limitations of standard therapies for autophagy modulation in HCC treatment. Additionally, we discuss how different combination therapies, nano-targeted strategies, and oncolytic virotherapy could enhance autophagy-based HCC treatment in future research.
Collapse
Affiliation(s)
- Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Abedi
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
| | - Maryam Zamani Sani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Naik PA, Kulachi MO, Ahmad A, Farman M, Iqbal F, Taimoor M, Huang Z. Modeling different strategies towards control of lung cancer: leveraging early detection and anti-cancer cell measures. Comput Methods Biomech Biomed Engin 2024:1-15. [PMID: 39300871 DOI: 10.1080/10255842.2024.2404540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
The global population has encountered significant challenges throughout history due to infectious diseases. To comprehensively study these dynamics, a novel deterministic mathematical model, TCD I L 2 Z, is developed for the early detection and treatment of lung cancer. This model incorporates I L 2 cytokine and anti-PD-L1 inhibitors, enhancing the immune system's anticancer response within five epidemiological compartments. The TCD I L 2 Z model is analyzed qualitatively and quantitatively, emphasizing local stability given the limited data-a critical component of epidemic modeling. The model is systematically validated by examining essential elements such as equilibrium points, the reproduction number (R 0 ), stability, and sensitivity analysis. Next-generation techniques based on R 0 that track disease transmission rates across the sub-compartments are fed into the system. At the same time, sensitivity analysis helps model how a particular parameter affects the dynamics of the system. The stability on the global level of such therapy agents retrogrades individuals with immunosuppression or treated with I L 2 and anti-PD-L1 inhibitors admiring the Lyapunov functions' applications. NSFD scheme based on the implicit method is used to find the exact value and is compared with Euler's method and RK4, which guarantees accuracy. Thus, the simulations were conducted in the MATLAB environment. These simulations present the general symptomatic and asymptomatic consequences of lung cancer globally when detected in the middle and early stages, and measures of anticancer cells are implemented including boosting the immune system for low immune individuals. In addition, such a result provides knowledge about real-world control dynamics with I L 2 and anti-PD-L1 inhibitors. The studies will contribute to the understanding of disease spread patterns and will provide the basis for evidence-based intervention development that will be geared toward actual outcomes.
Collapse
Affiliation(s)
- Parvaiz Ahmad Naik
- Department of Mathematics and Computer Science, Youjiang Medical University for Nationalities, Baise, China
| | | | - Aqeel Ahmad
- Department of Mathematics, Ghazi University D G Khan, Dera Ghazi Khan, Pakistan
- Department of Mathematics, Near East University, Nicosia North, Cyprus
| | - Muhammad Farman
- Department of Mathematics, Near East University, Nicosia North, Cyprus
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - Faiza Iqbal
- Department of Special Education, Near East University, Nicosia North, Cyprus
| | - Muhammad Taimoor
- Department of Mathematics, Ghazi University D G Khan, Dera Ghazi Khan, Pakistan
| | - Zhengxin Huang
- Department of Mathematics and Computer Science, Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
6
|
Wu N, Zheng W, Zhou Y, Tian Y, Tang M, Feng X, Ashrafizadeh M, Wang Y, Niu X, Tambuwala M, Wang L, Tergaonkar V, Sethi G, Klionsky D, Huang L, Gu M. Autophagy in aging-related diseases and cancer: Principles, regulatory mechanisms and therapeutic potential. Ageing Res Rev 2024; 100:102428. [PMID: 39038742 DOI: 10.1016/j.arr.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autophagy in aging-associated pathologies and cancer is evaluated, highlighting the underlying molecular mechanisms that can affect longevity and disease pathogenesis. As a natural biological process, a reduction in autophagy is observed with aging, resulting in an accumulation of cell damage and the development of different diseases, including neurological disorders, cardiovascular diseases, and cancer. The MTOR, AMPK, and ATG proteins demonstrate changes during aging, and they are promising therapeutic targets. Insulin/IGF1, TOR, PKA, AKT/PKB, caloric restriction and mitochondrial respiration are vital for lifespan regulation and can modulate or have an interaction with autophagy. The specific types of autophagy, such as mitophagy that degrades mitochondria, can regulate aging by affecting these organelles and eliminating those mitochondria with genomic mutations. Autophagy and its specific types contribute to the regulation of carcinogenesis and they are able to dually enhance or decrease cancer progression. Cancer hallmarks, including proliferation, metastasis, therapy resistance and immune reactions, are tightly regulated by autophagy, supporting the conclusion that autophagy is a promising target in cancer therapy.
Collapse
Affiliation(s)
- Na Wu
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yundong Zhou
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yu Tian
- School of Public Health, Benedictine University, No.5700 College Road, Lisle, IL 60532, USA; Research Center, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Daniel Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China.
| | - Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
7
|
Hajimohammadebrahim-Ketabforoush M, Zali A, Shahmohammadi M, Hamidieh AA. Metformin and its potential influence on cell fate decision between apoptosis and senescence in cancer, with a special emphasis on glioblastoma. Front Oncol 2024; 14:1455492. [PMID: 39267853 PMCID: PMC11390356 DOI: 10.3389/fonc.2024.1455492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Despite reaching enormous achievements in therapeutic approaches worldwide, GBM still remains the most incurable malignancy among various cancers. It emphasizes the necessity of adjuvant therapies from the perspectives of both patients and healthcare providers. Therefore, most emerging studies have focused on various complementary and adjuvant therapies. Among them, metabolic therapy has received special attention, and metformin has been considered as a treatment in various types of cancer, including GBM. It is clearly evident that reaching efficient approaches without a comprehensive evaluation of the key mechanisms is not possible. Among the studied mechanisms, one of the more challenging ones is the effect of metformin on apoptosis and senescence. Moreover, metformin is well known as an insulin sensitizer. However, if insulin signaling is facilitated in the tumor microenvironment, it may result in tumor growth. Therefore, to partially resolve some paradoxical issues, we conducted a narrative review of related studies to address the following questions as comprehensively as possible: 1) Does the improvement of cellular insulin function resulting from metformin have detrimental or beneficial effects on GBM cells? 2) If these effects are detrimental to GBM cells, which is more important: apoptosis or senescence? 3) What determines the cellular decision between apoptosis and senescence?
Collapse
Affiliation(s)
- Melika Hajimohammadebrahim-Ketabforoush
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Gupta S, Silveira DA, Lorenzoni PR, Mombach JCM, Hashimoto RF. LncRNA PTENP1/miR-21/PTEN Axis Modulates EMT and Drug Resistance in Cancer: Dynamic Boolean Modeling for Cell Fates in DNA Damage Response. Int J Mol Sci 2024; 25:8264. [PMID: 39125832 PMCID: PMC11311614 DOI: 10.3390/ijms25158264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
It is well established that microRNA-21 (miR-21) targets phosphatase and tensin homolog (PTEN), facilitating epithelial-to-mesenchymal transition (EMT) and drug resistance in cancer. Recent evidence indicates that PTEN activates its pseudogene-derived long non-coding RNA, PTENP1, which in turn inhibits miR-21. However, the dynamics of PTEN, miR-21, and PTENP1 in the DNA damage response (DDR) remain unclear. Thus, we propose a dynamic Boolean network model by integrating the published literature from various cancers. Our model shows good agreement with the experimental findings from breast cancer, hepatocellular carcinoma (HCC), and oral squamous cell carcinoma (OSCC), elucidating how DDR activation transitions from the intra-S phase to the G2 checkpoint, leading to a cascade of cellular responses such as cell cycle arrest, senescence, autophagy, apoptosis, drug resistance, and EMT. Model validation underscores the roles of PTENP1, miR-21, and PTEN in modulating EMT and drug resistance. Furthermore, our analysis reveals nine novel feedback loops, eight positive and one negative, mediated by PTEN and implicated in DDR cell fate determination, including pathways related to drug resistance and EMT. Our work presents a comprehensive framework for investigating cellular responses following DDR, underscoring the therapeutic potential of targeting PTEN, miR-21, and PTENP1 in cancer treatment.
Collapse
Affiliation(s)
- Shantanu Gupta
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
| | | | - Pedro R. Lorenzoni
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (P.R.L.); (J.C.M.M.)
| | - Jose Carlos M. Mombach
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (P.R.L.); (J.C.M.M.)
| | - Ronaldo F. Hashimoto
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
| |
Collapse
|
9
|
Min S, Zhang L, Zhang L, Liu F, Liu M. LncRNA MIR100HG affects the proliferation and metastasis of lung cancer cells through mediating the microRNA-5590-3p/DCBLD2 axis. Immun Inflamm Dis 2024; 12:e1223. [PMID: 38602284 PMCID: PMC11007817 DOI: 10.1002/iid3.1223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 04/12/2024] Open
Abstract
OBJECTIVE The aim of this paper is to investigate the effect of long noncoding RNA (lncRNA) MIR100HG on the proliferation and metastasis of lung cancer cells by mediating the microRNA (miR)-5590-3p/DCBLD2 axis. METHODS RNA levels of MIR100HG, miR-5590-3p, and DCBLD2 in lung cancer tissues and cells were detected by quantitative reverse-transcription polymerase chain reaction, and protein level was assessed by Western blot. Effects of MIR100HG or miR-5590-3p on proliferation, migration, and invasion of lung cancer cells were detected by Cell Counting Kit-8, colony formation, and Transwell assays. Luciferase reporter assay and RNA-immunoprecipitation assay confirmed the target relationship between miR-5590-3p and MIR100HG or DCBLD2. RESULTS MIR100HG and DCBLD2 were highly expressed, while miR-5590-3p was lowly expressed in lung cancer tissues and cells. Silencing MIR100HG or upregulating miR-5590-3p impeded lung cancer cell proliferation, migration, and invasion. MIR100HG could up-regulate DCBLD2 by sponging miR-5590-3p. Downregulation of miR-5590-3p partly overturned the suppressive effect of silencing MIR100HG on lung cancer cell proliferation and metastasis, and overexpression of DCBLD2 also reversed the effect of overexpression of miR-5590-3p on lung cancer cell proliferation and metastasis. CONCLUSION LncRNA MIR100HG promotes lung cancer progression by targeting and negatively regulating DCBLD2 through binding with miR-5590-3p.
Collapse
Affiliation(s)
- Shengping Min
- Department of Microbiology and Parasitology, School of Basic Medical SciencesAnhui Medical UniversityHefeiAnhuiChina
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical CollegeAnhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory DiseaseBengbuAnhuiChina
| | - Linxiang Zhang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical CollegeAnhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory DiseaseBengbuAnhuiChina
| | - Li Zhang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical CollegeAnhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory DiseaseBengbuAnhuiChina
| | - Fangfang Liu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical CollegeAnhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory DiseaseBengbuAnhuiChina
| | - Miao Liu
- Department of Microbiology and Parasitology, School of Basic Medical SciencesAnhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
10
|
Gupta S, Silveira DA, Piedade GP, Ostrowski MP, Mombach JCM, Hashimoto RF. A dynamic Boolean network reveals that the BMI1 and MALAT1 axis is associated with drug resistance by limiting miR-145-5p in non-small cell lung cancer. Noncoding RNA Res 2024; 9:185-193. [PMID: 38125755 PMCID: PMC10730431 DOI: 10.1016/j.ncrna.2023.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/23/2023] Open
Abstract
Patients with non-small cell lung cancer (NSCLC) are often treated with chemotherapy. Poor clinical response and the onset of chemoresistance limit the anti-tumor benefits of drugs such as cisplatin. According to recent research, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA related to cisplatin resistance in NSCLC. Furthermore, MALAT1 targets microRNA-145-5p (miR-145), which activates Krüppel-like factor 4 (KLF4) in associated cell lines. B lymphoma Mo-MLV insertion region 1 homolog (BMI1), on the other hand, inhibits miR-145 expression, which stimulates Specificity protein 1 (Sp1) to trigger the epithelial-mesenchymal transition (EMT) process in pemetrexed-resistant NSCLC cells. The interplay between these molecules in drug resistance is still unclear. Therefore, we propose a dynamic Boolean network that can encapsulate the complexity of these drug-resistant molecules. Using published clinical data for gain or loss-of-function perturbations, our network demonstrates reasonable agreement with experimental observations. We identify four new positive circuits: miR-145/Sp1/MALAT1, BMI1/miR-145/Myc, KLF4/p53/miR-145, and miR-145/Wip1/p38MAPK/p53. Notably, miR-145 emerges as a central player in these regulatory circuits, underscoring its pivotal role in NSCLC drug resistance. Our circuit perturbation analysis further emphasizes the critical involvement of these new circuits in drug resistance for NSCLC. In conclusion, targeting MALAT1 and BMI1 holds promise for overcoming drug resistance, while activating miR-145 represents a potential strategy to significantly reduce drug resistance in NSCLC.
Collapse
Affiliation(s)
- Shantanu Gupta
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, 05508-090, São Paulo, SP, Brazil
| | - Daner A. Silveira
- Children's Cancer Institute, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriel P.S. Piedade
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, 05508-090, São Paulo, SP, Brazil
| | - Miguel P. Ostrowski
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, 05508-090, São Paulo, SP, Brazil
| | - José Carlos M. Mombach
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, 97105-900, RS, Brazil
| | - Ronaldo F. Hashimoto
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, 05508-090, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Chandrasekharan A, Tiwari SK, Munirpasha HA, Sivasailam A, Jayaprasad AG, Harikumar A, Santhoshkumar TR. Genetically encoded caspase sensor and RFP-LC3 for temporal analysis of apoptosis-autophagy. Int J Biol Macromol 2024; 257:128807. [PMID: 38101685 DOI: 10.1016/j.ijbiomac.2023.128807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/25/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
The balance between pro-death and pro-survival signaling determines the fate of cells under a variety of pathological and physiological conditions. The pro-cell death signaling, apoptosis, and survival singling, autophagy work in an integrated manner for maintaining cell integrity. Their altered balance drives pathological conditions such as cancer, inflammatory disorders, and neurodegenerative diseases. Dissecting complex crosstalk between autophagy and apoptosis requires simultaneous detection of both events at a single cell level with good temporal resolution in real-time. Here, we have used two distinct fluorescent-based probes of caspase activation and autophagy for generating such sensor cells. Cells stably expressing RFP-LC3 as an autophagy marker were further stably expressed with a FRET-based probe for caspase activation with a nuclear localization signal. The functional validation and live-cell imaging of the sensor cells using selected treatments revealed that stress that induces rapid cell death often fails to induce autophagy signaling, and slow cell death induction triggers simultaneous autophagy signaling with caspase activation. The real-time imaging revealed the time-dependent shift of cells towards caspase activation while autophagy is inhibited confirming basal autophagy confers survival against apoptosis under stress conditions. Confocal imaging also revealed that cells under 3D culture condition maintain increased autophagy over monolayer cultures. High-throughput adaptability of the system extends its application for the screening of compounds that cause caspase activation, autophagy, or both demonstrating the potential utility of the sensor probe for diverse biological applications.
Collapse
Affiliation(s)
- Aneesh Chandrasekharan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala 695014, India.
| | - Shivanshu Kumar Tiwari
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala 695014, India
| | - Halikar Aman Munirpasha
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala 695014, India
| | - Aswathy Sivasailam
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala 695014, India
| | - Aparna Geetha Jayaprasad
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala 695014, India
| | - Ashwathi Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala 695014, India
| | - T R Santhoshkumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala 695014, India
| |
Collapse
|
12
|
Zhan J, Wang J, Liang Y, Zeng X, Li E, Wang H. P53 together with ferroptosis: a promising strategy leaving cancer cells without escape. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1-14. [PMID: 38105650 PMCID: PMC10875350 DOI: 10.3724/abbs.2023270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/03/2023] [Indexed: 12/19/2023] Open
Abstract
TP53, functioning as the keeper of the genome, assumes a pivotal function in the inhibition of tumorigenesis. Recent studies have revealed that p53 regulates ferroptosis pathways within tumor cells and is closely related to tumorigenesis. Therefore, we summarize the pathways and mechanisms by which p53 regulates ferroptosis and identify a series of upstream and downstream molecules involved in this process. Furthermore, we construct a p53-ferroptosis network centered on p53. Finally, we present the progress of drugs to prevent wild-type p53 (wtp53) degeneration and restore wtp53, highlighting the deficiencies of drug development and the prospects for p53 in cancer treatment. These findings provide novel strategies and directions for future cancer therapy.
Collapse
Affiliation(s)
- Jianhao Zhan
- Department of General SurgerySecond Affiliated Hospital of Nanchang UniversityNanchang330006China
- HuanKui AcademyNanchang UniversityNanchang330006China
| | - Jisheng Wang
- Department of General SurgerySecond Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Yuqing Liang
- School of Basic Medical SciencesNanchang UniversityNanchang330006China
| | - Xiaoping Zeng
- School of Basic Medical SciencesNanchang UniversityNanchang330006China
- Medical CollegeJinhua PolytechnicJinhua321017China
| | - Enliang Li
- Department of General SurgerySecond Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Hongmei Wang
- School of Basic Medical SciencesNanchang UniversityNanchang330006China
- Medical CollegeJinhua PolytechnicJinhua321017China
| |
Collapse
|
13
|
Triantafyllidis CP, Barberis A, Hartley F, Cuervo AM, Gjerga E, Charlton P, van Bijsterveldt L, Rodriguez JS, Buffa FM. A machine learning and directed network optimization approach to uncover TP53 regulatory patterns. iScience 2023; 26:108291. [PMID: 38047081 PMCID: PMC10692668 DOI: 10.1016/j.isci.2023.108291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/21/2023] [Accepted: 10/18/2023] [Indexed: 12/05/2023] Open
Abstract
TP53, the Guardian of the Genome, is the most frequently mutated gene in human cancers and the functional characterization of its regulation is fundamental. To address this we employ two strategies: machine learning to predict the mutation status of TP53 from transcriptomic data, and directed regulatory networks to reconstruct the effect of mutations on the transcipt levels of TP53 targets. Using data from established databases (Cancer Cell Line Encyclopedia, The Cancer Genome Atlas), machine learning could predict the mutation status, but not resolve different mutations. On the contrary, directed network optimization allowed to infer the TP53 regulatory profile across: (1) mutations, (2) irradiation in lung cancer, and (3) hypoxia in breast cancer, and we could observe differential regulatory profiles dictated by (1) mutation type, (2) deleterious consequences of the mutation, (3) known hotspots, (4) protein changes, (5) stress condition (irradiation/hypoxia). This is an important first step toward using regulatory networks for the characterization of the functional consequences of mutations, and could be extended to other perturbations, with implications for drug design and precision medicine.
Collapse
Affiliation(s)
- Charalampos P. Triantafyllidis
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Epidemiology & Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Alessandro Barberis
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fiona Hartley
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Ana Miar Cuervo
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Enio Gjerga
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | - Philip Charlton
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
| | | | - Julio Saez Rodriguez
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | - Francesca M. Buffa
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Computing Sciences, BIDSA, Bocconi University, Milan, Italy
| |
Collapse
|
14
|
Gupta S, Silveira DA, Mombach JCM, Hashimoto RF. The lncRNA DLX6-AS1/miR-16-5p axis regulates autophagy and apoptosis in non-small cell lung cancer: A Boolean model of cell death. Noncoding RNA Res 2023; 8:605-614. [PMID: 37767112 PMCID: PMC10520667 DOI: 10.1016/j.ncrna.2023.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Accepted: 08/06/2023] [Indexed: 09/29/2023] Open
Abstract
Long non-coding RNA (lncRNA) distal-less homeobox 6 antisense RNA 1 (DLX6-AS1) is elevated in a variety of cancers, including non-small cell lung cancer (NSCLC) and cervical cancer. Although it was found that the microRNA-16-5p (miR-16), which is known to regulate autophagy and apoptosis, had been downregulated in similar cancers. Recent research has shown that in tumors with similar characteristics, DLX6-AS1 acts as a sponge for miR-16 expression. However, the cell death-related molecular mechanism of the DLX6-AS1/miR-16 axis has yet to be investigated. Therefore, we propose a dynamic Boolean model to investigate gene regulation in cell death processes via the DLX6-AS1/miR-16 axis. We found the finest concordance when we compared our model to many experimental investigations including gain-of-function genes in NSCLC and cervical cancer. A unique positive circuit involving BMI1/ATM/miR-16 is also something we predict. Our results suggest that this circuit is essential for regulating autophagy and apoptosis under stress signals. Thus, our Boolean network enables an evident cell-death process coupled with NSCLC and cervical cancer. Therefore, our results suggest that DLX6-AS1 targeting may boost miR-16 activity and thereby restrict tumor growth in these cancers by triggering autophagy and apoptosis.
Collapse
Affiliation(s)
- Shantanu Gupta
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua Do Matão 1010, São Paulo, SP, 05508-090, Brazil
| | - Daner A. Silveira
- Children's Cancer Institute, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Carlos M. Mombach
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Ronaldo F. Hashimoto
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua Do Matão 1010, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
15
|
Chen Y, Li HY, Liu JS, Jiang DL, Zheng HN, Dong XS. Analysis of Human microRNA Expression Profiling During Diquat-Induced Renal Proximal Tubular Epithelial Cell Injury. J Inflamm Res 2023; 16:4953-4965. [PMID: 37927960 PMCID: PMC10625323 DOI: 10.2147/jir.s427004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023] Open
Abstract
Background We established a diquat-induced human kidney-2 cells (HK-2 cells) apoptosis model in this study to identify differentially expressed microRNAs (miRNAs) and signaling pathways involved in diquat poisoning via gene sequencing and bioinformatics analysis and explored the related therapeutic benefits. Methods The effects of diquat on the viability and apoptosis of HK-2 cells were explored using the CCK-8 and Annexin V-FITC/PI double staining methods. Total RNAs were extracted using the TRizol method and detected by Illumina HiSeq 2500. Bioinformatics analysis was performed to explore differentially expressed (DE) miRNAs, their enriched biological processes, pathways, and potential target genes. The RT-qPCR method was used to verify the reliability of the results. Results Diquat led to HK-2 cell injury and apoptosis played an important role, hence an HK-2 cell apoptosis model in diquat poisoning was established. Thirty-six DE miRNAs were screened in diquat-treated HK-2 cells. The enriched biological process terms were mainly cell growth, regulation of apoptotic signaling pathway, extrinsic apoptotic signaling pathway, and Ras protein signal transduction. The enriched cellular components were mainly cell-cell junction, cell-substrate junction, ubiquitin ligase complex, and protein kinase complex. The enriched molecular functions were mainly Ras GTPase binding, ubiquitin-like protein transferase activity, DNA-binding transcription factor binding, ubiquitin-protein transferase activity, nucleoside-triphosphatase regulator activity, transcription coactivator activity, and ubiquitin-like protein ligase binding. Signaling pathways such as MAPK, FoxO, Ras, PIK3-Akt, and Wnt were also enriched. Conclusion These findings aid in understanding the mechanisms of diquat poisoning and the related pathways, where DE miRNAs serve as targets for gene therapy.
Collapse
Affiliation(s)
- Yang Chen
- Department of Emergency, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Hui-Yi Li
- Department of Emergency, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Jian-Shu Liu
- Department of Emergency, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Dao-long Jiang
- Department of Emergency, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Hao-nan Zheng
- No.105 Phase, The First Clinical College of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Xue-Song Dong
- Department of Emergency, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| |
Collapse
|
16
|
Gupta S, Silveira DA, Hashimoto RF. A Boolean model of the oncogene role of FAM111B in lung adenocarcinoma. Comput Biol Chem 2023; 106:107926. [PMID: 37487252 DOI: 10.1016/j.compbiolchem.2023.107926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
The ultimate goal of this study is to analyze the gene regulation between FAM111B and p53 in lung adenocarcinoma using Boolean networks. Recent studies have shown that downregulation of FAM111B enhances the G2/M cell cycle checkpoint in the respective cell lines. Upregulation of p53 directly downregulates FAM111B, which is directed to affect cell cycle controllers Cdc25C and Cdk1/CyclinB, thereby controlling G2/M cell cycle arrest. As for apoptosis, down-regulation of FAM111B by p53 directly regulates the BAG3/Bcl-2 axis, which triggers apoptotic cell death. However, the molecular mechanisms involving p53 and FAM111B in G2/M checkpoint regulation are still unknown. Thus, we present a Boolean model of the G2/M checkpoint considering the effect of p53 and FAM111B. Our model indicates that the cell fate between the two cellular phenotypes, arrest, and apoptosis, at the G2/M checkpoint is non-deterministic and is controlled by p53. The model was compared with the experimental data involving gain- or loss-of-function genes and achieved a fair agreement. The model predicts a positive circuit involving p53/FAM111B/BAG3. Our circuit perturbation analysis suggests that this circuit may be essential for controlling cell-fate decisions at the G2/M checkpoint. Our model supports that FAM111B is an engaging target for drug development in lung adenocarcinoma.
Collapse
Affiliation(s)
- Shantanu Gupta
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil.
| | - Daner A Silveira
- Children's Cancer Institute, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ronaldo F Hashimoto
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil
| |
Collapse
|
17
|
Silva J, Tavares V, Afonso A, Garcia J, Cerqueira F, Medeiros R. Plasmatic MicroRNAs and Treatment Outcomes of Patients with Metastatic Castration-Resistant Prostate Cancer: A Hospital-Based Cohort Study and In Silico Analysis. Int J Mol Sci 2023; 24:ijms24109101. [PMID: 37240449 DOI: 10.3390/ijms24109101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies among men worldwide. Inevitably, all advanced PCa patients develop metastatic castration-resistant prostate cancer (mCRPC), an aggressive phase of the disease. Treating mCRPC is challenging, and prognostic tools are needed for disease management. MicroRNA (miRNA) deregulation has been reported in PCa, constituting potential non-invasive prognostic biomarkers. As such, this study aimed to evaluate the prognostic potential of nine miRNAs in the liquid biopsies (plasma) of mCRPC patients treated with second-generation androgen receptor axis-targeted (ARAT) agents, abiraterone acetate (AbA) and enzalutamide (ENZ). Low expression levels of miR-16-5p and miR-145-5p in mCRPC patients treated with AbA were significantly associated with lower progression-free survival (PFS). The two miRNAs were the only predictors of the risk of disease progression in AbA-stratified analyses. Low miR-20a-5p levels in mCRPC patients with Gleason scores of <8 were associated with worse overall survival (OS). The transcript seems to predict the risk of death regardless of the ARAT agent. According to the in silico analyses, miR-16-5p, miR-145-5p, and miR-20a-5p seem to be implicated in several processes, namely, cell cycle, proliferation, migration, survival, metabolism, and angiogenesis, suggesting an epigenetic mechanism related to treatment outcome. These miRNAs may represent attractive prognostic tools to be used in mCRPC management, as well as a step further in the identification of new potential therapeutic targets, to use in combination with ARAT for an improved treatment outcome. Despite the promising results, real-world validation is necessary.
Collapse
Affiliation(s)
- Jani Silva
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- AquaValor-Centro de Valorização e Transferência de Tecnologia da Água, Rua Dr. Júlio Martins, nº1, 5400-342 Chaves, Portugal
| | - Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana Afonso
- Department of Oncology, Portuguese Institute of Oncology, Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal
| | - Juliana Garcia
- AquaValor-Centro de Valorização e Transferência de Tecnologia da Água, Rua Dr. Júlio Martins, nº1, 5400-342 Chaves, Portugal
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB)/Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Fátima Cerqueira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Instituto de Investigação, Inovação e Desenvolvimento Fernando Pessoa (FP-I3ID), Biomedical and Health Sciences (FP-BHS), Universidade Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Instituto de Investigação, Inovação e Desenvolvimento Fernando Pessoa (FP-I3ID), Biomedical and Health Sciences (FP-BHS), Universidade Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| |
Collapse
|
18
|
Dong H, Wen Y, Lin J, Zhuang X, Xian R, Li P, Li S. Cytotoxicity Induced by Black Phosphorus Nanosheets in Vascular Endothelial Cells via Oxidative Stress and Apoptosis Activation. J Funct Biomater 2023; 14:jfb14050284. [PMID: 37233394 DOI: 10.3390/jfb14050284] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Black phosphorus (BP), an emerging two-dimensional material with unique optical, thermoelectric, and mechanical properties, has been proposed as bioactive material for tissue engineering. However, its toxic effects on physiological systems remain obscure. The present study investigated the cytotoxicity of BP to vascular endothelial cells. BP nanosheets (BPNSs) with a diameter of 230 nm were fabricated via a classical liquid-phase exfoliation method. Human umbilical vein endothelial cells (HUVECs) were used to determine the cytotoxicity induced by BPNSs (0.31-80 μg/mL). When the concentrations were over 2.5 μg/mL, BPNSs adversely affected the cytoskeleton and cell migration. Furthermore, BPNSs caused mitochondrial dysfunction and generated excessive intercellular reactive oxygen species (ROS) at tested concentrations after 24 h. BPNSs could influence the expression of apoptosis-related genes, including the P53 and BCL-2 family, resulting in the apoptosis of HUVECs. Therefore, the viability and function of HUVECs were adversely influenced by the concentration of BPNSs over 2.5 μg/mL. These findings provide significant information for the potential applications of BP in tissue engineering.
Collapse
Affiliation(s)
- Hao Dong
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yin Wen
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Jiating Lin
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Xianxian Zhuang
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ruoting Xian
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ping Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Shaobing Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
- First Clinical Medical College, Xinjiang Medical University, Urumqi 830011, China
- The First People's Hospital of Kashgar Region, Kashgar 844000, China
| |
Collapse
|
19
|
Gupta S, Panda PK, Silveira DA, Ahuja R, Hashimoto RF. Quadra-Stable Dynamics of p53 and PTEN in the DNA Damage Response. Cells 2023; 12:cells12071085. [PMID: 37048159 PMCID: PMC10093226 DOI: 10.3390/cells12071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Cell fate determination is a complex process that is frequently described as cells traveling on rugged pathways, beginning with DNA damage response (DDR). Tumor protein p53 (p53) and phosphatase and tensin homolog (PTEN) are two critical players in this process. Although both of these proteins are known to be key cell fate regulators, the exact mechanism by which they collaborate in the DDR remains unknown. Thus, we propose a dynamic Boolean network. Our model incorporates experimental data obtained from NSCLC cells and is the first of its kind. Our network's wild-type system shows that DDR activates the G2/M checkpoint, and this triggers a cascade of events, involving p53 and PTEN, that ultimately lead to the four potential phenotypes: cell cycle arrest, senescence, autophagy, and apoptosis (quadra-stable dynamics). The network predictions correspond with the gain-and-loss of function investigations in the additional two cell lines (HeLa and MCF-7). Our findings imply that p53 and PTEN act as molecular switches that activate or deactivate specific pathways to govern cell fate decisions. Thus, our network facilitates the direct investigation of quadruplicate cell fate decisions in DDR. Therefore, we concluded that concurrently controlling PTEN and p53 dynamics may be a viable strategy for enhancing clinical outcomes.
Collapse
Affiliation(s)
- Shantanu Gupta
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | | | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Ronaldo F Hashimoto
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil
| |
Collapse
|
20
|
Fu W, Wu G. Targeting mTOR for Anti-Aging and Anti-Cancer Therapy. Molecules 2023; 28:molecules28073157. [PMID: 37049920 PMCID: PMC10095787 DOI: 10.3390/molecules28073157] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The balance between anabolism and catabolism is disrupted with aging, with the rate of anabolism being faster than that of catabolism. Therefore, mTOR, whose major function is to enhance anabolism and inhibit catabolism, has become a potential target of inhibition for anti-aging therapy. Interestingly, it was found that the downregulation of the mTOR signaling pathway had a lifespan-extending effect resembling calorie restriction. In addition, the mTOR signaling pathway promotes cell proliferation and has been regarded as a potential anti-cancer target. Rapamycin and rapalogs, such as everolimus, have proven to be effective in preventing certain tumor growth. Here, we reviewed the basic knowledge of mTOR signaling, including both mTORC1 and mTORC2. Then, for anti-aging, we cited a lot of evidence to discuss the role of targeting mTOR and its anti-aging mechanism. For cancer therapy, we also discussed the role of mTOR signaling in different types of cancers, including idiopathic pulmonary fibrosis, tumor immunity, etc. In short, we discussed the research progress and both the advantages and disadvantages of targeting mTOR in anti-aging and anti-cancer therapy. Hopefully, this review may promote more ideas to be generated for developing inhibitors of mTOR signaling to fight cancer and extend lifespan.
Collapse
Affiliation(s)
- Wencheng Fu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, the Joint International Research Laboratory of Metabolic & Developmental Sciences MOE, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, the Joint International Research Laboratory of Metabolic & Developmental Sciences MOE, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
Wang P, Wang HY, Gao XJ, Zhu HX, Zhang XP, Liu F, Wang W. Encoding and Decoding of p53 Dynamics in Cellular Response to Stresses. Cells 2023; 12:cells12030490. [PMID: 36766831 PMCID: PMC9914463 DOI: 10.3390/cells12030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
In the cellular response to stresses, the tumor suppressor p53 is activated to maintain genomic integrity and fidelity. As a transcription factor, p53 exhibits rich dynamics to allow for discrimination of the type and intensity of stresses and to direct the selective activation of target genes involved in different processes including cell cycle arrest and apoptosis. In this review, we focused on how stresses are encoded into p53 dynamics and how the dynamics are decoded into cellular outcomes. Theoretical modeling may provide a global view of signaling in the p53 network by coupling the encoding and decoding processes. We discussed the significance of modeling in revealing the mechanisms of the transition between p53 dynamic modes. Moreover, we shed light on the crosstalk between the p53 network and other signaling networks. This review may advance the understanding of operating principles of the p53 signaling network comprehensively and provide insights into p53 dynamics-based cancer therapy.
Collapse
Affiliation(s)
- Ping Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
- Key Laboratory of High Performance Scientific Computation, School of Science, Xihua University, Chengdu 610039, China
| | - Hang-Yu Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Xing-Jie Gao
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Hua-Xia Zhu
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Xiao-Peng Zhang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
- Institute of Brain Sciences, Nanjing University, Nanjing 210093, China
- Correspondence: (X.-P.Z.); (W.W.)
| | - Feng Liu
- Institute of Brain Sciences, Nanjing University, Nanjing 210093, China
- National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
- Department of Physics, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- Institute of Brain Sciences, Nanjing University, Nanjing 210093, China
- National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
- Department of Physics, Nanjing University, Nanjing 210093, China
- Correspondence: (X.-P.Z.); (W.W.)
| |
Collapse
|
22
|
Phan T, Bennett J, Patten T. Practical Understanding of Cancer Model Identifiability in Clinical Applications. Life (Basel) 2023; 13:410. [PMID: 36836767 PMCID: PMC9961656 DOI: 10.3390/life13020410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Mathematical models are a core component in the foundation of cancer theory and have been developed as clinical tools in precision medicine. Modeling studies for clinical applications often assume an individual's characteristics can be represented as parameters in a model and are used to explain, predict, and optimize treatment outcomes. However, this approach relies on the identifiability of the underlying mathematical models. In this study, we build on the framework of an observing-system simulation experiment to study the identifiability of several models of cancer growth, focusing on the prognostic parameters of each model. Our results demonstrate that the frequency of data collection, the types of data, such as cancer proxy, and the accuracy of measurements all play crucial roles in determining the identifiability of the model. We also found that highly accurate data can allow for reasonably accurate estimates of some parameters, which may be the key to achieving model identifiability in practice. As more complex models required more data for identification, our results support the idea of using models with a clear mechanism that tracks disease progression in clinical settings. For such a model, the subset of model parameters associated with disease progression naturally minimizes the required data for model identifiability.
Collapse
Affiliation(s)
- Tin Phan
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Justin Bennett
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Taylor Patten
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| |
Collapse
|
23
|
Guhe V, Ingale P, Tambekar A, Singh S. Systems biology of autophagy in leishmanial infection and its diverse role in precision medicine. Front Mol Biosci 2023; 10:1113249. [PMID: 37152895 PMCID: PMC10160387 DOI: 10.3389/fmolb.2023.1113249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Autophagy is a contentious issue in leishmaniasis and is emerging as a promising therapeutic regimen. Published research on the impact of autophagic regulation on Leishmania survival is inconclusive, despite numerous pieces of evidence that Leishmania spp. triggers autophagy in a variety of cell types. The mechanistic approach is poorly understood in the Leishmania parasite as autophagy is significant in both Leishmania and the host. Herein, this review discusses the autophagy proteins that are being investigated as potential therapeutic targets, the connection between autophagy and lipid metabolism, and microRNAs that regulate autophagy and lipid metabolism. It also highlights the use of systems biology to develop novel autophagy-dependent therapeutics for leishmaniasis by utilizing artificial intelligence (AI), machine learning (ML), mathematical modeling, network analysis, and other computational methods. Additionally, we have shown many databases for autophagy and metabolism in Leishmania parasites that suggest potential therapeutic targets for intricate signaling in the autophagy system. In a nutshell, the detailed understanding of the dynamics of autophagy in conjunction with lipids and miRNAs unfolds larger dimensions for future research.
Collapse
|
24
|
Zhou S, Xi Y, Chen Y, Fu F, Yan W, Li M, Wu Y, Luo A, Li Y, Wang S. Low WIP1 Expression Accelerates Ovarian Aging by Promoting Follicular Atresia and Primordial Follicle Activation. Cells 2022; 11:cells11233920. [PMID: 36497179 PMCID: PMC9736686 DOI: 10.3390/cells11233920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
Our previous study demonstrated that ovarian wild-type P53-induced phosphatase 1 (WIP1) expression decreased with age. We hypothesized that WIP1 activity was related to ovarian aging. The role of WIP1 in regulating ovarian aging and its mechanisms remain to be elucidated. Adult female mice with or without WIP1 inhibitor (GSK2830371) treatment were divided into three groups (Veh, GSK-7.5, GSK-15) to evaluate the effect of WIP1 on ovarian endocrine and reproductive function and the ovarian reserve. In vitro follicle culture and primary granulosa cell culture were applied to explore the mechanisms of WIP1 in regulating follicular development. This study revealed that WIP1 expression in atretic follicle granulosa cells is significantly lower than that in healthy follicles. Inhibiting WIP1 phosphatase activity in mice induced irregular estrous cycles, caused fertility declines, and decreased the ovarian reserve through triggering excessive follicular atresia and primordial follicle activation. Primordial follicle depletion was accelerated via PI3K-AKT-rpS6 signaling pathway activation. In vitro follicle culture experiments revealed that inhibiting WIP1 activity impaired follicular development and oocyte quality. In vitro granulosa cell experiments further indicated that downregulating WIP1 expression promoted granulosa cell death via WIP1-p53-BAX signaling pathway-mediated apoptosis. These findings suggest that appropriate WIP1 expression is essential for healthy follicular development, and decreased WIP1 expression accelerates ovarian aging by promoting follicular atresia and primordial follicle activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ya Li
- Correspondence: (Y.L.); (S.W.); Tel.: +86-27-83663078 (Y.L. & S.W.)
| | - Shixuan Wang
- Correspondence: (Y.L.); (S.W.); Tel.: +86-27-83663078 (Y.L. & S.W.)
| |
Collapse
|
25
|
Li Q, Wu J, Zhu M, Tang Y, Jin L, Chen Y, Jin M, Peng Z. A novel risk signature based on autophagy-related genes to evaluate tumor immune microenvironment and predict prognosis in hepatocellular carcinoma. Comput Biol Med 2022. [DOI: 10.1016/j.compbiomed.2022.106437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
CircANKRD12 Is Induced in Endothelial Cell Response to Oxidative Stress. Cells 2022; 11:cells11223546. [PMID: 36428974 PMCID: PMC9688326 DOI: 10.3390/cells11223546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Redox imbalance of the endothelial cells (ECs) plays a causative role in a variety of cardiovascular diseases. In order to better understand the molecular mechanisms of the endothelial response to oxidative stress, the involvement of circular RNAs (circRNAs) was investigated. CircRNAs are RNA species generated by a "back-splicing" event, which is the covalent linking of the 3'- and 5'-ends of exons. Bioinformatics analysis of the transcriptomic landscape of human ECs exposed to H2O2 allowed us to identify a subset of highly expressed circRNAs compared to their linear RNA counterparts, suggesting a potential biological relevance. Specifically, circular Ankyrin Repeat Domain 12 (circANKRD12), derived from the junction of exon 2 and exon 8 of the ANKRD12 gene (hsa_circ_0000826), was significantly induced in H2O2-treated ECs. Conversely, the linear RNA isoform of ANKRD12 was not modulated. An increased circular-to-linear ratio of ANKRD12 was also observed in cultured ECs exposed to hypoxia and in skeletal muscle biopsies of patients affected by critical limb ischemia (CLI), two conditions associated with redox imbalance and oxidative stress. The functional relevance of circANKRD12 was shown by the inhibition of EC formation of capillary-like structures upon silencing of the circular but not of the linear isoform of ANKRD12. Bioinformatics analysis of the circANKRD12-miRNA-mRNA regulatory network in H2O2-treated ECs identified the enrichment of the p53 and Foxo signaling pathways, both crucial in the cellular response to redox imbalance. In keeping with the antiproliferative action of the p53 pathway, circANKRD12 silencing inhibited EC proliferation. In conclusion, this study indicates circANKRD12 as an important player in ECs exposed to oxidative stress.
Collapse
|
27
|
Gupta S, Panda PK, Luo W, Hashimoto RF, Ahuja R. Network analysis reveals that the tumor suppressor lncRNA GAS5 acts as a double-edged sword in response to DNA damage in gastric cancer. Sci Rep 2022; 12:18312. [PMID: 36316351 PMCID: PMC9622883 DOI: 10.1038/s41598-022-21492-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/28/2022] [Indexed: 11/14/2022] Open
Abstract
The lncRNA GAS5 acts as a tumor suppressor and is downregulated in gastric cancer (GC). In contrast, E2F1, an important transcription factor and tumor promoter, directly inhibits miR-34c expression in GC cell lines. Furthermore, in the corresponding GC cell lines, lncRNA GAS5 directly targets E2F1. However, lncRNA GAS5 and miR-34c remain to be studied in conjunction with GC. Here, we present a dynamic Boolean network to classify gene regulation between these two non-coding RNAs (ncRNAs) in GC. This is the first study to show that lncRNA GAS5 can positively regulate miR-34c in GC through a previously unknown molecular pathway coupling lncRNA/miRNA. We compared our network to several in-vivo/in-vitro experiments and obtained an excellent agreement. We revealed that lncRNA GAS5 regulates miR-34c by targeting E2F1. Additionally, we found that lncRNA GAS5, independently of p53, inhibits GC proliferation through the ATM/p38 MAPK signaling pathway. Accordingly, our results support that E2F1 is an engaging target of drug development in tumor growth and aggressive proliferation of GC, and favorable results can be achieved through tumor suppressor lncRNA GAS5/miR-34c axis in GC. Thus, our findings unlock a new avenue for GC treatment in response to DNA damage by these ncRNAs.
Collapse
Affiliation(s)
- Shantanu Gupta
- grid.11899.380000 0004 1937 0722Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo, SP 05508-090 Brasil
| | - Pritam Kumar Panda
- grid.8993.b0000 0004 1936 9457Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden
| | - Wei Luo
- grid.8993.b0000 0004 1936 9457Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden
| | - Ronaldo F. Hashimoto
- grid.11899.380000 0004 1937 0722Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo, SP 05508-090 Brasil
| | - Rajeev Ahuja
- grid.8993.b0000 0004 1936 9457Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden ,grid.462391.b0000 0004 1769 8011Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 India
| |
Collapse
|
28
|
Brown DW, Beatty PH, Lewis JD. Molecular Targeting of the Most Functionally Complex Gene in Precision Oncology: p53. Cancers (Basel) 2022; 14:5176. [PMID: 36358595 PMCID: PMC9654076 DOI: 10.3390/cancers14215176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 09/29/2023] Open
Abstract
While chemotherapy is a key treatment strategy for many solid tumors, it is rarely curative, and most tumor cells eventually become resistant. Because of this, there is an unmet need to develop systemic treatments that capitalize on the unique mutational landscape of each patient's tumor. The most frequently mutated protein in cancer, p53, has a role in nearly all cancer subtypes and tumorigenesis stages and therefore is one of the most promising molecular targets for cancer treatment. Unfortunately, drugs targeting p53 have seen little clinical success despite promising preclinical data. Most of these drug compounds target specific aspects of p53 inactivation, such as through inhibiting negative regulation by the mouse double minute (MDM) family of proteins. These treatment strategies fail to address cancer cells' adaptation mechanisms and ignore the impact that p53 loss has on the entire p53 network. However, recent gene therapy successes show that targeting the p53 network and cellular dysfunction caused by p53 inactivation is now possible and may soon translate into successful clinical responses. In this review, we discuss p53 signaling complexities in cancer that have hindered the development and use of p53-targeted drugs. We also describe several current therapeutics reporting promising preclinical and clinical results.
Collapse
Affiliation(s)
- Douglas W. Brown
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Entos Pharmaceuticals, Unit 4550, 10230 Jasper Avenue, Edmonton, AB T5J 4P6, Canada
| | - Perrin H. Beatty
- Entos Pharmaceuticals, Unit 4550, 10230 Jasper Avenue, Edmonton, AB T5J 4P6, Canada
| | - John D. Lewis
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Entos Pharmaceuticals, Unit 4550, 10230 Jasper Avenue, Edmonton, AB T5J 4P6, Canada
| |
Collapse
|
29
|
In Vitro Cell Death Mechanisms Induced by Dicoma anomala Root Extract in Combination with ZnPcS 4 Mediated-Photodynamic Therapy in A549 Lung Cancer Cells. Cells 2022; 11:cells11203288. [PMID: 36291155 PMCID: PMC9600060 DOI: 10.3390/cells11203288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Globally, lung cancer has remained the leading cause of morbidity and mortality in men and women. To enhance photodynamic therapeutic effects in vitro, the present study was designed to reduce dose-dependence in photodynamic therapy (PDT) and evaluate the anticancer effects of Dicoma anomala (D. anomala) root extracts (i.e., chloroform (Chl), ethyl acetate (EtOAc), and methanol (MeOH)) on A549 lung cancer cells. The most active extract of D. anomala (D.A) was used to establish the 50% inhibitory concentration (IC50), which was further used to evaluate the anticancer efficacy of D.A in combination with ZnPcS4-mediated PDT IC50. The study further evaluated cell death mechanisms by cell viability/ cytotoxicity (LIVE/DEADTM assay), flow cytometry (Annexin V-fluorescein isothiocyanate (FITC)-propidium iodide (PI) staining), immunofluorescence (p38, p53, Bax, and caspase 3 expressions), and fluorometric multiplex assay (caspase 8 and 9) 24 h post-treatment with IC50 concentrations of ZnPcS4-mediated PDT and D.A MeOH root extract. Morphological changes were accompanied by a dose-dependent increase in cytotoxicity, decrease in viability, and proliferation in all experimental models. Apoptosis is the highly favored cell death mechanism observed in combination therapy groups. Apoptotic activities were supported by an increase in the number of dead cells in the LIVE/DEADTM assay, and the upregulation of p38, p53, Bax, caspase 3, 8, and 9 apoptotic proteins. In vitro experiments confirmed the cytotoxic and antiproliferative effects of D.A root extracts in monotherapy and in combination with ZnPcS4-mediated PDT. Taken together, our findings demonstrated that D.A could be a promising therapeutic candidate worth exploring in different types of cancer.
Collapse
|
30
|
Ortiz-González A, González-Pérez PP, Cárdenas-García M, Hernández-Linares MG. In silico Prediction on the PI3K/AKT/mTOR Pathway of the Antiproliferative Effect of O. joconostle in Breast Cancer Models. Cancer Inform 2022; 21:11769351221087028. [PMID: 35356703 PMCID: PMC8958723 DOI: 10.1177/11769351221087028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/22/2022] [Indexed: 01/21/2023] Open
Abstract
The search for new cancer treatments from traditional medicine involves developing studies to understand at the molecular level different cell signaling pathways involved in cancer development. In this work, we present a model of the PI3K/Akt/mTOR pathway, which plays a key role in cell cycle regulation and is related to cell survival, proliferation, and growth in cancer, as well as resistance to antitumor therapies, so finding drugs that act on this pathway is ideal to propose a new adjuvant treatment. The aim of this work was to model, simulate and predict in silico using the Big Data-Cellulat platform the possible targets in the PI3K/Akt/mTOR pathway on which the Opuntia joconostle extract acts, as well as to indicate the concentration range to be used to find the mean lethal dose in in vitro experiments on breast cancer cells. The in silico results show that, in a cancer cell, the activation of JAK and STAT, as well as PI3K and Akt is related to the effect of cell proliferation, angiogenesis, and inhibition of apoptosis, and that the extract of O. joconostle has an antiproliferative effect on breast cancer cells by inhibiting cell proliferation, regulating the cell cycle and inhibiting apoptosis through this signaling pathway . In vitro it was demonstrated that the extract shows an antiproliferative effect, causing the arrest of cells in the G2/M phase of the cell cycle. Therefore, it is concluded that the use of in silico tools is a valuable method to perform virtual experiments and discover new treatments. The use of this type of model supports in vitro experimentation, reducing the costs and number of experiments in the real laboratory.
Collapse
Affiliation(s)
- Alejandra Ortiz-González
- Laboratorio de Fisiología Celular, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, PUE, México
| | - Pedro Pablo González-Pérez
- Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, México
| | - Maura Cárdenas-García
- Laboratorio de Fisiología Celular, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, PUE, México
| | - María Guadalupe Hernández-Linares
- Laboratorio de Investigación del Jardín Botánico, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, PUE, México
| |
Collapse
|
31
|
Gupta S, Panda PK, Hashimoto RF, Samal SK, Mishra S, Verma SK, Mishra YK, Ahuja R. Dynamical modeling of miR-34a, miR-449a, and miR-16 reveals numerous DDR signaling pathways regulating senescence, autophagy, and apoptosis in HeLa cells. Sci Rep 2022; 12:4911. [PMID: 35318393 PMCID: PMC8941124 DOI: 10.1038/s41598-022-08900-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/02/2022] [Indexed: 12/31/2022] Open
Abstract
Transfection of tumor suppressor miRNAs such as miR-34a, miR-449a, and miR-16 with DNA damage can regulate apoptosis and senescence in cancer cells. miR-16 has been shown to influence autophagy in cervical cancer. However, the function of miR-34a and miR-449a in autophagy remains unknown. The functional and persistent G1/S checkpoint signaling pathways in HeLa cells via these three miRNAs, either synergistically or separately, remain a mystery. As a result, we present a synthetic Boolean network of the functional G1/S checkpoint regulation, illustrating the regulatory effects of these three miRNAs. To our knowledge, this is the first synthetic Boolean network that demonstrates the advanced role of these miRNAs in cervical cancer signaling pathways reliant on or independent of p53, such as MAPK or AMPK. We compared our estimated probability to the experimental data and found reasonable agreement. Our findings indicate that miR-34a or miR-16 may control senescence, autophagy, apoptosis, and the functional G1/S checkpoint. Additionally, miR-449a can regulate just senescence and apoptosis on an individual basis. MiR-449a can coordinate autophagy in HeLa cells in a synergistic manner with miR-16 and/or miR-34a.
Collapse
Affiliation(s)
- Shantanu Gupta
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo, SP, 05508-090, Brazil.
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 751 20, Uppsala, Sweden
| | - Ronaldo F Hashimoto
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo, SP, 05508-090, Brazil
| | - Shailesh Kumar Samal
- Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Suman Mishra
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Suresh Kr Verma
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 751 20, Uppsala, Sweden
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 751 20, Uppsala, Sweden.
| |
Collapse
|
32
|
Gupta S, Silveira DA, Hashimoto RF, Mombach JCM. A Boolean Model of the Proliferative Role of the lncRNA XIST in Non-Small Cell Lung Cancer Cells. BIOLOGY 2022; 11:biology11040480. [PMID: 35453680 PMCID: PMC9024590 DOI: 10.3390/biology11040480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 12/15/2022]
Abstract
The long non-coding RNA X inactivate-specific transcript (lncRNA XIST) has been verified as an oncogenic gene in non-small cell lung cancer (NSCLC) whose regulatory role is largely unknown. The important tumor suppressors, microRNAs: miR-449a and miR-16 are regulated by lncRNA XIST in NSCLC, these miRNAs share numerous common targets and experimental evidence suggests that they synergistically regulate the cell-fate regulation of NSCLC. LncRNA XIST is known to sponge miR-449a and miR-34a, however, the regulatory network connecting all these non-coding RNAs is still unknown. Here we propose a Boolean regulatory network for the G1/S cell cycle checkpoint in NSCLC contemplating the involvement of these non-coding RNAs. Model verification was conducted by comparison with experimental knowledge from NSCLC showing good agreement. The results suggest that miR-449a regulates miR-16 and p21 activity by targeting HDAC1, c-Myc, and the lncRNA XIST. Furthermore, our circuit perturbation simulations show that five circuits are involved in cell fate determination between senescence and apoptosis. The model thus allows pinpointing the direct cell fate mechanisms of NSCLC. Therefore, our results support that lncRNA XIST is an attractive target of drug development in tumor growth and aggressive proliferation of NSCLC, and promising results can be achieved through tumor suppressor miRNAs.
Collapse
Affiliation(s)
- Shantanu Gupta
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
- Correspondence: (S.G.); (J.C.M.M.); Tel.: +55-11-30916135 (S.G.); +55-55-32209521 (J.C.M.M.)
| | - Daner A. Silveira
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil;
| | - Ronaldo F. Hashimoto
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
| | - Jose Carlos M. Mombach
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil;
- Correspondence: (S.G.); (J.C.M.M.); Tel.: +55-11-30916135 (S.G.); +55-55-32209521 (J.C.M.M.)
| |
Collapse
|
33
|
Szczepanek J, Skorupa M, Tretyn A. MicroRNA as a Potential Therapeutic Molecule in Cancer. Cells 2022; 11:1008. [PMID: 35326459 PMCID: PMC8947269 DOI: 10.3390/cells11061008] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Small noncoding RNAs, as post-translational regulators of many target genes, are not only markers of neoplastic disease initiation and progression, but also markers of response to anticancer therapy. Hundreds of miRNAs have been identified as biomarkers of drug resistance, and many have demonstrated the potential to sensitize cancer cells to therapy. Their properties of modulating the response of cells to therapy have made them a promising target for overcoming drug resistance. Several methods have been developed for the delivery of miRNAs to cancer cells, including introducing synthetic miRNA mimics, DNA plasmids containing miRNAs, and small molecules that epigenetically alter endogenous miRNA expression. The results of studies in animal models and preclinical studies for solid cancers and hematological malignancies have confirmed the effectiveness of treatment protocols using microRNA. Nevertheless, the use of miRNAs in anticancer therapy is not without limitations, including the development of a stable nanoconstruct, delivery method choices, and biodistribution. The aim of this review was to summarize the role of miRNAs in cancer treatment and to present new therapeutic concepts for these molecules. Supporting anticancer therapy with microRNA molecules has been verified in numerous clinical trials, which shows great potential in the treatment of cancer.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Ul. Wilenska 4, 87-100 Torun, Poland;
| | - Monika Skorupa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Ul. Wilenska 4, 87-100 Torun, Poland;
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Ul. Lwowska 1, 87-100 Torun, Poland;
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
34
|
Dynamical Analysis of a Boolean Network Model of the Oncogene Role of lncRNA ANRIL and lncRNA UFC1 in Non-Small Cell Lung Cancer. Biomolecules 2022; 12:biom12030420. [PMID: 35327612 PMCID: PMC8946683 DOI: 10.3390/biom12030420] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNA (lncRNA) such as ANRIL and UFC1 have been verified as oncogenic genes in non-small cell lung cancer (NSCLC). It is well known that the tumor suppressor microRNA-34a (miR-34a) is downregulated in NSCLC. Furthermore, miR-34a induces senescence and apoptosis in breast, glioma, cervical cancer including NSCLC by targeting Myc. Recent evidence suggests that these two lncRNAs act as a miR-34a sponge in corresponding cancers. However, the biological functions between these two non-coding RNAs (ncRNAs) have not yet been studied in NSCLC. Therefore, we present a Boolean model to analyze the gene regulation between these two ncRNAs in NSCLC. We compared our model to several experimental studies involving gain- or loss-of-function genes in NSCLC cells and achieved an excellent agreement. Additionally, we predict three positive circuits involving miR-34a/E2F1/ANRIL, miR-34a/E2F1/UFC1, and miR-34a/Myc/ANRIL. Our circuit- perturbation analysis shows that these circuits are important for regulating cell-fate decisions such as senescence and apoptosis. Thus, our Boolean network permits an explicit cell-fate mechanism associated with NSCLC. Therefore, our results support that ANRIL and/or UFC1 is an attractive target for drug development in tumor growth and aggressive proliferation of NSCLC, and that a valuable outcome can be achieved through the miRNA-34a/Myc pathway.
Collapse
|
35
|
Visser H, Thomas AD. MicroRNAs and the DNA damage response: How is cell fate determined? DNA Repair (Amst) 2021; 108:103245. [PMID: 34773895 DOI: 10.1016/j.dnarep.2021.103245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
It is becoming clear that the DNA damage response orchestrates an appropriate response to a given level of DNA damage, whether that is cell cycle arrest and repair, senescence or apoptosis. It is plausible that the alternative regulation of the DNA damage response (DDR) plays a role in deciding cell fate following damage. MicroRNAs (miRNAs) are associated with the transcriptional regulation of many cellular processes. They have diverse functions, affecting, presumably, all aspects of cell biology. Many have been shown to be DNA damage inducible and it is conceivable that miRNA species play a role in deciding cell fate following DNA damage by regulating the expression and activation of key DDR proteins. From a clinical perspective, miRNAs are attractive targets to improve cancer patient outcomes to DNA-damaging chemotherapy. However, cancer tissue is known to be, or to become, well adapted to DNA damage as a means of inducing chemoresistance. This frequently results from an altered DDR, possibly owing to miRNA dysregulation. Though many studies provide an overview of miRNAs that are dysregulated within cancerous tissues, a tangible, functional association is often lacking. While miRNAs are well-documented in 'ectopic biology', the physiological significance of endogenous miRNAs in the context of the DDR requires clarification. This review discusses miRNAs of biological relevance and their role in DNA damage response by potentially 'fine-tuning' the DDR towards a particular cell fate in response to DNA damage. MiRNAs are thus potential therapeutic targets/strategies to limit chemoresistance, or improve chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Hartwig Visser
- Centre for Research in Biosciences, University of the West of England, Frenchay Campus, Bristol BS16 1QY, United Kingdom
| | - Adam D Thomas
- Centre for Research in Biosciences, University of the West of England, Frenchay Campus, Bristol BS16 1QY, United Kingdom.
| |
Collapse
|
36
|
Alfaro-García JP, Granados-Alzate MC, Vicente-Manzanares M, Gallego-Gómez JC. An Integrated View of Virus-Triggered Cellular Plasticity Using Boolean Networks. Cells 2021; 10:cells10112863. [PMID: 34831086 PMCID: PMC8616224 DOI: 10.3390/cells10112863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Virus-related mortality and morbidity are due to cell/tissue damage caused by replicative pressure and resource exhaustion, e.g., HBV or HIV; exaggerated immune responses, e.g., SARS-CoV-2; and cancer, e.g., EBV or HPV. In this context, oncogenic and other types of viruses drive genetic and epigenetic changes that expand the tumorigenic program, including modifications to the ability of cancer cells to migrate. The best-characterized group of changes is collectively known as the epithelial–mesenchymal transition, or EMT. This is a complex phenomenon classically described using biochemistry, cell biology and genetics. However, these methods require enormous, often slow, efforts to identify and validate novel therapeutic targets. Systems biology can complement and accelerate discoveries in this field. One example of such an approach is Boolean networks, which make complex biological problems tractable by modeling data (“nodes”) connected by logical operators. Here, we focus on virus-induced cellular plasticity and cell reprogramming in mammals, and how Boolean networks could provide novel insights into the ability of some viruses to trigger uncontrolled cell proliferation and EMT, two key hallmarks of cancer.
Collapse
Affiliation(s)
- Jenny Paola Alfaro-García
- Molecular and Translation Medicine Group, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia; (J.P.A.-G.); (M.C.G.-A.)
| | - María Camila Granados-Alzate
- Molecular and Translation Medicine Group, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia; (J.P.A.-G.); (M.C.G.-A.)
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
- Correspondence: (M.V.-M.); (J.C.G.-G.)
| | - Juan Carlos Gallego-Gómez
- Molecular and Translation Medicine Group, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia; (J.P.A.-G.); (M.C.G.-A.)
- Correspondence: (M.V.-M.); (J.C.G.-G.)
| |
Collapse
|
37
|
Song Y, Zhang Z, Yu Z, Xia G, Wang Y, Wang L, Peng C, Jiang B, Liu S. Wip1 Aggravates the Cerulein-Induced Cell Autophagy and Inflammatory Injury by Targeting STING/TBK1/IRF3 in Acute Pancreatitis. Inflammation 2021; 44:1175-1183. [PMID: 33417178 DOI: 10.1007/s10753-021-01412-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/22/2020] [Accepted: 01/02/2021] [Indexed: 10/22/2022]
Abstract
Acute pancreatitis (AP) is an inflammatory reaction of pancreatic tissue self-digestion, edema, hemorrhage, and even necrosis after the activation of pancreatic enzymes in the pancreas caused by a variety of etiologies. This study was aimed to explore the functions and mechanism of Wip1 in AP. Twenty male SD rats were randomly assigned into 2 groups (control group: saline treatment; AP group: cerulein treatment). And cerulein-treated AR42J cells were conducted as AP model in vitro. The levels of amylase were detected by using the Beckman biochemical analyzer. The levels of IFNβ and TNFα were analyzed by ELISA. The autophagosomes were observed by transmission electron microscopy. The Wip1-specific shRNAs were transfected to AR42J cells to silence the expression of Wip1. The levels of Wip1 were measured by qRT-PCR and Western blot. The levels of STING/TBK1/IRF3 and LC3 were measured by Western blot. The AP model was successfully constructed by cerulein administration. Wip1 was notably upregulated in AP models. Autophagy and STING pathway activation were involved in the development of AP. Wip1 inhibition counteracts the promotion effect on inflammatory response induced by cerulein in AR42J Cells. Wip1 inhibition inhibited the activity of the STING/TBK1/IRF3 and reduced LC3 levels in AP. This study preliminarily explored that Wip1 could regulate autophagy and participate in the development of AP through the STING/TBK1/IRF3 signaling pathway.
Collapse
Affiliation(s)
- Yinghui Song
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Zhihua Zhang
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Zhangtao Yu
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Guoyi Xia
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Yizhi Wang
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Le Wang
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Bo Jiang
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China.
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China.
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China.
| |
Collapse
|
38
|
Farzaneh Z, Vosough M, Agarwal T, Farzaneh M. Critical signaling pathways governing hepatocellular carcinoma behavior; small molecule-based approaches. Cancer Cell Int 2021; 21:208. [PMID: 33849569 PMCID: PMC8045321 DOI: 10.1186/s12935-021-01924-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of death due to cancer. Although there are different treatment options, these strategies are not efficient in terms of restricting the tumor cell's proliferation and metastasis. The liver tumor microenvironment contains the non-parenchymal cells with supportive or inhibitory effects on the cancerous phenotype of HCC. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of liver carcinoma cells. Recent studies have established new approaches for the prevention and treatment of HCC using small molecules. Small molecules are compounds with a low molecular weight that usually inhibit the specific targets in signal transduction pathways. These components can induce cell cycle arrest, apoptosis, block metastasis, and tumor growth. Devising strategies for simultaneously targeting HCC and the non-parenchymal population of the tumor could lead to more relevant research outcomes. These strategies may open new avenues for the treatment of HCC with minimal cytotoxic effects on healthy cells. This study provides the latest findings on critical signaling pathways governing HCC behavior and using small molecules in the control of HCC both in vitro and in vivo models.
Collapse
Affiliation(s)
- Zahra Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
39
|
Silveira DA, Gupta S, Mombach JCM. Systems biology approach suggests new miRNAs as phenotypic stability factors in the epithelial-mesenchymal transition. J R Soc Interface 2020; 17:20200693. [PMID: 33050781 PMCID: PMC7653381 DOI: 10.1098/rsif.2020.0693] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a cellular programme on which epithelial cells undergo a phenotypic transition to mesenchymal ones acquiring metastatic properties such as mobility and invasion. TGF-β signalling can promote the EMT process. However, the dynamics of the concentration response of TGF-β-induced EMT is not well explained. In this work, we propose a logical model of TGF-β dose dependence of EMT in MCF10A breast cells. The model outcomes agree with experimentally observed phenotypes for the wild-type and perturbed/mutated cases. As important findings of the model, it predicts the coexistence of more than one hybrid state and that the circuit between TWIST1 and miR-129 is involved in their stabilization. Thus, miR-129 should be considered as a phenotypic stability factor. The circuit TWIST1/miR-129 associates with ZEB1-mediated circuits involving miRNAs 200, 1199, 340, and the protein GRHL2 to stabilize the hybrid state. Additionally, we found a possible new autocrine mechanism composed of the circuit involving TGF-β, miR-200, and SNAIL1 that contributes to the stabilization of the mesenchymal state. Therefore, our work can extend our comprehension of TGF-β-induced EMT in MCF10A cells to potentially improve the strategies for breast cancer treatment.
Collapse
|