1
|
Yang S, Luo W, Sun Y, Wang S. Novel perspectives on growth hormone regulation of ovarian function: mechanisms, formulations, and therapeutic applications. Front Endocrinol (Lausanne) 2025; 16:1576333. [PMID: 40270715 PMCID: PMC12014430 DOI: 10.3389/fendo.2025.1576333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Delayed childbearing has led to a continuous rise in the incidence of infertility because of social development and the evolving roles of women. Assisted reproductive technology (ART) has provided new opportunities for infertility treatment, such as the application of growth hormone (GH). GH regulates ovarian function through multiple pathways, improving follicular development and hormone secretion. However, traditional GH therapy is limited by issues such as low bioavailability and insufficient delivery efficiency. In recent years, drug delivery systems based on novel biomaterials have provided breakthrough solutions for the innovative application of GH in ART. This review summarizes the mechanisms by which GH affects ovarian endocrine function and focuses on the cutting-edge advancements in GH delivery systems with examination of the innovative applications of composite biomaterials in enhancing the therapeutic efficacy of GH. By analyzing the pharmacokinetic properties of novel formulations, the safety and long-term efficacy of their clinical applications can be evaluated. GH delivery systems based on novel biomaterials considerably improve the bioavailability and targeting of GH and could lead to innovative therapeutic strategies for preventing and treating ovarian dysfunction and related diseases. By integrating multidisciplinary research findings, we provide new insights into the field of reproductive medicine that could lead to theoretical and practical importance for promoting the innovative development of ART.
Collapse
Affiliation(s)
- Shao Yang
- Graduate School, Shandong First Medical University, Jinan, Shandong, China
- Department of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Luo
- Department of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yawei Sun
- Department of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shan Wang
- Department of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Shandong First Medical University, Jinan, Shandong, China
- Jinan Engineering Laboratory of Reproductive Diagnosis and Treatment Technology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
2
|
Szymanska M, Basavaraja R, Meidan R. A tale of two endothelins: the rise and fall of the corpus luteum. Reprod Fertil Dev 2024; 37:RD24158. [PMID: 39680472 DOI: 10.1071/rd24158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Endothelins are small 21 amino acid peptides that interact with G-protein-coupled receptors. They are highly conserved across species and play important roles in vascular biology as well as in disease development and progression. Endothelins, mainly endothelin-1 and endothelin-2, are intricately involved in ovarian function and metabolism. These two peptides differ only in two amino acids but are encoded by different genes, which suggests an independent regulation and a cell-specific mode of expression. This review aims to comprehensively discuss the distinct regulation and roles of endothelin-1 and endothelin-2 regarding corpus luteum function throughout its life span.
Collapse
Affiliation(s)
- Magdalena Szymanska
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; and Present address: Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | - Raghavendra Basavaraja
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; and Present address: Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Berisha B, Thaqi G, Schams D, Rodler D, Sinowatz F, Pfaffl MW. Effect of the gonadotropin surge on steroid receptor regulation in preovulatory follicles and newly formed corpora lutea in the cow. Domest Anim Endocrinol 2024; 89:106876. [PMID: 39047595 DOI: 10.1016/j.domaniend.2024.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The objective of the study was to characterize the mRNA expression patterns of specific steroid hormone receptors namely, estrogen receptors (ESRRA-estrogen related receptor alpha and ESRRB-estrogen related receptor beta) and progesterone receptors (PGR) in superovulation-induced bovine follicles during the periovulation and subsequent corpus luteum (CL) formation. The bovine ovaries (n = 5 cow / group), containing preovulatory follicles or early CL, were collected relative to injection of the gonadotropin-releasing hormone (GnRH) at (I) 0 h, (II) 4 h, (III) 10 h, (IV) 20 h, (V) 25 h (preovulatory follicles) and (VI) 60 h (CL, 2-3 days after induced ovulation). In this experiment, we analyzed the steroid receptor mRNA expression and their localization in the follicle and CL tissue. The high mRNA expression of ESRRA, ESRRB, and PGR analyzed in the follicles before ovulation is significantly reduced in the group of follicles during ovulation (25 h after GnRH), rising again significantly after ovulation in newly formed CL, only for ESRRA and PGR (P < 0.05). Immunohistochemically, the nuclei of antral follicles' granulosa cells showed a positive staining for ESRRA, followed by higher activity in the large luteal cells just after ovulation (early CL). In contrast, the lower PGR immunopresence in preovulatory follicles increased in both small and large luteal cell nuclei after follicle ovulation. Our results of steroid receptor mRNA expression in this experimentally induced gonadotropin surge provide insight into the molecular mechanisms of the effects of steroid hormones on follicular-luteal tissue in the period close to the ovulation and subsequent CL formation in the cow.
Collapse
Affiliation(s)
- Bajram Berisha
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephan 85354, Germany; Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, Prishtinë, Kosovo; Academy of Science of Albania, Tirana, Albania
| | - Granit Thaqi
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephan 85354, Germany.
| | - Dieter Schams
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephan 85354, Germany
| | - Daniela Rodler
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Fred Sinowatz
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Michael W Pfaffl
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephan 85354, Germany
| |
Collapse
|
4
|
Berisha B, Pfaffl MW, Thaqi G. Local Regulatory Changes of HSD11B1 and NR3C1 in the Follicular and Luteal Tissue During Experimentally Induced Ovulation in the Cow. Reprod Domest Anim 2024; 59:e14722. [PMID: 39295165 DOI: 10.1111/rda.14722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024]
Abstract
The objective of the study was to characterise the expression patterns of the two key components of cortisol action namely HSD11B1 (11-beta-hydroxysteroid dehydrogenase type 1) and NR3C1 (nuclear receptor subfamily 3, group C, member 1, also known as the glucocorticoid receptor) in superovulation induced bovine follicles during the periovulation and subsequent corpus luteum (CL) formation. Bovine ovaries containing preovulatory follicles or CL were timely defined during induced ovulation as follows: 0 h before GnRH (Gonadotropin-releasing hormone) application, and 4, 10, 20, 25 (follicles) and 60 h (early CL) after GnRH. The low mRNA expression of HSD11B1 and NR3C1 in the follicle group before the GnRH application increased significantly in the follicle group 20 h after GnRH and remained high afterward also in the early CL group. In contrast, the high NR3C1 mRNA decreased in follicles 25 h after GnRH (close to ovulation) and significantly increased again after ovulation (early CL). Our results indicated the involvement of HSD11B1 and NR3C1 as the two key components of cortisol action in the local mechanisms coordinating final follicle maturation, ovulation, follicular-luteal transition and CL development in the cow.
Collapse
Affiliation(s)
- Bajram Berisha
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Munich, Germany
- Department of Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, Prishtina, Kosovo
- Academy of Sciences of Albania, Tirana, Albania
| | - Michael W Pfaffl
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Granit Thaqi
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Munich, Germany
| |
Collapse
|
5
|
Thaqi G, Berisha B, Pfaffl MW. Expression dynamics of adipokines during induced ovulation in the bovine follicles and early corpus luteum. Reprod Domest Anim 2024; 59:e14624. [PMID: 38798196 DOI: 10.1111/rda.14624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
The study aimed to assess the local gene expression of adipokine members, namely vaspin, adiponectin, visfatin, resistin and their associated receptors - heat shock 70 protein 5 (HSPA5), adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2 (AdipoR2) - in bovine follicles during the preovulatory period and early corpus luteum development. Follicles were collected before gonadotropin-releasing hormone (GnRH) treatment (0 h) and at 4, 10, 20, 25 and 60 h after GnRH application through transvaginal ovariectomy (n = 5 samples/group). Relative mRNA expression levels were quantified using real-time reverse transcription polymerase chain reaction (RT-qPCR). Vaspin exhibited high mRNA levels immediately 4 h after GnRH application, followed by a significant decrease. Adiponectin mRNA levels were elevated at 25 h after GnRH treatment. AdipoR2 exhibited late-stage upregulation, displaying increased expression at 20, 25 and 60 h following GnRH application. Visfatin showed upregulation at 20 h post-GnRH application. In conclusion, the observed changes in adipokine family members within preovulatory follicles, following experimentally induced ovulation, may constitute crucial components of the local mechanisms regulating final follicle growth and development.
Collapse
Affiliation(s)
- Granit Thaqi
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Bajram Berisha
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Munich, Germany
- Faculty of Agriculture and Veterinary, Department of Animal Biotechnology, University of Prishtina, Prishtina, Kosovo
| | - Michael W Pfaffl
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Munich, Germany
| |
Collapse
|
6
|
Kopij G, Kiezun M, Dobrzyn K, Zaobidna E, Zarzecka B, Rak A, Kaminski T, Kaminska B, Smolinska N. Visfatin Affects the Transcriptome of Porcine Luteal Cells during Early Pregnancy. Int J Mol Sci 2024; 25:2339. [PMID: 38397019 PMCID: PMC10889815 DOI: 10.3390/ijms25042339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Visfatin/NAMPT (VIS), the hormone exerting a pleiotropic effect, is also perceived as an important factor in the regulation of reproductive processes and pregnancy maintenance. Previous studies confirmed its involvement in the control of porcine pituitary and ovary function. In this study, we hypothesized that VIS may affect the global transcriptome of luteal cells and thus regulate the functioning of the ovaries. Illumina's NovaSeq 6000 RNA sequencing was performed to investigate the differentially expressed genes (DEGs) and long non-coding RNAs (DELs) as well as the occurrence of differential alternative splicing events (DASs) in the porcine luteal cells exposed to VIS (100 ng/mL) during the implantation period. The obtained results revealed 170 DEGs (99 up- and 71 downregulated) assigned to 45 functional annotations. Moreover, we revealed 40 DELs, of which 3 were known and 37 were described for the first time. We identified 169 DASs events. The obtained results confirmed a significant effect of VIS on the transcriptome and spliceosome of luteal cells, including the genes involved in the processes crucial for successful implantation and pregnancy maintenance as angiogenesis, steroidogenesis, inflammation, cell development, migration, and proliferation.
Collapse
Affiliation(s)
- Grzegorz Kopij
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Marta Kiezun
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Kamil Dobrzyn
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Ewa Zaobidna
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Barbara Zarzecka
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Agnieszka Rak
- Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland;
| | - Tadeusz Kaminski
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Barbara Kaminska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Nina Smolinska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| |
Collapse
|
7
|
Berisha B, Thaqi G, Sinowatz F, Schams D, Rodler D, Pfaffl MW. Prostaglandins as local regulators of ovarian physiology in ruminants. Anat Histol Embryol 2024; 53:e12980. [PMID: 37788129 DOI: 10.1111/ahe.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
Prostaglandins are synthesized from arachidonic acid through the catalytic activities of cyclooxygenase, while the production of different prostaglandin types, prostaglandin F2 alpha (PGF) and prostaglandin E2 (PGE), are regulated by specific prostaglandin synthases (PGFS and PGES). Prostaglandin ligands (PGF and PGE) bind to specific high-affinity receptors and initiate biologically distinct signalling pathways. In the ovaries, prostaglandins are known to be important endocrine regulators of female reproduction, in addition to maintaining local function through autocrine and/or paracrine effect. Many research groups in different animal species have already identified a variety of factors and molecular mechanisms that are responsible for the regulation of prostaglandin functions. In addition, prostaglandins stimulate their intrafollicular and intraluteal production via the pathway of prostaglandin self-regulation in the ovary. Therefore, the objective of the review article is to discuss recent findings about local regulation patterns of prostaglandin ligands PGF and PGE during different physiological stages of ovarian function in domestic ruminants, especially in bovine. In conclusion, the discussed local regulation mechanisms of prostaglandins in the ovary may stimulate further research activities in different methodological approaches, especially during final follicle maturation and ovulation, as well as corpus luteum formation and function.
Collapse
Affiliation(s)
- Bajram Berisha
- Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, Prishtina, Kosovo
- Academy of Science of Albania, Tirana, Albania
- Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising Weihenstephan, Germany
| | - Granit Thaqi
- Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising Weihenstephan, Germany
| | - Fred Sinowatz
- Department of Veterinary Sciences, Ludwig-Maximilian-University of Munich, Munich, Germany
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dieter Schams
- Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising Weihenstephan, Germany
| | - Daniela Rodler
- Department of Veterinary Sciences, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Michael W Pfaffl
- Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising Weihenstephan, Germany
| |
Collapse
|
8
|
Morelli KG, Lourenço GG, Marangon VR, Feltrin IR, Imura Oshiro TS, Rodrigues da Silva IV, Pugliesi G. Use of Doppler ultrasonography for selection of recipients in embryo transfer programs in horses. Theriogenology 2023; 211:142-150. [PMID: 37634355 DOI: 10.1016/j.theriogenology.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
We aimed to evaluate the impact of corpus luteum (CL) and uterine characteristics accessed by B-mode and Color-Doppler ultrasonography in recipient mares at the time of embryo transfer (ET) on pregnancy outcomes. Recipient mares (n = 110), between days 3-9 after spontaneous ovulation, received a fresh embryo. Immediately before ET, the reproductive system was assessed by transrectal palpation for the following parameters: uterine tone (0-3), CL echogenicity (0-6), CL type (homogeneous, trabecular or anechoic center), luteal area (cm2), uterine echogenicity (0-3), uterine edema (0-3), luteal blood perfusion (0-100%) and uterine blood perfusion (1-4). Additionally, a blood sample was collected by puncture of the jugular vein for plasma P4 dosage. Retrospectively, recipients were classified according to the luteal area (small [≤ 6 cm2] or large [> 6 cm2]), luteal blood perfusion (low [≤ 55%] or high [> 55%]), and plasma concentration of P4 (low ≤ 9.98 ng/mL or high > 9.98 ng/mL). Pregnancy diagnosis was performed at 12 and 30 days of gestation. Luteal blood perfusion was significantly higher (P = 0.04) in pregnant recipients (n = 83) than in non-pregnant recipients (n = 27). Overall P/ET was higher (P ≤ 0.02) in mares with high luteal blood perfusion and high P4. Luteal blood perfusion was the most adequate significant (P = 0.01) predictor of pregnancy compared with the luteal area and plasma P4 concentration. Only luteal blood perfusion showed a linear (P = 0.03) and cubic (P = 0.004) effect on P/ET. In conclusion, CL blood perfusion determined by color-Doppler can be used in real-time to select recipients with the greatest chance of maintaining pregnancy in equine ET programs.
Collapse
Affiliation(s)
- Karine Galhego Morelli
- USP - Universidade de São Paulo, Avenida Duque de Caxias Norte 225, Jardim Elite, Pirassununga, SP, Brazil.
| | - Gilberto Guimarães Lourenço
- M.V. Haras Laglória - Médico Veterinário responsável pelo Haras Laglória, Fazenda Salgada, 00000 - RT-19, Itajara-Itaperuna, RJ, Brazil.
| | | | - Isabella Rio Feltrin
- UNESP - Botucatu - Universidade Estadual Paulista "Júlio de Mesquita Filho", Distrito de Rubião Júnior, s/n - Rubião Junior, SP, 18618-970, Brazil.
| | - Thaís Sayuri Imura Oshiro
- USP - Universidade de São Paulo, Avenida Duque de Caxias Norte 225, Jardim Elite, Pirassununga, SP, Brazil.
| | - Igor Vicente Rodrigues da Silva
- UNIPAC-JF, Faculdade Presidente Antonio Carlos, Juiz de Fora Av. Juiz de Fora, 1100, Granja Betânia, Juiz de Fora - MG, 36048-000, Brazil.
| | - Guilherme Pugliesi
- USP - Universidade de São Paulo, Avenida Duque de Caxias Norte 225, Jardim Elite, Pirassununga, SP, Brazil.
| |
Collapse
|
9
|
Thaqi G, Berisha B, Pfaffl MW. Local Expression Dynamics of Various Adipokines during Induced Luteal Regression (Luteolysis) in the Bovine Corpus Luteum. Animals (Basel) 2023; 13:3221. [PMID: 37893945 PMCID: PMC10603666 DOI: 10.3390/ani13203221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The study aimed to evaluate the mRNA expression levels of various local novel adipokines, including vaspin, adiponectin, visfatin, and resistin, along with their associated receptors, heat shock 70 protein 5, adiponectin receptor 1, and adiponectin receptor 2, in the corpus luteum (CL) during luteal regression, also known as luteolysis, in dairy cows. We selected Fleckvieh cows in the mid-luteal phase (days 8-12, control group) and administered cloprostenol (PGF analog) to experimentally induce luteolysis. We collected CL samples at different time points following PGF application: before treatment (days 8-12, control group) and at 0.5, 2, 4, 12, 24, 48, and 64 h post-treatment (n = 5) per group. The mRNA expression was measured via real-time reverse transcription polymerase chain reaction (RT-qPCR). Vaspin was characterized by high mRNA levels at the beginning of the regression stage, followed by a significant decrease 48 h and 64 h after PGF treatment. Adiponectin mRNA levels were elevated 48 h after PGF. Resistin showed upregulation 4 h post PGF application. In summary, the alterations observed in the adipokine family within experimentally induced regressing CL tissue potentially play an integral role in the local regulatory processes governing the sequence of events culminating in functional luteolysis and subsequent structural changes in the bovine ovary.
Collapse
Affiliation(s)
- Granit Thaqi
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephan, 85354 Munich, Germany; (B.B.); (M.W.P.)
| | - Bajram Berisha
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephan, 85354 Munich, Germany; (B.B.); (M.W.P.)
- Department of Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, 10000 Prishtina, Kosovo
| | - Michael W. Pfaffl
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephan, 85354 Munich, Germany; (B.B.); (M.W.P.)
| |
Collapse
|
10
|
Polat B, Okur DT, Çolak A, Yilmaz K, Özkaraca M, Çomakli S. The effects of low-level laser therapy on polycystic ovarian syndrome in rats: three different dosages. Lasers Med Sci 2023; 38:177. [PMID: 37544939 DOI: 10.1007/s10103-023-03847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
The main objective of this in vivo study was to investigate the effect of different low-level laser therapy (LLLT) doses on polycystic ovary syndrome (PCOS). In the present experimental study, a single dosage of estradiol valerate (EV) was administered to induce PCOS in female rats. After administration of the EV for induction of PCOS, rats were divided into 5 groups (n = 8/group): C group (animals that were not exposed to any form of procedure), PC group (no treatment following EV induction), L1 group (1 J/cm2 LLLT treatment following EV induction), L2 group (2 J/cm2 LLLT treatment following EV induction), L3 group (6 J/cm2 LLLT treatment following EV induction). The results indicated that no significant difference was found in the serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and progesterone (P4) between the C and L2 groups (p < 0.05). Although the serum levels of testosterone (T) were significantly higher in the C group compared with other groups (p < 0.05), the L2 group was determined to be the closest to the C group. Additionally, the LH, FSH, and T receptor level of the L2 group was closest to the C group. In conclusion, a 2 J/cm2 dosage of LLLT (L2 group) can be considered the most potentially effective treatment of PCOS in the rat. However, more studies are needed to determine the optimal dose of LLLT for the treatment of PCOS.
Collapse
Affiliation(s)
- Bülent Polat
- Department of Obstetrics and Gynecology, Faculty Veterinary Medicine, Atatürk University, Erzurum, Turkey
- BIL-TEC, TEKNOKENT, TR-25240, Erzurum, Turkey
| | - Damla Tuğçe Okur
- Department of Obstetrics and Gynecology, Faculty Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Armağan Çolak
- Department of Obstetrics and Gynecology, Faculty Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Kader Yilmaz
- Celal Oruç Animal Production School, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| | - Mustafa Özkaraca
- Department of Pathology, Faculty Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Selim Çomakli
- Department of Pathology, Faculty Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
11
|
Thaqi G, Berisha B, Pfaffl MW. Expression of Locally Produced Adipokines and Their Receptors during Different Physiological and Reproductive Stages in the Bovine Corpus Luteum. Animals (Basel) 2023; 13:1782. [PMID: 37889693 PMCID: PMC10251875 DOI: 10.3390/ani13111782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 10/05/2023] Open
Abstract
This study aimed to determine the gene expression of different local novel adipokines, such as vaspin, adiponectin, visfatin, and resistin, and their known receptors, namely, heat shock 70 protein 5, adiponectin receptor 1, and adiponectin receptor 2, in the bovine corpus luteum (CL) during different phases of the estrous cycle (on days 1-2, 3-4, 5-7, 8-12, 13-18, >18) and pregnancy (at months 1-2, 3-4, 5-7, >7). The mRNA expression was measured by reverse transcription polymerase chain reaction (RT-qPCR). The mRNA expression levels were normalized to the geometric mean of all three constantly expressed reference genes (cyclophilin A, ubiquitin, ubiquitin C). Our findings suggest that adipokines are expressed and present in all investigated groups, and are specifically up- or downregulated during the estrus cycle and during pregnancy. Vaspin and adiponectin levels were upregulated in the middle and late cycle stages. Resistin was abundant during the CL regression stage and in the first months of pregnancy. The specific expression of adipokine receptors indicates their involvement in the local mechanisms that regulate CL function. Further investigations are required to elucidate the regulative mechanisms underlying the different local effects of adipokines on the ovarian physiology of cows.
Collapse
Affiliation(s)
- Granit Thaqi
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Weihenstephan, Germany; (B.B.); (M.W.P.)
| | - Bajram Berisha
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Weihenstephan, Germany; (B.B.); (M.W.P.)
- Department of Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, 10000 Prishtina, Kosovo
| | - Michael W. Pfaffl
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Weihenstephan, Germany; (B.B.); (M.W.P.)
| |
Collapse
|
12
|
Senturk GE, Sezer Z, Sahin H, Isildar B, Abdulova A. Effects of Chronically Exogenous Oxytocin on Ovary and Uterus: A Comparison of Intraperitoneal and Intranasal Administration. Peptides 2023; 165:171006. [PMID: 37003476 DOI: 10.1016/j.peptides.2023.171006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/10/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Oxytocin (OT) has been studied as a therapeutic neuropeptide in various diseases, but its effect on the ovary and uterus is not fully known. This study investigates the effects of intranasal and intraperitoneal OT administration on ovaries and uterus in rats. Four experimental groups were created using 7-week-old Sprague Dawley-type female rats: Control (Ctrl), oxytocin-intraperitoneal (0.1µg/day) (OT-IP), oxytocin-intranasal (0.05µg/day) (OT-IN1), and oxytocin-intranasal (0.1µg/day) (OT-IN2). The blood, the ovarian, and the uterus were collected at the end of the 28th day of OT administration. Afterward, histological and biochemical analyses were performed. We observed that the Graaf follicles were higher in both OT-IN2 and OT-IP groups compared to the Ctrl group. Moreover, the corpus luteum was increased only in the OT-IN2 group. Ki-67, CD31, VEGF, and TGF-ß immunostaining showed no significant change in the ovary. In contrast, Ki-67, VEGF, and OTR expressions demonstrated significant alterations in the uterus. Furthermore, TGF-ß immunohistochemistry and the histopathologic score did not reveal the statistical change in the uterus. Serum hormone levels showed that the anti-Müllerian hormone increased in all OT groups vs. the Ctrl. OT-IP showed an increment of follicle-stimulating hormone and estradiol decrement. There was a decrease in serum E2 levels, although the Graafian follicle number increased in OT-IP groups compared to the Ctrl group. However, luteinizing hormone, gonadotropin-releasing hormone, progesterone, testosterone, OT levels, and oxidative stress index did not reveal any statistical difference. Accordingly, the intranasal route may have beneficial effects compared to the intraperitoneal route regarding exogenous OT administration-related studies. In conclusion, we reported that exogenous OT increases the follicle reserve and may cause histological changes in the reproductive system of female rats.
Collapse
Affiliation(s)
- Gozde Erkanli Senturk
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Zehra Sezer
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Hakan Sahin
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Basak Isildar
- Department of Histology and Embryology, Faculty of Medicine, Balikesir University, Balıkesir, Turkey.
| | - Aynur Abdulova
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
13
|
A review on inflammation and angiogenesis as key mechanisms involved in the pathogenesis of bovine cystic ovarian disease. Theriogenology 2022; 186:70-85. [DOI: 10.1016/j.theriogenology.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022]
|
14
|
Meidan R, Basavaraja R. Interferon-Tau regulates a plethora of functions in the corpus luteum. Domest Anim Endocrinol 2022; 78:106671. [PMID: 34509740 DOI: 10.1016/j.domaniend.2021.106671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023]
Abstract
The corpus luteum (CL) plays a vital role in regulating the reproductive cycle, fertility, and in maintaining pregnancy. Interferon-tau (IFNT) is the maternal recognition of a pregnancy signal in domestic ruminants; its uterine, paracrine actions, which extend the CL lifespan, are widely established. However, considerable evidence also suggests a direct, endocrine role for IFNT. The purpose of this review is to highlight the importance of IFNT in CL maintenance, acting directly and in a cell-specific manner. A transcriptomic study revealed a distinct molecular profile of IFNT-exposed day 18, pregnant bovine CL, compared to the non-pregnant gland. A substantial fraction of the differentially expressed genes was downregulated, many of which are known to be elevated by prostaglandin F2A (PGF2A). In vitro, IFNT was found to mimic changes observed in the luteal transcriptome of early pregnancy. Key luteolytic genes such as endothelin-1 (EDN1), transforming growth factor-B1 (TGFB1), thrombospondins (THBSs) 1&2 and serpine-1 (SERPINE1) were downregulated in luteal endothelial cells. Luteal steroidogenic large cells (LGCs) were also found to be a target for the antilutelotytic actions of IFNT. IFNT-treated LGCs showed a significant reduction in the expression of the proapoptotic, antiangiogenic THBS1&2, as well as TGFBR1 and 2. Furthermore, IFNT was shown to be a potent survival factor for luteal cells in vivo and in vitro, activating diverse pathways to promote cell survival while suppressing cell death signals. Pentraxin 3 (PTX3), robustly upregulated by IFNT in various luteal cell types, mediated many of the prosurvival effects of IFNT in LGCs. A novel reciprocal inhibitory crosstalk between PTX3 and THBS1 lends further support to their respective survival and apoptotic actions in the CL. Even though IFNT did not directly regulate progesterone synthesis, it could maintain its concentrations, by increasing luteal cell survival and by supporting vascular stabilization. The direct effects of IFNT in the CL, enhancing cell survival and vasculature stabilization while curbing luteolytic activities, may constitute an important complementary branch leading to the extension of the luteal lifespan during early pregnancy.
Collapse
Affiliation(s)
- Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001 Israel.
| | - Raghavendra Basavaraja
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001 Israel
| |
Collapse
|
15
|
Chang CW, Sung YW, Hsueh YW, Chen YY, Ho M, Hsu HC, Yang TC, Lin WC, Chang HM. Growth hormone in fertility and infertility: Mechanisms of action and clinical applications. Front Endocrinol (Lausanne) 2022; 13:1040503. [PMID: 36452322 PMCID: PMC9701841 DOI: 10.3389/fendo.2022.1040503] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
Secreted by the anterior pituitary gland, growth hormone (GH) is a peptide that plays a critical role in regulating cell growth, development, and metabolism in multiple targeted tissues. Studies have shown that GH and its functional receptor are also expressed in the female reproductive system, including the ovaries and uterus. The experimental data suggest putative roles for GH and insulin-like growth factor 1 (IGF-1, induced by GH activity) signaling in the direct control of multiple reproductive functions, including activation of primordial follicles, folliculogenesis, ovarian steroidogenesis, oocyte maturation, and embryo implantation. In addition, GH enhances granulosa cell responsiveness to gonadotropin by upregulating the expression of gonadotropin receptors (follicle-stimulating hormone receptor and luteinizing hormone receptor), indicating crosstalk between this ovarian regulator and the endocrine signaling system. Notably, natural gene mutation of GH and the age-related decline in GH levels may have a detrimental effect on female reproductive function, leading to several reproductive pathologies, such as diminished ovarian reserve, poor ovarian response during assisted reproductive technology (ART), and implantation failure. Association studies using clinical samples showed that mature GH peptide is present in human follicular fluid, and the concentration of GH in this fluid is positively correlated with oocyte quality and the subsequent embryo morphology and cleavage rate. Furthermore, the results obtained from animal experiments and human samples indicate that supplementation with GH in the in vitro culture system increases steroid hormone production, prevents cell apoptosis, and enhances oocyte maturation and embryo quality. The uterine endometrium is another GH target site, as GH promotes endometrial receptivity and pregnancy by facilitating the implantation process, and the targeted depletion of GH receptors in mice results in fewer uterine implantation sites. Although still controversial, the administration of GH during ovarian stimulation alleviates age-related decreases in ART efficiency, including the number of oocytes retrieved, fertilization rate, embryo quality, implantation rate, pregnancy rate, and live birth rate, especially in patients with poor ovarian response and recurrent implantation failure.
Collapse
|
16
|
Przygrodzka E, Monaco CF, Plewes MR, Li G, Wood JR, Cupp AS, Davis JS. Protein Kinase A and 5' AMP-Activated Protein Kinase Signaling Pathways Exert Opposite Effects on Induction of Autophagy in Luteal Cells. Front Cell Dev Biol 2021; 9:723563. [PMID: 34820368 PMCID: PMC8607825 DOI: 10.3389/fcell.2021.723563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022] Open
Abstract
In the absence of pregnancy the ovarian corpus luteum undergoes regression, a process characterized by decreased production of progesterone and structural luteolysis involving apoptosis. Autophagy has been observed in the corpus luteum during luteal regression. Autophagy is a self-degradative process important for balancing sources of cellular energy at critical times in development and in response to nutrient stress, but it can also lead to apoptosis. Mechanistic target of rapamycin (MTOR) and 5′ AMP-activated protein kinase (AMPK), key players in autophagy, are known to inhibit or activate autophagy, respectively. Here, we analyzed the signaling pathways regulating the initiation of autophagy in bovine luteal cells. In vivo studies showed increased activating phosphorylation of AMPKα (Thr172) and elevated content of LC3B, a known marker of autophagy, in luteal tissue during PGF2α-induced luteolysis. In vitro, AMPK activators 1) stimulated phosphorylation of regulatory associated protein of MTOR (RPTOR) leading to decreased activity of MTOR, 2) increased phosphorylation of Unc-51-Like Kinase 1 (ULK1) and Beclin 1 (BECN1), at sites specific for AMPK and required for autophagy initiation, 3) increased levels of LC3B, and 4) enhanced colocalization of autophagosomes with lysosomes indicating elevated autophagy. In contrast, LH/PKA signaling in luteal cells 1) reduced activation of AMPKα and phosphorylation of RPTOR, 2) elevated MTOR activity, 3) stimulated phosphorylation of ULK1 at site required for ULK1 inactivation, and 4) inhibited autophagosome formation as reflected by reduced content of LC3B-II. Pretreatment with AICAR, a pharmacological activator of AMPK, inhibited LH-mediated effects on RPTOR, ULK1 and BECN1. Our results indicate that luteotrophic signaling via LH/PKA/MTOR inhibits, while luteolytic signaling via PGF2α/Ca2+/AMPK activates key signaling pathways involved in luteal cell autophagy.
Collapse
Affiliation(s)
- Emilia Przygrodzka
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Corrine F Monaco
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michele R Plewes
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States.,Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE, United States
| | - Guojuan Li
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jennifer R Wood
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Andrea S Cupp
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - John S Davis
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States.,Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE, United States
| |
Collapse
|
17
|
Darbaz I, Sayiner S, Ergene O, Seyrek Intas K, Zabitler F, Evci EC, Aslan S. The Effect of Comfort- and Hot-Period on the Blood Flow of Corpus Luteum (CL) in Cows Treated by an OvSynch Protocol. Animals (Basel) 2021; 11:ani11082272. [PMID: 34438730 PMCID: PMC8388443 DOI: 10.3390/ani11082272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Doppler ultrasonography is frequently used to measure blood flow. The Ovsynch program is applied to synchronize the timing of ovulation in dairy cows. Heat stress can negatively affect the hormonal balance, ovarian activity, and blood flow. In this study, the effect of heat stress on corpus luteum blood flow, progesterone, and insulin-like growth factor parameters was investigated during and after Ovsynch synchronization. Our results showed that synchronization initiated with high progesterone values caused significantly higher blood flow and greater corpus luteum area in the comfort period when compared with the hot period. In addition, insulin-like growth factor values were found significantly higher during the comfort period compared to heat stress. Under heat stress circumstances, the Ovsynch synchronization provided better results when the progesterone levels were high. We suggest that it may be better to apply the modified Ovsynch program to increase progesterone levels in cows with low progesterone values when the protocol is initiated during the heat stress period. Abstract The values of luteal blood flow (LBF), total corpus luteum (CL) area (TAR), and progesterone (P4), during and after OvSynch (OvS) protocol in comfort (CP; n = 40) and hot periods (HP; n = 40) were compared. We investigated how low and high P4 values obtained before the application affected the parameters above during CP and HP periods. Blood samples were collected before the OvS application on day 0 (OVSd0), day 9 (OeG), and day 18 (9th day after OeG: OvSd9). The P4 (ng/mL) values of the animals exhibiting dominant follicles were between 0.12–0.82 in HC and 0.1–0.88 in CP (P4-2: 4.36–4.38 and P4-3: ≥7.36 ng/mL). The LBF values were measured on days 7 (OvSd7) and 9 (OvSd9) after the OeG. The P4 mean values at day 0 (OvSd0) were classified as low (P4-1), medium (P4-2), and high (P4-3). The LBF and the TAR values in the P4-2 and P4-3 on OeG day 9 were higher than in HP (p < 0.05; 0.001), but there was no significant difference in the P4-1. In conclusion, when the OvS program was initiated with low P4 values, no difference was observed between HP and CP in terms of LBF values; however, when the program was started with high P4 values, there were significant increases in LBF and TAR values in the CP compared to the HP.
Collapse
Affiliation(s)
- Isfendiyar Darbaz
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Near East University, Nicosia 99138, North Cyprus, Turkey; (O.E.); (K.S.I.); (F.Z.); (E.C.E.); (S.A.)
- Correspondence: ; Tel.: +90-533-866-3500
| | - Serkan Sayiner
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, Nicosia 99138, North Cyprus, Turkey;
| | - Osman Ergene
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Near East University, Nicosia 99138, North Cyprus, Turkey; (O.E.); (K.S.I.); (F.Z.); (E.C.E.); (S.A.)
| | - Kamil Seyrek Intas
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Near East University, Nicosia 99138, North Cyprus, Turkey; (O.E.); (K.S.I.); (F.Z.); (E.C.E.); (S.A.)
| | - Feride Zabitler
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Near East University, Nicosia 99138, North Cyprus, Turkey; (O.E.); (K.S.I.); (F.Z.); (E.C.E.); (S.A.)
| | - Enver Cemre Evci
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Near East University, Nicosia 99138, North Cyprus, Turkey; (O.E.); (K.S.I.); (F.Z.); (E.C.E.); (S.A.)
| | - Selim Aslan
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Near East University, Nicosia 99138, North Cyprus, Turkey; (O.E.); (K.S.I.); (F.Z.); (E.C.E.); (S.A.)
| |
Collapse
|
18
|
Przygrodzka E, Hou X, Zhang P, Plewes MR, Franco R, Davis JS. PKA and AMPK Signaling Pathways Differentially Regulate Luteal Steroidogenesis. Endocrinology 2021; 162:bqab015. [PMID: 33502468 PMCID: PMC7899060 DOI: 10.1210/endocr/bqab015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Luteinizing hormone (LH) via protein kinase A (PKA) triggers ovulation and formation of the corpus luteum, which arises from the differentiation of follicular granulosa and theca cells into large and small luteal cells, respectively. The small and large luteal cells produce progesterone, a steroid hormone required for establishment and maintenance of pregnancy. We recently reported on the importance of hormone-sensitive lipase (HSL, also known as LIPE) and lipid droplets for appropriate secretory function of the corpus luteum. These lipid-rich intracellular organelles store cholesteryl esters, which can be hydrolyzed by HSL to provide cholesterol, the main substrate necessary for progesterone synthesis. In the present study, we analyzed dynamic posttranslational modifications of HSL mediated by PKA and AMP-activated protein kinase (AMPK) as well as their effects on steroidogenesis in luteal cells. Our results revealed that AMPK acutely inhibits the stimulatory effects of LH/PKA on progesterone production without reducing levels of STAR, CYP11A1, and HSD3B proteins. Exogenous cholesterol reversed the negative effects of AMPK on LH-stimulated steroidogenesis, suggesting that AMPK regulates cholesterol availability in luteal cells. AMPK evoked inhibitory phosphorylation of HSL (Ser565). In contrast, LH/PKA decreased phosphorylation of AMPK at Thr172, a residue required for its activation. Additionally, LH/PKA increased phosphorylation of HSL at Ser563, which is crucial for enzyme activation, and decreased inhibitory phosphorylation of HSL at Ser565. The findings indicate that LH and AMPK exert opposite posttranslational modifications of HSL, presumptively regulating cholesterol availability for steroidogenesis.
Collapse
Affiliation(s)
- Emilia Przygrodzka
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xiaoying Hou
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pan Zhang
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michele R Plewes
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE, USA
| | - Rodrigo Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - John S Davis
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
19
|
Paulini F, Melo EO. Effects of Growth and Differentiation Factor 9 and Bone Morphogenetic Protein 15 overexpression on the steroidogenic metabolism in bovine granulosa cells in vitro. Reprod Domest Anim 2021; 56:837-847. [PMID: 33683747 DOI: 10.1111/rda.13923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/26/2022]
Abstract
Granulosa cells (GCs) play important roles in the regulation of ovarian functions, and in vitro culture is a relevant model for the study of steroidogenesis in ovarian follicles. Thus, growth factors secreted by the oocyte, like Growth and Differentiation Factor 9 (GDF9) and Bone Morphogenetic Protein 15 (BMP15), play an important part in the luteinization of granulosa cells. The aim of this work was to express GDF9 and BMP15 genes in bovine GCs in vitro and evaluate their effects on the luteinization process. Samples of culture medium and GCs transfected with GDF9 and BMP15 were obtained for 21 consecutive days to analyse the steroidogenic hormones' concentration (progesterone (P4 ) and estradiol (E2 )) and the expression of STAR, GDF9 and BMP15 and their respective receptors. The results demonstrated an inhibitory effect of GDF9 and BMPF15 on P4 secretion in bovine GCs cultured in vitro. Moreover, our study demonstrated the entire expression of their respective receptors (TGFBR1, BMPR1B and BMPR2) and the inhibition of the steroidogenic marker, STAR gene. This work sheds light on a novel biological function of BMP15 and GDF9 in bovine GCs physiology, which could elucidate a non-described biological role for GDF9 and BMP15 in bovine granulosa cells' metabolism.
Collapse
Affiliation(s)
- Fernanda Paulini
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Eduardo O Melo
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,Postgraduate Program in Biotechnology, University of Tocantins-UFT, Gurupi, Brazil
| |
Collapse
|
20
|
Transcriptome profiling of different developmental stages of corpus luteum during the estrous cycle in pigs. Genomics 2020; 113:366-379. [PMID: 33309770 DOI: 10.1016/j.ygeno.2020.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022]
Abstract
To better understand the molecular basis of corpus luteum (CL) development and function RNA-Seq was utilized to identify differentially expressed genes (DEGs) in porcine CL during different physiological stages of the estrous cycle viz. early (EL), mid (ML), late (LL) and regressed (R) luteal. Stage wise comparisons obtained 717 (EL vs. ML), 568 (EL vs. LL), 527 (EL vs. R), 786 (ML vs. LL), 474 (ML vs. R) and 534 (LL vs. R) DEGs with log2(FC) ≥1 and p < 0.05. The process of angiogenesis, steroidogenesis, signal transduction, translation, cell proliferation and tissue remodelling were significantly (p < 0.05) enriched in EL, ML and LL stages, where as apoptosis was most active in regressed stage. Pathway analysis revealed that most annotated genes were associated with lipid metabolism, translation, immune and endocrine system pathways depicting intra-luteal control of diverse CL function. The network analysis identified genes AR, FOS, CDKN1A, which were likely the novel hub genes regulating CL physiology.
Collapse
|
21
|
Faheem MS, Dessouki SM, Abdel-Rahman FES, Ghanem N. Physiological and molecular aspects of heat-treated cultured granulosa cells of Egyptian buffalo (Bubalus bubalis). Anim Reprod Sci 2020; 224:106665. [PMID: 33307488 DOI: 10.1016/j.anireprosci.2020.106665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
The physiological and molecular responses of granulosa cells (GCs) from buffalo follicles were investigated when there were in vitro heat stress conditions imposed. The cultured GCs were heat-treated at 40.5 °C for 24, 48 or 72 h while GCs of the control group were not heat-treated (37 °C). There were no differences in viability between control and heat-treated groups. There was an upward trend in increase in E2 secretion as the duration of heat stress advanced, being greater (P ≤ 0.05) for the GCs on which heat stress was imposed for 72 as compared with 24 h. In contrast, P4 release was less (P ≤ 0.05) from GCs heat-treated for 48 h than those cultured for 24 h and GCs of the control group. The relative abundance of ATP5F1A and SOD2 mRNA transcripts was consistent throughout the period when there was imposing of heat stress to sustain mitochondrial function. The relative abundance of CPT2 transcript was less in heat-treated GCs than in GCs of the control group. There was a greater relative abundance of SREBP1 and TNF-α mRNA transcripts after 48 h of heat-treatment of GCs than GCs of the control group. In conclusion, the results from the current study indicate buffalo GCs cultured when there was imposing of heat stress maintained normal viability, steroidogenesis and transcriptional profile. The stability of antioxidant status and increased transcription of genes regulating cholesterol biosynthesis and stress resistance may be defense mechanisms of buffalo GCs against heat stress.
Collapse
Affiliation(s)
- Marwa S Faheem
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt; Cairo University Research Park (CURP) Faculty of Agriculture, Cairo University, Giza, Egypt.
| | - Sherif M Dessouki
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt; Cairo University Research Park (CURP) Faculty of Agriculture, Cairo University, Giza, Egypt
| | | | - Nasser Ghanem
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt; Cairo University Research Park (CURP) Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
22
|
Annie L, Gurusubramanian G, Roy VK. Inhibition of visfatin/NAMPT affects ovarian proliferation, apoptosis, and steroidogenesis in pre-pubertal mice ovary. J Steroid Biochem Mol Biol 2020; 204:105763. [PMID: 32987128 DOI: 10.1016/j.jsbmb.2020.105763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/15/2022]
Abstract
Pubertal ovarian function might be dependent on the factors present in the pre-pubertal stages. Visfatin regulates ovarian steroidogenesis in adult. To date, no study has investigated the role of visfatin either in pre-pubertal or pubertal mice ovary. Thus, we investigated the role of visfatin in pre-pubertal mice ovary in relation to steroidogenesis and proliferation and apoptosis in vitro by inhibiting the endogenous visfatin by a specific inhibitor, FK866. Inhibition of visfatin increased the estrogen secretion and also up-regulated the expression of CYP11A1, 17βHSD and CYP19A1 in mice ovary. Furthermore, active caspase3 was up-regulated along with the down-regulation of BAX and BCL2 in the pre-pubertal ovary after visfatin inhibition. The expression of GCNA, PCNA, and BrdU labeling was also decreased by FK866 treatment. These results suggest that visfatin inhibits steroidogenesis, increases proliferation, and suppresses apoptosis in the pre-pubertal mice ovary. So, visfatin is a new regulator of ovary function in pre-pubertal mice.
Collapse
Affiliation(s)
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796 004, India.
| |
Collapse
|
23
|
Ekizceli G, Inan S, Oktem G, Onur E, Ozbilgin K. Immunohistochemical determination of mTOR pathway molecules in ovaries and uterus in rat estrous cycle stages. Histol Histopathol 2020; 35:1337-1351. [PMID: 32940340 DOI: 10.14670/hh-18-258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
mTOR is a member of the PI3K/Akt/mTOR signaling pathway that participates in cell growth, proliferation, protein synthesis, transcription, angiogenesis, apoptosis and autophagy. mTOR and MAPK pahways are two important key signal pathways which are related to each other. We investigated the role of mTOR and other signaling molecules in rat ovaries and uteruses in stages of the estrous cycle. Young adult female rats were divided into four groups as proestrous, estrous, metestrous and diestrous according to vaginal smears. Immunohistochemical staining of mTORC1, IGF1, PI3K, pAKT1/2/3, ERK1 and pERK1/2 was performed and pAKT1/2/3 and ERK1 were also analyzed using western blotting on ovarian and uterine tissue samples. According to our results, PI3K/Akt/mTOR and ERK/pERK showed an increase in the rat ovulation period. When all the groups were evaluated the immunoreactivities for all of the antibodies were detected in the oocytes, granulosa and theca cells, corpus luteum and stroma of ovary and lamina propria, surface and glandular epithelium of uterus with the strongest observed with anti-ERK1 antibody and then with a decreasing trend with anti-mTORC1, anti-pAkt1/2/3, anti-IGF1, anti-PI3K and anti-pERK1/2 antibodies in the proestrus and estrus stages. Differently from other parts of the ovary, highest antibody expression in the corpus luteum was observed in the metestrous stage. Moreover, the existence of pAKT1/2/3 and ERK1 proteins was confirmed with the Western blotting technique. We suggest that mTOR and mTOR-related ERK signaling molecules may participate in the rat ovulation process.
Collapse
Affiliation(s)
- Gulcin Ekizceli
- Department of Histology and Embryology, Faculty of Medicine, Istanbul Health and Technology University, Istanbul, Turkey.
| | - Sevinc Inan
- Department of Histology and Embryology, Izmir Economy University, School of Medicine, Izmir, Turkey
| | - Gulperi Oktem
- Department of Histology and Embryology, Ege University School of Medicine, Izmir, Turkey
| | - Ece Onur
- Department of Medical Biochemistry, Manisa Celal Bayar University, School of Medicine, Manisa, Turkey
| | - Kemal Ozbilgin
- Department of Histology and Embryology, Manisa Celal Bayar University, School of Medicine, Manisa, Turkey
| |
Collapse
|
24
|
Berisha B, Schams D, Sinowatz F, Rodler D, Pfaffl MW. Hypoxia-inducible factor-1alpha and nitric oxide synthases in bovine follicles close to ovulation and early luteal angiogenesis. Reprod Domest Anim 2020; 55:1573-1584. [PMID: 32869370 DOI: 10.1111/rda.13812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/05/2020] [Accepted: 08/23/2020] [Indexed: 11/30/2022]
Abstract
The objective of the study was to characterize expression patterns of hypoxia-inducible factor-1alpha (HIF1A), inducible nitric oxide synthase (iNOS) and endothelial (eNOS) isoforms in time-defined follicle classes before and after GnRH application in the cow. Ovaries containing pre-ovulatory follicles or corpora lutea were collected by transvaginal ovariectomy (n = 5 cows/group) as follow: (I) before GnRH administration; (II) 4h after GnRH; (III) 10h after GnRH; (IV) 20h after GnRH; (V) 25h after GnRH; and (VI) 60h after GnRH (early corpus luteum). The mRNA abundance of HIF1A in the follicle group before GnRH was high, followed by a significant down regulation afterwards with a minimum level 25h after GnRH (close to ovulation) and significant increase only after ovulation. The mRNA abundance of iNOS before GnRH was high, decreased significantly during LH surge, with minimum levels afterwards. In contrast, the mRNA of eNOS decreased in the follicle group 20h after GnRH, followed by a rapid and significant upregulation just after ovulation. Immunohistochemically, the granulosa cells of antral follicles and the eosinophils of the theca tissue as well of the early corpus luteum showed a strong staining for HIF1A. The location of the eosinophils could be clearly demonstrated by immunostaining with an eosinophil-specific antibody (EMBP) and transmission electron microscopy. In conclusion, the parallel and acute regulated expression patterns of HIF1A and NOS isoforms, specifically during the interval between the LH surge and ovulation, indicate that these paracrine factors are involved in the local mechanisms, regulating final follicle maturation, ovulation and early luteal angiogenesis.
Collapse
Affiliation(s)
- Bajram Berisha
- Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, Prishtinë, Kosovo.,Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Freising, Germany
| | - Dieter Schams
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Freising, Germany
| | - Fred Sinowatz
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Daniela Rodler
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Michael W Pfaffl
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
25
|
Kim SH, Yoon JT. Matrix metallopeptidases regulate granulosa cell remodeling through the hormone signaling pathway. J Adv Vet Anim Res 2020; 7:367-373. [PMID: 32607370 PMCID: PMC7320815 DOI: 10.5455/javar.2020.g430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 12/01/2022] Open
Abstract
Objective: Granulosa cells (GCs) play a very important role in reproductive physiology due to their effect on developmental and functional changes. However, there are differing views regarding the mechanism by which hormones stimulate GCs. Therefore, our study aims to determine whether GCs, in the absence of initial stimulation (17β-estradiol), select specific types of MMPs that reconstitute cells by stimulation of major hormones [follicle-stimulating hormone (FSH) or/and luteinizing hormone (LH)]. Materials and methods: Early GCs were extracted from immature follicles of the porcine ovary to analyze the MMPs levels. Using early GCs in pigs, the cell development rate was evaluated by adding 17β-estradiol, FSH, LH, or FSH + LH, respectively, to the DMEM containing 10% FBS. Real-time PCR, zymography, enzyme-linked immunosorbent assay, western blot, and immunofluorescence analysis were also performed to determine the MMPs activation in the GCs. Results: Our results confirm that FSH or LH stimulation regulates cell development and intracellular MMPs. In particular, FSH activity kept the MMP-2 and MMP-9 expressions constant in GCs. Conversely, LH activity initially led to rapid increases in the MMP-9 expression, which 96 h later was similar to the MMP-2 expression. Simultaneous utilization of FSH + LH maintained a steady MMP-9 expression and the development of GCs increased. Additionally, when FSH and LH were processed simultaneously, the number of cells increased without changes in cell size, while the cell size changed when LH alone was used. Conclusion: Therefore, the results of this study confirm that even without the initial stimulation of GCs, physiological changes occur according to hormonal changes in the environment, and there is variability in the expression of MMPs.
Collapse
Affiliation(s)
- Sang Hwan Kim
- Institute of Genetic Engineering, Hankyong National University, Gyeonggido, Republic of Korea
| | - Jong Taek Yoon
- Department of Animal Life and Environment Science, Hankyong National University, Gyeonggido, Republic of Korea
| |
Collapse
|
26
|
Early pregnancy diagnoses based on physiological indexes of dairy cattle: a review. Trop Anim Health Prod 2020; 52:2205-2212. [PMID: 32020411 DOI: 10.1007/s11250-020-02230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/28/2020] [Indexed: 10/25/2022]
Abstract
With the development of standardization and scaling in the dairy farming industry, timely and accurate pregnancy diagnosis is required to improve the benefits of breeding by shortening the calving interval. However, the current pregnancy diagnostic methods cannot meet the requirements of the industry. Here, we review changes in the physiological indexes and in the function and morphological status of the reproductive organs of dairy cows at the early stages of pregnancy. In addition, the corresponding pregnancy diagnostic methods based on certain indexes are well development, and the pregnancy diagnostic approaches based on remote sensing and automation technology have become inevitable trends in the industry. These applications will reveal physiological regularities in pregnancy and benefit the detailed management of dairy cows during early pregnancy.
Collapse
|
27
|
Contribution of the VEGF system to the follicular persistence associated with bovine cystic ovaries. Theriogenology 2019; 138:52-65. [DOI: 10.1016/j.theriogenology.2019.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/05/2019] [Accepted: 07/02/2019] [Indexed: 01/09/2023]
|
28
|
Sirotkin AV, Benco A, Mlyncek M, Kotwica J, Alwasel S, Harrath AH. Transcription factor p53 regulates healthy human ovarian cells function. C R Biol 2019; 342:186-191. [PMID: 31495738 DOI: 10.1016/j.crvi.2019.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
Abstract
The aim of our study was to understand the role of transcription factor p53 in the control of healthy human ovarian cell functions. Ovarian granulosa cells were transfected with a cDNA construct encoding p53. The intracellular accumulation of p53, of the apoptosis marker bax, and of the proliferation marker PCNA, as well as the release of progesterone (P4), insulin-like growth factor I (IGF-I), oxytocin (OT), and prostaglandin F (PGF) and E2 (PGE) were evaluated by quantitative immunocytochemistry and RIA/IRMA. Transfection with the p53 cDNA construct resulted in the accumulation of p53 and bax, in a reduced level of released PCNA and PGF, and in an increased PGE output. No changes in P4, IGF-I, and OT secretion were found. These observations are the first demonstration of the involvement of p53 in the control of healthy human ovarian cell functions, namely, in the downregulation of proliferation, in the upregulation of apoptosis, and in the alteration of PGF and PGE release, but not of P4, IGF-I, or OT.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Constantine the Philosopher University, 949 74 Nitra, Slovak Republic; Research Institute for Animal Production in Nitra, 951 41 Lužianky, Slovak Republic.
| | - Andrej Benco
- Constantine the Philosopher University, 949 74 Nitra, Slovak Republic
| | - Milos Mlyncek
- Constantine the Philosopher University, 949 74 Nitra, Slovak Republic
| | - Jan Kotwica
- Institute of Animal Reproduction and Food Research, 10-718 Olsztyn-Kortowo, Poland
| | - Saleh Alwasel
- King Saud University, P. O. Box 2455, 11451 Riyadh, Saudi Arabia
| | | |
Collapse
|
29
|
Tarko A, Štochmal'ová A, Jedličková K, Hrabovszká S, Vachanová A, Harrath AH, Alwasel S, Alrezaki A, Kotwica J, Baláži A, Sirotkin AV. Effects of benzene, quercetin, and their combination on porcine ovarian cell proliferation, apoptosis, and hormone release. Arch Anim Breed 2019; 62:345-351. [PMID: 31807645 PMCID: PMC6852862 DOI: 10.5194/aab-62-345-2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 05/09/2019] [Indexed: 11/11/2022] Open
Abstract
We hypothesized that the environmental contaminant benzene and the plant antioxidant quercetin may affect ovarian cell functions and that quercetin could offer protection against the adverse effects of benzene. This study aimed to examine the action of benzene, quercetin, and their combination on porcine ovarian granulosa cell functions. We elucidated the effects of benzene (20 µ g mL - 1 ), quercetin (at the doses 0, 1, 10, 100 µ g mL - 1 ), and their combination on ovarian granulosa cell functions (proliferation, apoptosis, and hormone release) in vitro using immunocytochemistry and enzyme immunoassay respectively. Benzene alone stimulated proliferation, apoptosis, and oxytocin release and inhibited progesterone and prostaglandin F release. Quercetin alone inhibited proliferation, apoptosis, and stimulated oxytocin release but did not affect progesterone and prostaglandin F release. When used in combination with benzene, quercetin promoted the inhibitory effect of benzene on progesterone release. Overall, these data suggest that benzene and quercetin have direct stimulatory and inhibitory effects, respectively, on basic ovarian functions. Moreover, no protective action of quercetin against the effects of benzene was found. Rather, it was found to enhance the effect of benzene on progesterone release. Therefore, quercetin cannot be considered for preventing or mitigating the effects of benzene on reproductive processes.
Collapse
Affiliation(s)
- Adam Tarko
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku 1, 949 74 Nitra, Slovakia
| | - Aneta Štochmal'ová
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku 1, 949 74 Nitra, Slovakia
| | - Katarína Jedličková
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku 1, 949 74 Nitra, Slovakia
| | - Sandra Hrabovszká
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku 1, 949 74 Nitra, Slovakia
| | - Adriana Vachanová
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku 1, 949 74 Nitra, Slovakia
| | - Abdel Halim Harrath
- Dept. of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Alwasel
- Dept. of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulkarem Alrezaki
- Dept. of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jan Kotwica
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Andrej Baláži
- Institute for Genetics and Reproduction of Farm Animals, Animal Production Research Centre Nitra, Hlohovecka 2, 951 41 Lužianky, Slovakia
| | - Alexander V Sirotkin
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku 1, 949 74 Nitra, Slovakia.,Institute for Genetics and Reproduction of Farm Animals, Animal Production Research Centre Nitra, Hlohovecka 2, 951 41 Lužianky, Slovakia
| |
Collapse
|
30
|
Berisha B, Rodler D, Schams D, Sinowatz F, Pfaffl MW. Prostaglandins in Superovulation Induced Bovine Follicles During the Preovulatory Period and Early Corpus Luteum. Front Endocrinol (Lausanne) 2019; 10:467. [PMID: 31354631 PMCID: PMC6635559 DOI: 10.3389/fendo.2019.00467] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to characterize the regulation pattern of prostaglandin family members namely prostaglandin F2alpha (PTGF), prostaglandin E2 (PTGE), their receptors (PTGFR, PTGER2, PTGER4), cyclooxygenase 2 (COX-2), PTGF synthase (PTGFS), and PTGE synthase (PTGES) in the bovine follicles during preovulatory period and early corpus luteum (CL). Ovaries containing preovulatory follicles or CL were collected by transvaginal ovariectomy (n = 5 cows/group), and the follicles were classified: (I) before GnRH treatment; (II) 4 h after GnRH; (III) 10 h after GnRH; (IV) 20 h after GnRH; (V) 25 h after GnRH, and (VI) 60 h after GnRH (early CL). In these samples, the concentrations of progesterone (P4), estradiol (E2), PTGF and PTGE were investigated in the follicular fluid (FF) by validated EIA. Relative mRNA abundance of genes encoding for prostaglandin receptors (PTGFR, PTGER2, PTGER4), COX-2, PTGFS and PTGES were quantified by RT-qPCR. The localization of COX-2 and PTGES were investigated by established immunohistochemistry in fixed follicular and CL tissue samples. The high E2 concentration in the FF of the follicle group before GnRH treatment (495.8 ng/ml) and during luteinizing hormone (LH) surge (4 h after GnRH, 574.36 ng/ml), is followed by a significant (P<0.05) downregulation afterwards with the lowest level during ovulation (25 h after GnRH, 53.11 ng/ml). In contrast the concentration of P4 was very low before LH surge (50.64 mg/ml) followed by a significant upregulation (P < 0.05) during ovulation (537.18 ng/ml). The mRNA expression of COX-2 increased significantely (P < 0.05) 4 h after GnRH and again 20 h after GnRH, followed by a significant decrease (P < 0.05) after ovulation (early CL). The mRNA of PTGFS in follicles before GnRH was high followed by a continuous and significant downregulation (P < 0.05) afterwards. In contrast, PTGES mRNA abundance increased significantely (P < 0.05) in follicles 20 h after GnRH treatment and remained high afterwards. The mRNA abundance of PTGFR, PTGER2, and PTGER4 in follicles before GnRH was high, followed by a continuous and significant down regulation afterwards and significant increase (P < 0.05) only after ovulation (early CL). The low concentration of PTGF (0.04 ng/ml) and PTGE (0.15 ng/ml) in FF before GnRH, increased continuously in follicle groups before ovulation and displayed a further significant and dramatic increase (P < 0.05) around ovulation (101.01 ng/ml, respectively, 484.21 ng/ml). Immunohistochemically, the granulosa cells showed an intensive signal for COX-2 and PTGES in follicles during preovulation and in granulosa-luteal cells of the early CL. In conclusion, our results indicate that the examined bovine prostaglandin family members are involved in the local mechanisms regulating final follicle maturation and ovulation during the folliculo-luteal transition and CL formation.
Collapse
Affiliation(s)
- Bajram Berisha
- Department of Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, Pristina, Kosovo
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
- *Correspondence: Bajram Berisha
| | - Daniela Rodler
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dieter Schams
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
| | - Fred Sinowatz
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
| | - Michael W. Pfaffl
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
| |
Collapse
|
31
|
Abedel-Majed MA, Romereim SM, Davis JS, Cupp AS. Perturbations in Lineage Specification of Granulosa and Theca Cells May Alter Corpus Luteum Formation and Function. Front Endocrinol (Lausanne) 2019; 10:832. [PMID: 31849844 PMCID: PMC6895843 DOI: 10.3389/fendo.2019.00832] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022] Open
Abstract
Anovulation is a major cause of infertility, and it is the major leading reproductive disorder in mammalian females. Without ovulation, an oocyte is not released from the ovarian follicle to be fertilized and a corpus luteum is not formed. The corpus luteum formed from the luteinized somatic follicular cells following ovulation, vasculature cells, and immune cells is critical for progesterone production and maintenance of pregnancy. Follicular theca cells differentiate into small luteal cells (SLCs) that produce progesterone in response to luteinizing hormone (LH), and granulosa cells luteinize to become large luteal cells (LLCs) that have a high rate of basal production of progesterone. The formation and function of the corpus luteum rely on the appropriate proliferation and differentiation of both granulosa and theca cells. If any aspect of granulosa or theca cell luteinization is perturbed, then the resulting luteal cell populations (SLC, LLC, vascular, and immune cells) may be reduced and compromise progesterone production. Thus, many factors that affect the differentiation/lineage of the somatic cells and their gene expression profiles can alter the ability of a corpus luteum to produce the progesterone critical for pregnancy. Our laboratory has identified genes that are enriched in somatic follicular cells and luteal cells through gene expression microarray. This work was the first to compare the gene expression profiles of the four somatic cell types involved in the follicle-to-luteal transition and to support previous immunofluorescence data indicating theca cells differentiate into SLCs while granulosa cells become LLCs. Using these data and incorporating knowledge about the ways in which luteinization can go awry, we can extrapolate the impact that alterations in the theca and granulosa cell gene expression profiles and lineages could have on the formation and function of the corpus luteum. While interactions with other cell types such as vascular and immune cells are critical for appropriate corpus luteum function, we are restricting this review to focus on granulosa, theca, and luteal cells and how perturbations such as androgen excess and inflammation may affect their function and fertility.
Collapse
Affiliation(s)
| | - Sarah M. Romereim
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - John S. Davis
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Andrea S. Cupp
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
- *Correspondence: Andrea S. Cupp
| |
Collapse
|
32
|
Kim M, Lee SH, Lee S. Expression of H-ras, RLIP76 mRNA and Protein, and Angiogenic Receptors in Corpus Luteum Tissues during Estrous Cycles. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2018. [DOI: 10.15324/kjcls.2018.50.4.457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Minseong Kim
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon, Korea
| | - Sang-Hee Lee
- Institute of Animal Resources, Kangwon National University, Chuncheon, Koera
| | - Seunghyung Lee
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
33
|
Berisha B, Schams D, Rodler D, Sinowatz F, Pfaffl MW. Changes in the expression of prostaglandin family members in bovine corpus luteum during the estrous cycle and pregnancy. Mol Reprod Dev 2018; 85:622-634. [DOI: 10.1002/mrd.22999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Bajram Berisha
- Department of Animal Biotechnology; Faculty of Agriculture and Veterinary, University of Prishtina; Pristina Kosovo
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich; Munich Germany
| | - Dieter Schams
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich; Munich Germany
| | - Daniela Rodler
- Department of Veterinary Sciences; Ludwig Maximilian University of Munich; Munich Germany
| | - Fred Sinowatz
- Department of Veterinary Sciences; Ludwig Maximilian University of Munich; Munich Germany
| | - Michael W. Pfaffl
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich; Munich Germany
| |
Collapse
|
34
|
Detection of Matrix Metalloproteinases Patterns in Bovine Luteum cell during Pregnancy. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.33.2.61] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
35
|
Melatonin stimulates the secretion of progesterone along with the expression of cholesterol side-chain cleavage enzyme (P450scc) and steroidogenic acute regulatory protein (StAR) in corpus luteum of pregnant sows. Theriogenology 2018; 108:297-305. [DOI: 10.1016/j.theriogenology.2017.12.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 01/20/2023]
|
36
|
Polegato BF, Zanetti EDS, Duarte JMB. Monitoring ovarian cycles, pregnancy and post-partum in captive marsh deer ( Blastocerus dichotomus) by measuring fecal steroids. CONSERVATION PHYSIOLOGY 2018; 6:cox073. [PMID: 29383254 PMCID: PMC5786210 DOI: 10.1093/conphys/cox073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/09/2017] [Accepted: 11/29/2017] [Indexed: 05/30/2023]
Abstract
The marsh deer is an endangered species from the marshlands of central South America. This study aimed to characterize certain aspects of the reproductive physiology of marsh deer hinds, including the duration and fecal progestins profile of the estrous cycle, pregnancy and post-partum periods, and evaluate the effect of cloprostenol administration on this species. The experimental group consisted of six females and one fertile male marsh deer. During monitoring of the estrous cycle, the fresh fecal samples were collected daily and, during pregnancy, they were collected twice weekly. The hormonal profile obtained from daily fecal samples indicated that the mean duration of the estrous cycle was 21.3 ± 1.3 days (6.4 days inter-luteal phase and 14.8 days luteal phase; n = 16 estrous cycles). The mean concentration of fecal progestins in the inter-luteal phase was 834 ± 311 ng g-1, in the luteal phase was 3979 ± 1611 ng g-1, value between them was 1457 ng g-1. No significant difference in fecal estrogen concentrations was determined during the estrous cycle. The corpora luteum was not responsive to cloprostenol until Day 6 of the estrous cycle, the period previously described as the inter-luteal phase. Half the females became pregnant following treatment with cloprostenol and two others were fertilized in their natural estrous cycle. Four females delivered fawns, and the mean duration of pregnancy was 253 ± 4 days. Fecal progestin concentrations were similar to those of the estrous cycle during the first 11 weeks of pregnancy and increased significantly ( > 15250 ng g-1) thereafter, providing a presumptive diagnosis guideline. Within 60 days of post-partum analyses, 75% of the deer exhibited behavioural estrus and/or ovarian activity. This study generated a broader understanding of the marsh deer species concerning the production of consistent data related to its reproduction. This knowledge can be used to assist the reproductive management of this species and, consequently, to promote its conservation.
Collapse
Affiliation(s)
- Bruna Furlan Polegato
- Deer Research and Conservation Center (NUPECCE—Núcleo de Pesquisa e Conservação de Cervídeos), Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de Acesso Professor Paulo Donato Castellane s/n, Jaboticabal, SP 14884-900, Brazil
| | - Eveline dos Santos Zanetti
- Deer Research and Conservation Center (NUPECCE—Núcleo de Pesquisa e Conservação de Cervídeos), Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de Acesso Professor Paulo Donato Castellane s/n, Jaboticabal, SP 14884-900, Brazil
| | - José Maurício Barbanti Duarte
- Deer Research and Conservation Center (NUPECCE—Núcleo de Pesquisa e Conservação de Cervídeos), Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de Acesso Professor Paulo Donato Castellane s/n, Jaboticabal, SP 14884-900, Brazil
| |
Collapse
|
37
|
Vrisman DP, Bastos NM, Rossi GF, Rodrigues NN, Borges LPB, Taira AR, de Paz CCP, Nogueira GDP, Teixeira PPM, Monteiro FM, Oliveira MEF. Corpus luteum dynamics after ovulation induction with or without previous exposure to progesterone in prepubertal Nellore heifers. Theriogenology 2018; 106:60-68. [PMID: 29040877 DOI: 10.1016/j.theriogenology.2017.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/02/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
The objectives of this study were 1) to monitor corpus luteum (CL) dynamics after two different protocols of ovulation induction in prepubertal Nellore heifers, and 2) to determine differences in luteal function. Fifty-seven heifers (weight 289.61 ± 32.28 kg, BCS 5.66 ± 0.65, age 17.47 ± 0.81 months) were divided into two groups: GP4+GnRH received a progesterone (P4) device of 3rd use for 10 days, followed by the administration of 0.02 mg buserelin acetate (GnRH) 48 h after removal of the device, and GGnRH received only GnRH. The CLs formed were monitored by ultrasonography every 2 days until their functional regression (decrease in the color Doppler signal and serum P4 concentration < 1 ng/mL), determining their diameter and area, numerical pixel value (NPV), pixel heterogeneity, and vascularization percentage. The peak systolic velocity, end diastolic velocity, resistivity index and pulsatility index (PI) of the ovarian artery and serum P4 concentration were also measured. A lifespan of the CL of more than 16 days was classified as normal-function and of less than 16 days as premature regression. The variables were compared between treatments, CL categories (normal-functional, prematurely regressed or non-functional), days of evaluation, and their interactions using the MIXED procedure of the SAS program (p ≤ 0.05). Three animals of each group (6/57 = 11%) did not respond to treatment, corresponding to an ovulation rate of 89%. There was a higher percentage of normal-function CLs in GP4+GnRH (81%) and a higher percentage of non-functional CLs in GGnRH (52%; P4 concentration < 1 ng/mL in all assessments). Normal-function CLs exhibited a greater area, vascularization percentage and P4 concentration than prematurely regressed and non-functional CLs. Lower diameter, area, NPV and P4 concentration were observed for non-functional CLs, but there was no difference in vascularization percentage compared to prematurely regressed CLs. Progesterone concentration was efficient in diagnosing CL function and was positively correlated with CL area (r = 0.62; p < 0.001) and vascularization percentage (r = 0.38; p < 0.001). Diameter and PI were important for the early diagnosis of non-functional and prematurely regressed CLs, respectively. In conclusion, luteal function differed for the first CL that develops after ovulation induction in prepubertal heifers. Ultrasonographic parameters (diameter, area, NPV, vascularization percentage, and PI) can be used to predict CL function.
Collapse
Affiliation(s)
- Dayane Priscila Vrisman
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Universidade Estadual Paulista "Júlio de Mesquita Filho" (FCAV/UNESP), Jaboticabal, São Paulo, 14884-900, Brazil.
| | - Natália Marins Bastos
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Universidade Estadual Paulista "Júlio de Mesquita Filho" (FCAV/UNESP), Jaboticabal, São Paulo, 14884-900, Brazil
| | - Guilherme Fazan Rossi
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Universidade Estadual Paulista "Júlio de Mesquita Filho" (FCAV/UNESP), Jaboticabal, São Paulo, 14884-900, Brazil
| | - Naiara Nantes Rodrigues
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Universidade Estadual Paulista "Júlio de Mesquita Filho" (FCAV/UNESP), Jaboticabal, São Paulo, 14884-900, Brazil
| | | | - Augusto Ryonosuke Taira
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Universidade Estadual Paulista "Júlio de Mesquita Filho" (FCAV/UNESP), Jaboticabal, São Paulo, 14884-900, Brazil
| | | | - Guilherme de Paula Nogueira
- Laboratório de Endocrinologia Animal, Faculdade de Medicina Veterinária de Araçatuba (FMVA/UNESP), Araçatuba, São Paulo, 16050-680, Brazil
| | | | - Fábio Morato Monteiro
- Instituto de Zootecnia, Centro APTA Bovinos de Corte, Sertãozinho, São Paulo, 14160-970, Brazil
| | - Maria Emília Franco Oliveira
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Universidade Estadual Paulista "Júlio de Mesquita Filho" (FCAV/UNESP), Jaboticabal, São Paulo, 14884-900, Brazil.
| |
Collapse
|
38
|
Garcia-Muñoz A, Valldecabres-Torres X, Newcombe JR, Cuervo-Arango J, Garcia-Rosello E. Effect of exogenous progesterone administration on luteal sensitivity to PGF during the early development of the corpus luteum in mares and cows. Reprod Domest Anim 2017; 52:1074-1080. [DOI: 10.1111/rda.13029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/14/2017] [Indexed: 11/28/2022]
Affiliation(s)
- A Garcia-Muñoz
- Departamento de Producción y Sanidad Animal; Facultad de Veterinaria (Grupo de Investigación Fisiopatología de la Reproducción); Universidad CEU Cardenal Herrera; Valencia Spain
| | | | - JR Newcombe
- Warren House Farm; Equine Fertility Clinic; Brownhills West Midlands UK
| | - J Cuervo-Arango
- Department of Equine Sciences; Faculty of Veterinary Medicine; Utrecht University; Utrecht The Netherlands
| | - E Garcia-Rosello
- Departamento de Medicina y Cirugía Animal; Facultad de Veterinaria (Grupo de Investigación Fisiopatología de la Reproducción); Universidad CEU Cardenal Herrera; Valencia Spain
| |
Collapse
|
39
|
Baufeld A, Koczan D, Vanselow J. Induction of altered gene expression profiles in cultured bovine granulosa cells at high cell density. Reprod Biol Endocrinol 2017; 15:3. [PMID: 28056989 PMCID: PMC5217602 DOI: 10.1186/s12958-016-0221-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/13/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND In previous studies it has been shown that bovine granulosa cells (GC) cultured at a high plating density dramatically change their physiological and molecular characteristics, thus resembling an early stage of luteinization. During the present study, these specific effects on the GC transcriptome were comprehensively analysed to clarify the underlying mechanisms. METHODS GC were cultured in serum free medium with FSH and IGF-1 stimulation at different initial plating density. The estradiol and progesterone production was determined by radioimmunoassays and the gene expression profiles were analysed by mRNA microarray analysis after 9 days. The data were statistically analysed and the abundance of selected, differentially expressed transcripts was re-evaluated by qPCR. Bioinformatic pathway analysis of density affected transcripts was done using Ingenuity Pathway Analysis. RESULTS The data showed that at high plating density the expression of 1510 annotated genes, represented by 1575 transcript clusters, showed highly altered expression levels. Nearly two-thirds were up- and one third down-regulated. Within the top up-regulated genes VNN2, RGS2 and PTX3 could be identified, as well as HBA or LOXL2. Down-regulated genes included important key genes of folliculogenesis like CYP19A1 and FSHR. Ingenuity pathway analysis identified "AMPK signaling" as well as "cAMP-mediated signaling" as major pathways affected by the alteration of the expression profile. Main putative upstream regulators were TGFB1 and VEGF, thus indicating a connection with cell differentiation and angiogenesis. A detailed cluster analysis revealed one single cluster that was highly associated with the upstream regulator beta-estradiol. Within this cluster key genes of steroid biosynthesis were not included, but instead, other genes importantly involved in follicular development, like OXT and VEGFA as well as the three most down-regulated genes TXNIP, PAG11 and ARRDC4 were identified. CONCLUSIONS From these data we hypothesize that high density conditions induce a stage of differentiation in cultured GC that is similar to early post-LH conditions in vivo. Furthermore we hypothesize that specific cell-cell-interactions led to this differentiation including transformations necessary to promote angiogenesis.
Collapse
Affiliation(s)
- Anja Baufeld
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Dirk Koczan
- Institute for Immunology, University of Rostock, 18055 Rostock, Germany
| | - Jens Vanselow
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
40
|
Rajesh G, Paul A, Mishra SR, Bharati J, Thakur N, Mondal T, Soren S, Harikumar S, Narayanan K, Chouhan VS, Bag S, Das BC, Singh G, Maurya VP, Sharma GT, Sarkar M. Expression and functional role of Bone Morphogenetic Proteins (BMPs) in cyclical corpus luteum in buffalo (Bubalus bubalis). Gen Comp Endocrinol 2017; 240:198-213. [PMID: 27815159 DOI: 10.1016/j.ygcen.2016.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 01/21/2023]
Abstract
The role of growth factors in the modulation of ovarian function is an interesting area of research in reproductive biology. Recently, we have shown the expression and role of IGF, EGF, VEGF and FGF in the follicle and CL. Here, we report the presence of Bone Morphogenetic Proteins (BMPs) and their functional receptors in the corpus luteum (CL) of buffalo. The bubaline CL was classified into four stages according to the morphology and progesterone (P4) concentration. The qPCR, immunoblot and immunohistochemistry studies revealed that BMP2 and BMP Receptors (BMPR1A, BMPR1B and BMPR2) were significantly upregulated during the mid stage whereas BMP4 and BMP7 were upregulated during the early stage of CL (P<0.05). Studies on primary luteal cell culture (LCC) using mid CL showed a significant time and concentration dependent effect of BMP4 and BMP7 (P<0.05). At 100ngml-1, the BMPs maximally stimulated the transcripts of StAR, CYP11A1 and 3βHSD that paralleled with P4 accretion in the media (P<0.05). Further, the BMP4 as well as BMP7 upregulated the transcripts of PCNA and downregulated CASPASE3 in the LCC at the same concentration (P<0.05). Though the combined effect of BMP4 and 7 was significantly higher (P<0.05) than that of individual one, it was not additive. In conclusion, the expression of BMPs and their receptors were dependent on the stages of CL in the buffalo. Treatment of LCC with BMPs in vitro confirmed the presence of functional receptors that stimulated the P4 production and luteal cell survival. Moreover, the results support the concept that the upregulation of P4 and its biosynthetic pathway enzymes such as CYP11A1, StAR and 3βHSD in the CL is likely due to the autocrine and /or paracrine effects of BMP4 and BMP7 under physiological milieu.
Collapse
Affiliation(s)
- G Rajesh
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - Avishek Paul
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - S R Mishra
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - Jaya Bharati
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - Nipuna Thakur
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - Tanmay Mondal
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - Sanjhali Soren
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - S Harikumar
- Division of Pharmacology & Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - K Narayanan
- Animal Reproduction Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - V S Chouhan
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - Sadhan Bag
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - B C Das
- Eastern Regional Station, Indian Veterinary Research Institute, Kolkatta 700037, India
| | - G Singh
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - V P Maurya
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - G Taru Sharma
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - Mihir Sarkar
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India.
| |
Collapse
|
41
|
Berisha B, Schams D, Rodler D, Sinowatz F, Pfaffl MW. Expression pattern of HIF1alpha and vasohibins during follicle maturation and corpus luteum function in the bovine ovary. Reprod Domest Anim 2016; 52:130-139. [PMID: 27862406 DOI: 10.1111/rda.12867] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/10/2016] [Indexed: 10/20/2022]
Abstract
The aim of this study was to characterize expression patterns of hypoxia-inducible factor-1alpha (HIF1A) and vasohibin family members (VASH1 and VASH2) during different stages of ovarian function in cow. Experiment 1: Antral follicle classification occurred by follicle size and estradiol-17beta (E2) concentration in the follicular fluid into 5 groups (<0.5, 0.5-5, 5-40, 40-180 and >180 E2 ng/ml). Experiment 2: Corpora lutea (CL) were assigned to the following stages: days 1-2, 3-4, 5-7, 8-12, 13-16 and >18 (after regression) of oestrous cycle and of pregnancy (months 1-2, 3-4, 6-7, >8). Experiment 3: Cows on days 8-12 were injected with a prostaglandin F2alpha (PGF) analogue and CL were collected before and 0.5, 2, 4, 12, 24, 48 and 64 hr after PGF injection. Expression of mRNA was measured by qPCR, steroid hormone concentration by EIA and localization by immunohistochemistry. HIF1A mRNA expression in our study increases significantly in follicles during final maturation. The highest HIF1A mRNA expression was detected during the early luteal phase, followed by a significant decrease afterwards. In contrast, the mRNA of vasohibins in small follicle was high, followed by a continuous and significant downregulation in preovulatory follicles. The obtained results show a remarkable inverse expression and localization pattern of HIF1A and vasohibins during different stages of ovarian function in cow. These results lead to the assumption that the examined factors are involved in the local mechanisms regulating angiogenesis and that the interactions between proangiogenic (HIF1A) and antiangiogenic (vasohibins) factors impact all stages of bovine ovary function.
Collapse
Affiliation(s)
- B Berisha
- Faculty of Agriculture and Veterinary, University of Prishtina, Prishtinë, Kosovo.,Institute of Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Freising, Germany
| | - D Schams
- Institute of Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Freising, Germany
| | - D Rodler
- Department of Veterinary Sciences, Institute of Anatomy, Histology and Embryology, Ludwig Maximilian University of Munich, Munich, Germany
| | - F Sinowatz
- Department of Veterinary Sciences, Institute of Anatomy, Histology and Embryology, Ludwig Maximilian University of Munich, Munich, Germany
| | - M W Pfaffl
- Institute of Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
42
|
Berisha B, Schams D, Rodler D, Sinowatz F, Pfaffl MW. Expression and localization of members of the thrombospondin family during final follicle maturation and corpus luteum formation and function in the bovine ovary. J Reprod Dev 2016; 62:501-510. [PMID: 27396384 PMCID: PMC5081738 DOI: 10.1262/jrd.2016-056] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/04/2016] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to characterize the expression patterns and localization of the thrombospondin family members (THBS1, THBS2) and their receptors (CD36 and CD47) in bovine ovaries. First, the antral follicles were classified into 5 groups based on the follicle size and estradiol-17beta (E2) concentration in the follicular fluid (< 0.5, 0.5-5, 5-40, 40-180 and >180 E2 ng/ml). Second, the corpus luteum (CL) was assigned to the following stages: days 1-2, 3-4, 5-7, 8-12, 13-16 and >18 of the estrous cycle and of pregnancy (month 1-2, 3-4, 6-7 and > 8). Third, the corpora lutea were collected by transvaginal ovariectomy before and 0.5, 2, 4, 12, 24, 48 and 64 h after inducing luteolysis by injecting a prostaglandin F2alpha analog. The mRNA expression of examined factors was measured by RT-qPCR, steroid hormone concentration by EIA, and localization by immunohistochemistry. The mRNA expression of THBS1, THBS2, CD36, and CD47 in the granulosa cells and theca interna was high in the small follicles and reduced in the preovulatory follicles. The mRNA expression of THBS1, THBS2, and CD47 in the CL during the estrous cycle was high, but decreased significantly during pregnancy. After induced luteolysis, thrombospondins increased significantly to reach the maximum level at 12 h for THBS1, 24 h for THBS2, and 48 h for CD36. The temporal expression and localization pattern of the thrombospondins and their specific receptors in the antral follicles and corpora lutea during the different physiological phases of the estrous cycle and induced luteolysis appear to be compatible with their inhibitory role in the control of ovarian angiogenesis.
Collapse
Affiliation(s)
- Bajram Berisha
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | | | | | | | | |
Collapse
|
43
|
Berisha B, Schams D, Rodler D, Pfaffl MW. Angiogenesis in The Ovary - The Most Important Regulatory Event for Follicle and Corpus Luteum Development and Function in Cow - An Overview. Anat Histol Embryol 2015; 45:124-30. [DOI: 10.1111/ahe.12180] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- B. Berisha
- Physiology Weihenstephan; Technische Universität München; Freising Germany
- Faculty of Agriculture and Veterinary; University of Prishtina; Prishtina Kosovo
| | - D. Schams
- Physiology Weihenstephan; Technische Universität München; Freising Germany
| | - D. Rodler
- Department of Veterinary Sciences; Ludwig-Maximilians-University Munich; Munich, Germany
| | - M. W. Pfaffl
- Physiology Weihenstephan; Technische Universität München; Freising Germany
| |
Collapse
|
44
|
Uniyal S, Panda R, Chouhan V, Yadav V, Hyder I, Dangi S, Gupta M, Khan F, Sharma G, Bag S, Sarkar M. Expression and localization of insulin-like growth factor system in corpus luteum during different stages of estrous cycle in water buffaloes (Bubalus bubalis) and the effect of insulin-like growth factor I on production of vascular endothelial growth factor and progesterone in luteal cells cultured in vitro. Theriogenology 2015; 83:58-77. [DOI: 10.1016/j.theriogenology.2014.07.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/19/2014] [Accepted: 07/23/2014] [Indexed: 11/16/2022]
|
45
|
Hull KL, Harvey S. Growth hormone and reproduction: a review of endocrine and autocrine/paracrine interactions. Int J Endocrinol 2014; 2014:234014. [PMID: 25580121 PMCID: PMC4279787 DOI: 10.1155/2014/234014] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 11/26/2014] [Indexed: 01/01/2023] Open
Abstract
The somatotropic axis, consisting of growth hormone (GH), hepatic insulin-like growth factor I (IGF-I), and assorted releasing factors, regulates growth and body composition. Axiomatically, since optimal body composition enhances reproductive function, general somatic actions of GH modulate reproductive function. A growing body of evidence supports the hypothesis that GH also modulates reproduction directly, exerting both gonadotropin-dependent and gonadotropin-independent actions in both males and females. Moreover, recent studies indicate GH produced within reproductive tissues differs from pituitary GH in terms of secretion and action. Accordingly, GH is increasingly used as a fertility adjunct in males and females, both humans and nonhumans. This review reconsiders reproductive actions of GH in vertebrates in respect to these new conceptual developments.
Collapse
Affiliation(s)
- Kerry L Hull
- Department of Biology, Bishop's University, Sherbrooke, QC, Canada J1M 1Z7 ; Centre de Recherche Clinique Etienne-Le Bel, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton, AB, Canada T6G 2R3
| |
Collapse
|
46
|
Choi J, Jo M, Lee E, Choi D. ERK1/2 is involved in luteal cell autophagy regulation during corpus luteum regression via an mTOR-independent pathway. Mol Hum Reprod 2014; 20:972-80. [DOI: 10.1093/molehr/gau061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
47
|
Shah KB, Tripathy S, Suganthi H, Rudraiah M. Profiling of luteal transcriptome during prostaglandin F2-alpha treatment in buffalo cows: analysis of signaling pathways associated with luteolysis. PLoS One 2014; 9:e104127. [PMID: 25102061 PMCID: PMC4125180 DOI: 10.1371/journal.pone.0104127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 07/09/2014] [Indexed: 11/18/2022] Open
Abstract
In several species including the buffalo cow, prostaglandin (PG) F2α is the key molecule responsible for regression of corpus luteum (CL). Experiments were carried out to characterize gene expression changes in the CL tissue at various time points after administration of luteolytic dose of PGF2α in buffalo cows. Circulating progesterone levels decreased within 1 h of PGF2α treatment and evidence of apoptosis was demonstrable at 18 h post treatment. Microarray analysis indicated expression changes in several of immediate early genes and transcription factors within 3 h of treatment. Also, changes in expression of genes associated with cell to cell signaling, cytokine signaling, steroidogenesis, PG synthesis and apoptosis were observed. Analysis of various components of LH/CGR signaling in CL tissues indicated decreased LH/CGR protein expression, pCREB levels and PKA activity post PGF2α treatment. The novel finding of this study is the down regulation of CYP19A1 gene expression accompanied by decrease in expression of E2 receptors and circulating and intra luteal E2 post PGF2α treatment. Mining of microarray data revealed several differentially expressed E2 responsive genes. Since CYP19A1 gene expression is low in the bovine CL, mining of microarray data of PGF2α-treated macaques, the species with high luteal CYP19A1 expression, showed good correlation between differentially expressed E2 responsive genes between both the species. Taken together, the results of this study suggest that PGF2α interferes with luteotrophic signaling, impairs intra-luteal E2 levels and regulates various signaling pathways before the effects on structural luteolysis are manifest.
Collapse
Affiliation(s)
- Kunal B Shah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Sudeshna Tripathy
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Hepziba Suganthi
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Medhamurthy Rudraiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
48
|
Gupta M, Dangi SS, Chouhan VS, Hyder I, Babitha V, Yadav VP, Khan FA, Sonwane A, Singh G, Das GK, Mitra A, Bag S, Sarkar M. Expression and localization of ghrelin and its functional receptor in corpus luteum during different stages of estrous cycle and the modulatory role of ghrelin on progesterone production in cultured luteal cells in buffalo. Domest Anim Endocrinol 2014; 48:21-32. [PMID: 24906925 DOI: 10.1016/j.domaniend.2014.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 01/06/2023]
Abstract
Evidence obtained during recent years provided has insight into the regulation of corpus luteum (CL) development, function, and regression by locally produced ghrelin. The present study was carried out to evaluate the expression and localization of ghrelin and its receptor (GHS-R1a) in bubaline CL during different stages of the estrous cycle and investigate the role of ghrelin on progesterone (P4) production along with messenger RNA (mRNA) expression of P4 synthesis intermediates. The mRNA and protein expression of ghrelin and GHS-R1a was significantly greater in mid- and late luteal phases. Both factors were localized in luteal cells, exclusively in the cytoplasm. Immunoreactivity of ghrelin and GHS-R1a was greater during mid- and late luteal phases. Luteal cells were cultured in vitro and treated with ghrelin each at 1, 10, and 100 ng/mL concentrations for 48 h after obtaining 75% to 80% confluence. At a dose of 1 ng/mL, there was no significant difference in P4 secretion between control and treatment group. At 10 and 100 ng/mL, there was a decrease (P < 0.05) in P4 concentration, cytochrome P45011A1 (CYP11A1), and 3-beta-hydroxysteroid dehydrogenase mRNA expression and localization. There was no difference in mRNA expression of steroidogenic acute regulatory protein between control and treatment group. In summary, the present study provided evidence that ghrelin and its receptor are expressed in bubaline CL and are localized exclusively in the cell cytoplasm and ghrelin has an inhibitory effect on P4 production in buffalo.
Collapse
Affiliation(s)
- M Gupta
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - S S Dangi
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - V S Chouhan
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - I Hyder
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - V Babitha
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - V P Yadav
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - F A Khan
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611; D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611
| | - A Sonwane
- Animal Genetics Division, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - G Singh
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - G K Das
- Division of Animal Reproduction, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - A Mitra
- Animal Genetics Division, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - S Bag
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - M Sarkar
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar 243122, India.
| |
Collapse
|
49
|
Expression and localization of locally produced growth factors regulating lymphangiogenesis during different stages of the estrous cycle in corpus luteum of buffalo (Bubalus bubalis). Theriogenology 2014; 81:428-36. [DOI: 10.1016/j.theriogenology.2013.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/21/2013] [Accepted: 10/21/2013] [Indexed: 11/23/2022]
|
50
|
Christensen A, Haresign W, Khalid M. Progesterone exposure of seasonally anoestrous ewes alters the expression of angiogenic growth factors in preovulatory follicles. Theriogenology 2014; 81:358-67. [DOI: 10.1016/j.theriogenology.2013.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 11/28/2022]
|