1
|
Du H, You L, Wu A, Wang F, Yu J, Chen C. Resolvin D1 Inhibits IL-6-Induced Epithelial-Mesenchymal Transition of Colorectal Cancer Cells by Targeting IL-6/STAT3 Signaling. Cell Biochem Biophys 2024; 82:1453-1461. [PMID: 38740668 DOI: 10.1007/s12013-024-01299-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
Colorectal cancer (CRC) has emerged as a prevalent malignancy worldwide, exhibiting the high morbidity and mortality rates. Resolvin D1 (RvD1) can exert anti-inflammation and anti-cancer effects on various diseases. This study is aimed to explore the role of RvD1 in CRC cells. HCT15 and SW480 cells were stimulated with IL-6 in our study. A series of assays such as CCK-8, colony formation, wound healing, Transwell, Western blotting, and immunofluorescence staining were designed and conducted to figure out the role of RvD1 in CRC cells. RvD1 suppressed IL-6-induced SW480 and HCT15 cell proliferation. In addition, RvD1 inhibited IL-6-induced SW480 and HCT15 cell migration, invasion, and EMT process. In mechanism, RvD1 inhibited the activation of IL-6/STAT3 signaling in SW480 and HCT15 cells. Angoline strengthened the inhibitive effect of RvD1 on cell malignancy. RvD1 inhibited cell growth, migration, invasion and EMT process by inactivating IL-6/STAT3 signaling in CRC.
Collapse
Affiliation(s)
- Heng Du
- Department of Gestrointestinal Surgery, Huanggang Central Hospital Affiliated to Yangtze University, Changsha, 438000, China
| | - Lijuan You
- Department of Anesthesiology, Huanggang Central Hospital Affiliated to Yangtze University, Changsha, 438000, China
| | - Anding Wu
- Department of Gestrointestinal Surgery, Huanggang Central Hospital Affiliated to Yangtze University, Changsha, 438000, China
| | - Fei Wang
- Department of Gestrointestinal Surgery, Huanggang Central Hospital Affiliated to Yangtze University, Changsha, 438000, China
| | - Jie Yu
- Department of Gestrointestinal Surgery, Huanggang Central Hospital Affiliated to Yangtze University, Changsha, 438000, China
| | - Chaowu Chen
- Department of Gestrointestinal Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 438000, China.
| |
Collapse
|
2
|
Yun SH, Lee DY, Lee J, Mariano E, Choi Y, Park J, Han D, Kim JS, Hur SJ. Current Research, Industrialization Status, and Future Perspective of Cultured Meat. Food Sci Anim Resour 2024; 44:326-355. [PMID: 38764517 PMCID: PMC11097034 DOI: 10.5851/kosfa.2024.e13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 05/21/2024] Open
Abstract
Expectations for the industrialization of cultured meat are growing due to the increasing support from various sectors, such as the food industry, animal welfare organizations, and consumers, particularly vegetarians, but the progress of industrialization is slower than initially reported. This review analyzes the main issues concerning the industrialization of cultured meat, examines research and media reports on the development of cultured meat to date, and presents the current technology, industrialization level, and prospects for cultured meat. Currently, over 30 countries have companies industrializing cultured meat, and around 200 companies that are developing or industrializing cultured meat have been surveyed globally. By country, the United States has over 50 companies, accounting for more than 20% of the total. Acquiring animal cells, developing cell lines, improving cell proliferation, improving the efficiency of cell differentiation and muscle production, or developing cell culture media, including serum-free media, are the major research themes related to the development of cultured meat. In contrast, the development of devices, such as bioreactors, which are crucial in enabling large-scale production, is relatively understudied, and few of the many companies invested in the development of cultured meat have presented products for sale other than prototypes. In addition, because most information on key technologies is not publicly available, it is not possible to determine the level of technology in the companies, and it is surmised that the technology of cultured meat-related startups is not high. Therefore, further research and development are needed to promote the full-scale industrialization of cultured meat.
Collapse
Affiliation(s)
- Seung Hyeon Yun
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Da Young Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Juhyun Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ermie Mariano
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Yeongwoo Choi
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jinmo Park
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dahee Han
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jin Soo Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
3
|
Kim S, Yoneda E, Tomita K, Kayano M, Watanabe H, Sasaki M, Shimizu T, Muranishi Y. LPS Administration during Fertilization Affects Epigenetic Inheritance during Embryonic Development. Animals (Basel) 2023; 13:ani13071135. [PMID: 37048391 PMCID: PMC10093599 DOI: 10.3390/ani13071135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Intrauterine inflammation can cause infertility by disrupting reproductive function. The pathogenesis underlying this process may primarily involve endotoxins from lipopolysaccharides (LPS), which are produced by Gram-negative bacteria. However, the long-term effects of endotoxins in mammalian pregnancy following LPS exposure during fertilization have not been clarified. In this study, we performed experiments to analyze the influence of LPS on early embryonic development and fetal development in mice. Mice uteruses were examined for the expression of genes related to the inflammatory response. The expression of Il-1β and Il-6 increased following the administration of 200 and 1000 µg/kg LPS. Exposure to LPS using in vitro fertilization (IVF) significantly decreased the embryonic developmental rate. A concentration of 100 µg/kg LPS significantly increased the placental weight and fetal crown -rump length (CRL), whereas a concentration of 200 µg/kg LPS significantly decreased the placenta weight and fetal weight in vivo. These findings indicate that maternal LPS during fertilization affects fetal development until the late stage of pregnancy. Thus, maternal endotoxins may affect epigenetic inheritance during embryonic development from the early to late stages of pregnancy.
Collapse
Affiliation(s)
- Sangwoo Kim
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Erina Yoneda
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Kisaki Tomita
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Mitsunori Kayano
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Hiroyuki Watanabe
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Motoki Sasaki
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Takashi Shimizu
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Yuki Muranishi
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| |
Collapse
|
4
|
Kolkmann AM, Van Essen A, Post MJ, Moutsatsou P. Development of a Chemically Defined Medium for in vitro Expansion of Primary Bovine Satellite Cells. Front Bioeng Biotechnol 2022; 10:895289. [PMID: 35992337 PMCID: PMC9385969 DOI: 10.3389/fbioe.2022.895289] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/18/2022] [Indexed: 11/19/2022] Open
Abstract
The use of fetal bovine serum (FBS) in animal cell culture media is widely spread since it provides a broad spectrum of molecules that are known to support cell attachment and growth. However, the harvest and collection procedures of FBS raise ethical concerns and serum is an ill-defined and expensive component. This is especially problematic when it comes to regulatory approval for food applications like cultured meat. The aim of this study is to develop a chemically defined, cost efficient serum-free and animal-free medium that supports the attachment and expansion of bovine myoblasts while maintaining their differentiation capacity. Bovine satellite cells were harvested and isolated from a fresh sample of skeletal muscle tissue and cultured in planar systems. The efficacy of the tested formulations was assessed with metabolic assays and cell counting techniques. Optical microscopy was used to observe cellular morphology and statistical analysis was applied. Based on a comprehensive literature analysis, a defined serum-free medium (SFM) composition was developed consisting of DMEM/F12 as basal medium, supplemented with L-ascorbic acid 2-phosphate, fibronectin, hydrocortisone, GlutaMAX™, albumin, ITS-X, hIL-6, α-linolenic acid, and growth factors such as FGF-2, VEGF, IGF-1, HGF, and PDGF-BB. To our knowledge, this is the first defined serum-free and animal free medium formulation specific for bovine myoblasts to date. We conclude that the SFM formulation supported exponential cell growth up to 97% of the serum-containing golden standard growth medium. All reagents used in this study are chemically defined.
Collapse
Affiliation(s)
- Anna M. Kolkmann
- Mosa Meat BV, Maastricht, Netherlands
- Department of Physiology, Maastricht University, Maastricht, Netherlands
| | | | - Mark J. Post
- Mosa Meat BV, Maastricht, Netherlands
- Department of Physiology, Maastricht University, Maastricht, Netherlands
| | - Panagiota Moutsatsou
- Mosa Meat BV, Maastricht, Netherlands
- Department of Physiology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
5
|
Gonzalez ML, Busse NI, Waits CM, Johnson SE. Satellite cells and their regulation in livestock. J Anim Sci 2020; 98:5807489. [PMID: 32175577 DOI: 10.1093/jas/skaa081] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Satellite cells are the myogenic stem and progenitor population found in skeletal muscle. These cells typically reside in a quiescent state until called upon to support repair, regeneration, or muscle growth. The activities of satellite cells are orchestrated by systemic hormones, autocrine and paracrine growth factors, and the composition of the basal lamina of the muscle fiber. Several key intracellular signaling events are initiated in response to changes in the local environment causing exit from quiescence, proliferation, and differentiation. Signals emanating from Notch, wingless-type mouse mammary tumor virus integration site family members, and transforming growth factor-β proteins mediate the reversible exit from growth 0 phase while those initiated by members of the fibroblast growth factor and insulin-like growth factor families direct proliferation and differentiation. Many of these pathways impinge upon the myogenic regulatory factors (MRF), myogenic factor 5, myogenic differentiation factor D, myogenin and MRF4, and the lineage determinate, Paired box 7, to alter transcription and subsequent satellite cell decisions. In the recent past, insight into mouse transgenic models has led to a firm understanding of regulatory events that control satellite cell metabolism and myogenesis. Many of these niche-regulated functions offer subtle differences from their counterparts in livestock pointing to the existence of species-specific controls. The purpose of this review is to examine the mechanisms that mediate large animal satellite cell activity and their relationship to those present in rodents.
Collapse
Affiliation(s)
- Madison L Gonzalez
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Nicolas I Busse
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | | | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
6
|
Lacham-Kaplan O, Camera DM, Hawley JA. Divergent Regulation of Myotube Formation and Gene Expression by E2 and EPA during In-Vitro Differentiation of C2C12 Myoblasts. Int J Mol Sci 2020; 21:E745. [PMID: 31979341 PMCID: PMC7037418 DOI: 10.3390/ijms21030745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
Estrogen (E2) and polyunsaturated fatty acids (n-3PUFA) supplements independently support general wellbeing and enhance muscle regeneration in-vivo and myotube formation in-vitro. However, the combined effect of E2 and n-3PUFA on myoblast differentiation is not known. The purpose of the study was to identify whether E2 and n-3PUFA possess a synergistic effect on in-vitro myogenesis. Mouse C2C12 myoblasts, a reliable model to reiterate myogenic events in-vitro, were treated with 10nM E2 and 50μM eicosapentaenoic acid (EPA) independently or combined, for 0-24 h or 0-120 h during differentiation. Immunofluorescence, targeted qPCR and next generation sequencing (NGS) were used to characterize morphological changes and differential expression of key genes involved in the regulation of myogenesis and muscle function pathways. E2 increased estrogen receptor α (Erα) and the expression of the mitogen-activated protein kinase 11 (Mapk11) within 1 h of treatment and improved myoblast differentiation and myotube formation. A significant reduction (p < 0.001) in myotube formation and in the expression of myogenic regulatory factors Mrfs (MyoD, Myog and Myh1) and the myoblast fusion related gene, Tmem8c, was observed in the presence of EPA and the combined E2/EPA treatment. Additionally, EPA treatment at 48 h of differentiation inhibited the majority of genes associated with the myogenic and striated muscle contraction pathways. In conclusion, EPA and E2 had no synergistic effect on myotube formation in-vitro. Independently, EPA inhibited myoblast differentiation and overrides the stimulatory effect of E2 when used in combination with E2.
Collapse
Affiliation(s)
- Orly Lacham-Kaplan
- Exercise and Nutrition Research Program, Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne 3000, Australia;
| | - Donny M. Camera
- Department of Health and Medical Sciences, Swinburne University of Technology, Melbourne 3122, Australia;
| | - John A. Hawley
- Exercise and Nutrition Research Program, Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne 3000, Australia;
| |
Collapse
|
7
|
Interleukin-6 Induces Myogenic Differentiation via JAK2-STAT3 Signaling in Mouse C2C12 Myoblast Cell Line and Primary Human Myoblasts. Int J Mol Sci 2019; 20:ijms20215273. [PMID: 31652937 PMCID: PMC6862063 DOI: 10.3390/ijms20215273] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 12/25/2022] Open
Abstract
Postnatal muscle growth and exercise- or injury-induced regeneration are facilitated by myoblasts. Myoblasts respond to a variety of proteins such as cytokines that activate various signaling cascades. Cytokines belonging to the interleukin 6 superfamily (IL-6) influence myoblasts' proliferation but their effect on differentiation is still being researched. The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway is one of the key signaling pathways identified to be activated by IL-6. The aim of this study was to investigate myoblast fate as well as activation of JAK-STAT pathway at different physiologically relevant IL-6 concentrations (10 pg/mL; 100 pg/mL; 10 ng/mL) in the C2C12 mouse myoblast cell line and primary human myoblasts, isolated from eight young healthy male volunteers. Myoblasts' cell cycle progression, proliferation and differentiation in vitro were assessed. Low IL-6 concentrations facilitated cell cycle transition from the quiescence/Gap1 (G0/G1) to the synthesis (S-) phases. Low and medium IL-6 concentrations decreased the expression of myoblast determination protein 1 (MyoD) and myogenin and increased proliferating cell nuclear antigen (PCNA) expression. In contrast, high IL-6 concentration shifted a larger proportion of cells to the pro-differentiation G0/G1 phase of the cell cycle, substantiated by significant increases of both MyoD and myogenin expression and decreased PCNA expression. Low IL-6 concentration was responsible for prolonged JAK1 activation and increased suppressor of cytokine signaling 1 (SOCS1) protein expression. JAK-STAT inhibition abrogated IL-6-mediated C2C12 cell proliferation. In contrast, high IL-6 initially increased JAK1 activation but resulted in prolonged JAK2 activation and elevated SOCS3 protein expression. High IL-6 concentration decreased interleukin-6 receptor (IL-6R) expression 24 h after treatment whilst low IL-6 concentration increased IL-6 receptor (IL-6R) expression at the same time point. In conclusion, this study demonstrated that IL-6 has concentration- and time-dependent effects on both C2C12 mouse myoblasts and primary human myoblasts. Low IL-6 concentration induces proliferation whilst high IL-6 concentration induces differentiation. These effects are mediated by specific components of the JAK/STAT/SOCS pathway.
Collapse
|
8
|
Wu Y, Liu L, Bian C, Diao Q, Nisar MF, Jiang X, Bartsch JW, Zhong M, Hu X, Zhong JL. MicroRNA let-7b inhibits keratinocyte differentiation by targeting IL-6 mediated ERK signaling in psoriasis. Cell Commun Signal 2018; 16:58. [PMID: 30219085 PMCID: PMC6138911 DOI: 10.1186/s12964-018-0271-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/31/2018] [Indexed: 12/16/2022] Open
Abstract
Background The extensive involvement of microRNA (miRNA) in the pathophysiology of psoriasis is well documented. However, in order for this information to be useful in therapeutic manipulation of miRNA levels, it is essential that detailed functional mechanisms are elucidated. This study aimed to explore the effects of IL-6 targeting by let-7b and ERK1/2 mediated signaling on keratinocyte differentiation in psoriasis. Methods Following imiquimod cream (IMQ) application to let-7bTG (keratinocyte-specific let-7b overexpression mouse) and control mice for 7 days, we analyzed erythema, scaling and thickening of skin. A dual luciferase reporter assay and bioinformatics was carried out to detect target gene of let-7b. Additionally, the differentiation markers were measured. Immunohistochemistry analyses demonstrate a relationship of let-7b with IL-6 and ERK signaling. Results we found let-7bTG inhibits acanthosis and reduces the disease severity by treatment with IMQ compared to wild-type mice. Further study illustrated that let-7b promotes differentiation of keratinocytes in vivo and in vitro. Using bioinformatics and reporter gene assays, we found that IL-6 is a target gene of let-7b. In psoriasis, high expression levels of IL-6 lead to increased acivation of p-ERK1/2. High levels of let-7bTG transgene expression suppresses IL-6 expression and leads to increased keratinocyte differentiation. Moreover, let-7b acts as an upstream negative regulator of the ERK signaling pathway in keratinocytes of psoriasis. Conclusions Our result reveals a previously unknown mechanism for regulation of IL-6 levels during psoriasis by let-7b and highlights a critical role for the ERK1/2 signaling pathway in epidermal differentiation during psoriasis. Trial registration The ethical approval for this study was from the Affiliated Hospital of Medical University of Anhui _ Fast_ PJ2017–11–14. Electronic supplementary material The online version of this article (10.1186/s12964-018-0271-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Wu
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, college of Bioengineering, Chongqing University, Chongqing, 400044, China.,Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, No. 40 Daomenkou St., District Yuzhong, Chongqing, 400011, China
| | - Liu Liu
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, college of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chunxiang Bian
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, college of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Qingchun Diao
- Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, No. 40 Daomenkou St., District Yuzhong, Chongqing, 400011, China
| | - Muhammad Farrukh Nisar
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, college of Bioengineering, Chongqing University, Chongqing, 400044, China.,Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Xuemei Jiang
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, college of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jörg W Bartsch
- Philipps University Marburg, Department of Neurosurgery, Baldingerstr, 35033, Marburg, Germany
| | - Maojiao Zhong
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, college of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xiangyu Hu
- Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, No. 40 Daomenkou St., District Yuzhong, Chongqing, 400011, China
| | - Julia Li Zhong
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, college of Bioengineering, Chongqing University, Chongqing, 400044, China. .,Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, No. 40 Daomenkou St., District Yuzhong, Chongqing, 400011, China.
| |
Collapse
|