1
|
Ortiz-Perez A, Zhang M, Fitzpatrick LW, Izquierdo-Lozano C, Albertazzi L. Advanced optical imaging for the rational design of nanomedicines. Adv Drug Deliv Rev 2024; 204:115138. [PMID: 37980951 DOI: 10.1016/j.addr.2023.115138] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
Despite the enormous potential of nanomedicines to shape the future of medicine, their clinical translation remains suboptimal. Translational challenges are present in every step of the development pipeline, from a lack of understanding of patient heterogeneity to insufficient insights on nanoparticle properties and their impact on material-cell interactions. Here, we discuss how the adoption of advanced optical microscopy techniques, such as super-resolution optical microscopies, correlative techniques, and high-content modalities, could aid the rational design of nanocarriers, by characterizing the cell, the nanomaterial, and their interaction with unprecedented spatial and/or temporal detail. In this nanomedicine arena, we will discuss how the implementation of these techniques, with their versatility and specificity, can yield high volumes of multi-parametric data; and how machine learning can aid the rapid advances in microscopy: from image acquisition to data interpretation.
Collapse
Affiliation(s)
- Ana Ortiz-Perez
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Miao Zhang
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Laurence W Fitzpatrick
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Cristina Izquierdo-Lozano
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
2
|
Kumar R. Materiomically Designed Polymeric Vehicles for Nucleic Acids: Quo Vadis? ACS APPLIED BIO MATERIALS 2022; 5:2507-2535. [PMID: 35642794 DOI: 10.1021/acsabm.2c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite rapid advances in molecular biology, particularly in site-specific genome editing technologies, such as CRISPR/Cas9 and base editing, financial and logistical challenges hinder a broad population from accessing and benefiting from gene therapy. To improve the affordability and scalability of gene therapy, we need to deploy chemically defined, economical, and scalable materials, such as synthetic polymers. For polymers to deliver nucleic acids efficaciously to targeted cells, they must optimally combine design attributes, such as architecture, length, composition, spatial distribution of monomers, basicity, hydrophilic-hydrophobic phase balance, or protonation degree. Designing polymeric vectors for specific nucleic acid payloads is a multivariate optimization problem wherein even minuscule deviations from the optimum are poorly tolerated. To explore the multivariate polymer design space rapidly, efficiently, and fruitfully, we must integrate parallelized polymer synthesis, high-throughput biological screening, and statistical modeling. Although materiomics approaches promise to streamline polymeric vector development, several methodological ambiguities must be resolved. For instance, establishing a flexible polymer ontology that accommodates recent synthetic advances, enforcing uniform polymer characterization and data reporting standards, and implementing multiplexed in vitro and in vivo screening studies require considerable planning, coordination, and effort. This contribution will acquaint readers with the challenges associated with materiomics approaches to polymeric gene delivery and offers guidelines for overcoming these challenges. Here, we summarize recent developments in combinatorial polymer synthesis, high-throughput screening of polymeric vectors, omics-based approaches to polymer design, barcoding schemes for pooled in vitro and in vivo screening, and identify materiomics-inspired research directions that will realize the long-unfulfilled clinical potential of polymeric carriers in gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemical & Biological Engineering, Colorado School of Mines, 1613 Illinois St, Golden, Colorado 80401, United States
| |
Collapse
|
3
|
Liu K, Salvati A, Sabirsh A. Physiology, pathology and the biomolecular corona: the confounding factors in nanomedicine design. NANOSCALE 2022; 14:2136-2154. [PMID: 35103268 DOI: 10.1039/d1nr08101b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The biomolecular corona that forms on nanomedicines in different physiological and pathological environments confers a new biological identity. How the recipient biological system's state can potentially affect nanomedicine corona formation, and how this can be modulated, remains obscure. With this perspective, this review summarizes the current knowledge about the content of biological fluids in various compartments and how they can be affected by pathological states, thus impacting biomolecular corona formation. The content of representative biological fluids is explored, and the urgency of integrating corona formation, as an essential component of nanomedicine designs for effective cargo delivery, is highlighted.
Collapse
Affiliation(s)
- Kai Liu
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713AV, The Netherlands
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
4
|
Van de Vyver T, De Smedt SC, Raemdonck K. Modulating intracellular pathways to improve non-viral delivery of RNA therapeutics. Adv Drug Deliv Rev 2022; 181:114041. [PMID: 34763002 DOI: 10.1016/j.addr.2021.114041] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
RNA therapeutics (e.g. siRNA, oligonucleotides, mRNA, etc.) show great potential for the treatment of a myriad of diseases. However, to reach their site of action in the cytosol or nucleus of target cells, multiple intra- and extracellular barriers have to be surmounted. Several non-viral delivery systems, such as nanoparticles and conjugates, have been successfully developed to meet this requirement. Unfortunately, despite these clear advances, state-of-the-art delivery agents still suffer from relatively low intracellular delivery efficiencies. Notably, our current understanding of the intracellular delivery process is largely oversimplified. Gaining mechanistic insight into how RNA formulations are processed by cells will fuel rational design of the next generation of delivery carriers. In addition, identifying which intracellular pathways contribute to productive RNA delivery could provide opportunities to boost the delivery performance of existing nanoformulations. In this review, we discuss both established as well as emerging techniques that can be used to assess the impact of different intracellular barriers on RNA transfection performance. Next, we highlight how several modulators, including small molecules but also genetic perturbation technologies, can boost RNA delivery by intervening at differing stages of the intracellular delivery process, such as cellular uptake, intracellular trafficking, endosomal escape, autophagy and exocytosis.
Collapse
Affiliation(s)
- Thijs Van de Vyver
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
5
|
Ma Z, Foda MF, Zhao Y, Han H. Multifunctional Nanosystems with Enhanced Cellular Uptake for Tumor Therapy. Adv Healthc Mater 2022; 11:e2101703. [PMID: 34626528 DOI: 10.1002/adhm.202101703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Indexed: 11/10/2022]
Abstract
Rapid development of nanotechnology provides promising strategies in biomedicine, especially in tumor therapy. In particular, the cellular uptake of nanosystems is not only a basic premise to realize various biomedical applications, but also a fatal factor for determining the final therapeutic effect. Thus, a systematic and comprehensive summary is necessary to overview the recent research progress on the improvement of nanosystem cellular uptake for cancer treatment. According to the process of nanosystems entering the body, they can be classified into three categories. The first segment is to enhance the accumulation and permeation of nanosystems to tumor cells through extracellular microenvironment stimulation. The second segment is to improve cellular internalization from extracellular to intracellular via active targeting. The third segment is to enhance the intracellular retention of therapeutics by subcellular localization. The major factors in the delivery can be utilized to develop multifunctional nanosystems for strengthening the tumor therapy. Ultimately, the key challenges and prospective in the emerging research frontier are thoroughly outlined. This review is expected to provide inspiring ideas, promising strategies and potential pathways for developing advanced anticancer nanosystems in clinical practice.
Collapse
Affiliation(s)
- Zhaoyu Ma
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Mohamed F. Foda
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
- Department of Biochemistry Faculty of Agriculture Benha University Moshtohor Toukh 13736 Egypt
| | - Yanli Zhao
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
| |
Collapse
|
6
|
Kelly S, Byrne MH, Quinn SJ, Simpson JC. Multiparametric nanoparticle-induced toxicity readouts with single cell resolution in HepG2 multicellular tumour spheroids. NANOSCALE 2021; 13:17615-17628. [PMID: 34661590 DOI: 10.1039/d1nr04460e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of nanomaterials as therapeutic delivery vehicles requires their careful pre-clinical evaluation. Of particular importance in this regard is measurement of cellular toxicity, ideally assessing multiple parameters in parallel from various relevant subcellular organelles. In recent years it has become evident that in vitro monolayer-grown cells do not always accurately predict any toxicity response seen in vivo, and so there is a need for more sophisticated in vitro cell models, employing a greater depth of characterisation. In this work we present an automated high-content screening microscopy approach for quantifying nanoparticle-induced toxicity in a three-dimensional multicellular tumour spheroid (MCTS) cell model. As a proof-of-principle, we perform a comparative toxicity profile study of carboxylate- versus amine-modified polystyrene nanoparticles in HepG2 spheroids. Following treatment with these nanoparticle types, we demonstrate that several hundred spheroids, of various sizes, can be morphologically profiled in a single well using automated high-content image analysis. This provides a first level of information about spheroid health in response to nanoparticle treatment. Using a range of fluorescent reporters assessing membrane permeability, lysosome function and mitochondrial activity, we also show that nanoparticle-induced toxicity information can be obtained from individual cells with subcellular resolution. Strikingly, our work demonstrates that individual cells do not all behave in a consistent manner within a spheroid structure after exposure to nanoparticles. This highlights the need for toxicity studies to not only assess an appropriate number of spheroids, but also the importance of extracting information at the subcellular level.
Collapse
Affiliation(s)
- Suainibhe Kelly
- Cell Screening Laboratory, UCD School of Biology & Environmental Science, University College Dublin, Dublin 4, Ireland.
| | - Maria H Byrne
- UCD School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Susan J Quinn
- UCD School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Jeremy C Simpson
- Cell Screening Laboratory, UCD School of Biology & Environmental Science, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
7
|
Vtyurina N, Åberg C, Salvati A. Imaging of nanoparticle uptake and kinetics of intracellular trafficking in individual cells. NANOSCALE 2021; 13:10436-10446. [PMID: 34076024 PMCID: PMC8211015 DOI: 10.1039/d1nr00901j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/24/2021] [Indexed: 05/02/2023]
Abstract
Live cell imaging is a powerful tool to understand how nano-sized objects, such as the drug carriers used for nanomedicine applications, are taken up and trafficked by cells. Here we visualized human HeLa cells as they took up and trafficked nanoparticles of different sizes and quantified nanoparticle colocalization with different fluorescently-labelled intracellular compartments over time. This allowed us to obtain kinetic profiles of nanoparticle transport towards the lysosomes in individual cells. With a simple theoretical model, we determined the typical departure time of nanoparticles from the cell membrane and typical lysosome arrival time. We compared these kinetics parameters for nanoparticles of different sizes and determined how they vary in individual cells. We also performed a similar analysis for early endocytic compartments through which nanoparticles transit and discuss challenges in quantifying the colocalization in this case. The results show a high variability in intracellular trafficking kinetics between individual cells. Additionally, they help us to understand how nanoparticle properties affect their cellular uptake and intracellular distribution kinetics.
Collapse
Affiliation(s)
- Natalia Vtyurina
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands.
| | - Christoffer Åberg
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands.
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands.
| |
Collapse
|
8
|
Twarog C, Liu K, O'Brien PJ, Dawson KA, Fattal E, Illel B, Brayden DJ. A head-to-head Caco-2 assay comparison of the mechanisms of action of the intestinal permeation enhancers: SNAC and sodium caprate (C 10). Eur J Pharm Biopharm 2020; 152:95-107. [PMID: 32387703 DOI: 10.1016/j.ejpb.2020.04.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Salcaprozate sodium (SNAC) and sodium caprate (C10) are the two leading intestinal permeation enhancers (PEs) in oral peptide formulations in clinical trials. There is debate over their mechanism of action on intestinal epithelia. The aims were: (i) to compare their effects on the barrier function by measuring transepithelial electrical resistance (TEER), permeability of FITC-4000 (FD4) across Caco-2 monolayers, and on immunohistochemistry of tight junction (TJ)-associated proteins; and (ii) to compare cellular parameters using conventional end-point cytotoxicity assays and quantitative high content analysis (HCA) of multiple sub-lethal parameters in Caco-2 cells. C10 (8.5 mM) reversibly reduced TEER and increased FD4 permeability across monolayers, whereas SNAC had no effects on either parameter except at cytotoxic concentrations. C10 exposure induced reorganization of three TJ proteins, whereas SNAC only affected claudin-5 localization. High concentrations of C10 and SNAC were required to cause end-point toxicology changes in vitro. SNAC was less potent than C10 at inducing lysosomal and nuclear changes and plasma membrane perturbation. In parallel, HCA revealed that both agents displayed detergent-like features that reflect initial membrane fluidization followed by changes in intracellular parameters. In conclusion, FD4 permeability increases in monolayers in response to C10 were in the range of concentrations that altered end-point cytotoxicity and HCA parameters. For SNAC, while HCA parameters were also altered in a similar overall pattern as C10, they did not lead to increased paracellular flux. These assays show that both agents are primarily surfactants, but C10 has additional TJ-opening effects. While these in vitro assays illucidate their epithelial mechanism of action, clinical experience suggests that they over-estimate their toxicology in the dynamic intestinal environment.
Collapse
Affiliation(s)
- Caroline Twarog
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kai Liu
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Peter J O'Brien
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kenneth A Dawson
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Elias Fattal
- School of Pharmacy, Institut Galien, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Brigitte Illel
- Drug Product Development, Small Molecules Oral Platform, Sanofi Research and Development, Montpellier, France
| | - David J Brayden
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
9
|
Yin X, Wang X, Zhang Z, Li Y, Lin Z, Pan H, Gu Y, Li S, Zhang J, Xia N, Zhao Q. Demonstration of real-time and accelerated stability of hepatitis E vaccine with a combination of different physicochemical and immunochemical methods. J Pharm Biomed Anal 2019; 177:112880. [PMID: 31546137 DOI: 10.1016/j.jpba.2019.112880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
Abstract
Hepatitis E, which is caused by infection with hepatitis E virus (HEV), is a global health problem in both developed and developing countries. An efficacious hepatitis E vaccine was licensed (by China) in 2011 with a trade name of Hecolin®. The antigen contained in this vaccine is a truncated version of the sole capsid protein encoded by open reading frame 2, which is designated p239. In this study, the real-time and real-condition stability and accelerated stability of five lots of hepatitis E vaccine products at the end of the designated shelf life, were assessed by a well-established quality analysis platform. The protein integrity of p239 that was recovered from the vaccine lots was demonstrated using CE-SDS, LC-MS and MALDI-TOF MS. The particle characteristics of the recovered vaccine antigen were assessed by TEM and HPSEC. The immunogenicity of hepatitis E vaccines was assessed by a mouse potency assay, which is part of product release and stability testing. Several methods were employed to assess the antigenicity of vaccines with or without adjuvant dissolution. Specifically, the well-established methods of sandwich ELISA and surface plasma resonance (SPR)-based BIAcore were used with unique murine monoclonal antibodies. Most interesting, two 'dissolution-free' immunoassays were also used for in situ antigenicity assessment of the vaccines. In addition to the confirmation of vaccine stability at the end of expiry dating, i.e., after storage in recommended conditions (2-8 °C) for 36 months, the mouse potency assay and sandwich ELISA were used to assess the accelerated stability of prefilled syringes to demonstrate the feasibility of out-of-cold-chain storage. In summary, molecular and functional characterization confirmed the shelf life stability of the vaccine at the end of expiry dating and the feasibility of transporting the hepatitis E vaccine for a given period of time out of cold chains.
Collapse
Affiliation(s)
- Xiaochen Yin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Zhigang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Yufang Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Zhijie Lin
- Xiamen Innovax Biotech Co., Ltd, Xiamen, Fujian 361005, PR China
| | - Huirong Pan
- Xiamen Innovax Biotech Co., Ltd, Xiamen, Fujian 361005, PR China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
10
|
Cutrona MB, Simpson JC. A High-Throughput Automated Confocal Microscopy Platform for Quantitative Phenotyping of Nanoparticle Uptake and Transport in Spheroids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902033. [PMID: 31334922 DOI: 10.1002/smll.201902033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/24/2019] [Indexed: 05/23/2023]
Abstract
There is a high demand for advanced, image-based, automated high-content screening (HCS) approaches to facilitate phenotypic screening in 3D cell culture models. A major challenge lies in retaining the resolution of fine cellular detail but at the same time imaging multicellular structures at a large scale. In this study, a confocal microscopy-based HCS platform in optical multiwell plates that enables the quantitative morphological profiling of populations of nonuniform spheroids obtained from HT-29 human colorectal cancer cells is described. This platform is then utilized to demonstrate a quantitative dissection of the penetration of synthetic nanoparticles (NP) in multicellular 3D spheroids at multiple levels of scale. A pilot RNA interference-based screening validates this methodology and identifies a subset of RAB GTPases that regulate NP trafficking in these spheroids. This technology is suitable for high-content phenotyping in 3D cell-based screening, providing a framework for nanomedicine drug development as applied to translational oncology.
Collapse
Affiliation(s)
- Meritxell B Cutrona
- School of Biology and Environmental Science & Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), D04 N2E5, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), Galway, H91 W2TY, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science & Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), D04 N2E5, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), Galway, H91 W2TY, Ireland
| |
Collapse
|
11
|
Kang Y, Sun W, Li S, Li M, Fan J, Du J, Liang X, Peng X. Oligo Hyaluronan-Coated Silica/Hydroxyapatite Degradable Nanoparticles for Targeted Cancer Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900716. [PMID: 31380195 PMCID: PMC6662421 DOI: 10.1002/advs.201900716] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 05/22/2023]
Abstract
Targeted drug delivery systems (TDDSs) provide a promising approach to overcome the side effect of traditional chemotherapy by specific tumor targeting and drug release. Hyaluronan (HA), as a selective CD44 targeting group, has been widely used in TDDSs for chemotherapy. However, different molecular weight HAs would demonstrate different binding ability to CD44, which may result in different therapeutic effects. Herein, a silica/hydroxyapatite (MSNs/HAP) hybrid carrier loaded with anticancer drug doxorubicin (DOX) (DOX@MSNs/HAP) is fabricated. HA and oligo HA (oHA) are coated onto the nanoparticles (HA-DOX@MSNs/HAP, oHA-DOX@MSNs/HAP), respectively, to investigate their performance in tumor targeting ability. oHA-DOX@MSNs/HAP shows much higher efficiency cellular uptake and drug release in tumor regions due to more effective CD44 targeting of oHA. Thus, the anticancer effect of oHA-DOX@MSNs/HAP is significantly enhanced compared to HA-DOX@MSNs/HAP, as demonstrated in a tumor-bearing mouse model. This study may enable the rational design of nanodrug systems for future tumor-targeted chemotherapy.
Collapse
Affiliation(s)
- Yao Kang
- State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalian116024China
| | - Wen Sun
- State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalian116024China
- Research Institute of Dalian University of Technology in ShenzhenGaoxin South fourth Road, Nanshan DistrictShenzhen518057China
| | - Shuyi Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190China
| | - Mingle Li
- State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalian116024China
| | - Jiangli Fan
- State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalian116024China
- Research Institute of Dalian University of Technology in ShenzhenGaoxin South fourth Road, Nanshan DistrictShenzhen518057China
| | - Jianjun Du
- State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalian116024China
- Research Institute of Dalian University of Technology in ShenzhenGaoxin South fourth Road, Nanshan DistrictShenzhen518057China
| | - Xing‐Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190China
| | - Xiaojun Peng
- State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalian116024China
- Research Institute of Dalian University of Technology in ShenzhenGaoxin South fourth Road, Nanshan DistrictShenzhen518057China
| |
Collapse
|
12
|
Murschhauser A, Röttgermann PJF, Woschée D, Ober MF, Yan Y, Dawson KA, Rädler JO. A high-throughput microscopy method for single-cell analysis of event-time correlations in nanoparticle-induced cell death. Commun Biol 2019; 2:35. [PMID: 30701200 PMCID: PMC6345847 DOI: 10.1038/s42003-019-0282-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022] Open
Abstract
The temporal context of cell death decisions remains generally hidden in ensemble measurements with endpoint readouts. Here, we describe a method to extract event times from fluorescence time traces of cell death-related markers in automated live-cell imaging on single-cell arrays (LISCA) using epithelial A549 lung and Huh7 liver cancer cells as a model system. In pairwise marker combinations, we assess the chronological sequence and delay times of the events lysosomal membrane permeabilization, mitochondrial outer membrane permeabilization and oxidative burst after exposure to 58 nm amino-functionalized polystyrene nanoparticles (PS-NH2 nanoparticles). From two-dimensional event-time scatter plots we infer a lysosomal signal pathway at a low dose of nanoparticles (25 µg mL-1) for both cell lines, while at a higher dose (100 µg mL-1) a mitochondrial pathway coexists in A549 cells, but not in Huh7. In general, event-time correlations provide detailed insights into heterogeneity and interdependencies in signal transmission pathways.
Collapse
Affiliation(s)
- Alexandra Murschhauser
- Faculty of Physics and Center for NanoSciene (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, 80539 Germany
| | - Peter J. F. Röttgermann
- Faculty of Physics and Center for NanoSciene (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, 80539 Germany
| | - Daniel Woschée
- Faculty of Physics and Center for NanoSciene (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, 80539 Germany
| | - Martina F. Ober
- Faculty of Physics and Center for NanoSciene (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, 80539 Germany
| | - Yan Yan
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kenneth A. Dawson
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Joachim O. Rädler
- Faculty of Physics and Center for NanoSciene (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, 80539 Germany
| |
Collapse
|
13
|
Application of Box-Behnken experimental design for the formulation and optimisation of selenomethionine-loaded chitosan nanoparticles coated with zein for oral delivery. Int J Pharm 2018; 551:257-269. [DOI: 10.1016/j.ijpharm.2018.08.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023]
|
14
|
High-content analysis for mitophagy response to nanoparticles: A potential sensitive biomarker for nanosafety assessment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 15:59-69. [PMID: 30244083 DOI: 10.1016/j.nano.2018.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 08/20/2018] [Accepted: 09/03/2018] [Indexed: 12/28/2022]
Abstract
Mitophagy, a selective autophagy of mitochondria, clears up damaged mitochondria to maintain cell homeostasis. We performed high-content analysis (HCA) to detect the increase of PINK1, an essential protein controlling mitophagy, in hepatic cells treated with several nanoparticles (NPs). PINK1 immunofluorescence-based HCA was more sensitive than assays and detections for cell viability and mitochondrial functions. Of which, superparamagnetic iron oxide (SPIO)-NPs or graphene oxide-quantum dots (GO-QDs) was selected as representatives for positive or negative inducer of mitophagy. SPIO-NPs, but not GO-QDs, activated PINK1-dependent mitophagy as demonstrated by recruitment of PARKIN to mitochondria and degradation of injured mitochondria. SPIO-NPs caused the loss of mitochondrial membrane potential, decrease in ATP, and increase in mitochondrial reactive oxide species and Ca2+. Blocking mitophagy with PARKIN siRNA aggravated the cytotoxicity of SPIO-NPs. Taken together, PINK1 immunofluorescence-based HCA is considered to be an early, sensitive, and reliable approach to evaluate the bioimpacts of NPs.
Collapse
|
15
|
Silver/silver chloride nanoparticles inhibit the proliferation of human glioblastoma cells. Cytotechnology 2018; 70:1607-1618. [PMID: 30203320 DOI: 10.1007/s10616-018-0253-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/24/2018] [Indexed: 12/31/2022] Open
Abstract
Glioblastomas (GBM) are aggressive brain tumors with very poor prognosis. While silver nanoparticles represent a potential new strategy for anticancer therapy, the silver/silver chloride nanoparticles (Ag/AgCl-NPs) have microbicidal activity, but had not been tested against tumor cells. Here, we analyzed the effect of biogenically produced Ag/AgCl-NPs (from yeast cultures) on the proliferation of GBM02 glioblastoma cells (and of human astrocytes) by automated, image-based high-content analysis (HCA). We compared the effect of 0.1-5.0 µg mL-1 Ag/AgCl-NPs with that of 9.7-48.5 µg mL-1 temozolomide (TMZ, chemotherapy drug currently used to treat glioblastomas), alone or in combination. At higher concentrations, Ag/AgCl-NPs inhibited GBM02 proliferation more effectively than TMZ (up to 82 and 62% inhibition, respectively), while the opposite occurred at lower concentrations (up to 23 and 53% inhibition, for Ag/AgCl-NPs and TMZ, respectively). The combined treatment (Ag/AgCl-NPs + TMZ) inhibited GBM02 proliferation by 54-83%. Ag/AgCl-NPs had a reduced effect on astrocyte proliferation compared with TMZ, and Ag/AgCl-NPs + TMZ inhibited astrocyte proliferation by 5-42%. The growth rate and population doubling time analyses confirmed that treatment with Ag/AgCl-NPs was more effective against GBM02 cells than TMZ (~ 67-fold), and less aggressive to astrocytes, while Ag/AgCl-NP + TMZ treatment was no more effective against GBM02 cells than Ag/AgCl-NPs monotherapy. Taken together, our data indicate that 2.5 µg mL-1 Ag/AgCl-NPs represents the safest dose tested here, which affects GBM02 proliferation, with limited effect on astrocytes. Our findings show that HCA is a useful approach to evaluate the antiproliferative effect of nanoparticles against tumor cells.
Collapse
|
16
|
Byrne HJ, Bonnier F, Casey A, Maher M, McIntyre J, Efeoglu E, Farhane Z. Advancing Raman microspectroscopy for cellular and subcellular analysis: towards in vitro high-content spectralomic analysis. APPLIED OPTICS 2018; 57:E11-E19. [PMID: 30117916 DOI: 10.1364/ao.57.000e11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
In the confocal mode, Raman microspectroscopy can profile the biochemical content of biological cells at a subcellular level, and any changes to it by exogenous agents, such as therapeutic drugs or toxicants. As an exploration of the potential of the technique as a high-content, label-free analysis technique, this report reviews work to monitor the spectroscopic signatures associated with the uptake and response pathways of commercial chemotherapeutic agents and polymeric nanoparticles by human lung cells. It is demonstrated that the signatures are reproducible and characteristic of the cellular event, and can be used, for example, to identify the mode of action of the agent as well as the subsequent cell death pathway, and even mechanisms of cellular resistance. Data mining approaches are discussed and a spectralomics approach is proposed.
Collapse
|
17
|
Reifarth M, Schubert US, Hoeppener S. Considerations for the Uptake Characteristic of Inorganic Nanoparticles into Mammalian Cells-Insights Gained by TEM Investigations. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Martin Reifarth
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| |
Collapse
|
18
|
Ijaz H, Qureshi J, Tulain UR, Iqbal F, Danish Z, Fayyaz A, Sethi A. Lipid particulate drug delivery systems: a review. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2018. [DOI: 10.1680/jbibn.16.00039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hira Ijaz
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Junaid Qureshi
- Department of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Furqan Iqbal
- Department of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Zeeshan Danish
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Ahad Fayyaz
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Ayesha Sethi
- College of Pharmacy, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
19
|
Walsh DP, Murphy RD, Panarella A, Raftery RM, Cavanagh B, Simpson JC, O'Brien FJ, Heise A, Cryan SA. Bioinspired Star-Shaped Poly(l-lysine) Polypeptides: Efficient Polymeric Nanocarriers for the Delivery of DNA to Mesenchymal Stem Cells. Mol Pharm 2018; 15:1878-1891. [PMID: 29590755 DOI: 10.1021/acs.molpharmaceut.8b00044] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The field of tissue engineering is increasingly recognizing that gene therapy can be employed for modulating in vivo cellular response thereby guiding tissue regeneration. However, the field lacks a versatile and biocompatible gene delivery platform capable of efficiently delivering transgenes to mesenchymal stem cells (MSCs), a cell type often refractory to transfection. Herein, we describe the extensive and systematic exploration of three architectural variations of star-shaped poly(l-lysine) polypeptide (star-PLL) with varying number and length of poly(l-lysine) arms as potential nonviral gene delivery vectors for MSCs. We demonstrate that star-PLL vectors are capable of self-assembling with pDNA to form stable, cationic nanomedicines. Utilizing high content screening, live cell imaging, and mechanistic uptake studies we confirm the intracellular delivery of pDNA by star-PLLs to MSCs is a rapid process, which likely proceeds via a clathrin-independent mechanism. We identify a star-PLL composition with 64 poly(l-lysine) arms and five l-lysine subunits per arm as a particularly efficient vector that is capable of delivering both reporter genes and the therapeutic transgenes bone morphogenetic protein-2 and vascular endothelial growth factor to MSCs. This composition facilitated a 1000-fold increase in transgene expression in MSCs compared to its linear analogue, linear poly(l-lysine). Furthermore, it demonstrated comparable transgene expression to the widely used vector polyethylenimine using a lower pDNA dose with significantly less cytotoxicity. Overall, this study illustrates the ability of the star-PLL vectors to facilitate efficient, nontoxic nucleic acid delivery to MSCs thereby functioning as an innovative nanomedicine platform for tissue engineering applications.
Collapse
Affiliation(s)
- David P Walsh
- Drug Delivery & Advanced Materials Team, School of Pharmacy , RCSI , Dublin , Ireland.,Tissue Engineering Research Group, Department of Anatomy , RCSI , Dublin , Ireland.,Trinity Centre for Bioengineering , Trinity College Dublin (TCD) , Dublin , Ireland
| | - Robert D Murphy
- Pharmaceutical and Medicinal Chemistry , RCSI , Dublin , Ireland
| | - Angela Panarella
- School of Biology and Environmental Science , University College Dublin , Dublin , Ireland
| | - Rosanne M Raftery
- Tissue Engineering Research Group, Department of Anatomy , RCSI , Dublin , Ireland.,Trinity Centre for Bioengineering , Trinity College Dublin (TCD) , Dublin , Ireland
| | | | - Jeremy C Simpson
- School of Biology and Environmental Science , University College Dublin , Dublin , Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy , RCSI , Dublin , Ireland.,Trinity Centre for Bioengineering , Trinity College Dublin (TCD) , Dublin , Ireland
| | - Andreas Heise
- Pharmaceutical and Medicinal Chemistry , RCSI , Dublin , Ireland
| | - Sally-Ann Cryan
- Drug Delivery & Advanced Materials Team, School of Pharmacy , RCSI , Dublin , Ireland.,Tissue Engineering Research Group, Department of Anatomy , RCSI , Dublin , Ireland.,Trinity Centre for Bioengineering , Trinity College Dublin (TCD) , Dublin , Ireland
| |
Collapse
|
20
|
Accomasso L, Cristallini C, Giachino C. Risk Assessment and Risk Minimization in Nanomedicine: A Need for Predictive, Alternative, and 3Rs Strategies. Front Pharmacol 2018; 9:228. [PMID: 29662451 PMCID: PMC5890110 DOI: 10.3389/fphar.2018.00228] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/28/2018] [Indexed: 11/13/2022] Open
Abstract
The use of nanomaterials in medicine has grown very rapidly, leading to a concern about possible health risks. Surely, the application of nanotechnology in medicine has many significant potentialities as it can improve human health in at least three different ways: by contributing to early disease diagnosis, improved treatment outcomes and containment of health care costs. However, toxicology or safety assessment is an integral part of any new medical technology and the nanotechnologies are no exception. The principle aim of nanosafety studies in this frame is to enable safer design of nanomedicines. The most urgent need is finding and validating novel approaches able to extrapolate acute in vitro results for the prediction of chronic in vivo effects and to this purpose a few European initiatives have been launched. While a "safe-by-design" process may be considered as utopic, "safer-by-design" is probably a reachable goal in the field of nanomedicine.
Collapse
Affiliation(s)
- Lisa Accomasso
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
21
|
Efeoglu E, Maher MA, Casey A, Byrne HJ. Toxicological assessment of nanomaterials: the role of in vitro Raman microspectroscopic analysis. Anal Bioanal Chem 2017; 410:1631-1646. [DOI: 10.1007/s00216-017-0812-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/22/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022]
|
22
|
Wu L, Zhang Z, Gao H, Li Y, Hou L, Yao H, Wu S, Liu J, Wang L, Zhai Y, Ou H, Lin M, Wu X, Liu J, Lang G, Xin Q, Wu G, Luo L, Liu P, Shentu J, Wu N, Sheng J, Qiu Y, Chen W, Li L. Open-label phase I clinical trial of Ad5-EBOV in Africans in China. Hum Vaccin Immunother 2017; 13. [PMID: 28708962 DOI: 10.1002/smll.201701815] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/31/2017] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND To determine the safety and immunogenicity of a novel recombinant adenovirus type 5 vector based Ebola virus disease vaccine (Ad5-EBOV) in Africans in China. METHODS A phase 1, dose-escalation, open-label trial was conducted. 61 healthy Africans were sequentially enrolled, with 31 participants receiving one shot intramuscular injection and 30 participants receiving a double-shot regimen. Primary and secondary end points related to safety and immunogenicity were assessed within 28 d after vaccination. This study was registered with ClinicalTrials.gov (NCT02401373). RESULTS Ad5-EBOV is well tolerated and no adverse reaction of grade 3 or above was observed. 53 (86.89%) participants reported at least one adverse reaction within 28 d of vaccination. The most common reaction was fever and the mild pain at injection site, and there were no significant difference between these 2 groups. Ebola glycoprotein-specific antibodies appeared in all 61 participants and antibodies titers peaked after 28 d of vaccination. The geometric mean titres (GMTs) were similar between these 2 groups (1919.01 vs 1684.70 P = 0.5562). The glycoprotein-specific T-cell responses rapidly peaked after 14 d of vaccination and then decreased, however, the percentage of subjects with responses were much higher in the high-dose group (60.00% vs 9.68%, P = 0.0014). Pre-existing Ad5 neutralizing antibodies could significantly dampen the specific humoral immune response and cellular response to the vaccine. CONCLUSION The application of Ad5-EBOV demonstrated safe in Africans in China and a specific GP antibody and T-cell response could occur 14 d after the first immunization. This acceptable safety profile provides a reliable basis to proceed with trials in Africa.
Collapse
MESH Headings
- Adult
- Africa/epidemiology
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- China
- Ebola Vaccines/administration & dosage
- Ebola Vaccines/adverse effects
- Ebola Vaccines/immunology
- Ebolavirus/immunology
- Female
- Fever/ethnology
- Healthy Volunteers
- Hemorrhagic Fever, Ebola/epidemiology
- Hemorrhagic Fever, Ebola/ethnology
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/prevention & control
- Humans
- Immunity, Cellular
- Immunity, Humoral
- Immunogenicity, Vaccine
- Injections, Intramuscular
- Male
- Membrane Glycoproteins/immunology
- Middle Aged
- T-Lymphocytes/immunology
- Vaccination
- Young Adult
Collapse
Affiliation(s)
- Lihua Wu
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Zhe Zhang
- c Beijing Institute of Biotechnology , Haidian District, Beijing , China
| | - Hainv Gao
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
- d Zhejiang University International Hospital , Xiacheng District, Hangzhou , Zhejiang , China
| | - Yuhua Li
- e National Institutes for Food and Drug Control , Chongwen District, Beijing , China
| | - Lihua Hou
- c Beijing Institute of Biotechnology , Haidian District, Beijing , China
| | - Hangping Yao
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Shipo Wu
- c Beijing Institute of Biotechnology , Haidian District, Beijing , China
| | - Jian Liu
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Ling Wang
- e National Institutes for Food and Drug Control , Chongwen District, Beijing , China
| | - You Zhai
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Huilin Ou
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Meihua Lin
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Xiaoxin Wu
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
- d Zhejiang University International Hospital , Xiacheng District, Hangzhou , Zhejiang , China
| | - Jingjing Liu
- e National Institutes for Food and Drug Control , Chongwen District, Beijing , China
| | - Guanjing Lang
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Qian Xin
- f The General Hospital of People's Liberation Army , Beijing , China
| | - Guolan Wu
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Li Luo
- g Department of Epidemiology and Biostatistics , School of Public Health, Southeast University , Nanjing , Jiangsu , China
| | - Pei Liu
- g Department of Epidemiology and Biostatistics , School of Public Health, Southeast University , Nanjing , Jiangsu , China
| | - Jianzhong Shentu
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Nanping Wu
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Jifang Sheng
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Yunqing Qiu
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Wei Chen
- c Beijing Institute of Biotechnology , Haidian District, Beijing , China
| | - Lanjuan Li
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
- d Zhejiang University International Hospital , Xiacheng District, Hangzhou , Zhejiang , China
| |
Collapse
|
23
|
Efeoglu E, Maher MA, Casey A, Byrne HJ. Label-free, high content screening using Raman microspectroscopy: the toxicological response of different cell lines to amine-modified polystyrene nanoparticles (PS-NH2). Analyst 2017; 142:3500-3513. [DOI: 10.1039/c7an00461c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman microspectroscopy as a ‘high content nanotoxicological screening technique’ with the aid of multivariate analysis, on non-cancerous and cancerous cell lines.
Collapse
Affiliation(s)
- Esen Efeoglu
- School of Physics
- Dublin Institute of Technology
- Dublin 2
- Ireland
- FOCAS Research Institute
| | - Marcus A. Maher
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 2
- Ireland
| | - Alan Casey
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 2
- Ireland
| | - Hugh J. Byrne
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 2
- Ireland
| |
Collapse
|
24
|
Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev 2016; 106:256-276. [PMID: 27496705 DOI: 10.1016/j.addr.2016.07.007] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/02/2016] [Accepted: 07/08/2016] [Indexed: 12/23/2022]
Abstract
In this contribution, we review the molecular and physiological barriers to oral delivery of peptides and nanoparticles. We discuss the opportunities and predictivity of various in vitro systems with special emphasis on human intestine in Ussing chambers. First, the molecular constraints to peptide absorption are discussed. Then the physiological barriers to peptide delivery are examined. These include the gastric and intestinal environment, the mucus barrier, tight junctions between epithelial cells, the enterocytes of the intestinal epithelium, and the subepithelial tissue. Recent data from human proteome studies are used to provide information about the protein expression profiles of the different physiological barriers to peptide and nanoparticle absorption. Strategies that have been employed to increase peptide absorption across each of the barriers are discussed. Special consideration is given to attempts at utilizing endogenous transcytotic pathways. To reliably translate in vitro data on peptide or nanoparticle permeability to the in vivo situation in a human subject, the in vitro experimental system needs to realistically capture the central aspects of the mentioned barriers. Therefore, characteristics of common in vitro cell culture systems are discussed and compared to those of human intestinal tissues. Attempts to use the cell and tissue models for in vitro-in vivo extrapolation are reviewed.
Collapse
Affiliation(s)
- P Lundquist
- Department of Pharmacy, Uppsala University, Box 580, SE-752 37 Uppsala, Sweden.
| | - P Artursson
- Department of Pharmacy, Uppsala University, Box 580, SE-752 37 Uppsala, Sweden.
| |
Collapse
|
25
|
Panarella A, Bexiga MG, Galea G, O’ Neill ED, Salvati A, Dawson KA, Simpson JC. A systematic High-Content Screening microscopy approach reveals key roles for Rab33b, OATL1 and Myo6 in nanoparticle trafficking in HeLa cells. Sci Rep 2016; 6:28865. [PMID: 27374232 PMCID: PMC4931513 DOI: 10.1038/srep28865] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/06/2016] [Indexed: 12/24/2022] Open
Abstract
Synthetic nanoparticles are promising tools for imaging and drug delivery; however the molecular details of cellular internalization and trafficking await full characterization. Current knowledge suggests that following endocytosis most nanoparticles pass from endosomes to lysosomes. In order to design effective drug delivery strategies that can use the endocytic pathway, or by-pass lysosomal accumulation, a comprehensive understanding of nanoparticle uptake and trafficking mechanisms is therefore fundamental. Here we describe and apply an RNA interference-based high-content screening microscopy strategy to assess the intracellular trafficking of fluorescently-labeled polystyrene nanoparticles in HeLa cells. We screened a total of 408 genes involved in cytoskeleton and membrane function, revealing roles for myosin VI, Rab33b and OATL1 in this process. This work provides the first systematic large-scale quantitative assessment of the proteins responsible for nanoparticle trafficking in cells, paving the way for subsequent genome-wide studies.
Collapse
Affiliation(s)
- Angela Panarella
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mariana G. Bexiga
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - George Galea
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Elaine D. O’ Neill
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Anna Salvati
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kenneth A. Dawson
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jeremy C. Simpson
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
26
|
Biondi M, Borzacchiello A, Mayol L, Ambrosio L. Nanoparticle-Integrated Hydrogels as Multifunctional Composite Materials for Biomedical Applications. Gels 2015; 1:162-178. [PMID: 30674171 PMCID: PMC6318588 DOI: 10.3390/gels1020162] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/19/2022] Open
Abstract
This review focuses on the most recent developments in the field of nanocomposite hydrogels intended for biomedical applications. Nanocomposite hydrogels are hydrated polymeric networks with a physically or covalently crosslinked three-dimensional (3D) structure swollen with water, in the presence of nanoparticles or nanostructures. A wide array of nanomaterials (polymeric, carbon-based, metallic, ceramic) can be incorporated within the hydrogel network to obtain reinforced nanocomposite hydrogels. Nanocomposites represent a new class of materials with properties absent in the individual components. In particular, the incorporation of nanomaterials within a polymeric hydrogel network is an attractive approach to tailor the mechanical properties of the hydrogels and/or to provide the nanocomposite with responsiveness to external stimuli.
Collapse
Affiliation(s)
- Marco Biondi
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| | - Assunta Borzacchiello
- Istituto per i Polimeri Compositi e Biomateriali (IPCB-CNR), P.le Tecchio 80, 80125 Napoli, Italy.
| | - Laura Mayol
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| | - Luigi Ambrosio
- Istituto per i Polimeri Compositi e Biomateriali (IPCB-CNR), P.le Tecchio 80, 80125 Napoli, Italy.
- Dipartimento Scienze Chimiche e Tecnologie dei Materiali (DSCTM-CNR), P.le Aldo Moro 7, 00185 Roma, Italy.
| |
Collapse
|
27
|
High content analysis at single cell level identifies different cellular responses dependent on nanomaterial concentrations. Sci Rep 2015; 5:13890. [PMID: 26345238 PMCID: PMC4561960 DOI: 10.1038/srep13890] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/07/2015] [Indexed: 01/18/2023] Open
Abstract
A mechanistic understanding of nanomaterial (NM) interaction with biological environments is pivotal for the safe transition from basic science to applied nanomedicine. NM exposure results in varying levels of internalized NM in different neighboring cells, due to variances in cell size, cell cycle phase and NM agglomeration. Using high-content analysis, we investigated the cytotoxic effects of fluorescent quantum dots on cultured cells, where all effects were correlated with the concentration of NMs at the single cell level. Upon binning the single cell data into different categories related to NM concentration, this study demonstrates, for the first time, that quantum dots activate both cytoprotective and cytotoxic mechanisms, resulting in a zero net result on the overall cell population, yet with significant effects in cells with higher cellular NM levels. Our results suggest that future NM cytotoxicity studies should correlate NM toxicity with cellular NM numbers on the single cell level, as conflicting mechanisms in particular cell subpopulations are commonly overlooked using classical toxicological methods.
Collapse
|
28
|
Bhattacharjee S. Emerging trend of advanced image analysis in nanomedicine. Nanomedicine (Lond) 2015; 10:2801-4. [DOI: 10.2217/nnm.15.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Sourav Bhattacharjee
- Advanced Drug Delivery Group, University College Dublin (UCD), Dublin, Ireland
- Conway Institute, University College Dublin (UCD), Dublin, Ireland
- School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|