1
|
Lai Y, Qiu J, Zheng K, Li X, Lin Y, Li Z, Sun H. Metformin-induced mitophagy suppresses auditory hair cell apoptosis via AMPK pathway. Brain Res Bull 2025; 221:111214. [PMID: 39826756 DOI: 10.1016/j.brainresbull.2025.111214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Hearing loss is a pervasive issue affecting numerous individuals, and its etiology and categorization are multifaceted. Among these, sensorineural hearing loss (SNHL) emerges as the most prevalent variant among these. The primary causative factor underlying SNHL resides in the depletion of auditory hair cells within the cochlea, yet the pursuit of efficacious therapeutic interventions remains an ongoing challenge. Previous investigations have illuminated the role of mitochondrial dysfunction in precipitating cellular apoptosis, and mitophagy has emerged as a promising mechanism to ameliorate such dysfunction. Additionally, it has been noted that metformin possesses the specific ability to induce mitophagy. Herein, our objective is to explore the protective effects of metformin-induced mitophagy against apoptosis in auditory hair cells (HEI-OC1 cells) and explore its potential mechanisms. Our results revealed that metformin effectively triggered mitophagy in HEI-OC1 cells. Moreover, metformin treatment showed the ability to prevent tert-butyl hydroperoxide (TBHP) induced mitochondrial dysfunction and intrinsic apoptotic pathways. Mechanistically, we discovered that metformin activates AMP-activated protein kinase (AMPK) signaling in HEI-OC1 cells stimulated by TBHP, thereby triggering mitophagy. Overall, our results suggest that metformin may represent a promising and innovative therapeutic strategy for mitigating the onset of hearing loss.
Collapse
Affiliation(s)
- Yifan Lai
- Department of Otolaryngology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; The First Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiawei Qiu
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Kuang Zheng
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiang Li
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yinuo Lin
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Zhengzheng Li
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Haiqiu Sun
- Department of Otolaryngology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
2
|
Gu X, Jiang M, Chen W. miR-145b/AP2B1 Axis Contributes to Noise-induced Sensorineural Hearing Loss In a Male Mouse Model. Cell Biochem Biophys 2025:10.1007/s12013-024-01665-3. [PMID: 39813009 DOI: 10.1007/s12013-024-01665-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
Sensorineural hearing loss (SNHL) is an increasingly prevalent sensory disorder, but the underlying mechanisms remain poorly understood. Adaptor related protein complex 2 subunit beta 1 (AP2B1) has been indicated to be detectable in mature cochleae. Nonetheless, it is unclear whether AP2B1 is implicated in the progression of SNHL. Male CBA/J mice were exposed to 2-20 kHz broadband noise at 96 or 101 dB SPL to induce temporary or permanent threshold shifts (TTS or PTS). Auditory brainstem responses were measured for hearing loss evaluation. Bioinformatics analysis was used to predict the upstream miRNAs of Ap2b1. RT-qPCR and western blotting were utilized to determine miR-145b and AP2B1 expression in mouse cochleae. Luciferase reporter assay was implemented to verify the interaction between Ap2b1 and miR-145b. Bioinformatics analysis identified miR-145b as an upstream miRNA of Ap2b1. AP2B1 expression was decreased and miR-145b expression was increased in mouse cochleae after PTS noise exposure. miR-145b targeted and negatively regulated Ap2b1 in PTS noise-exposed mice. Depletion of miR-145b alleviated auditory threshold shifts and outer hair cell loss in mice with exposure to PTS noise. In conclusion, inhibition of miR-145b ameliorates noise-induced SNHL in mice by upregulating AP2B1 expression.
Collapse
Affiliation(s)
- Xiang Gu
- Department of Otolaryngology, Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Mengxian Jiang
- Department of Otolaryngology, Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Wei Chen
- Department of Otolaryngology, Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
3
|
Cai J, Huang K, Li W, Wang T, Yue S, Chen Z, Xing G, Wei Q, Yao J, Cao X. Implication of GPRASP2 in the Proliferation and Hair Cell-Forming of Cochlear Supporting Cells. Cell Prolif 2024:e13792. [PMID: 39675768 DOI: 10.1111/cpr.13792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
G protein-coupled receptor-associated sorting protein 2 (GPRASP2) has been identified as the causative gene for X-linked recessive syndromic hearing loss (SHL) in our previous study. However, the role of GPRASP2 in auditory function remains unclear. The present study demonstrated that Gprasp2 overexpression in mouse organoids promoted the proliferation of supporting cells (SCs), which was mainly mediated by the Hedgehog signalling pathway. Meanwhile, GPRASP2 promoted hair cell (HC) formation from SCs via β-catenin signalling. In addition, GPRASP2 deficiency resulted in increased lysosomal degradation of SMO protein, leading to decreased expression of β-catenin and the Hedgehog pathway transcription factor GLI1. In neomycin-treated mouse cochlear explant, the smoothened agonist (SAG) recured the HC loss and further facilitated AAV-ie-Gprasp2 to promote the proliferation of SCs and formation of HCs. Our results suggested that GPRASP2 could be a potential candidate for gene therapy in the regeneration of HCs.
Collapse
Affiliation(s)
- Jing Cai
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Kun Huang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Wenrui Li
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Tianming Wang
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Shen Yue
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Zhibin Chen
- Department of Otolaryngology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Guangqian Xing
- Department of Otolaryngology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Liang R, Wang W, Gao W, Li S, Lu P, Chen J, Ding X, Ma P, Yuan H, Lun Y, Guo J, Wang Z, Mei H, Lu L. Calcitriol alleviates noise-induced hearing loss by regulating the ATF3/DUSP1 signalling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116906. [PMID: 39182283 DOI: 10.1016/j.ecoenv.2024.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Calcitriol (Cal) is the most active metabolite of vitamin D and has antioxidant and anti-inflammatory properties. The aim of this study was to investigate the role of Cal in noise-induced hearing loss (NIHL) to further elucidate the mechanism of noise-induced oxidative stress in the mouse cochlea. METHODS C57BL/6 J mice were given six intraperitoneal injections of Cal (500 ng/kg/d). After 14 days of noise exposure, auditory brainstem response (ABR) thresholds, and the cochlear outer hair cell loss rate were analysed to evaluate auditory function. Real-time fluorescence quantitative PCR, immunofluorescence and western blotting were performed in vitro after the treatment of cochlear explants with 100 µM tert-butyl hydroperoxide (TBHP) for 2.5 h and HEI-OC1 cells with 250 µM TBHP for 1.5 h. RESULTS In vivo experiments confirmed that Cal pretreatment mitigated NIHL and outer hair cell death. The in vitro results demonstrated that Cal significantly reduced TBHP-induced cochlear auditory nerve fibre degradation and spiral ganglion neuron damage. Moreover, treatment with Cal inhibited the expression of oxidative stress-related factors (3-NT and 4-HNE) and DNA damage-related factors (γ-H2A.X) and attenuated TBHP-induced apoptosis in cochlear explants and HEI-OC1 cells. A total of 1479 upregulated genes and 1443 downregulated genes were screened in cochlear tissue 1 h after noise exposure. The level of transcription factor 3 (ATF3) was significantly elevated in HEI-OC1 cells after TBHP stimulation. Gene Transcription Regulation Database (GTRD)and Cistrome database analyses revealed that the downstream target gene of ATF3 is dual specificity phosphatase 1 (DUSP1). Cistrome DB Toolkit database results showed that the transcription factor of DUSP1 was ATF3. In addition, the ChIP-PCR results indicated that ATF3 might be a direct transcription factor of DUSP1. CONCLUSION The results of our study suggest that Cal attenuates NIHL and inhibits noise-induced apoptosis by regulating the ATF3/DUSP1 signalling pathway.
Collapse
Affiliation(s)
- Rui Liang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weilong Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Gao
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Siyu Li
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Peiheng Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiawei Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuerui Ding
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Pengwei Ma
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hao Yuan
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yuqiang Lun
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jianing Guo
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zi Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hongkai Mei
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lianjun Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
5
|
Cai W, Huang Z, Sun B, Lu L, Ding X, Tao F. The differentiation of Lgr5+ progenitor cells on nanostructures of self-assembled silica beads. PLoS One 2024; 19:e0304809. [PMID: 38995923 PMCID: PMC11244819 DOI: 10.1371/journal.pone.0304809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/19/2024] [Indexed: 07/14/2024] Open
Abstract
Supporting cells(SCs) have been demonstrated to be a reliable source for regenerating hair cells(HCs). Previous research has reported that Lgr5+ SCs can regenerate HCs both in vitro and in vivo. However, there is limited knowledge about the impact of the material on Lgr5+ cells. In this study, Lgr5+ cells were isolated from neonatal Lgr5-EGFP-CreERT2 transgenic mice by flow cytometry and then plated on self-assembled silica beads (SB). Lgr5+ cell differentiation was observed by immunofluorescence. We found that in the direct differentiation assay, the SB group generated more hair cells than the control group(*p < 0.05). Especially in the SB group, Lgr5+ progenitors generated significantly more Myo7a+ HCs outside of the colony than in the control group(**p < 0.01). In the sphere differentiation assay, we found that the diameter of spheres in the SB group was significantly larger compared to those of the control group(**p < 0.01). However, the difference in the ratio of myo7a+ cell counts was not obvious(P>0.05). The experiment proved that the self-assembled silica beads could promote the differentiation of Lgr5+ progenitors in vitro. Our findings implicate that nanostructures of self-assembled silica beads can be used as vectors for stem cell research in the inner ear.
Collapse
Affiliation(s)
- Wenjun Cai
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Zhichun Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Baobin Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Ling Lu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Xiaoqiong Ding
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Feng Tao
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhong Da Hospital, Southeast University, Nanjing, China
| |
Collapse
|
6
|
Pang W, Li J, Qiu K, Yi X, Cheng D, Rao Y, Song Y, Deng D, Mao M, Li X, Ma N, Chen D, Luo Y, Xu W, Ren J, Zhao Y. Associations Between Body Composition and Sensorineural Hearing Loss Among Adults Based on the UK Biobank. Otolaryngol Head Neck Surg 2023; 169:875-883. [PMID: 36934447 DOI: 10.1002/ohn.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/20/2023]
Abstract
OBJECTIVE To explore the association between body composition and sensorineural hearing loss (SNHL). STUDY DESIGN Cross-sectional study, prospective study and Mendelian randomization (MR) analyses. SETTING UK Biobank. METHODS This cross-sectional study included 147,296 adult participants with complete data on body composition and the speech-reception-threshold (SRT) test. We further conducted a prospective study with 129,905 participants without SNHL at baseline and followed up to 15 years to explore the association between body composition and new-onset SNHL. Multivariable logistic regression and Cox regression models were used. Subgroup analyses stratified by age and sex were performed. We further assessed the causal association between body composition and SNHL using two-sample MR analyses. RESULTS Our cross-sectional study revealed that fat percentage, especially leg (odds ratio [OR] 1.46, p = .029) and arm (OR 1.43, p = .004), were significant risk factors for SNHL. However, fat-free mass, especially in the arm (OR 0.27, p < .001) and leg (OR 0.58, p < .001) showed significant protective effects against SNHL, which was substantially consistent with the results of the prospective study. In addition, we found that young women with SNHL were more susceptible to body composition indicators. However, MR analyses revealed no evidence of significant causal association. CONCLUSION Fat percentage, especially in the leg and arm, was a significant risk factor for SNHL, whereas fat-free mass, especially in the leg and arm, had significant protective effects against SNHL, however, these associations may not be causal.
Collapse
Affiliation(s)
- Wendu Pang
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Li
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Qiu
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaowei Yi
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Danni Cheng
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Yufang Rao
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Song
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Di Deng
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Minzi Mao
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohong Li
- Department of Oto-Rhino-Laryngology, Yaan People's Hospital, Yaan, Sichuan, China
| | - Ning Ma
- Department of Oto-Rhino-Laryngology, Panzhihua Central Hospital, Panzhihua, Sichuan, China
| | - Daibo Chen
- Department of Oto-Rhino-Laryngology, Panzhihua Central Hospital, Panzhihua, Sichuan, China
| | - Yi Luo
- Department of Oto-Rhino-Laryngology, Panzhihua Central Hospital, Panzhihua, Sichuan, China
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre and Dalla Lana School of Public Health, Toronto, Ontario, Canada
| | - Jianjun Ren
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Oto-Rhino-Laryngology, Langzhong People's Hospital, Langzhong, China
| | - Yu Zhao
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Fu X, Wan P, Lu L, Wan Y, Liu Z, Hong G, Cao S, Bi X, Zhou J, Qiao R, Guo S, Xiao Y, Wang B, Chang M, Li W, Li P, Zhang A, Sun J, Chai R, Gao J. Peroxisome Deficiency in Cochlear Hair Cells Causes Hearing Loss by Deregulating BK Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300402. [PMID: 37171794 PMCID: PMC10369297 DOI: 10.1002/advs.202300402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/15/2023] [Indexed: 05/13/2023]
Abstract
The peroxisome is a ubiquitous organelle in rodent cells and plays important roles in a variety of cell types and tissues. It is previously indicated that peroxisomes are associated with auditory function, and patients with peroxisome biogenesis disorders (PBDs) are found to have hearing dysfunction, but the specific role of peroxisomes in hearing remains unclear. In this study, two peroxisome-deficient mouse models (Atoh1-Pex5-/- and Pax2-Pex5-/- ) are established and it is found that peroxisomes mainly function in the hair cells of cochleae. Furthermore, peroxisome deficiency-mediated negative effects on hearing do not involve mitochondrial dysfunction and oxidative damage. Although the mammalian target of rapamycin complex 1 (mTORC1) signaling is shown to function through peroxisomes, no changes are observed in the mTORC1 signaling in Atoh1-Pex5-/- mice when compared to wild-type (WT) mice. However, the expression of large-conductance, voltage-, and Ca2+ -activated K+ (BK) channels is less in Atoh1-Pex5-/- mice as compared to the WT mice, and the administration of activators of BK channels (NS-1619 and NS-11021) restores the auditory function in knockout mice. These results suggest that peroxisomes play an essential role in cochlear hair cells by regulating BK channels. Hence, BK channels appear as the probable target for treating peroxisome-related hearing diseases such as PBDs.
Collapse
Affiliation(s)
- Xiaolong Fu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, P. R. China
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, P. R. China
| | - Peifeng Wan
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, P. R. China
- School of Life Science, Shandong University, Qingdao, 266237, P. R. China
| | - Ling Lu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210096, P. R. China
| | - Yingcui Wan
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, P. R. China
| | - Ziyi Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, P. R. China
| | - Guodong Hong
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, P. R. China
| | - Shengda Cao
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Xiuli Bi
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, P. R. China
| | - Jing Zhou
- The First Affiliated Hospital of Suzhou University, Suzhou University, Suzhou, P. R. China, 215000
| | - Ruifeng Qiao
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, P. R. China
| | - Siwei Guo
- School of Life Science, Shandong University, Qingdao, 266237, P. R. China
| | - Yu Xiao
- School of Life Science, Shandong University, Qingdao, 266237, P. R. China
| | - Bingzheng Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, P. R. China
| | - Miao Chang
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, P. R. China
| | - Wen Li
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, P. R. China
| | - Peipei Li
- School of Life Science, Shandong University, Qingdao, 266237, P. R. China
| | - Aizhen Zhang
- School of Life Science, Shandong University, Qingdao, 266237, P. R. China
| | - Jin Sun
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, P. R. China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, P. R. China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, P. R. China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, P. R. China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 101408, P. R. China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, P. R. China
| | - Jiangang Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, P. R. China
- School of Life Science, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
8
|
Robler SK, Coco L, Krumm M. Telehealth solutions for assessing auditory outcomes related to noise and ototoxic exposures in clinic and research. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:1737. [PMID: 36182272 DOI: 10.1121/10.0013706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
Nearly 1.5 billion people globally have some decline in hearing ability throughout their lifetime. Many causes for hearing loss are preventable, such as that from exposure to noise and chemicals. According to the World Health Organization, nearly 50% of individuals 12-25 years old are at risk of hearing loss due to recreational noise exposure. In the occupational setting, an estimated 16% of disabling hearing loss is related to occupational noise exposure, highest in developing countries. Ototoxicity is another cause of acquired hearing loss. Audiologic assessment is essential for monitoring hearing health and for the diagnosis and management of hearing loss and related disorders (e.g., tinnitus). However, 44% of the world's population is considered rural and, consequently, lacks access to quality hearing healthcare. Therefore, serving individuals living in rural and under-resourced areas requires creative solutions. Conducting hearing assessments via telehealth is one such solution. Telehealth can be used in a variety of contexts, including noise and ototoxic exposure monitoring, field testing in rural and low-resource settings, and evaluating auditory outcomes in large-scale clinical trials. This overview summarizes current telehealth applications and practices for the audiometric assessment, identification, and monitoring of hearing loss.
Collapse
Affiliation(s)
- Samantha Kleindienst Robler
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Laura Coco
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, California 92182, USA
| | - Mark Krumm
- Department of Hearing Sciences, Kent State University, Kent, Ohio 44240, USA
| |
Collapse
|
9
|
Huang J, Sun X, Wang H, Chen R, Yang Y, Hu J, Zhang Y, Gui F, Huang J, Yang L, Hong Y. Conditional overexpression of neuritin in supporting cells (SCs) mitigates hair cell (HC) damage and induces HC regeneration in the adult mouse cochlea after drug-induced ototoxicity. Hear Res 2022; 420:108515. [DOI: 10.1016/j.heares.2022.108515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/04/2022]
|
10
|
Li CL, Ma SH, Wu CY, Chang PH, Chang YT, Wu CY. Association Between Sensorineural Hearing Loss and Vitiligo: A Nationwide Population-Based Cohort Study. J Eur Acad Dermatol Venereol 2022; 36:1097-1103. [PMID: 35274365 DOI: 10.1111/jdv.18047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Vitiligo is an acquired depigmentation disease of the skin due to melanocyte destruction. A shared pathogenesis affecting melanocytes in the cochlea has been postulated. However, the association between vitiligo and sensorineural hearing loss (SNHL) is unclear. OBJECTIVE To identify the association between vitiligo and SNHL. METHODS This retrospective, nationwide cohort study included patients with vitiligo and age-, sex-, and comorbidities-matched controls (propensity score matching; 1:4 ratio) from the National Health Insurance Research Database in Taiwan from January 1, 2000 to December 31, 2013. RESULTS In total, 13048 patients with vitiligo and 52192 controls were included. SNHL developed in 0.61% patients with vitiligo and 0.29% controls. After adjusting for sex, age, and comorbidities, a significant association between vitiligo and SNHL was found (adjusted hazard ratio, 2.18; 95% CI, 1.66-2.86). The other risk factors for developing SNHL included increased age, male sex, hyperlipidemia, coronary artery disease, and diffuse connective tissue diseases. In subgroup analysis, the association between vitiligo and SNHL remained significant in almost all the subgroups. CONCLUSION A 2.2-fold increased risk of developing SNHL was found in patients with vitiligo. Proper referral to otologists for early screening and closer follow-up of SNHL should be considered for patients with vitiligo, especially for patients with older age.
Collapse
Affiliation(s)
- Chia-Lun Li
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Hsiang Ma
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Ying Wu
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Public Health and Department of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Translational Research and Center of Excellence for Cancer Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Public Health, China Medical University, Taichung, Taiwan
| | - Pei-Hsuan Chang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Ting Chang
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Dermatology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chen-Yi Wu
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Public Health and Department of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Dermatology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
11
|
Xu Z, Rai V, Zuo J. TUB and ZNF532 Promote the Atoh1-Mediated Hair Cell Regeneration in Mouse Cochleae. Front Cell Neurosci 2021; 15:759223. [PMID: 34819838 PMCID: PMC8606527 DOI: 10.3389/fncel.2021.759223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/15/2021] [Indexed: 12/31/2022] Open
Abstract
Hair cell (HC) regeneration is a promising therapy for permanent sensorineural hearing loss caused by HC loss in mammals. Atoh1 has been shown to convert supporting cells (SCs) to HCs in neonatal cochleae; its combinations with other factors can improve the efficiency of HC regeneration. To identify additional transcription factors for efficient Atoh1-mediated HC regeneration, here we optimized the electroporation procedure for explant culture of neonatal mouse organs of Corti and tested multiple transcription factors, Six2, Ikzf2, Lbh, Arid3b, Hmg20 a, Tub, Sall1, and Znf532, for their potential to promote Atoh1-mediated conversion of SCs to HCs. These transcription factors are expressed highly in HCs but differentially compared to the converted HCs based on previous studies, and are also potential co-reprograming factors for Atoh1-mediated SC-to-HC conversion by literature review. P0.5 cochlear explants were electroporated with these transcription factors alone or jointly with Atoh1. We found that Sox2+ progenitors concentrated within the lateral greater epithelial ridge (GER) can be electroporated efficiently with minimal HC damage. Atoh1 ectopic expression promoted HC regeneration in Sox2+ lateral GER cells. Transcription factors Tub and Znf532, but not the other six tested, promoted the HC regeneration mediated by Atoh1, consistent with previous studies that Isl1 promotes Atoh1-mediated HC conversionex vivo and in vivo and that both Tub and Znf532 are downstream targets of Isl1. Thus, our studies revealed an optimized electroporation method that can transfect the Sox2+ lateral GER cells efficiently with minimal damage to the endogenous HCs. Our results also demonstrate the importance of the Isl1/Tub/Znf532 pathway in promoting Atoh1-mediated HC regeneration.
Collapse
Affiliation(s)
- Zhenhang Xu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States.,Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China
| | - Vikrant Rai
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Jian Zuo
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| |
Collapse
|
12
|
Chen Y, Qiang R, Zhang Y, Cao W, Wu L, Jiang P, Ai J, Ma X, Dong Y, Gao X, Li H, Lu L, Zhang S, Chai R. The Expression and Roles of the Super Elongation Complex in Mouse Cochlear Lgr5+ Progenitor Cells. Front Cell Neurosci 2021; 15:735723. [PMID: 34658793 PMCID: PMC8519586 DOI: 10.3389/fncel.2021.735723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/14/2021] [Indexed: 12/04/2022] Open
Abstract
The super elongation complex (SEC) has been reported to play a key role in the proliferation and differentiation of mouse embryonic stem cells. However, the expression pattern and function of the SEC in the inner ear has not been investigated. Here, we studied the inner ear expression pattern of three key SEC components, AFF1, AFF4, and ELL3, and found that these three proteins are all expressed in both cochlear hair cells (HCs)and supporting cells (SCs). We also cultured Lgr5+ inner ear progenitors in vitro for sphere-forming assays and differentiation assays in the presence of the SEC inhibitor flavopiridol. We found that flavopiridol treatment decreased the proliferation ability of Lgr5+ progenitors, while the differentiation ability of Lgr5+ progenitors was not affected. Our results suggest that the SEC might play important roles in regulating inner ear progenitors and thus regulating HC regeneration. Therefore, it will be very meaningful to further investigate the detailed roles of the SEC signaling pathway in the inner ear in vivo in order to develop effective treatments for sensorineural hearing loss.
Collapse
Affiliation(s)
- Yin Chen
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Ruiying Qiang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Yuan Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Wei Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Leilei Wu
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Pei Jiang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Jingru Ai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Xiangyu Ma
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Ying Dong
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Xia Gao
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - He Li
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ling Lu
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Shasha Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Wang Q, Li W, Cai C, Hu P, Lai R. miR-153/KCNQ4 axis contributes to noise-induced hearing loss in a mouse model. J Physiol Sci 2021; 71:28. [PMID: 34479475 PMCID: PMC10718010 DOI: 10.1186/s12576-021-00814-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022]
Abstract
Damage to the cochlear sensory epithelium is a key contributor to noise-induced sensorineural hearing loss (SNHL). KCNQ4 plays an important role in the cochlear potassium circulation and outer hair cells survival. As miR-153 can target and regulate KCNQ4, we sought to study the role of miR-153 in SNHL. 12-week-old male CBA/J mice were exposed to 2-20 kHz broadband noise at 96 dB SPL to induce temporary threshold shifts and 101 dB SPL to induce permanent threshold shifts. Hearing loss was determined by auditory brainstem responses (ABR). Relative expression of miR-153 and KCNQ4 in mice cochlea were determined by Real-Time quantitative PCR. miR-153 mimics were co-transfected with wild type or mutated KCNQ4 into HEK293 cells. Luciferase reporter assay was used to validate the binding between miR-153 and KCNQ4. AAV-sp-153 was constructed and administrated intra-peritoneally 24- and 2-h prior and immediately after noise exposure to knockdown miR-153. The KCNQ4 is mainly expressed in outer hair cells (OHCs). We showed that the expression of KCNQ4 in mice cochlea was reduced and miR-153 expression was significantly increased after noise exposure compared to control. miR-153 bound to 3'UTR of KNCQ4, and the knockdown of miR-153 with the AAV-sp-153 administration restored KCNQ4 mRNA and protein expression. In addition, the knockdown of miR-153 reduced ABR threshold shifts at 8, 16, and 32 kHz after permanent threshold shifts (PTS) noise exposure. Correspondingly, OHC losses were attenuated with inhibition of miR-153. This study demonstrates that miR-153 inhibition significantly restores KNCQ4 in cochlea after noise exposure, which attenuates SNHL. Our study provides a new potential therapeutic target in the prevention and treatment of SNHL.
Collapse
Affiliation(s)
- Qin Wang
- Department of Otolaryngology and Head & Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Wei Li
- Department of Otolaryngology and Head & Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Cuiyun Cai
- Department of Otolaryngology and Head & Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Peng Hu
- Department of Otolaryngology and Head & Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Ruosha Lai
- Department of Otolaryngology and Head & Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
14
|
Sun F, Zhang J, Chen L, Yuan Y, Guo X, Dong L, Sun J. Epac1 Signaling Pathway Mediates the Damage and Apoptosis of Inner Ear Hair Cells after Noise Exposure in a Rat Model. Neuroscience 2021; 465:116-127. [PMID: 33838290 DOI: 10.1016/j.neuroscience.2021.03.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/12/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023]
Abstract
To investigate the role of the exchange protein directly activated by cAMP (Epac) signaling pathway in inner ear hair cell damage and apoptosis after noise exposure, we analyzed the expression level of Epac1 in a rat model of noise-induced hearing loss (NIHL), based on rat exposure to a 4-kHz and 106-dB sound pressure level (SPL) for 8 h. Loss of outer hair cells (OHCs), mitochondrial lesions, and hearing loss were examined after treatment with the Epac agonist, 8-CPT, or the Epac inhibitor, ESI-09. The effects of 8-CPT and ESI-09 on cell proliferation and apoptosis were examined by CCK-8 assays, holographic microscopy imaging, and Annexin-V FITC/PI staining in HEI-OC1 cells. The effects of 8-CPT and ESI-09 on Ca2+ entry were evaluated by confocal Ca2+ fluorescence measurement. We found that the expression level of Epac1 was significantly increased in the cochlear tissue after noise exposure. In NIHL rats, 8-CPT increased the loss of OHCs, mitochondrial lesions, and hearing loss compared to control rats, while ESI-09 produced the opposite effects. Oligomycin was used to induce HEI-OC1 cell damage in vitro. In HEI-OC1 cells treated with oligomycin, 8-CPT and ESI-09 increased and reduced cell apoptosis, respectively. Moreover, 8-CPT promoted Ca2+ uptake in HEI-OC1 cells, while ESI-09 inhibited this process. In conclusion, our data provide strong evidence that the Epac1 signaling pathway mediates early pathological damage in NIHL, and that Epac1 inhibition protects from NIHL, identifying Epac1 as a new potential therapeutic target for NIHL.
Collapse
Affiliation(s)
- Fanfan Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Hefei 230001, China; Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei 230032, China
| | - Junge Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Hefei 230001, China
| | - Li Chen
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Hefei 230001, China
| | - Yuhao Yuan
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiaotao Guo
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Hefei 230001, China
| | - Liuyi Dong
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei 230032, China.
| | - Jiaqiang Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Hefei 230001, China.
| |
Collapse
|
15
|
Peng T, Peng JJ, Miao GY, Tan ZQ, Liu B, Zhou E. miR‑125/CDK2 axis in cochlear progenitor cell proliferation. Mol Med Rep 2020; 23:102. [PMID: 33300064 PMCID: PMC7723065 DOI: 10.3892/mmr.2020.11741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/16/2020] [Indexed: 12/25/2022] Open
Abstract
Hearing loss ranks fourth among the principal causes of disability worldwide, and manipulation of progenitor cells may be a key strategy for hair cell regeneration. The present study investigated the role and mechanism of miR‑125 on the proliferation of cochlear progenitor cells (CPCs). CPCs were isolated from the cochleae of neonatal rats, and their morphology was observed. Furthermore, the differentiation ability of CPCs was determined by assessing the expression of 5‑bromodeoxyuridine (BrdU), nestin and myosin VII by immunofluorescence. The expression levels of miR‑125 and cyclin‑dependent kinase 2 (CDK2) as well as the cell proliferation of CPCs were assessed. In addition, following gain‑ and loss‑of‑function assays, the cell cycle was examined by flow cytometry, and the expression levels of miR‑125, CDK2, proliferating cell nuclear antigen (PCNA) and nestin were determined by reverse transcription‑quantitative PCR and western blotting. The binding sites between miR‑125 and CDK2 were predicted by TargetScan and identified by the dual luciferase reporter assay. The results demonstrated that different types of progenitor spheres were observed from CPCs with positive expression of BrdU, nestin and myosin VII. Following in vitro incubation for 2, 4 and 7 days, the spheres were enlarged, and CPC proliferation gradually increased and reached a plateau after further incubation for 3 days. Furthermore, the expression levels of nestin and PCNA in CPCs increased and then decreased during in vitro incubation for 2, 4 and 7 days. Following this incubation, the expression levels of miR‑125 in CPCs decreased; thereafter, its expression increased, and the expression pattern was different from that of CDK2. In addition, miR‑125 overexpression in CPCs decreased the expression of CDK2 and the number of cells in the S phase. Different expression patterns were found in CPCs in response to the miR‑125 knockdown. In addition, miR‑125 directly targeted CDK2. Simultaneous knockdown of miR‑125 and CDK2 enhanced CPC proliferation compared with CDK2 knockdown alone. Taken together, the findings from the present study suggested that miR‑125 may inhibit CPC proliferation by downregulating CDK2. The present study may provide a novel therapeutic direction for treatment of hearing loss.
Collapse
Affiliation(s)
- Tao Peng
- Department of Otolaryngology and Head and Neck Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410007, P.R. China
| | - Jing-Jing Peng
- Department of Obstetrics and Gynecology, Changsha Maternal and Child Health Care Hospital, Changsha, Hunan 410005, P.R. China
| | - Gang-Yong Miao
- Department of Otolaryngology and Head and Neck Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410007, P.R. China
| | - Zhi-Qiang Tan
- Department of Otolaryngology and Head and Neck Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410007, P.R. China
| | - Bin Liu
- Department of Otolaryngology and Head and Neck Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410007, P.R. China
| | - En Zhou
- Department of Otolaryngology and Head and Neck Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
16
|
Takahashi M, Sanchez JT. Effects of Neurotrophin-3 on Intrinsic Neuronal Properties at a Central Auditory Structure. Neurosci Insights 2020; 15:2633105520980442. [PMID: 33354669 PMCID: PMC7734498 DOI: 10.1177/2633105520980442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/23/2020] [Indexed: 11/15/2022] Open
Abstract
Neurotrophins, a class of growth factor proteins that control neuronal proliferation, morphology, and apoptosis, are found ubiquitously throughout the nervous system. One particular neurotrophin (NT-3) and its cognate tyrosine receptor kinase (TrkC) have recently received attention as a possible therapeutic target for synaptopathic sensorineural hearing loss. Additionally, research shows that NT-3-TrkC signaling plays a role in establishing the sensory organization of frequency topology (ie, tonotopic order) in the cochlea of the peripheral inner ear. However, the neurotrophic effects of NT-3 on central auditory properties are unclear. In this study we examined whether NT-3-TrkC signaling affects the intrinsic electrophysiological properties at a first-order central auditory structure in chicken, known as nucleus magnocellularis (NM). Here, the expression pattern of specific neurotrophins is well known and tightly regulated. By using whole-cell patch-clamp electrophysiology, we show that NT-3 application to brainstem slices does not affect intrinsic properties of high-frequency neuronal regions but had robust effects for low-frequency neurons, altering voltage-dependent potassium functions, action potential repolarization kinetics, and passive membrane properties. We suggest that NT-3 may contribute to the precise establishment and organization of tonotopy in the central auditory pathway by playing a specialized role in regulating the development of intrinsic neuronal properties of low-frequency NM neurons.
Collapse
Affiliation(s)
- Momoko Takahashi
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Jason Tait Sanchez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- The Hugh Knowles Hearing Research Center, Northwestern University, Evanston, IL, USA
| |
Collapse
|
17
|
Song Q, Wang J. Effects of the lignan compound (+)-Guaiacin on hair cell survival by activating Wnt/β-Catenin signaling in mouse cochlea. Tissue Cell 2020; 66:101393. [PMID: 32933716 DOI: 10.1016/j.tice.2020.101393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/19/2020] [Accepted: 05/31/2020] [Indexed: 01/25/2023]
Abstract
Wnt/β-Catenin signaling is required for the development and differentiation of cochlear hair cells. Total of 80 natural compounds derived from the FDA-approved Drug Library of Selleck were screened by T-cell factor Reporter Plasmid (TOP)-Flash assay to identify the activation of Wnt/β-Catenin signaling. The mouse cochlear hair cells (HEI-OC1) were treated with cisplatin with or without Guaiacin, and the relative expression of β-Catenin and TRIM33 were detected by qRT-PCR and Western blots. The viability of HEI-OC1 was assayed by MTT method, and mouse cochlear cultures were utilized to detect the Ex vivo survival of cochlear hair cells. Guaiacin was testified to have the most vigorous ability to promote Wnt/β-Catenin signaling among 80 compounds detected, and it can also improve the β-Catenin signaling in mouse cochlear hair cells with up-regulated β-Catenin protein expression, unchanged β-Catenin mRNA expression, and down-regulated TRIM33 expression. Guaiacin increased the viability of HEI-OC1 cells cultured with or without cisplatin, and such a protective effect was also testified in mouse cochlear cultures. Our data indicate that Guaiacin could increase Wnt/β-Catenin signaling by regulating TRIM33/β-Catenin axis, which contributes to the improved survival of cochlear hair cells.
Collapse
Affiliation(s)
- Quanfa Song
- Department of Otolaryngology, Weifang City Hanting District People's Hospital, Weifang, 261100, Shandong, China
| | - Junming Wang
- Department of Otolaryngology, Weifang City Hanting District People's Hospital, Weifang, 261100, Shandong, China.
| |
Collapse
|
18
|
Pouraghaei S, Moztarzadeh F, Chen C, Ansari S, Moshaverinia A. Microenvironment Can Induce Development of Auditory Progenitor Cells from Human Gingival Mesenchymal Stem Cells. ACS Biomater Sci Eng 2020; 6:2263-2273. [PMID: 33455314 DOI: 10.1021/acsbiomaterials.9b01795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sensorineural hearing loss in mammals occurs due to irreversible damage to the sensory epithelia of the inner ear and has very limited treatment options. The ability to regenerate the auditory progenitor cells is a promising approach for the treatment of sensorineural hearing loss; therefore, finding an appropriate and easily accessible stem cell source for restoring the sense of hearing would be of great interest. Here, we proposed a novel easy-to-access source of cells with the ability to recover auditory progenitor cells. In this study, gingival mesenchymal stem cells (GMSCs) were utilized, as these cells have high self-renewal and multipotent differentiation capacity and can be obtained easily from the oral cavity or discarded tissue samples at dental clinics. To manipulate the biophysical properties of the cellular microenvironment for promoting GMSC differentiation toward the target cells, we also tried to propose a candidate biomaterial. GMSCs in combination with an appropriate scaffold material can, therefore, present advantageous therapeutic options for a number of conditions. Here, we report the potential of GMSCs to differentiate into auditory progenitor cells while supporting them with an optimized three-dimensional scaffold and certain growth factors. A hybrid hydrogel scaffold based on peptide modified alginate and Matrigel was used here in addition to the presence of fibroblast growth factor-basic (bFGF), insulin-like growth factor (IGF), and epidermal growth factor (EGF). Our in vitro and in vivo studies confirmed the auditory differentiation potential of GMSCs within the engineered microenvironment.
Collapse
Affiliation(s)
- Sevda Pouraghaei
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, United States
| | - Fathollah Moztarzadeh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sahar Ansari
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Alireza Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, United States
- California NanoSystems Institute, University of California, Los Angeles, California, United States
| |
Collapse
|
19
|
Deng X, Liu Z, Li X, Zhou Y, Hu Z. Generation of new hair cells by DNA methyltransferase (Dnmt) inhibitor 5-azacytidine in a chemically-deafened mouse model. Sci Rep 2019; 9:7997. [PMID: 31142766 PMCID: PMC6541592 DOI: 10.1038/s41598-019-44313-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 04/02/2019] [Indexed: 02/08/2023] Open
Abstract
Regeneration of mature mammalian inner ear hair cells remains to be a challenge. This study aims to evaluate the ability of DNA methyltransferase (Dnmt) inhibitor 5-azacytidine (5-aza) to generate outer hair cells (OHCs) in a chemically-deafened adult mouse model. 5-aza was administrated into the mouse inner ear via the round window. Immunofluorescence was used to examine the expression of hair cell specific proteins following 5-aza treatment. The results showed that in the chemically-deafened mouse cochlea, new OHCs were found post 5-aza treatment, whereas OHCs were completely lost in saline-treated mice. New hair cells expressed multiple hair cell markers included Myosin VIIa, Pou4f3 and Myosin VI. Newly-generated hair cells presented in three cochlear turns and were able to survive for at least six weeks. The effects of new hair cells generation by 5-aza were concentration dependent. Quantitative PCR study indicates that 5-aza may function through Dnmt1 inhibition. The results of this report suggest that the Dnmt inhibitor 5-aza may promote hair cell regeneration in a chemically-deafened mouse model.
Collapse
Affiliation(s)
- Xin Deng
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, USA
| | - Zhenjie Liu
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, USA
| | - Xiaoyang Li
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, USA
| | - Yang Zhou
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, USA
| | - Zhengqing Hu
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, USA.
- John D. Dingell VA Medical Center, Detroit, Michigan, USA.
| |
Collapse
|
20
|
Chorath KT, Willis MJ, Morton-Gonzaba N, Humann WJ, Moreira A. Mesenchymal stem cells for sensorineural hearing loss: protocol for a systematic review of preclinical studies. Syst Rev 2019; 8:126. [PMID: 31128597 PMCID: PMC6535185 DOI: 10.1186/s13643-019-1015-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 04/04/2019] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Sensorineural hearing loss (SNHL) is the most common form of hearing impairment and is characterized by a loss of receptor hair cells and/or spiral ganglion neurons. Regenerative stem cell therapy could potentially restore normal hearing and slow the progression of hearing loss in patients. Preclinical animal studies have demonstrated that mesenchymal stem cells (MSCs) could be a promising new therapy for this condition. These findings have prompted investigators to begin human clinical trials to assess the safety and efficacy of MSCs for the treatment of SNHL. The objective of the proposed systematic review is to examine the efficacy of MSCs as a therapy for SNHL in animal models. METHODS We will include preclinical animal studies of SNHL in which MSCs are administered, and outcomes are compared against MSC-naïve controls. The primary outcome will include audiologic tests that are routinely used in experimental studies of hearing loss, such as auditory brainstem response (ABR) and distortion product otoacoustic emissions testing (DPOAE). Secondary outcomes will include histology, microscopy, gene protein expression, and behavioral responses of animals. Electronic searches of MEDLINE via PubMed, Scopus, ScienceDirect, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) will be performed. Search results will be screened independently and in duplicate. Data from eligible studies will be extracted, pooled, and analyzed using random effects models. Risk of bias and publication bias will be assessed using the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) risk of bias tool and Funnel Plots/Egger's regression tests, respectively. DISCUSSION This systematic review will provide a summary of the efficacy of MSC therapy in animal models of SNHL, utilizing functional hearing assessment as a primary outcome. Findings from this review are important because they can elucidate research gaps that should be addressed in future preclinical studies and in turn can be translated into clinical studies. SYSTEMATIC REVIEW REGISTRATION CAMARADES ( http://www.dcn.ed.ac.uk/camarades/ ).
Collapse
Affiliation(s)
- Kevin T Chorath
- Department of Pediatrics, Division of Neonatology, The University of Texas Health San Antonio, 7300 Floyd Curl Dr. MC-7812, San Antonio, TX, 78229, USA
| | - Matthew J Willis
- Department of Pediatrics, Division of Neonatology, The University of Texas Health San Antonio, 7300 Floyd Curl Dr. MC-7812, San Antonio, TX, 78229, USA
| | - Nicolas Morton-Gonzaba
- Department of Pediatrics, Division of Neonatology, The University of Texas Health San Antonio, 7300 Floyd Curl Dr. MC-7812, San Antonio, TX, 78229, USA
| | - Walter J Humann
- Department of Otolaryngology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Alvaro Moreira
- Department of Pediatrics, Division of Neonatology, The University of Texas Health San Antonio, 7300 Floyd Curl Dr. MC-7812, San Antonio, TX, 78229, USA.
| |
Collapse
|