1
|
Chaudhary N, Choudhary BS, Shivashankar A, Manna S, Ved K, Shaikh S, Khanna S, Baar J, Dani J, Sahoo S, Soundharya R, Jolly MK, Verma N. EGFR-to-Src family tyrosine kinase switching in proliferating-DTP TNBC cells creates a hyperphosphorylation-dependent vulnerability to EGFR TKI. Cancer Cell Int 2025; 25:55. [PMID: 39972345 PMCID: PMC11841279 DOI: 10.1186/s12935-025-03691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/12/2025] [Indexed: 02/21/2025] Open
Abstract
Triple-Negative Breast Cancer (TNBC) is the most aggressive type of breast malignancy, with chemotherapy as the only mainstay treatment. TNBC patients have the worst prognoses as a large fraction of them do not achieve complete pathological response post-treatment and develop drug-resistant residual disease. Molecular mechanisms that trigger proliferation in drug-resistant chemo-residual TNBC cells are poorly understood due to the lack of investigations using clinically relevant cellular models. In this study, we have established TNBC subtype-specific cellular models of proliferating drug-tolerant persister (PDTP) cells using different classes of chemotherapeutic agents that recapitulate clinical residual disease with molecular heterogeneity. Analysis of total phospho-tyrosine signals in TNBC PDTPs showed an enhanced phospho-tyrosine content compared to the parental cells (PC). Interestingly, using mass-spectrometry analysis, we identified a dramatic decrease in epidermal growth factor receptor (EGFR) expression in the PDTPs, while the presence of hyper-activated tyrosine phosphorylation of EGFR compared to PC. Further, we show that EGFR has enhanced lysosomal trafficking in PDTPs with a concomitant increase in N-Myc Downstream Regulated-1 (NDRG1) expression that co-localizes with EGFR to mediate receptor degradation. More surprisingly, we found that reduced protein levels of EGFR are coupled with a robust increase in Src family kinases, including Lyn and Fyn kinases, that creates a hyper-phosphorylation state of EGFR-Src tyrosine kinases axis in PDTPs and mediates downstream over-activation of STAT3, AKT and MAP kinases. Moreover, paclitaxel-derived PDTPs show increased sensitivity to EGFR TKI Gefitinib and its combination with paclitaxel selectively induced cell death in Paclitaxel-derived PDTP (PDTP-P) TNBC cells and 3D spheroids by strongly downregulating phosphorylation of EGFR-Src with concomitant downregulation of Lyn and Fyn tyrosine kinases. Collectively, this study identifies a unique hyper-phosphorylation cellular state of TNBC PDTPs established by switching of EGFR-Src family tyrosine kinases, creating a vulnerability to EGFR TKI.
Collapse
Affiliation(s)
- Nazia Chaudhary
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Bhagya Shree Choudhary
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
- Tata Memorial Hospital, Homi Bhabha National Institute, Dr. E Borges Road, Anushakti Nagar, Parel, Mumbai, Maharashtra, India
| | - Anusha Shivashankar
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Subhakankha Manna
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Khyati Ved
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Shagufa Shaikh
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
- Tata Memorial Hospital, Homi Bhabha National Institute, Dr. E Borges Road, Anushakti Nagar, Parel, Mumbai, Maharashtra, India
| | - Sonal Khanna
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Jeetnet Baar
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Jagruti Dani
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India
| | - R Soundharya
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India
| | - Nandini Verma
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India.
- Tata Memorial Hospital, Homi Bhabha National Institute, Dr. E Borges Road, Anushakti Nagar, Parel, Mumbai, Maharashtra, India.
| |
Collapse
|
2
|
Alsaed B, Lin L, Son J, Li J, Smolander J, Lopez T, Eser PÖ, Ogino A, Ambrogio C, Eum Y, Thai T, Wang H, Sutinen E, Mutanen H, Duàn H, Bobik N, Borenius K, Feng WW, Nabet B, Mustjoki S, Laaksonen S, Eschle BK, Poitras MJ, Barbie D, Ilonen I, Gokhale P, Jänne PA, Haikala HM. Intratumor heterogeneity of EGFR expression mediates targeted therapy resistance and formation of drug tolerant microenvironment. Nat Commun 2025; 16:28. [PMID: 39747003 PMCID: PMC11695629 DOI: 10.1038/s41467-024-55378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors are commonly used to treat non-small cell lung cancers with EGFR mutations, but drug resistance often emerges. Intratumor heterogeneity is a known cause of targeted therapy resistance and is considered a major factor in treatment failure. This study identifies clones of EGFR-mutant non-small cell lung tumors expressing low levels of both wild-type and mutant EGFR protein. These EGFR-low cells are intrinsically more tolerant to EGFR inhibitors, more invasive, and exhibit an epithelial-to-mesenchymal-like phenotype compared to their EGFR-high counterparts. The EGFR-low cells secrete Transforming growth factor beta (TGFβ) family cytokines, leading to increased recruitment of cancer-associated fibroblasts and immune suppression, thus contributing to the drug-tolerant tumor microenvironment. Notably, pharmacological induction of EGFR using epigenetic inhibitors sensitizes the resistant cells to EGFR inhibition. These findings suggest that intrinsic drug resistance can be prevented or reversed using combination therapies.
Collapse
Affiliation(s)
- Bassel Alsaed
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Linh Lin
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Jieun Son
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jiaqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Johannes Smolander
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Timothy Lopez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Pinar Ö Eser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Atsuko Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Yoonji Eum
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tran Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Haiyun Wang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Eva Sutinen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pulmonary Medicine, Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Hilma Mutanen
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Hanna Duàn
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Nina Bobik
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Kristian Borenius
- Department of General Thoracic and Esophageal Surgery, Heart and Lung Center, Helsinki University Hospital & University of Helsinki, Helsinki, Finland
| | - William W Feng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Satu Mustjoki
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Sanna Laaksonen
- Department of Pathology, Helsinki University Hospital & University of Helsinki, Helsinki, Finland
| | - Benjamin K Eschle
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael J Poitras
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ilkka Ilonen
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of General Thoracic and Esophageal Surgery, Heart and Lung Center, Helsinki University Hospital & University of Helsinki, Helsinki, Finland
| | - Prafulla Gokhale
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Helsinki University Hospital & University of Helsinki, Helsinki, Finland
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Heidi M Haikala
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Han R, Sun X, Wu Y, Yang YH, Wang QC, Zhang XT, Ding T, Yang JT. Proteomic and Phosphoproteomic Profiling of Matrix Stiffness-Induced Stemness-Dormancy State Transition in Breast Cancer Cells. J Proteome Res 2024; 23:4658-4673. [PMID: 39298182 DOI: 10.1021/acs.jproteome.4c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The dormancy of cancer stem cells is a major factor leading to drug resistance and a high rate of late recurrence and mortality in estrogen receptor-positive (ER+) breast cancer. Previously, we demonstrated that a stiffer matrix induces tumor cell dormancy and drug resistance, whereas a softened matrix promotes tumor cells to exhibit a stem cell state with high proliferation and migration. In this study, we present a comprehensive analysis of the proteome and phosphoproteome in response to gradient changes in matrix stiffness, elucidating the mechanisms behind cell dormancy-induced drug resistance. Overall, we found that antiapoptotic and membrane transport processes may be involved in the mechanical force-induced dormancy resistance of ER+ breast cancer cells. Our research provides new insights from a holistic proteomic and phosphoproteomic perspective, underscoring the significant role of mechanical forces stemming from the stiffness of the surrounding extracellular matrix as a critical regulatory factor in the tumor microenvironment.
Collapse
Affiliation(s)
- Rong Han
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| | - Xu Sun
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| | - Yue Wu
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| | - Ye-Hong Yang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| | - Qiao-Chu Wang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| | - Xu-Tong Zhang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| | - Tao Ding
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| | - Jun-Tao Yang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| |
Collapse
|
4
|
Decollogny M, Rottenberg S. Persisting cancer cells are different from bacterial persisters. Trends Cancer 2024; 10:393-406. [PMID: 38429144 DOI: 10.1016/j.trecan.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
The persistence of drug-sensitive tumors poses a significant challenge in cancer treatment. The concept of bacterial persisters, which are a subpopulation of bacteria that survive lethal antibiotic doses, is frequently used to compare to residual disease in cancer. Here, we explore drug tolerance of cancer cells and bacteria. We highlight the fact that bacteria, in contrast to cancer cells, have been selected for survival at the population level and may therefore possess contingency mechanisms that cancer cells lack. The precise mechanisms of drug-tolerant cancer cells and bacterial persisters are still being investigated. Undoubtedly, by understanding common features as well as differences, we, in the cancer field, can learn from microbiology to find strategies to eradicate persisting cancer cells.
Collapse
Affiliation(s)
- Morgane Decollogny
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Bern Center for Precision Medicine and Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Bern Center for Precision Medicine and Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Ren H, Wang Z, Zhang L, Zhu G, Li F, Chen B. Clinical significance of low expression of CADM3 in breast cancer and preliminary exploration of related mechanisms. BMC Cancer 2024; 24:367. [PMID: 38515057 PMCID: PMC10958964 DOI: 10.1186/s12885-024-12114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Cell adhesion molecule 3 (CADM3), a transmembrane glycoprotein on cell membranes, plays a role in the way of ligand and receptor interaction. However, there are few studies on CADM3 in tumors, and how it works in breast cancer (BC) remains unclear. METHODS The Cancer Genome Atlas (TCGA) database and clinical samples were used to analyze CADM3 expression and its correlation with clinicopathological factors and prognosis. Its correlation with immune infiltration was analyzed by TCGA. The effects of CADM3 on proliferation and migration were investigated by cell clonal formation, CCK-8, cell scratch and transwell assay. Protein interaction network was prepared and the function prediction of related genes was conducted. The correlation between CADM3 and MAPK pathway was further explored by western blot experiment. RESULTS The expression of CADM3 in BC tissues were significantly lower than that in adjacent normal tissues. High level of CADM3 was related to better prognosis of BC patients. CADM3 was an independent prognostic factor for BC. Expression of CADM3 was significantly associated with the status of ER and PR, age and PAM50 subtypes. CADM3 positively related to many immune infiltrating cells. Overexpression of CADM3 can notably reduce cell proliferation and migration. CADM3 was related to MAPK pathway and the phosphorylation of ERK1/2 and JNK1 was inhibited in BC cells with high CADM3. CONCLUSIONS Our research reveals the clinical significance of CADM3 in BC and indicates the critical roles of CADM3 in immune infiltration and MAPK pathway.
Collapse
Affiliation(s)
- Huiyang Ren
- Department of Breast Surgery, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang City, Liaoning, 110001, China.
| | - Zhen Wang
- Department of Breast Surgery, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang City, Liaoning, 110001, China.
| | - Lei Zhang
- Department of Breast Surgery, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang City, Liaoning, 110001, China.
| | - Guolian Zhu
- Department of Breast Surgery, the Fifth People's Hospital of Shenyang, 188 Xingshun Street, Tiexi District, Shenyang City, Liaoning, 110023, China.
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, Liaoning, 110122, China.
| | - Bo Chen
- Department of Breast Surgery, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang City, Liaoning, 110001, China.
| |
Collapse
|
6
|
Liang Q, Chen J, Hou S, Li D, Zhu Y, Li R, Chen L, Li J, Fu W, Lei S, Zhang B, Zheng X, Zhang T, Duan H, He W, Ren J. Activatable Mn 2+-Armed nanoagonist augments antitumor immunity in colorectal cancer: A NIR-II Photonic neoadjuvant paradigm. Biomaterials 2023; 300:122206. [PMID: 37348325 DOI: 10.1016/j.biomaterials.2023.122206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023]
Abstract
Postoperative recurrence frequently occurs in patients with colorectal cancer (CRC) due to residual microtumors and host cellular immune dysfunction, leading to major setbacks in clinical outcomes and CRC staging. As an increasingly prevalent therapeutic option for CRC patients, neoadjuvant chemoradiotherapy bears unmet challenges of limited tumor targeting and common side effects of gastrointestinal reaction and radiodermatitis. It is highly desirable to develop neoadjuvant treatment paradigms that impart both tumor-targeting accuracy and protection against recurrence of resectable CRC. Here we report a versatile photo-regulated nanoagonist of plasmonic gold blackbody (AuPB) with a polydopamine (PDA) coating carrying manganese ion (Mn2+) payloads (AuPB@PDA/Mn). When armed with second near-infrared (NIR-II) light, AuPB@PDA/Mn with broad-band localized surface plasmon resonance generates local hyperthermia and discharges Mn2+ ions, which evidently amplify the effects of immunogenic cell death in tumor cells and activate the cyclic GMP-AMP synthase/stimulator of interferon genes pathway in dendritic cells (DCs), hence potentiating the maturation of DC and the secretion of type I interferon in a synergistic way. Matured DCs undertake the task of tumor antigen presentation as the crosstalk to adaptive immunity. As such, the administration of AuPB@PDA/Mn coupled with NIR-II laser irradiation has eminently augmented the infiltration of CD8+ T cells as well as the development of memory CD8+ T cells in colorectal tumor models, substantiating enhanced immunomodulatory efficacy against primary and recurrent CRC. Our strategy highlights the potency of an integrated NIR-II photothermal and immunoregulatory modality by photo-activate delivery of Mn2+ ions, as a neoadjuvant paradigm for presurgical tumor debulking and against postoperative tumor recurrence.
Collapse
Affiliation(s)
- Qing Liang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiayuan Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuai Hou
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Di Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Ying Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ruiqi Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lian Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiao Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Fu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shiqiong Lei
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Biying Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin Zheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongwei Duan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
| | - Wenshan He
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jinghua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
7
|
van Amerongen R, Bentires-Alj M, van Boxtel AL, Clarke RB, Fre S, Suarez EG, Iggo R, Jechlinger M, Jonkers J, Mikkola ML, Koledova ZS, Sørlie T, Vivanco MDM. Imagine beyond: recent breakthroughs and next challenges in mammary gland biology and breast cancer research. J Mammary Gland Biol Neoplasia 2023; 28:17. [PMID: 37450065 PMCID: PMC10349020 DOI: 10.1007/s10911-023-09544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
On 8 December 2022 the organizing committee of the European Network for Breast Development and Cancer labs (ENBDC) held its fifth annual Think Tank meeting in Amsterdam, the Netherlands. Here, we embraced the opportunity to look back to identify the most prominent breakthroughs of the past ten years and to reflect on the main challenges that lie ahead for our field in the years to come. The outcomes of these discussions are presented in this position paper, in the hope that it will serve as a summary of the current state of affairs in mammary gland biology and breast cancer research for early career researchers and other newcomers in the field, and as inspiration for scientists and clinicians to move the field forward.
Collapse
Affiliation(s)
- Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands.
| | - Mohamed Bentires-Alj
- Laboratory of Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Antonius L van Boxtel
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Robert B Clarke
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Silvia Fre
- Institut Curie, Genetics and Developmental Biology Department, PSL Research University, CNRS UMR3215, U93475248, InsermParis, France
| | - Eva Gonzalez Suarez
- Transformation and Metastasis Laboratory, Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Oncobell, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Richard Iggo
- INSERM U1312, University of Bordeaux, 33076, Bordeaux, France
| | - Martin Jechlinger
- Cell Biology and Biophysics Department, EMBL, Heidelberg, Germany
- Molit Institute of Personalized Medicine, Heilbronn, Germany
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Marja L Mikkola
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, P.O.B. 56, 00014, Helsinki, Finland
| | - Zuzana Sumbalova Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Therese Sørlie
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Maria dM Vivanco
- Cancer Heterogeneity Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Technological Park Bizkaia, 48160, Derio, Spain
| |
Collapse
|
8
|
Xia J, Zhang J, Xiong Y, Zhao J, Zhou Y, Jiang T, Zhu J. Circulating tumor DNA minimal residual disease in clinical practice of non-small cell lung cancer. Expert Rev Mol Diagn 2023; 23:913-924. [PMID: 37702546 DOI: 10.1080/14737159.2023.2252334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
INTRODUCTION The advance of diagnostics and treatments has greatly improved the prognosis of non-small cell lung cancer (NSCLC) patients. However, relapse and metastasis are still common problems encountered by NSCLC patients who have achieved complete remission. Therefore, overcoming the challenge of relapse and metastasis is particularly important for improving the prognosis of NSCLC patients. Research has shown that minimal residual disease (MRD) was a potential source of tumor relapse and metastasis, and circulating tumor DNA (ctDNA) MRD has obvious advantages in predicting the relapse and metastasis of NSCLC and evaluating treatment effectiveness. Therefore, dynamic monitoring of MRD is of great significance for NSCLC patient management strategies. AREAS COVERED We have reviewed articles related to NSCLC MRD included in PubMed and describes the biological significance and historical context of MRD research, reasons for using ctDNA to evaluate MRD, and potential value and challenges of ctDNA MRD in assessing relapse and metastasis of NSCLC, ultimately guiding clinical therapeutic strategies and management. EXPERT OPINION The standardized scope of ctDNA MRD detection for NSCLC requires more clinical research evidence to minimize study differences, making it possible to include in the clinical staging as a reliable indicator.
Collapse
Affiliation(s)
- Jinghua Xia
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jiao Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yanlu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jinbo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yinxi Zhou
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jianfei Zhu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
9
|
Liquid biopsy for monitoring of tumor dormancy and early detection of disease recurrence in solid tumors. Cancer Metastasis Rev 2023; 42:161-182. [PMID: 36607507 PMCID: PMC10014694 DOI: 10.1007/s10555-022-10075-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
Cancer is one of the three leading causes of death worldwide. Even after successful therapy and achieving remission, the risk of relapse often remains. In this context, dormant residual cancer cells in secondary organs such as the bone marrow constitute the cellular reservoir from which late tumor recurrences arise. This dilemma leads the term of minimal residual disease, which reflects the presence of tumor cells disseminated from the primary lesion to distant organs in patients who lack any clinical or radiological signs of metastasis or residual tumor cells left behind after therapy that eventually lead to local recurrence. Disseminated tumor cells have the ability to survive in a dormant state following treatment and linger unrecognized for more than a decade before emerging as recurrent disease. They are able to breakup their dormant state and to readopt their proliferation under certain circumstances, which can finally lead to distant relapse and cancer-associated death. In recent years, extensive molecular and genetic characterization of disseminated tumor cells and blood-based biomarker has contributed significantly to our understanding of the frequency and prevalence of tumor dormancy. In this article, we describe the clinical relevance of disseminated tumor cells and highlight how latest advances in different liquid biopsy approaches can be used to detect, characterize, and monitor minimal residual disease in breast cancer, prostate cancer, and melanoma patients.
Collapse
|
10
|
Shi K, Lu H, Zhang Z, Fu Y, Wu J, Zhou S, Ma P, Ye K, Zhang S, Shi H, Shi W, Cai MC, Zhao X, Yu Z, Tang J, Zhuang G. Transient targeting of BIM-dependent adaptive MCL1 preservation enhances tumor response to molecular therapeutics in non-small cell lung cancer. Cell Death Differ 2023; 30:195-207. [PMID: 36171331 PMCID: PMC9883455 DOI: 10.1038/s41418-022-01064-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 02/01/2023] Open
Abstract
Despite remarkable efficacy, targeted treatments often yield a subpopulation of residual tumor cells in part due to non-genetic adaptions. Previous mechanistic understanding on the emergence of these drug-tolerant persisters (DTPs) has been limited to epigenetic and transcriptional reprogramming. Here, by comprehensively interrogating therapy-induced early dynamic protein changes in diverse oncogene-addicted non-small cell lung cancer models, we identified adaptive MCL1 increase as a new and universal mechanism to confer apoptotic evasion and DTP formation. In detail, acute MAPK signaling disruption in the presence of genotype-based tyrosine kinase inhibitors (TKIs) prompted mitochondrial accumulation of pro-apoptotic BH3-only protein BIM, which sequestered MCL1 away from MULE-mediated degradation. A small-molecule combination screen uncovered that PI3K-mTOR pathway blockade prohibited MCL1 upregulation. Biochemical and immunocytochemical evidence indicated that mTOR complex 2 (mTORC2) bound and phosphorylated MCL1, facilitating its interaction with BIM. As a result, short-term polytherapy combining antineoplastic TKIs with PI3K, mTOR or MCL1 inhibitors sufficed to prevent DTP development and promote cancer eradication. Collectively, these findings support that upfront and transient targeting of BIM-dependent, mTORC2-regulated adaptive MCL1 preservation holds enormous promise to improve the therapeutic index of molecular targeted agents.
Collapse
Affiliation(s)
- Kaixuan Shi
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haijiao Lu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenfeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Fu
- Department of Thoracic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Wu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shichao Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengfei Ma
- Department of Thoracic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiyan Ye
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengzhe Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailei Shi
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weiping Shi
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mei-Chun Cai
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Zhao
- Department of Thoracic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhuang Yu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Jian Tang
- Department of Thoracic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Nikotina AD, Vladimirova SA, Kokoreva NE, Komarova EY, Aksenov ND, Efremov S, Leonova E, Pavlov R, Kartsev VG, Zhang Z, Margulis BA, Guzhova IV. Combined Cytotoxic Effect of Inhibitors of Proteostasis on Human Colon Cancer Cells. Pharmaceuticals (Basel) 2022; 15:ph15080923. [PMID: 35893747 PMCID: PMC9331496 DOI: 10.3390/ph15080923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Despite significant progress in the diagnosis and treatment of colorectal cancer, drug resistance continues to be a major limitation of therapy. In this regard, studies aimed at creating combination therapy are gaining popularity. One of the most promising adjuvants are inhibitors of the proteostasis system, chaperone machinery, and autophagy. The main HSP regulator, HSF1, is overactivated in cancer cells and autophagy sustains the survival of malignant cells. In this work, we focused on the selection of combination therapy for the treatment of rectal cancer cells obtained from patients after tumor biopsy without prior treatment. We characterized the migration, proliferation, and chaperone status in the resulting lines and also found them to be resistant to a number of drugs widely used in the clinic. However, these cells were sensitive to the autophagy inhibitor, chloroquine. For combination therapy, we used an HSF1 activity inhibitor discovered earlier in our laboratory, the cardenolide CL-43, which has already been proven as an auxiliary component of combined therapy in established cell lines. CL-43 effectively suppressed HSF1 activity and Hsp70 expression in all investigated cells. We tested the autophagy inhibitor, chloroquine, in combination with CL-43. Our results indicate that the use of an inhibitor of HSF1 activity in combination with an autophagy inhibitor results in effective cancer cell death, therefore, this therapeutic approach may be a promising treatment regimen for certain patients.
Collapse
Affiliation(s)
- Alina D. Nikotina
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.D.N.); (S.A.V.); (N.E.K.); (E.Y.K.); (N.D.A.); (B.A.M.)
| | - Snezhana A. Vladimirova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.D.N.); (S.A.V.); (N.E.K.); (E.Y.K.); (N.D.A.); (B.A.M.)
| | - Nadezhda E. Kokoreva
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.D.N.); (S.A.V.); (N.E.K.); (E.Y.K.); (N.D.A.); (B.A.M.)
| | - Elena Y. Komarova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.D.N.); (S.A.V.); (N.E.K.); (E.Y.K.); (N.D.A.); (B.A.M.)
| | - Nikolay D. Aksenov
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.D.N.); (S.A.V.); (N.E.K.); (E.Y.K.); (N.D.A.); (B.A.M.)
| | - Sergey Efremov
- Saint-Petersburg State University Hospital, Fontanka River enb.154, 190103 St. Petersburg, Russia; (S.E.); (E.L.); (R.P.)
| | - Elizaveta Leonova
- Saint-Petersburg State University Hospital, Fontanka River enb.154, 190103 St. Petersburg, Russia; (S.E.); (E.L.); (R.P.)
| | - Rostislav Pavlov
- Saint-Petersburg State University Hospital, Fontanka River enb.154, 190103 St. Petersburg, Russia; (S.E.); (E.L.); (R.P.)
| | - Viktor G. Kartsev
- InterBioScreen, Institutsky Ave. 7a, Chernogolovka, 142432 Moscow, Russia;
| | - Zhichao Zhang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China;
| | - Boris A. Margulis
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.D.N.); (S.A.V.); (N.E.K.); (E.Y.K.); (N.D.A.); (B.A.M.)
| | - Irina V. Guzhova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.D.N.); (S.A.V.); (N.E.K.); (E.Y.K.); (N.D.A.); (B.A.M.)
- Correspondence: ; Tel.: +7-(921)786-4860
| |
Collapse
|
12
|
Chakrabarti S, Kasi AK, Parikh AR, Mahipal A. Finding Waldo: The Evolving Paradigm of Circulating Tumor DNA (ctDNA)-Guided Minimal Residual Disease (MRD) Assessment in Colorectal Cancer (CRC). Cancers (Basel) 2022; 14:3078. [PMID: 35804850 PMCID: PMC9265001 DOI: 10.3390/cancers14133078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
Circulating tumor DNA (ctDNA), the tumor-derived cell-free DNA fragments in the bloodstream carrying tumor-specific genetic and epigenetic alterations, represents an emerging novel tool for minimal residual disease (MRD) assessment in patients with resected colorectal cancer (CRC). For many decades, precise risk-stratification following curative-intent colorectal surgery has remained an enduring challenge. The current risk stratification strategy relies on clinicopathologic characteristics of the tumors that lacks precision and results in over-and undertreatment in a significant proportion of patients. Consequently, a biomarker that can reliably identify patients harboring MRD would be of critical importance in refining patient selection for adjuvant therapy. Several prospective cohort studies have provided compelling data suggesting that ctDNA could be a robust biomarker for MRD that outperforms all existing clinicopathologic criteria. Numerous clinical trials are currently underway to validate the ctDNA-guided MRD assessment and adjuvant treatment strategies. Once validated, the ctDNA technology will likely transform the adjuvant therapy paradigm of colorectal cancer, supporting ctDNA-guided treatment escalation and de-escalation. The current article presents a comprehensive overview of the published studies supporting the utility of ctDNA for MRD assessment in patients with CRC. We also discuss ongoing ctDNA-guided adjuvant clinical trials that will likely shape future adjuvant therapy strategies for patients with CRC.
Collapse
Affiliation(s)
- Sakti Chakrabarti
- Department of Hematology-Oncology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Anup Kumar Kasi
- Division of Medical Oncology, University of Kansas, Kansas City, KS 66160, USA;
| | - Aparna R. Parikh
- Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA;
| | - Amit Mahipal
- Mayo College of Medicine, Rochester, MN 54656, USA;
| |
Collapse
|
13
|
Radic Shechter K, Kafkia E, Zirngibl K, Gawrzak S, Alladin A, Machado D, Lüchtenborg C, Sévin DC, Brügger B, Patil KR, Jechlinger M. Metabolic memory underlying minimal residual disease in breast cancer. Mol Syst Biol 2021; 17:e10141. [PMID: 34694069 PMCID: PMC8543468 DOI: 10.15252/msb.202010141] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 01/11/2023] Open
Abstract
Tumor relapse from treatment-resistant cells (minimal residual disease, MRD) underlies most breast cancer-related deaths. Yet, the molecular characteristics defining their malignancy have largely remained elusive. Here, we integrated multi-omics data from a tractable organoid system with a metabolic modeling approach to uncover the metabolic and regulatory idiosyncrasies of the MRD. We find that the resistant cells, despite their non-proliferative phenotype and the absence of oncogenic signaling, feature increased glycolysis and activity of certain urea cycle enzyme reminiscent of the tumor. This metabolic distinctiveness was also evident in a mouse model and in transcriptomic data from patients following neo-adjuvant therapy. We further identified a marked similarity in DNA methylation profiles between tumor and residual cells. Taken together, our data reveal a metabolic and epigenetic memory of the treatment-resistant cells. We further demonstrate that the memorized elevated glycolysis in MRD is crucial for their survival and can be targeted using a small-molecule inhibitor without impacting normal cells. The metabolic aberrances of MRD thus offer new therapeutic opportunities for post-treatment care to prevent breast tumor recurrence.
Collapse
Affiliation(s)
| | - Eleni Kafkia
- European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- The Medical Research Council Toxicology UnitUniversity of CambridgeCambridgeUK
| | - Katharina Zirngibl
- European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- The Medical Research Council Toxicology UnitUniversity of CambridgeCambridgeUK
| | - Sylwia Gawrzak
- European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Present address:
Cellzome GmbHFunctional GenomicsGlaxoSmithKlineHeidelbergGermany
| | - Ashna Alladin
- European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Daniel Machado
- European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Present address:
Norwegian University of Science and TechnologyTrondheimNorway
| | | | - Daniel C Sévin
- Cellzome GmbHFunctional GenomicsGlaxoSmithKlineHeidelbergGermany
| | - Britta Brügger
- Biochemie‐Zentrum der Universität Heidelberg (BZH)HeidelbergGermany
| | - Kiran R Patil
- European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- The Medical Research Council Toxicology UnitUniversity of CambridgeCambridgeUK
| | - Martin Jechlinger
- European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- MOLIT Institute gGmbHHeilbronnGermany
| |
Collapse
|
14
|
Lin C, Liu X, Zheng B, Ke R, Tzeng CM. Liquid Biopsy, ctDNA Diagnosis through NGS. Life (Basel) 2021; 11:life11090890. [PMID: 34575039 PMCID: PMC8468354 DOI: 10.3390/life11090890] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Liquid biopsy with circulating tumor DNA (ctDNA) profiling by next-generation sequencing holds great promise to revolutionize clinical oncology. It relies on the basis that ctDNA represents the real-time status of the tumor genome which contains information of genetic alterations. Compared to tissue biopsy, liquid biopsy possesses great advantages such as a less demanding procedure, minimal invasion, ease of frequent sampling, and less sampling bias. Next-generation sequencing (NGS) methods have come to a point that both the cost and performance are suitable for clinical diagnosis. Thus, profiling ctDNA by NGS technologies is becoming more and more popular since it can be applied in the whole process of cancer diagnosis and management. Further developments of liquid biopsy ctDNA testing will be beneficial for cancer patients, paving the way for precision medicine. In conclusion, profiling ctDNA with NGS for cancer diagnosis is both biologically sound and technically convenient.
Collapse
Affiliation(s)
- Chen Lin
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (C.L.); (X.L.)
| | - Xuzhu Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (C.L.); (X.L.)
| | - Bingyi Zheng
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China;
- Xiamen Key Laboratory of Cancer Cell Theranostics and Clinical Translation, Xiamen 361102, China
| | - Rongqin Ke
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (C.L.); (X.L.)
- Correspondence: (R.K.); (C.-M.T.)
| | - Chi-Meng Tzeng
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China;
- Xiamen Key Laboratory of Cancer Cell Theranostics and Clinical Translation, Xiamen 361102, China
- Correspondence: (R.K.); (C.-M.T.)
| |
Collapse
|
15
|
Intravital mesoscopic fluorescence molecular tomography allows non-invasive in vivo monitoring and quantification of breast cancer growth dynamics. Commun Biol 2021; 4:556. [PMID: 33976362 PMCID: PMC8113483 DOI: 10.1038/s42003-021-02063-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 03/31/2021] [Indexed: 02/03/2023] Open
Abstract
Preclinical breast tumor models are an invaluable tool to systematically study tumor progression and treatment response, yet methods to non-invasively monitor the involved molecular and mechanistic properties under physiologically relevant conditions are limited. Here we present an intravital mesoscopic fluorescence molecular tomography (henceforth IFT) approach that is capable of tracking fluorescently labeled tumor cells in a quantitative manner inside the mammary gland of living mice. Our mesoscopic approach is entirely non-invasive and thus permits prolonged observational periods of several months. The relatively high sensitivity and spatial resolution further enable inferring the overall number of oncogene-expressing tumor cells as well as their tumor volume over the entire cycle from early tumor growth to residual disease following the treatment phase. Our IFT approach is a promising method for studying tumor growth dynamics in a quantitative and longitudinal fashion in-vivo.
Collapse
|
16
|
Jung D, Jain P, Yao Y, Wang M. Advances in the assessment of minimal residual disease in mantle cell lymphoma. J Hematol Oncol 2020; 13:127. [PMID: 32972438 PMCID: PMC7513535 DOI: 10.1186/s13045-020-00961-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
The clinical impact of minimal residual disease detection at early time points or during follow-ups has been shown to accurately predict relapses among patients with lymphomas, mainly in follicular and diffuse large B cell lymphoma. The field of minimal residual disease testing in mantle cell lymphoma is still evolving but has great impact in determining the prognosis. Flow cytometry and polymerase chain reaction-based testing are most commonly used methods in practice; however, these methods are not sensitive enough to detect the dynamic changes that underline lymphoma progression. Newer methods using next-generation sequencing, such as ClonoSeq, are being incorporated in clinical trials. Other techniques under evolution include CAPP-seq and anchored multiplex polymerase chain reaction-based methods. This review article aims to provide a comprehensive update on the status of minimal residual disease detection and its prognostic effect in mantle cell patients. The role of circulating tumor DNA-based minimal residual disease detection in lymphomas is also discussed.
Collapse
Affiliation(s)
- Dayoung Jung
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Preetesh Jain
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Hemapathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Yixin Yao
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Michael Wang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Kovacsics D, Brózik A, Tihanyi B, Matula Z, Borsy A, Mészáros N, Szabó E, Németh E, Fóthi Á, Zámbó B, Szüts D, Várady G, Orbán TI, Apáti Á, Sarkadi B. Precision-engineered reporter cell lines reveal ABCG2 regulation in live lung cancer cells. Biochem Pharmacol 2020; 175:113865. [PMID: 32142727 DOI: 10.1016/j.bcp.2020.113865] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/18/2020] [Indexed: 12/19/2022]
Abstract
Expression of the ABCG2 multidrug transporter is a marker of cancer stem cells and a predictor of recurrent malignant disease. Understanding how human ABCG2 expression is modulated by pharmacotherapy is crucial in guiding therapeutic recommendations and may aid rational drug development. Genome edited reporter cells are useful in investigating gene regulation and visualizing protein activity in live cells but require precise targeting to preserve native regulatory regions. Here, we describe a fluorescent reporter assay that allows the noninvasive assessment of ABCG2 regulation in human lung adenocarcinoma cells. Using CRISPR-Cas9 gene editing coupled with homology-directed repair, we targeted an EGFP coding sequence to the translational start site of ABCG2, generating ABCG2 knock-out and in situ tagged ABCG2 reporter cells. Using the engineered cell lines, we show that ABCG2 is upregulated by a number of anti-cancer medications, HDAC inhibitors, hypoxia-mimicking agents and glucocorticoids, supporting a model in which ABCG2 is under the control of a general stress response. To our knowledge, this is the first description of a fluorescent reporter assay system designed to follow the endogenous regulation of a human ABC transporter in live cells. The information gained may guide therapy recommendations and aid rational drug design.
Collapse
Affiliation(s)
- Daniella Kovacsics
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Anna Brózik
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Borbála Tihanyi
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Zsolt Matula
- South-Pest Hospital Centre, National Institute of Hematology and Infectious Diseases, Laboratory of Molecular and Cytogenetics, Budapest, Hungary
| | - Adrienn Borsy
- South-Pest Hospital Centre, National Institute of Hematology and Infectious Diseases, Laboratory of Molecular and Cytogenetics, Budapest, Hungary
| | - Nikolett Mészáros
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Edit Szabó
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Eszter Németh
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Ábel Fóthi
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Boglárka Zámbó
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Dávid Szüts
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - György Várady
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Tamás I Orbán
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Ágota Apáti
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Balázs Sarkadi
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary.
| |
Collapse
|
18
|
Robinson AM, Rathore R, Redlich NJ, Adkins DR, VanArsdale T, Van Tine BA, Michel LS. Cisplatin exposure causes c-Myc-dependent resistance to CDK4/6 inhibition in HPV-negative head and neck squamous cell carcinoma. Cell Death Dis 2019; 10:867. [PMID: 31727874 PMCID: PMC6856201 DOI: 10.1038/s41419-019-2098-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022]
Abstract
The loss of p16 is a signature event in Human Papilloma Virus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) that leads to increased Cyclin Dependent Kinase 4/6 (CDK) signaling. Palbociclib, a CDK4/6 inhibitor, is active for the treatment of a subset of HNSCC. In this study, we analyzed patient response data from a phase I clinical trial of palbociclib in HNSCC and observed an association between prior cisplatin exposure and CDK inhibitor resistance. We studied the effects of palbociclib on cisplatin-sensitive and -resistant HNSCC cell lines. We found that while palbociclib is highly effective against chemo-naive HNSCC cell lines and tumor xenografts, prior cisplatin exposure induces intrinsic resistance to palbociclib in vivo, a relationship that was not observed in vitro. Mechanistically, in the course of provoking a DNA damage-resistance phenotype, cisplatin exposure upregulates both c-Myc and cyclin E, and combination treatment with palbociclib and the c-Myc bromodomain inhibitor JQ1 exerts a synergistic anti-growth effect in cisplatin-resistant cells. These data show the benefit of exploiting the inherent resistance mechanisms of HNSCC to overcome cisplatin- and palbociclib resistance through the use of c-Myc inhibition.
Collapse
Affiliation(s)
- Anthony M Robinson
- Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Richa Rathore
- Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | | | - Douglas R Adkins
- Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | | | - Brian A Van Tine
- Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| | - Loren S Michel
- Memorial Sloan-Kettering Cancer Center, Monmouth, NJ, USA
| |
Collapse
|
19
|
Perelmuter VM, Tashireva LA, Savelieva OE, Denisov EV, Kaigorodova EV, Zavyalova MV, Cherdyntseva NV. Mechanisms behind prometastatic changes induced by neoadjuvant chemotherapy in the breast cancer microenvironment. BREAST CANCER-TARGETS AND THERAPY 2019; 11:209-219. [PMID: 31308736 PMCID: PMC6616300 DOI: 10.2147/bctt.s175161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022]
Abstract
Chemotherapy, along with surgery and radiotherapy, is a key treatment option for malignant tumors. Neoadjuvant chemotherapy (NACT) reduces the tumor size and enables total tumor resection. In addition, NACT is believed to be more effective in destroying micrometastases than the same chemotherapy performed after surgery. To date, various NACT regimens have been tested and implemented, which provide a favorable outcome in primary tumors and reduce the risk of progression. However, there is increasing evidence of the NACT ability to increase the risk of cancer progression. This review discusses potential mechanisms by which NACT promotes distant metastasis of breast cancer through changes in the microenvironment of tumor cells. We describe prometastatic NACT-mediated changes in angiogenesis, immuno-inflammatory reactions in the stroma, intravasation, and amount of circulating tumor cells. The role of NACT-related cellular stress in cancer metastasis is also discussed.
Collapse
Affiliation(s)
- Vladimir M Perelmuter
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia
| | - Liubov A Tashireva
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia
| | - Olga E Savelieva
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia
| | - Evgeny V Denisov
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia
| | - Evgeniya V Kaigorodova
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia.,Department of Biochemistry, Siberian State Medical University, Tomsk 634055, Russia
| | - Marina V Zavyalova
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia.,Department of Pathological Anatomy, Siberian State Medical University, Tomsk 634055, Russia
| | - Nadezhda V Cherdyntseva
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia
| |
Collapse
|
20
|
A Nonquiescent "Idling" Population State in Drug-Treated, BRAF-Mutated Melanoma. Biophys J 2019; 114:1499-1511. [PMID: 29590606 DOI: 10.1016/j.bpj.2018.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/01/2017] [Accepted: 01/02/2018] [Indexed: 01/04/2023] Open
Abstract
Targeted therapy is an effective standard of care in BRAF-mutated malignant melanoma. However, the duration of tumor remission varies unpredictably among patients, and relapse is almost inevitable. Here, we examine the responses of several BRAF-mutated melanoma cell lines (including isogenic subclones) to BRAF inhibitors. We observe complex response dynamics across cell lines, with short-term responses (<100 h) varying from cell line to cell line. In the long term, however, we observe equilibration of all drug-treated populations into a nonquiescent state characterized by a balanced rate of death and division, which we term the "idling" state, and to our knowledge, this state has not been previously reported. Using mathematical modeling, we propose that the observed population-level dynamics are the result of cells transitioning between basins of attraction within a drug-modified phenotypic landscape. Each basin is associated with a drug-induced proliferation rate, a recently introduced metric of an antiproliferative drug effect. The idling population state represents a new dynamic equilibrium in which cells are distributed across the landscape such that the population achieves zero net growth. By fitting our model to experimental drug-response data, we infer the phenotypic landscapes of all considered melanoma cell lines and provide a unifying view of how BRAF-mutated melanomas respond to BRAF inhibition. We hypothesize that the residual disease observed in patients after targeted therapy is composed of a significant number of idling cells. Thus, defining molecular determinants of the phenotypic landscape that idling populations occupy may lead to "targeted landscaping" therapies based on rational modification of the landscape to favor basins with greater drug susceptibility.
Collapse
|
21
|
Fiedler EC, Hemann MT. Aiding and Abetting: How the Tumor Microenvironment Protects Cancer from Chemotherapy. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Disease recurrence following cancer therapy remains an intractable clinical problem and represents a major impediment to reducing the mortality attributable to malignant tumors. While research has traditionally focused on the cell-intrinsic mechanisms and mutations that render tumors refractory to both classical chemotherapeutics and targeted therapies, recent studies have begun to uncover myriad roles for the tumor microenvironment (TME) in modulating therapeutic efficacy. This work suggests that drug resistance is as much ecological as it is evolutionary. Specifically, cancers resident in organs throughout the body do not develop in isolation. Instead, tumor cells arise in the context of nonmalignant cellular components of a tissue. While the roles of these cell-extrinsic factors in cancer initiation and progression are well established, our understanding of the TME's influence on therapeutic outcome is in its infancy. Here, we focus on mechanisms by which neoplastic cells co-opt preexisting or treatment-induced signaling networks to survive chemotherapy.
Collapse
Affiliation(s)
- Eleanor C. Fiedler
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Michael T. Hemann
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
22
|
Meirson T, Gil-Henn H. Targeting invadopodia for blocking breast cancer metastasis. Drug Resist Updat 2018; 39:1-17. [PMID: 30075834 DOI: 10.1016/j.drup.2018.05.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022]
Abstract
Dissemination of cancer cells from the primary tumor and their spread to distant sites of the body is the leading cause of mortality in metastatic cancer patients. Metastatic cancer cells invade surrounding tissues and blood vessels by forming F-actin-rich protrusions known as invadopodia, which degrade the extracellular matrix and enable invasion of tumor cells through it. Invadopodia have now been observed in vivo, and recent evidence demonstrates direct molecular links between assembly of invadopodia and cancer metastasis in both mouse models and in human patients. While significant progress has been achieved in the last decade in understanding the molecular mechanisms and signaling pathways regulating invadopodia formation and function, the application of this knowledge to development of prognostic and therapeutic approaches for cancer metastasis has not been discussed before. Here, we provide a detailed overview of current prognostic markers and tests for cancer metastasis and discuss their advantages, disadvantages, and their predicted efficiency. Using bioinformatic patient database analysis, we demonstrate, for the first time, a significant correlation between invadopodia-associated genes to breast cancer metastasis, suggesting that invadopodia could be used as both a prognostic marker and as a therapeutic target for blocking cancer metastasis. We include here a novel network interaction map of invadopodia-associated proteins with currently available inhibitors, demonstrating a central role for the recently identified EGFR-Pyk2-Src-Arg-cortactin invadopodial pathway, to which re-purposing of existent inhibitors could be used to block breast cancer metastasis. We then present an updated overview of current cancer-related clinical trials, demonstrating the negligible number of trials focusing on cancer metastasis. We also discuss the difficulties and complexity of performing cancer metastasis clinical trials, and the possible development of anti-metastasis drug resistance when using a prolonged preventive treatment with invadopodia inhibitors. This review presents a new perspective on invadopodia-mediated tumor invasiveness and may lead to the development of novel prognostic and therapeutic approaches for cancer metastasis.
Collapse
Affiliation(s)
- Tomer Meirson
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Hava Gil-Henn
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
| |
Collapse
|
23
|
New tools for old drugs: Functional genetic screens to optimize current chemotherapy. Drug Resist Updat 2018; 36:30-46. [PMID: 29499836 PMCID: PMC5844649 DOI: 10.1016/j.drup.2018.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/29/2017] [Accepted: 01/06/2018] [Indexed: 12/26/2022]
Abstract
Despite substantial advances in the treatment of various cancers, many patients still receive anti-cancer therapies that hardly eradicate tumor cells but inflict considerable side effects. To provide the best treatment regimen for an individual patient, a major goal in molecular oncology is to identify predictive markers for a personalized therapeutic strategy. Regarding novel targeted anti-cancer therapies, there are usually good markers available. Unfortunately, however, targeted therapies alone often result in rather short remissions and little cytotoxic effect on the cancer cells. Therefore, classical chemotherapy with frequent long remissions, cures, and a clear effect on cancer cell eradication remains a corner stone in current anti-cancer therapy. Reliable biomarkers which predict the response of tumors to classical chemotherapy are rare, in contrast to the situation for targeted therapy. For the bulk of cytotoxic therapeutic agents, including DNA-damaging drugs, drugs targeting microtubules or antimetabolites, there are still no reliable biomarkers used in the clinic to predict tumor response. To make progress in this direction, meticulous studies of classical chemotherapeutic drug action and resistance mechanisms are required. For this purpose, novel functional screening technologies have emerged as successful technologies to study chemotherapeutic drug response in a variety of models. They allow a systematic analysis of genetic contributions to a drug-responsive or −sensitive phenotype and facilitate a better understanding of the mode of action of these drugs. These functional genomic approaches are not only useful for the development of novel targeted anti-cancer drugs but may also guide the use of classical chemotherapeutic drugs by deciphering novel mechanisms influencing a tumor’s drug response. Moreover, due to the advances of 3D organoid cultures from patient tumors and in vivo screens in mice, these genetic screens can be applied using conditions that are more representative of the clinical setting. Patient-derived 3D organoid lines furthermore allow the characterization of the “essentialome”, the specific set of genes required for survival of these cells, of an individual tumor, which could be monitored over the course of treatment and help understanding how drug resistance evolves in clinical tumors. Thus, we expect that these functional screens will enable the discovery of novel cancer-specific vulnerabilities, and through clinical validation, move the field of predictive biomarkers forward. This review focuses on novel advanced techniques to decipher the interplay between genetic alterations and drug response.
Collapse
|
24
|
Kottke T, Evgin L, Shim KG, Rommelfanger D, Boisgerault N, Zaidi S, Diaz RM, Thompson J, Ilett E, Coffey M, Selby P, Pandha H, Harrington K, Melcher A, Vile R. Subversion of NK-cell and TNFα Immune Surveillance Drives Tumor Recurrence. Cancer Immunol Res 2017; 5:1029-1045. [PMID: 29038298 PMCID: PMC5858196 DOI: 10.1158/2326-6066.cir-17-0175] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/18/2017] [Accepted: 10/03/2017] [Indexed: 01/22/2023]
Abstract
Understanding how incompletely cleared primary tumors transition from minimal residual disease (MRD) into treatment-resistant, immune-invisible recurrences has major clinical significance. We show here that this transition is mediated through the subversion of two key elements of innate immunosurveillance. In the first, the role of TNFα changes from an antitumor effector against primary tumors into a growth promoter for MRD. Second, whereas primary tumors induced a natural killer (NK)-mediated cytokine response characterized by low IL6 and elevated IFNγ, PD-L1hi MRD cells promoted the secretion of IL6 but minimal IFNγ, inhibiting both NK-cell and T-cell surveillance. Tumor recurrence was promoted by trauma- or infection-like stimuli inducing VEGF and TNFα, which stimulated the growth of MRD tumors. Finally, therapies that blocked PD-1, TNFα, or NK cells delayed or prevented recurrence. These data show how innate immunosurveillance mechanisms, which control infection and growth of primary tumors, are exploited by recurrent, competent tumors and identify therapeutic targets in patients with MRD known to be at high risk of relapse. Cancer Immunol Res; 5(11); 1029-45. ©2017 AACR.
Collapse
Affiliation(s)
- Tim Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kevin G Shim
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | | | | | - Shane Zaidi
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Rosa Maria Diaz
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Elizabeth Ilett
- Leeds Institute of Cancer and Pathology, St. James' University Hospital, Leeds, United Kingdom
| | - Matt Coffey
- Oncolytics Biotech Incorporated, Calgary, Canada
| | - Peter Selby
- Leeds Institute of Cancer and Pathology, St. James' University Hospital, Leeds, United Kingdom
| | | | | | - Alan Melcher
- The Institute of Cancer Research, London, United Kingdom
| | - Richard Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota.
- Leeds Institute of Cancer and Pathology, St. James' University Hospital, Leeds, United Kingdom
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
25
|
Aguirre-Portolés C, Fernández LP, Ramírez de Molina A. Precision Nutrition for Targeting Lipid Metabolism in Colorectal Cancer. Nutrients 2017; 9:nu9101076. [PMID: 28956850 PMCID: PMC5691693 DOI: 10.3390/nu9101076] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022] Open
Abstract
Cancer is a multistage and multifactorial condition with genetic and environmental factors modulating tumorogenesis and disease progression. Nevertheless, cancer is preventable, as one third of cancer deaths could be avoided by modifying key risk factors. Nutrients can directly affect fundamental cellular processes and are considered among the most important risk factors in colorectal cancer (CRC). Red and processed meat, poultry consumption, fiber, and folate are the best-known diet components that interact with colorectal cancer susceptibility. In addition, the direct association of an unhealthy diet with obesity and dysbiosis opens new routes in the understanding of how daily diet nutrients could influence cancer prognosis. In the “omics” era, traditional nutrition has been naturally evolved to precision nutrition where technical developments have contributed to a more accurate discipline. In this sense, genomic and transcriptomic studies have been extensively used in precision nutrition approaches. However, the relation between CRC carcinogenesis and nutrition factors is more complex than originally expected. Together with classical diet-nutrition-related genes, nowadays, lipid-metabolism-related genes have acquired relevant interest in precision nutrition studies. Lipids regulate very diverse cellular processes from ATP synthesis and the activation of essential cell-signaling pathways to membrane organization and plasticity. Therefore, a wide range of tumorogenic steps can be influenced by lipid metabolism, both in primary tumours and distal metastasis. The extent to which genetic variants, together with the intake of specific dietary components, affect the risk of CRC is currently under investigation, and new therapeutic or preventive applications must be explored in CRC models. In this review, we will go in depth into the study of co-occurring events, which orchestrate CRC tumorogenesis and are essential for the evolution of precision nutrition paradigms. Likewise, we will discuss the application of precision nutrition approaches to target lipid metabolism in CRC.
Collapse
Affiliation(s)
- Cristina Aguirre-Portolés
- Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Carretera de Cantoblanco 8, E-28049 Madrid, Spain.
| | - Lara P Fernández
- Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Carretera de Cantoblanco 8, E-28049 Madrid, Spain.
| | - Ana Ramírez de Molina
- Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Carretera de Cantoblanco 8, E-28049 Madrid, Spain.
| |
Collapse
|
26
|
Kersten K, de Visser KE, van Miltenburg MH, Jonkers J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med 2017; 9:137-153. [PMID: 28028012 PMCID: PMC5286388 DOI: 10.15252/emmm.201606857] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Genetically engineered mouse models (GEMMs) have contributed significantly to the field of cancer research. In contrast to cancer cell inoculation models, GEMMs develop de novo tumors in a natural immune‐proficient microenvironment. Tumors arising in advanced GEMMs closely mimic the histopathological and molecular features of their human counterparts, display genetic heterogeneity, and are able to spontaneously progress toward metastatic disease. As such, GEMMs are generally superior to cancer cell inoculation models, which show no or limited heterogeneity and are often metastatic from the start. Given that GEMMs capture both tumor cell‐intrinsic and cell‐extrinsic factors that drive de novo tumor initiation and progression toward metastatic disease, these models are indispensable for preclinical research. GEMMs have successfully been used to validate candidate cancer genes and drug targets, assess therapy efficacy, dissect the impact of the tumor microenvironment, and evaluate mechanisms of drug resistance. In vivo validation of candidate cancer genes and therapeutic targets is further accelerated by recent advances in genetic engineering that enable fast‐track generation and fine‐tuning of GEMMs to more closely resemble human patients. In addition, aligning preclinical tumor intervention studies in advanced GEMMs with clinical studies in patients is expected to accelerate the development of novel therapeutic strategies and their translation into the clinic.
Collapse
Affiliation(s)
- Kelly Kersten
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Karin E de Visser
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Martine H van Miltenburg
- Division of Molecular Pathology and Cancer Genomics Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology and Cancer Genomics Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Pajic M, Blatter S, Guyader C, Gonggrijp M, Kersbergen A, Küçükosmanoğlu A, Sol W, Drost R, Jonkers J, Borst P, Rottenberg S. Selected Alkylating Agents Can Overcome Drug Tolerance of G 0-like Tumor Cells and Eradicate BRCA1-Deficient Mammary Tumors in Mice. Clin Cancer Res 2017; 23:7020-7033. [PMID: 28821557 DOI: 10.1158/1078-0432.ccr-17-1279] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/08/2017] [Accepted: 08/14/2017] [Indexed: 11/16/2022]
Abstract
Purpose: We aimed to characterize and target drug-tolerant BRCA1-deficient tumor cells that cause residual disease and subsequent tumor relapse.Experimental Design: We studied responses to various mono- and bifunctional alkylating agents in a genetically engineered mouse model for BRCA1/p53-mutant breast cancer. Because of the large intragenic deletion of the Brca1 gene, no restoration of BRCA1 function is possible, and therefore, no BRCA1-dependent acquired resistance occurs. To characterize the cell-cycle stage from which Brca1-/-;p53-/- mammary tumors arise after cisplatin treatment, we introduced the fluorescent ubiquitination-based cell-cycle indicator (FUCCI) construct into the tumor cells.Results: Despite repeated sensitivity to the MTD of platinum drugs, the Brca1-mutated mammary tumors are not eradicated, not even by a frequent dosing schedule. We show that relapse comes from single-nucleated cells delaying entry into the S-phase. Such slowly cycling cells, which are present within the drug-naïve tumors, are enriched in tumor remnants. Using the FUCCI construct, we identified nonfluorescent G0-like cells as the population most tolerant to platinum drugs. Intriguingly, these cells are more sensitive to the DNA-crosslinking agent nimustine, resulting in an increased number of multinucleated cells that lack clonogenicity. This is consistent with our in vivo finding that the nimustine MTD, among several alkylating agents, is the most effective in eradicating Brca1-mutated mouse mammary tumors.Conclusions: Our data show that targeting G0-like cells is crucial for the eradication of BRCA1/p53-deficient tumor cells. This can be achieved with selected alkylating agents such as nimustine. Clin Cancer Res; 23(22); 7020-33. ©2017 AACR.
Collapse
Affiliation(s)
- Marina Pajic
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, Sydney, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales, Australia
| | - Sohvi Blatter
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Charlotte Guyader
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maaike Gonggrijp
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ariena Kersbergen
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Aslι Küçükosmanoğlu
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wendy Sol
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rinske Drost
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Piet Borst
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland. .,Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
28
|
Ciavatta ML, Lefranc F, Carbone M, Mollo E, Gavagnin M, Betancourt T, Dasari R, Kornienko A, Kiss R. Marine Mollusk-Derived Agents with Antiproliferative Activity as Promising Anticancer Agents to Overcome Chemotherapy Resistance. Med Res Rev 2017; 37:702-801. [PMID: 27925266 PMCID: PMC5484305 DOI: 10.1002/med.21423] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 12/18/2022]
Abstract
The chemical investigation of marine mollusks has led to the isolation of a wide variety of bioactive metabolites, which evolved in marine organisms as favorable adaptations to survive in different environments. Most of them are derived from food sources, but they can be also biosynthesized de novo by the mollusks themselves, or produced by symbionts. Consequently, the isolated compounds cannot be strictly considered as "chemotaxonomic markers" for the different molluscan species. However, the chemical investigation of this phylum has provided many compounds of interest as potential anticancer drugs that assume particular importance in the light of the growing literature on cancer biology and chemotherapy. The current review highlights the diversity of chemical structures, mechanisms of action, and, most importantly, the potential of mollusk-derived metabolites as anticancer agents, including those biosynthesized by mollusks and those of dietary origin. After the discussion of dolastatins and kahalalides, compounds previously studied in clinical trials, the review covers potentially promising anticancer agents, which are grouped based on their structural type and include terpenes, steroids, peptides, polyketides and nitrogen-containing compounds. The "promise" of a mollusk-derived natural product as an anticancer agent is evaluated on the basis of its ability to target biological characteristics of cancer cells responsible for poor treatment outcomes. These characteristics include high antiproliferative potency against cancer cells in vitro, preferential inhibition of the proliferation of cancer cells over normal ones, mechanism of action via nonapoptotic signaling pathways, circumvention of multidrug resistance phenotype, and high activity in vivo, among others. The review also includes sections on the targeted delivery of mollusk-derived anticancer agents and solutions to their procurement in quantity.
Collapse
Affiliation(s)
- Maria Letizia Ciavatta
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital ErasmeUniversité Libre de Bruxelles (ULB)1070BrusselsBelgium
| | - Marianna Carbone
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Ernesto Mollo
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Margherita Gavagnin
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Tania Betancourt
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Ramesh Dasari
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Alexander Kornienko
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie ExpérimentaleFaculté de Pharmacie, Université Libre de Bruxelles (ULB)1050BrusselsBelgium
| |
Collapse
|
29
|
Kelbauskas L, Glenn H, Anderson C, Messner J, Lee KB, Song G, Houkal J, Su F, Zhang L, Tian Y, Wang H, Bussey K, Johnson RH, Meldrum DR. A platform for high-throughput bioenergy production phenotype characterization in single cells. Sci Rep 2017; 7:45399. [PMID: 28349963 PMCID: PMC5368665 DOI: 10.1038/srep45399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/23/2017] [Indexed: 02/06/2023] Open
Abstract
Driven by an increasing number of studies demonstrating its relevance to a broad variety of disease states, the bioenergy production phenotype has been widely characterized at the bulk sample level. Its cell-to-cell variability, a key player associated with cancer cell survival and recurrence, however, remains poorly understood due to ensemble averaging of the current approaches. We present a technology platform for performing oxygen consumption and extracellular acidification measurements of several hundreds to 1,000 individual cells per assay, while offering simultaneous analysis of cellular communication effects on the energy production phenotype. The platform comprises two major components: a tandem optical sensor for combined oxygen and pH detection, and a microwell device for isolation and analysis of single and few cells in hermetically sealed sub-nanoliter chambers. Our approach revealed subpopulations of cells with aberrant energy production profiles and enables determination of cellular response variability to electron transfer chain inhibitors and ion uncouplers.
Collapse
Affiliation(s)
- Laimonas Kelbauskas
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Honor Glenn
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Clifford Anderson
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Jacob Messner
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Kristen B. Lee
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Ganquan Song
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Jeff Houkal
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Fengyu Su
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Liqiang Zhang
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Yanqing Tian
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Hong Wang
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Kimberly Bussey
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Roger H. Johnson
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Deirdre R. Meldrum
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| |
Collapse
|
30
|
Ebinger S, Özdemir EZ, Ziegenhain C, Tiedt S, Castro Alves C, Grunert M, Dworzak M, Lutz C, Turati VA, Enver T, Horny HP, Sotlar K, Parekh S, Spiekermann K, Hiddemann W, Schepers A, Polzer B, Kirsch S, Hoffmann M, Knapp B, Hasenauer J, Pfeifer H, Panzer-Grümayer R, Enard W, Gires O, Jeremias I. Characterization of Rare, Dormant, and Therapy-Resistant Cells in Acute Lymphoblastic Leukemia. Cancer Cell 2016; 30:849-862. [PMID: 27916615 PMCID: PMC5156313 DOI: 10.1016/j.ccell.2016.11.002] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 06/11/2016] [Accepted: 10/31/2016] [Indexed: 01/06/2023]
Abstract
Tumor relapse is associated with dismal prognosis, but responsible biological principles remain incompletely understood. To isolate and characterize relapse-inducing cells, we used genetic engineering and proliferation-sensitive dyes in patient-derived xenografts of acute lymphoblastic leukemia (ALL). We identified a rare subpopulation that resembled relapse-inducing cells with combined properties of long-term dormancy, treatment resistance, and stemness. Single-cell and bulk expression profiling revealed their similarity to primary ALL cells isolated from pediatric and adult patients at minimal residual disease (MRD). Therapeutically adverse characteristics were reversible, as resistant, dormant cells became sensitive to treatment and started proliferating when dissociated from the in vivo environment. Our data suggest that ALL patients might profit from therapeutic strategies that release MRD cells from the niche.
Collapse
Affiliation(s)
- Sarah Ebinger
- Department of Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 81377 Munich, Germany
| | - Erbey Ziya Özdemir
- Department of Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 81377 Munich, Germany
| | - Christoph Ziegenhain
- Anthropology and Human Genomics, Department Biology II, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Sebastian Tiedt
- Department of Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 81377 Munich, Germany
| | - Catarina Castro Alves
- Department of Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 81377 Munich, Germany
| | - Michaela Grunert
- Department of Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 81377 Munich, Germany
| | - Michael Dworzak
- Children's Cancer Research Institute and St. Anna Kinderspital, Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Lutz
- Department of Medicine V, University of Heidelberg, 69120 Heidelberg, Germany
| | | | - Tariq Enver
- University College London Cancer Institute, London WC1E, UK
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Karl Sotlar
- Institute of Pathology, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Swati Parekh
- Anthropology and Human Genomics, Department Biology II, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Karsten Spiekermann
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; German Consortium for Translational Cancer Research (DKTK), Partnering Site, Munich, 81377 Munich, Germany
| | - Wolfgang Hiddemann
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; German Consortium for Translational Cancer Research (DKTK), Partnering Site, Munich, 81377 Munich, Germany
| | - Aloys Schepers
- Department of Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 81377 Munich, Germany
| | - Bernhard Polzer
- Project Group Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 93053 Regensburg, Germany
| | - Stefan Kirsch
- Project Group Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 93053 Regensburg, Germany
| | - Martin Hoffmann
- Project Group Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 93053 Regensburg, Germany
| | - Bettina Knapp
- Institute of Computational Biology, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
| | - Jan Hasenauer
- Institute of Computational Biology, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 85764 Neuherberg, Germany; Department of Mathematics, Technische Universität München (TUM), 85748 Munich, Germany
| | - Heike Pfeifer
- Department of Medicine, Hematology and Oncology, Goethe University, 60590 Frankfurt, Germany
| | - Renate Panzer-Grümayer
- Children's Cancer Research Institute and St. Anna Kinderspital, Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Enard
- Anthropology and Human Genomics, Department Biology II, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Irmela Jeremias
- Department of Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 81377 Munich, Germany; German Consortium for Translational Cancer Research (DKTK), Partnering Site, Munich, 81377 Munich, Germany; Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilians University München, 80337 Munich, Germany.
| |
Collapse
|
31
|
Yang Q, Parker CL, McCallen JD, Lai SK. Addressing challenges of heterogeneous tumor treatment through bispecific protein-mediated pretargeted drug delivery. J Control Release 2015; 220:715-26. [PMID: 26407672 DOI: 10.1016/j.jconrel.2015.09.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/14/2015] [Accepted: 09/21/2015] [Indexed: 01/02/2023]
Abstract
Tumors are frequently characterized by genomically and phenotypically distinct cancer cell subpopulations within the same tumor or between tumor lesions, a phenomenon termed tumor heterogeneity. These diverse cancer cell populations pose a major challenge to targeted delivery of diagnostic and/or therapeutic agents, as the conventional approach of conjugating individual ligands to nanoparticles is often unable to facilitate intracellular delivery to the full spectrum of cancer cells present in a given tumor lesion or patient. As a result, many cancers are only partially suppressed, leading to eventual tumor regrowth and/or the development of drug-resistant tumors. Pretargeting (multistep targeting) approaches involving the administration of 1) a cocktail of bispecific proteins that can collectively bind to the entirety of a mixed tumor population followed by 2) nanoparticles containing therapeutic and/or diagnostic agents that can bind to the bispecific proteins accumulated on the surface of target cells offer the potential to overcome many of the challenges associated with drug delivery to heterogeneous tumors. Despite its considerable success in improving the efficacy of radioimmunotherapy, the pretargeting strategy remains underexplored for a majority of nanoparticle therapeutic applications, especially for targeted delivery to heterogeneous tumors. In this review, we will present concepts in tumor heterogeneity, the shortcomings of conventional targeted systems, lessons learned from pretargeted radioimmunotherapy, and important considerations for harnessing the pretargeting strategy to improve nanoparticle delivery to heterogeneous tumors.
Collapse
Affiliation(s)
- Qi Yang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - Christina L Parker
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - Justin D McCallen
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - Samuel K Lai
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|