1
|
Li K, Li Y, Zhang Y, Lv J, Zhao T, Dong Y, Liu F, Wang J, Wei Y, Zhu Q. N6-methyladenosine-modified RNF220 induces cisplatin resistance and immune escape via regulating PDE10A K48-linked ubiquitination in bladder cancer. Biochem Pharmacol 2025; 236:116903. [PMID: 40158470 DOI: 10.1016/j.bcp.2025.116903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Bladder cancer (BCa) remains one of the most prevalent malignancies worldwide, with cisplatin-based combination chemotherapy as the cornerstone of adjuvant treatment. However, cisplatin resistance frequently arises in advanced BCa, limiting therapeutic efficacy. Comparative proteomic analysis of cisplatin-sensitive and -resistant BCa cells identified phosphodiesterase 10A (PDE10A) as significantly downregulated at the protein level in resistant cells, despite unchanged mRNA levels, indicating post-transcriptional regulation. Functional assays demonstrated that PDE10A enhanced cisplatin sensitivity by promoting apoptosis. Mechanistically, the E3 ubiquitin ligase RNF220 directly interacted with PDE10A, facilitating its ubiquitination and degradation under cisplatin-resistant conditions. RNF220 overexpression markedly reinforced cisplatin resistance in vitro and in vivo. Furthermore, N6-methyladenosine (m6A) modification mediated by METTL3 stabilized RNF220 mRNA in an IGF2BP2-dependent manner. Additionally, RNF220 promoted PD-L1 expression by destabilizing PDE10A, thereby facilitating immune evasion in BCa. These findings establish RNF220 as a pivotal ubiquitinase that drives both cisplatin resistance and immune escape through PDE10A destabilization, highlighting its potential as a therapeutic target to enhance chemotherapy and immunotherapy efficacy in advanced BCa.
Collapse
Affiliation(s)
- Kai Li
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongshan Li
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yetao Zhang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiancheng Lv
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tong Zhao
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxiang Dong
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fuyang Liu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Wang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yong Wei
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Qingyi Zhu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Liu G, Liu J, Li S, Zhang Y, He R. Exosome-Mediated Chemoresistance in Cancers: Mechanisms, Therapeutic Implications, and Future Directions. Biomolecules 2025; 15:685. [PMID: 40427578 PMCID: PMC12108986 DOI: 10.3390/biom15050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Chemotherapy resistance represents a formidable obstacle in oncological therapeutics, substantially compromising the efficacy of adjuvant chemotherapy regimens and contributing to unfavorable clinical prognoses. Emerging evidence has elucidated the pivotal involvement of exosomes in the dissemination of chemoresistance phenotypes among tumor cells and within the tumor microenvironment. This review delineates two distinct intra-tumoral resistance mechanisms orchestrated by exosomes: (1) the exosome-mediated sequestration of chemotherapeutic agents coupled with enhanced drug efflux in neoplastic cells, and (2) the horizontal transfer of chemoresistance to drug-sensitive cells through the delivery of bioactive molecular cargo, thereby facilitating the propagation of resistance phenotypes across the tumor population. Furthermore, the review covers current in vivo experimental data focusing on targeted interventions against specific genetic elements and exosomal secretion pathways, demonstrating their potential in mitigating chemotherapy resistance. Additionally, the therapeutic potential of inhibiting exosome-mediated transporter transfer strategy is particularly examined as a promising strategy to overcome tumor resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | - Yumiao Zhang
- School of Chemical Engineering and Technology, School of Synthetic Biology and Biomanufacturing, Frontiers Science Center for Synthetic Biology (Ministry of Education) and State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300350, China; (G.L.); (J.L.); (S.L.)
| | - Ren He
- School of Chemical Engineering and Technology, School of Synthetic Biology and Biomanufacturing, Frontiers Science Center for Synthetic Biology (Ministry of Education) and State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300350, China; (G.L.); (J.L.); (S.L.)
| |
Collapse
|
3
|
Cai L, Zhang S, Zheng F, Ji F, Wang J, Shi L, Chao L, Wang X, Zhang J, Chen Z. Identification of SCAMP2 as a regulator of NOTCH signaling in cisplatin resistance through a novel prognostic model for bladder cancer. Front Immunol 2025; 16:1573412. [PMID: 40406117 PMCID: PMC12095277 DOI: 10.3389/fimmu.2025.1573412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
Introduction Bladder cancer remains a major challenge in clinical oncology, particularly due to the development of platinum resistance, which severely impacts patient prognosis. Despite numerous attempts to create effective prognostic models, their clinical applicability has often been limited. Methods In this study, we utilized a robust statistical approach, LASSO-COX regression analysis, to develop a novel prognostic model for bladder cancer based on cisplatin sensitivity-related genes (CSRGs). The model was validated using both the TCGA-BLCA dataset and an independent validation set, GSE32894. Additionally, we employed various in vitro assays, including CCK-8 and EdU assays for cell proliferation, transwell assays for migration, and flow cytometry for apoptosis analysis, to investigate the biological function of the identified genes. Results Our prognostic model demonstrated superior predictive performance, with high AUC values. SCAMP2 was identified as a critical gene with elevated expression in bladder cancer, showing strong correlation with sensitivity to multiple anti-cancer drugs, including cisplatin. Further functional assays revealed that SCAMP2 mediates drug resistance in bladder cancer cells via the NOTCH signaling pathway. Additionally, in vivo experiments showed that SCAMP2 overexpression significantly enhanced cisplatin sensitivity in bladder cancer tissues. Discussion These findings underscore the potential of CSRGs, particularly SCAMP2, as critical biomarkers for bladder cancer prognosis. The identification of SCAMP2 as a regulator of NOTCH signaling in cisplatin resistance offers new insights into the molecular mechanisms of chemotherapy resistance and suggests potential therapeutic targets for overcoming drug resistance. Our model could guide personalized treatment strategies and improve bladder cancer patient outcomes.
Collapse
Affiliation(s)
- Longjun Cai
- Department of Urology, The Affiliated Suqian Hospital of Xuzhou Medical University, Nanjing Drum-Tower Hospital Group Suqian Hospital, Suqian, Jiangsu, China
| | - Shaoqi Zhang
- Department of Urology, The Affiliated Suqian Hospital of Xuzhou Medical University, Nanjing Drum-Tower Hospital Group Suqian Hospital, Suqian, Jiangsu, China
| | - Fangfang Zheng
- Department of Urology, The Affiliated Suqian Hospital of Xuzhou Medical University, Nanjing Drum-Tower Hospital Group Suqian Hospital, Suqian, Jiangsu, China
| | - Furong Ji
- Department of Urology, The Affiliated Suqian Hospital of Xuzhou Medical University, Nanjing Drum-Tower Hospital Group Suqian Hospital, Suqian, Jiangsu, China
| | - Jin Wang
- School of Public Health, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu, China
| | - Long Shi
- Department of Urology, The Affiliated Suqian Hospital of Xuzhou Medical University, Nanjing Drum-Tower Hospital Group Suqian Hospital, Suqian, Jiangsu, China
| | - Liu Chao
- Department of Urology, The Affiliated Suqian Hospital of Xuzhou Medical University, Nanjing Drum-Tower Hospital Group Suqian Hospital, Suqian, Jiangsu, China
| | - Xiangyu Wang
- Department of Urology, The Affiliated Suqian Hospital of Xuzhou Medical University, Nanjing Drum-Tower Hospital Group Suqian Hospital, Suqian, Jiangsu, China
| | - Jianjun Zhang
- Department of Urology, The Affiliated Suqian Hospital of Xuzhou Medical University, Nanjing Drum-Tower Hospital Group Suqian Hospital, Suqian, Jiangsu, China
| | - Zhiyong Chen
- Department of Urology, The Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian, China
| |
Collapse
|
4
|
Wang F, Zhang H, Liu X, Dou Y, Yang H. MEOX2 mediates cisplatin resistance in ovarian cancer via E2F target and DNA repair pathways. J Ovarian Res 2025; 18:58. [PMID: 40119426 PMCID: PMC11927352 DOI: 10.1186/s13048-025-01641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/01/2025] [Indexed: 03/24/2025] Open
Abstract
Ovarian cancer (OV) is a leading cause of cancer-related mortality among women worldwide. Despite the success of platinum-based chemotherapy in treating OV, the emergence of cisplatin resistance has significantly compromised its therapeutic efficacy. Therefore, understanding the mechanisms underlying cisplatin resistance and its molecular regulation is crucial for improving patient outcomes. This study, MEOX2 was identified as a key gene significantly associated with prognosis and cisplatin resistance in OV through bioinformatics analysis. Its expression level and biological functions were validated using online databases, tissue microarrays, and cellular experiments. The results demonstrated that high MEOX2 expression was closely associated with poor survival outcomes in OV patients, while its expression was significantly reduced in cisplatin-resistant cells. Further gene silencing experiments revealed that silencing MEOX2 markedly enhanced cisplatin resistance in resistant cells and significantly reduced cisplatin-induced early apoptosis, although it had no notable effect on cell proliferation. Moreover, the study showed that MEOX2 was not associated with immune cell infiltration in OV but was positively correlated with angiogenesis-related genes. In cisplatin-resistant cells, gene set enrichment analysis of MEOX2 co-expressed genes highlighted the activation of the E2F target and DNA repair pathway. Additionally, MEOX2 exhibited a significant negative correlation with the MCM protein family. In summary, MEOX2 is highly expressed in OV and is associated with poor patient prognosis. It may confer cisplatin resistance to OV cells by activating the E2F target and DNA repair pathway to mitigate cisplatin-induced early apoptosis. Despite certain limitations, these findings provide novel insights into the potential role of MEOX2 as a prognostic biomarker and therapeutic target in OV.
Collapse
Affiliation(s)
- Fei Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, 710072, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Hao Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, 710072, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Xiru Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, 710072, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Yuanyuan Dou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, 710072, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, 710072, Shaanxi, China.
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
| |
Collapse
|
5
|
Peixoto A, Ferreira D, Miranda A, Relvas-Santos M, Freitas R, Veth TS, Brandão A, Ferreira E, Paulo P, Cardoso M, Gaiteiro C, Cotton S, Soares J, Lima L, Teixeira F, Ferreira R, Palmeira C, Heck AJ, Oliveira MJ, Silva AM, Santos LL, Ferreira JA. Multilevel plasticity and altered glycosylation drive aggressiveness in hypoxic and glucose-deprived bladder cancer cells. iScience 2025; 28:111758. [PMID: 39906564 PMCID: PMC11791300 DOI: 10.1016/j.isci.2025.111758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/04/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Bladder tumors with aggressive characteristics often present microenvironmental niches marked by low oxygen levels (hypoxia) and limited glucose supply due to inadequate vascularization. The molecular mechanisms facilitating cellular adaptation to these stimuli remain largely elusive. Employing a multi-omics approach, we discovered that hypoxic and glucose-deprived cancer cells enter a quiescent state supported by mitophagy, fatty acid β-oxidation, and amino acid catabolism, concurrently enhancing their invasive capabilities. Reoxygenation and glucose restoration efficiently reversed cell quiescence without affecting cellular viability, highlighting significant molecular plasticity in adapting to microenvironmental challenges. Furthermore, cancer cells exhibited substantial perturbation of protein O-glycosylation, leading to simplified glycophenotypes with shorter glycosidic chains. Exploiting glycoengineered cell models, we established that immature glycosylation contributes to reduced cell proliferation and increased invasion. Our findings collectively indicate that hypoxia and glucose deprivation trigger cancer aggressiveness, reflecting an adaptive escape mechanism underpinned by altered metabolism and protein glycosylation, providing grounds for clinical intervention.
Collapse
Affiliation(s)
- Andreia Peixoto
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Dylan Ferreira
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Andreia Miranda
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Marta Relvas-Santos
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rui Freitas
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Tim S. Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands
- Netherlands Proteomics Center, Padualaan, Utrecht, the Netherlands
| | - Andreia Brandão
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | - Eduardo Ferreira
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | - Paula Paulo
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | - Marta Cardoso
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | - Cristiana Gaiteiro
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Sofia Cotton
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Janine Soares
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Luís Lima
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | | | - Rita Ferreira
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Carlos Palmeira
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- Department of Immunology, Portuguese Oncology Institute of Porto, Porto, Portugal
- Health School of University Fernando Pessoa, Porto, Portugal
| | - Albert J.R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands
- Netherlands Proteomics Center, Padualaan, Utrecht, the Netherlands
| | - Maria José Oliveira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - André M.N. Silva
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Lúcio Lara Santos
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- Health School of University Fernando Pessoa, Porto, Portugal
- Department of Surgical Oncology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - José Alexandre Ferreira
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Cao Z, Tian K, Ran Y, Zhou H, Zhou L, Ding Y, Tang X. Beclin-1: a therapeutic target at the intersection of autophagy, immunotherapy, and cancer treatment. Front Immunol 2024; 15:1506426. [PMID: 39650649 PMCID: PMC11621085 DOI: 10.3389/fimmu.2024.1506426] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/01/2024] [Indexed: 12/11/2024] Open
Abstract
The significant identification of Beclin-1's function in regulating autophagy flow signified a significant progression in our understanding of cellular operations. Beclin-1 acts as a scaffold for forming the PI3KC3 complex, controlling autophagy and cellular trafficking processes in a complicated way. This intricate protein has garnered considerable attention due to its substantial impact on the development of tumors. Strong evidence indicates Beclin-1 plays a critical role in controlling autophagy in various human cancer types and its intricate connection with apoptosis and ferroptosis. The potential of Beclin-1 as a viable target for cancer therapy is highlighted by its associations with key autophagy regulators such as AMPK, mTOR, and ATGs. Beclin-1 controls the growth and dissemination of tumors by autophagy. It also affects how tumors react to therapies such as chemotherapy and radiation therapy. The role of Beclin-1 in autophagy can influence apoptosis, depending on whether it supports cell survival or leads to cell death. Beclin-1 plays a crucial role in ferroptosis by increasing ATG5 levels, which in turn promotes autophagy-triggered ferroptosis. Finally, we analyzed the possible function of Beclin-1 in tumor immunology and drug sensitivity in cancers. In general, Beclin-1 has a significant impact on regulating autophagy, offering various potentials for medical intervention and altering our understanding of cancer biology.
Collapse
Affiliation(s)
- Zhumin Cao
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Ke Tian
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Yincheng Ran
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Haonan Zhou
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Yana Ding
- Department of Hepatobiliary Surgery, District Traditional Chinese Medicine Hospital, Chongqing, China
| | - Xiaowei Tang
- Department of Hepatobiliary Surgery, District Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
7
|
Wu S, Luo T, Lei X, Yang X. Emerging role of competing endogenous RNA in lung cancer drug resistance. J Chemother 2024; 36:546-565. [PMID: 38124356 DOI: 10.1080/1120009x.2023.2294582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Lung cancer remains one of the most common malignant cancers worldwide, and its survival rate is extremely low. Chemotherapy, the mainstay of lung cancer treatment, is not as effective as it could be due to the development of cellular resistance. The molecular mechanisms of drug resistance in lung cancer remain to be elucidated. Accumulating evidence suggests that ceRNAs are involved in various carcinogenesis and development. CeRNA is a transcript that regulates each other through competition with miRNA. However, the relationship between ceRNAs and chemoresistance in lung cancer remains unclear. In this narrative review, we provided a summary of treatment approaches that focus on ceRNA networks to overcome drug resistance.
Collapse
Affiliation(s)
- Shijie Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
| | - Ting Luo
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| |
Collapse
|
8
|
Tian ML, Li B, Li Y, Fan HW, Du NY, Kang S. LncRNA LINC00261 associates with chemoresistance and clinical prognosis in patients with epithelial ovarian cancer. J Obstet Gynaecol Res 2024. [PMID: 39390648 DOI: 10.1111/jog.16077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/25/2024] [Indexed: 10/12/2024]
Abstract
OBJECTIVE The purpose of this experiment is to explore the role of long intergenic noncoding RNA 261 (LINC00261) gene in the chemoresistance and clinical prognosis of epithelial ovarian cancer (EOC). METHODS We used matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry to detect the methylation levels of the LINC00261 promoter region in EOC patient specimens. The expression levels of LINC00261, miR-545-3p, and MT1M in EOC patients were evaluated by quantitative real-time reverse transcriptase PCR (RT-qPCR). Spearman's correlation analysis was used for relevance analyses and clinical prognosis was counted by Kaplan-Meier analysis. Stable overexpressed LINC00261 SKOV3 cells were established to test the influence of LINC00261 on proliferation, platinum sensitivity, migration, and invasion. RESULTS The promoter region methylation level of the LINC00261 was hypermethylated and LINC00261 was significantly downregulated in platinum-resistant EOC tissues. The methylation level of LINC00261was significantly negative correlated with its RNA expression in EOC. Moreover, hypermethylation and lower expression of LINC00261 in EOC patients were related to shorter progression-free survival (PFS) and overall survival (OS). Furthermore, Spearman's correlation analysis showed that the expression of miR-545-3p had a negative relevance with LINC00261. According to the website prediction, MT1M might be the downstream target gene of LINC00261. Expression of MT1M was negatively correlated with miR-545-3p and positively with LINC00261 in EOC tissues. And lower MT1M mRNA expression was correlated with chemotherapy resistance and worse prognosis. In vitro, overexpression of LINC00261 could inhibit cisplatin resistance, proliferation, and suppression of migration and invasion in SKOV3 cells. CONCLUSIONS This research indicates that the aberrant hypermethylation and low expression of LINC00261 were associated with platinum resistance and adverse outcomes in EOC patients.
Collapse
Affiliation(s)
- Mei-Ling Tian
- Department of Obstetrics and Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
- Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang, China
| | - Bin Li
- Department of Gynecology, Handan Central Hospital, Handan, Hebei, China
| | - Yan Li
- Department of Molecular Biology, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Hong-Wei Fan
- Department of Obstetrics and Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Nai-Yi Du
- Department of Obstetrics and Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Shan Kang
- Department of Obstetrics and Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
9
|
Niu X, Liu W, Zhang Y, Liu J, Zhang J, Li B, Qiu Y, Zhao P, Wang Z, Wang Z. Cancer plasticity in therapy resistance: Mechanisms and novel strategies. Drug Resist Updat 2024; 76:101114. [PMID: 38924995 DOI: 10.1016/j.drup.2024.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Therapy resistance poses a significant obstacle to effective cancer treatment. Recent insights into cell plasticity as a new paradigm for understanding resistance to treatment: as cancer progresses, cancer cells experience phenotypic and molecular alterations, corporately known as cell plasticity. These alterations are caused by microenvironment factors, stochastic genetic and epigenetic changes, and/or selective pressure engendered by treatment, resulting in tumor heterogeneity and therapy resistance. Increasing evidence suggests that cancer cells display remarkable intrinsic plasticity and reversibly adapt to dynamic microenvironment conditions. Dynamic interactions between cell states and with the surrounding microenvironment form a flexible tumor ecosystem, which is able to quickly adapt to external pressure, especially treatment. Here, this review delineates the formation of cancer cell plasticity (CCP) as well as its manipulation of cancer escape from treatment. Furthermore, the intrinsic and extrinsic mechanisms driving CCP that promote the development of therapy resistance is summarized. Novel treatment strategies, e.g., inhibiting or reversing CCP is also proposed. Moreover, the review discusses the multiple lines of ongoing clinical trials globally aimed at ameliorating therapy resistance. Such advances provide directions for the development of new treatment modalities and combination therapies against CCP in the context of therapy resistance.
Collapse
Affiliation(s)
- Xing Niu
- China Medical University, Shenyang, Liaoning 110122, China; Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong, China
| | - Wenjing Liu
- Medical Oncology Department of Thoracic Cancer (2), Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yinling Zhang
- Department of Oncology Radiotherapy 1, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266042, China
| | - Jing Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Yue Qiu
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Peng Zhao
- Department of Medical Imaging, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Zhongmiao Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhe Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
10
|
Mu W, Zhi Y, Zhou J, Wang C, Chai K, Fan Z, Lv G. Endoplasmic reticulum stress and quality control in relation to cisplatin resistance in tumor cells. Front Pharmacol 2024; 15:1419468. [PMID: 38948460 PMCID: PMC11211601 DOI: 10.3389/fphar.2024.1419468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
The endoplasmic reticulum (ER) is a crucial organelle that orchestrates key cellular functions like protein folding and lipid biosynthesis. However, it is highly sensitive to disturbances that lead to ER stress. In response, the unfolded protein response (UPR) activates to restore ER homeostasis, primarily through three sensors: IRE1, ATF6, and PERK. ERAD and autophagy are crucial in mitigating ER stress, yet their dysregulation can lead to the accumulation of misfolded proteins. Cisplatin, a commonly used chemotherapy drug, induces ER stress in tumor cells, activating complex signaling pathways. Resistance to cisplatin stems from reduced drug accumulation, activation of DNA repair, and anti-apoptotic mechanisms. Notably, cisplatin-induced ER stress can dualistically affect tumor cells, promoting either survival or apoptosis, depending on the context. ERAD is crucial for degrading misfolded proteins, whereas autophagy can protect cells from apoptosis or enhance ER stress-induced apoptosis. The complex interaction between ER stress, cisplatin resistance, ERAD, and autophagy opens new avenues for cancer treatment. Understanding these processes could lead to innovative strategies that overcome chemoresistance, potentially improving outcomes of cisplatin-based cancer treatments. This comprehensive review provides a multifaceted perspective on the complex mechanisms of ER stress, cisplatin resistance, and their implications in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Fan HY, Zhao MD, Jiang HJ, Yu ZW, Fan YJ, Liang XH, Tang YL, Sun Y. Cisplatin-based miRNA delivery strategy inspired by the circCPNE1/miR-330-3p pathway for oral squamous cell carcinoma. Acta Pharm Sin B 2024; 14:2748-2760. [PMID: 38828155 PMCID: PMC11143742 DOI: 10.1016/j.apsb.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/08/2023] [Accepted: 12/14/2023] [Indexed: 06/05/2024] Open
Abstract
Circular RNAs (circRNAs) are ideal biomarkers of oral squamous cell carcinoma (OSCC) because of their highly stable closed-loop structure, and they can act as microRNA (miRNA) sponges to regulate OSCC progression. By analyzing clinical samples, we identified circCPNE1, a dysregulated circRNA in OSCC, and its expression level was negatively correlated with the clinical stage of OSCC patients. Gain-of-function assays revealed the tumor-suppressive effect of circCPNE1, which was then identified as a miR-330-3p sponge. MiR-330-3p was recognized as a tumor promoter in multiple studies, consistent with our finding that it could promote the proliferation, migration, and invasion of OSCC cells. These results indicated that selective inhibition of miR-330-3p could be an effective strategy to inhibit OSCC progression. Therefore, we designed cationic polylysine-cisplatin prodrugs to deliver antagomiR-330-3p (a miRNA inhibitory analog) via electrostatic interactions to form PP@miR nanoparticles (NPs). Paratumoral administration results revealed that PP@miR NPs effectively inhibited subcutaneous tumor progression and achieved partial tumor elimination (2/5), which confirmed the critical role of miR-330-3p in OSCC development. These findings provide a new perspective for the development of OSCC treatments.
Collapse
Affiliation(s)
- Hua-yang Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ming-da Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Hong-jie Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhen-wei Yu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu-jiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Xin-hua Liang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ya-ling Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
Xie M, Zhou L, Li T, Lin Y, Zhang R, Zheng X, Zeng C, Zheng L, Zhong L, Huang X, Zou Y, Kang T, Wu Y. Targeting the KAT8/YEATS4 Axis Represses Tumor Growth and Increases Cisplatin Sensitivity in Bladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310146. [PMID: 38526153 PMCID: PMC11165526 DOI: 10.1002/advs.202310146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/13/2024] [Indexed: 03/26/2024]
Abstract
Bladder cancer (BC) is one of the most common tumors characterized by a high rate of relapse and a lack of targeted therapy. Here, YEATS domain-containing protein 4 (YEATS4) is an essential gene for BC cell viability using CRISPR-Cas9 library screening is reported, and that HUWE1 is an E3 ligase responsible for YEATS4 ubiquitination and proteasomal degradation by the Protein Stability Regulators Screening Assay. KAT8-mediated acetylation of YEATS4 impaired its interaction with HUWE1 and consequently prevented its ubiquitination and degradation. The protein levels of YEATS4 and KAT8 are positively correlated and high levels of these two proteins are associated with poor overall survival in BC patients. Importantly, suppression of YEATS4 acetylation with the KAT8 inhibitor MG149 decreased YEATS4 acetylation, reduced cell viability, and sensitized BC cells to cisplatin treatment. The findings reveal a critical role of the KAT8/YEATS4 axis in both tumor growth and cisplatin sensitivity in BC cells, potentially generating a novel therapeutic strategy for BC patients.
Collapse
Affiliation(s)
- Miner Xie
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of HematologyGuangzhou First People's HospitalSouth China University of TechnologyGuangzhou510060P. R. China
| | - Liwen Zhou
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Ting Li
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yujie Lin
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Xianchong Zheng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Cuiling Zeng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Lisi Zheng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Li Zhong
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Center of Digestive DiseaseScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107P. R. China
| | - Xiaodan Huang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yezi Zou
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- School of MedicineShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| |
Collapse
|
13
|
Li P, Wang W, Zhu B, Wang Y, Li J, Wang C, Wang C, Li Q. PRDX2 regulates stemness contributing to cisplatin resistance and metastasis in bladder cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:2869-2880. [PMID: 38294069 DOI: 10.1002/tox.24153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Cisplatin (CDDP)-based chemotherapy has emerged as the primary treatment for muscle-invasive bladder cancer and metastatic bladder cancer. Nevertheless, a significant proportion of patients experience rapidly developed chemoresistance, leading to treatment ineffectiveness. Existing evidence suggests that chemoresistance is governed by various factors, including tumor stem cells, epithelial mesenchymal transition, and reactive oxygen species (ROS). However, limited research has been conducted on the role of PRDX2, a crucial ROS scavenger, in the modulation of chemoresistance in bladder cancer. METHODS Cisplatin-resistant cell lines were established using the concentration gradient overlay method, and differentially expressed genes in resistant cells were screened through RNA sequencing. The expression of PRDX2 in cells and tissues was assessed using RT-qPCR, Western Blot, and immunohistochemistry. The expression of PRDX2 in bladder cancer and adjacent tissues was evaluated using a bladder cancer tissue microarray. Furthermore, the impact of PRDX2 knockdown on tumor formation and metastasis was investigated in vivo by applying subcutaneous tumor xenografts tail vein metastasis assays. RESULTS We demonstrated that PRDX2 is significantly upregulated in bladder tumors and cisplatin-resistant bladder tumor cell lines. Overexpression of PRDX2 can promote tumor proliferation, migration, and invasion both in vitro and in vivo. We have found that knockdown of PRDX2 expression can effectively reverse cell resistance to cisplatin. Mechanistically, our findings suggest that PRDX2 is involved in regulating tumor stemness and epithelial-mesenchymal transition (EMT). Knockdown of PRDX2 affects the PI3K-AKT and mTOR signaling pathways, thereby influencing tumor stemness and EMT, ultimately impacting the chemotherapy resistance of the tumor. CONCLUSIONS This study provides a new insight into the regulation of chemotherapy resistance in bladder cancer by PRDX2. Targeting PRDX2 can serve as a potent therapeutic target for chemotherapy resistance.
Collapse
Affiliation(s)
- Peng Li
- Department of Urology, Yantaishan Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Weihua Wang
- Department of Clinical Laboratory, Yuhuangding Hospital, Qingdao University School of Medicine, Yantai, Shandong, China
| | - Baowei Zhu
- Yantai Cellzone Biotechnology Company Limited, Yantai, Shandong, China
| | - Yangui Wang
- Department of Clinical Laboratory, Yantaishan Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Jixia Li
- Department of Clinical Laboratory, Yantaishan Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Chenghong Wang
- Department of Clinical Laboratory, Yantaishan Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Chenyu Wang
- Department of Clinical Laboratory, Yuhuangding Hospital, Qingdao University School of Medicine, Yantai, Shandong, China
| | - Qin Li
- Department of Clinical Laboratory, Yuhuangding Hospital, Qingdao University School of Medicine, Yantai, Shandong, China
| |
Collapse
|
14
|
Yu Z, Zou J, Xu F. Tumor-associated macrophages affect the treatment of lung cancer. Heliyon 2024; 10:e29332. [PMID: 38623256 PMCID: PMC11016713 DOI: 10.1016/j.heliyon.2024.e29332] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
As one of the most common malignant tumors in the world, lung cancer has limited benefits for patients despite its diverse treatment methods due to factors such as personalized medicine targeting histological type, immune checkpoint expression, and driver gene mutations. The high mortality rate of lung cancer is partly due to the immune-suppressive which limits the effectiveness of anti-cancer drugs and induces tumor cell resistance. The currently widely recognized TAM phenotypes include the anti-tumor M1 and pro-tumor M2 phenotypes. M2 macrophages promote the formation of an immune-suppressive microenvironment and hinder immune cell infiltration, thereby inhibiting activation of the anti-tumor immune system and aiding tumor cells in resisting treatment. Analyzing the relationship between different treatment methods and macrophages in the TME can help us better understand the impact of TAMs on lung cancer and confirm the feasibility of targeted TAM therapy. Targeting TAMs to reduce the M2/M1 ratio and reverse the immune-suppressive microenvironment can improve the clinical efficacy of conventional treatment methods and potentially open up more efficient combination treatment strategies, maximizing the benefit for lung cancer patients.
Collapse
Affiliation(s)
- Zhuchen Yu
- Clinical Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Juntao Zou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Fei Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| |
Collapse
|
15
|
Li F, Zhang H, Huang Y, Li D, Zheng Z, Xie K, Cao C, Wang Q, Zhao X, Huang Z, Chen S, Chen H, Fan Q, Deng F, Hou L, Deng X, Tan W. Single-cell transcriptome analysis reveals the association between histone lactylation and cisplatin resistance in bladder cancer. Drug Resist Updat 2024; 73:101059. [PMID: 38295753 DOI: 10.1016/j.drup.2024.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 03/08/2024]
Abstract
Patients with bladder cancer (BCa) frequently acquires resistance to platinum-based chemotherapy, particularly cisplatin. This study centered on the mechanism of cisplatin resistance in BCa and highlighted the pivotal role of lactylation in driving this phenomenon. Utilizing single-cell RNA sequencing, we delineated the single-cell landscape of Bca, pinpointing a distinctive subset of BCa cells that exhibit marked resistance to cisplatin with association with glycolysis metabolism. Notably, we observed that H3 lysine 18 lactylation (H3K18la) plays a crucial role in activating the transcription of target genes by enriching in their promoter regions. Targeted inhibition of H3K18la effectively restored cisplatin sensitivity in these cisplatin-resistant epithelial cells. Furthermore, H3K18la-driven key transcription factors YBX1 and YY1 promote cisplatin resistance in BCa. These findings enhance our understanding of the mechanisms underlying cisplatin resistance, offering valuable insights for identifying novel intervention targets to overcome drug resistance in Bca.
Collapse
Affiliation(s)
- Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Henghui Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yuan Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Dongqing Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zaosong Zheng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Kunfeng Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Chun Cao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Qiong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xinlei Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zehai Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Shijun Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Haiyong Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong R619, 3 Sassoon Road, Pokfulam, Hong Kong, SAR China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, PR China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Lina Hou
- Department of Healthy Management, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.
| | - Xiaolin Deng
- Department of Urology, Ganzhou People's Hospital, Ganzhou, PR China.
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
16
|
Mondal A, Banerjee S, Terang W, Bishayee A, Zhang J, Ren L, da Silva MN, Bishayee A. Capsaicin: A chili pepper bioactive phytocompound with a potential role in suppressing cancer development and progression. Phytother Res 2024; 38:1191-1223. [PMID: 38176910 DOI: 10.1002/ptr.8107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024]
Abstract
Cancer profoundly influences morbidity and fatality rates worldwide. Patients often have dismal prognoses despite recent improvements in cancer therapy regimens. However, potent biomolecules derived from natural sources, including medicinal and dietary plants, contain biological and pharmacological properties to prevent and treat various human malignancies. Capsaicin is a bioactive phytocompound present in red hot chili peppers. Capsaicin has demonstrated many biological effects, including antioxidant, anti-inflammatory, antimicrobial, and anticarcinogenic capabilities. This review highlights the cellular and molecular pathways through which capsaicin exhibits antineoplastic activities. Our work also depicts the synergistic anticancer properties of capsaicin in conjunction with other natural bioactive components and approved anticancer drugs. Capsaicin inhibits proliferation in various cancerous cells, and its antineoplastic actions in numerous in vitro and in vivo carcinoma models impact oncogenesis, tumor-promoting and suppressor genes, and associated signaling pathways. Capsaicin alone or combined with other phytocompounds or approved antineoplastic drugs triggers cell cycle progression arrest, generating reactive oxygen species and disrupting mitochondrial membrane integrity, ultimately stimulating caspases and promoting death. Furthermore, capsaicin alone or in combination can promote apoptosis in carcinoma cells by enhancing the p53 and c-Myc gene expressions. In conclusion, capsaicin alone or in combination can have enormous potential for cancer prevention and intervention, but further high-quality studies are needed to firmly establish the clinical efficacy of this phytocompound.
Collapse
Affiliation(s)
- Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol, India
| | - Wearank Terang
- Department of Pharmacology, Rahman Institute of Pharmaceutical Sciences and Research, Kamrup, India
| | - Anusha Bishayee
- Department of Statistics and Data Science, College of Arts and Sciences, Cornell University, Ithaca, New York, USA
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Milton Nascimento da Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Chemistry Post-Graduation Program, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Pharmaceutical Science Post-Graduation Program, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
17
|
Shi H, Tan Z, Duan B, Guo C, Li C, Luan T, Li N, Huang Y, Chen S, Gao J, Feng W, Xu H, Wang J, Fu S, Wang H. LASS2 enhances chemosensitivity to cisplatin by inhibiting PP2A-mediated β-catenin dephosphorylation in a subset of stem-like bladder cancer cells. BMC Med 2024; 22:19. [PMID: 38191448 PMCID: PMC10775422 DOI: 10.1186/s12916-023-03243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/01/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The benefits of first-line, cisplatin-based chemotherapy for muscle-invasive bladder cancer are limited due to intrinsic or acquired resistance to cisplatin. Increasing evidence has revealed the implication of cancer stem cells in the development of chemoresistance. However, the underlying molecular mechanisms remain to be elucidated. This study investigates the role of LASS2, a ceramide synthase, in regulating Wnt/β-catenin signaling in a subset of stem-like bladder cancer cells and explores strategies to sensitize bladder cancer to cisplatin treatment. METHODS Data from cohorts of our center and published datasets were used to evaluate the clinical characteristics of LASS2. Flow cytometry was used to sort and analyze bladder cancer stem cells (BCSCs). Tumor sphere formation, soft agar colony formation assay, EdU assay, apoptosis analysis, cell viability, and cisplatin sensitivity assay were used to investigate the functional roles of LASS2. Immunofluorescence, immunoblotting, coimmunoprecipitation, LC-MS, PCR array, luciferase reporter assays, pathway reporter array, chromatin immunoprecipitation, gain-of-function, and loss-of-function approaches were used to investigate the underlying mechanisms. Cell- and patient-derived xenograft models were used to investigate the effect of LASS2 overexpression and a combination of XAV939 on cisplatin sensitization and tumor growth. RESULTS Patients with low expression of LASS2 have a poorer response to cisplatin-based chemotherapy. Loss of LASS2 confers a stem-like phenotype and contributes to cisplatin resistance. Overexpression of LASS2 results in inhibition of self-renewal ability of BCSCs and increased their sensitivity to cisplatin. Mechanistically, LASS2 inhibits PP2A activity and dissociates PP2A from β-catenin, preventing the dephosphorylation of β-catenin and leading to the accumulation of cytosolic phospho-β-catenin, which decreases the transcription of the downstream genes ABCC2 and CD44 in BCSCs. Overexpression of LASS2 combined with a tankyrase inhibitor (XAV939) synergistically inhibits tumor growth and restores cisplatin sensitivity. CONCLUSIONS Targeting the LASS2 and β-catenin pathways may be an effective strategy to overcome cisplatin resistance and inhibit tumor growth in bladder cancer patients.
Collapse
Affiliation(s)
- Hongjin Shi
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Zhiyong Tan
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Bowen Duan
- Kunming Medical University, Kunming, China
| | - Chunming Guo
- School for Life Science, Yunnan University, Kunming, China
| | - Chong Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ting Luan
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Ning Li
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Yinglong Huang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Shi Chen
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Jixian Gao
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Wei Feng
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Haole Xu
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Jiansong Wang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Shi Fu
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China.
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China.
| | - Haifeng Wang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China.
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China.
| |
Collapse
|
18
|
Wang Y, Hu J, Wu S, Fleishman JS, Li Y, Xu Y, Zou W, Wang J, Feng Y, Chen J, Wang H. Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of diseases. Signal Transduct Target Ther 2023; 8:449. [PMID: 38072908 PMCID: PMC10711040 DOI: 10.1038/s41392-023-01720-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/16/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Ferroptosis, a unique modality of cell death with mechanistic and morphological differences from other cell death modes, plays a pivotal role in regulating tumorigenesis and offers a new opportunity for modulating anticancer drug resistance. Aberrant epigenetic modifications and posttranslational modifications (PTMs) promote anticancer drug resistance, cancer progression, and metastasis. Accumulating studies indicate that epigenetic modifications can transcriptionally and translationally determine cancer cell vulnerability to ferroptosis and that ferroptosis functions as a driver in nervous system diseases (NSDs), cardiovascular diseases (CVDs), liver diseases, lung diseases, and kidney diseases. In this review, we first summarize the core molecular mechanisms of ferroptosis. Then, the roles of epigenetic processes, including histone PTMs, DNA methylation, and noncoding RNA regulation and PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, methylation, and ADP-ribosylation, are concisely discussed. The roles of epigenetic modifications and PTMs in ferroptosis regulation in the genesis of diseases, including cancers, NSD, CVDs, liver diseases, lung diseases, and kidney diseases, as well as the application of epigenetic and PTM modulators in the therapy of these diseases, are then discussed in detail. Elucidating the mechanisms of ferroptosis regulation mediated by epigenetic modifications and PTMs in cancer and other diseases will facilitate the development of promising combination therapeutic regimens containing epigenetic or PTM-targeting agents and ferroptosis inducers that can be used to overcome chemotherapeutic resistance in cancer and could be used to prevent other diseases. In addition, these mechanisms highlight potential therapeutic approaches to overcome chemoresistance in cancer or halt the genesis of other diseases.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jing Hu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300060, PR China
| | - Shuang Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, 430000, PR China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yulin Li
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Yinshi Xu
- Department of Outpatient, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Wailong Zou
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| | - Yukuan Feng
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China.
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| |
Collapse
|
19
|
Kielbik M, Przygodzka P, Szulc-Kielbik I, Klink M. Snail transcription factors as key regulators of chemoresistance, stemness and metastasis of ovarian cancer cells. Biochim Biophys Acta Rev Cancer 2023; 1878:189003. [PMID: 37863122 DOI: 10.1016/j.bbcan.2023.189003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Ovarian cancer is one of the deadliest gynecological malignancies among women. The reason for this outcome is the frequent acquisition of cancer cell resistance to platinum-based drugs and unresponsiveness to standard therapy. It has been increasingly recognized that the ability of ovarian cancer cells to adopt more aggressive behavior (mainly through the epithelial-to-mesenchymal transition, EMT), as well as dedifferentiation into cancer stem cells, significantly affects drug resistance acquisition. Transcription factors in the Snail family have been implicated in ovarian cancer chemoresistance and metastasis. In this article, we summarize published data that reveal Snail proteins not only as key inducers of the EMT in ovarian cancer but also as crucial links between the acquisition of ovarian cancer stem properties and spheroid formation. These Snail-related characteristics significantly affect the ovarian cancer cell response to treatment and are related to the acquisition of chemoresistance.
Collapse
Affiliation(s)
- Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Patrycja Przygodzka
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Izabela Szulc-Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland.
| |
Collapse
|
20
|
Festuccia C, Corrado M, Rossetti A, Castelli R, Lodola A, Gravina GL, Tognolini M, Giorgio C. A Pharmacological Investigation of Eph-Ephrin Antagonism in Prostate Cancer: UniPR1331 Efficacy Evidence. Pharmaceuticals (Basel) 2023; 16:1452. [PMID: 37895923 PMCID: PMC10609876 DOI: 10.3390/ph16101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The Eph kinases are the largest receptor tyrosine kinases (RTKs) family in humans. PC3 human prostate adenocarcinoma cells are a well-established model for studying Eph-ephrin pharmacology as they naturally express a high level of EphA2, a promising target for new cancer therapies. A pharmacological approach with agonists did not show significant efficacy on tumor growth in prostate orthotopic murine models, but reduced distal metastasis formation. In order to improve the comprehension of the pharmacological targeting of Eph receptors in prostate cancer, in the present work, we investigated the efficacy of Eph antagonism both in vitro and in vivo, using UniPR1331, a small orally bioavailable Eph-ephrin interaction inhibitor. UniPR1331 was able to inhibit PC3 cells' growth in vitro in a dose-dependent manner, affecting the cell cycle and inducing apoptosis. Moreover, UniPR1331 promoted the PC3 epithelial phenotype, downregulating epithelial mesenchymal transition (EMT) markers. As a consequence, UniPR1331 reduced in vitro PC3 migration, invasion, and vasculomimicry capabilities. The antitumor activity of UniPR1331 was confirmed in vivo when administered alone or in combination with cytotoxic drugs in PC3-xenograft mice. Our results demonstrated that Eph antagonism is a promising strategy for inhibiting prostate cancer growth, especially in combination with cytotoxic drugs.
Collapse
Affiliation(s)
- Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio (Coppito), 67100 L’Aquila, Italy; (A.R.); (G.L.G.)
| | - Miriam Corrado
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.C.); (R.C.); (A.L.); (M.T.)
| | - Alessandra Rossetti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio (Coppito), 67100 L’Aquila, Italy; (A.R.); (G.L.G.)
| | - Riccardo Castelli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.C.); (R.C.); (A.L.); (M.T.)
| | - Alessio Lodola
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.C.); (R.C.); (A.L.); (M.T.)
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio (Coppito), 67100 L’Aquila, Italy; (A.R.); (G.L.G.)
| | - Massimiliano Tognolini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.C.); (R.C.); (A.L.); (M.T.)
| | - Carmine Giorgio
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.C.); (R.C.); (A.L.); (M.T.)
| |
Collapse
|
21
|
Notarstefano V, Belloni A, Mariani P, Orilisi G, Orsini G, Giorgini E, Byrne HJ. Multivariate curve Resolution-Alternating least squares coupled with Raman microspectroscopy: new insights into the kinetic response of primary oral squamous carcinoma cells to cisplatin. Analyst 2023; 148:4365-4372. [PMID: 37548234 DOI: 10.1039/d3an01182h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Raman MicroSpectroscopy (RMS) is a powerful label-free tool to probe the effects of drugs at a cellular/subcellular level. It is important, however, to be able to extract relevant biochemical and kinetic spectroscopic signatures of the specific cellular responses. In the present study, a combination of Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis (PCA) is used to analyse the RMS data for the example of exposure of primary Oral Squamous Carcinoma Cells (OSCC) to the chemotherapeutic agent cisplatin. Dosing regimens were established by cytotoxicity assays, and the effects of the drug on cellular spectral profiles were monitored from 16 to 72 hours post-exposure using an apoptosis assay, to establish the relative populations of viable (V), early (EA) and late apoptotic/dead (LA/D) cells after the drug treatment. Based on a kinetic model of the progression from V > EA > D, MCR-ALS regression analysis of the RMS responses was able to extract spectral profiles associated with each stage of the cellular responses, enabling a quantitative comparison of the response rates for the respective drug treatments. Moreover, PCA was used to compare the spectral profiles of the viable cells exposed to the drug. Spectral differences were highlighted in the early stages (16 hours exposure), indicative of the initial cellular response to the drug treatment, and also in the late stages (48-72 hours exposure), representing the cell death pathway. The study demonstrates that RMS coupled with multivariate analysis can be used to quantitatively monitor the progression of cellular responses to different drugs, towards future applications for label-free, in vitro, pre-clinical screening.
Collapse
Affiliation(s)
- Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Alessia Belloni
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Paolo Mariani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Giulia Orilisi
- Department of Clinical Sciences and Stomatology, Università Politecnica delle Marche, Via Brecce Bianche, 60126 Ancona, Italy
| | - Giovanna Orsini
- Department of Clinical Sciences and Stomatology, Università Politecnica delle Marche, Via Brecce Bianche, 60126 Ancona, Italy
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Dublin, Ireland
| |
Collapse
|
22
|
Zhong T, Yu J, Pan Y, Zhang N, Qi Y, Huang Y. Recent Advances of Platinum-Based Anticancer Complexes in Combinational Multimodal Therapy. Adv Healthc Mater 2023; 12:e2300253. [PMID: 37097737 DOI: 10.1002/adhm.202300253] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/19/2023] [Indexed: 04/26/2023]
Abstract
Platinum drugs with manifest therapeutic effects are widely used, but their systemic toxicity and the drug resistance acquired by cancer cells limit their clinical applications. Thus, the exploration on appropriate methods and strategies to overcome the limitations of traditional platinum drugs becomes extremely necessary. Combination therapy of platinum drugs can inhibit tumor growth and metastasis in an additive or synergistic manner, and can potentially reduce the systemic toxicity of platinum drugs and overcome platinum-resistance. This review summarizes the various modalities and current progress in platinum-based combination therapy. The synthetic strategies and therapeutic effects of some platinum-based anticancer complexes in the combination of platinum drugs with gene editing, ROS-based therapy, thermal therapy, immunotherapy, biological modelling, photoactivation, supramolecular self-assembly and imaging modality are briefly described. Their potential challenges and prospects are also discussed. It is hoped that this review will inspire researchers to have more ideas for the future development of highly effective platinum-based anti-cancer complexes.
Collapse
Affiliation(s)
- Tianyuan Zhong
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Jie Yu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Yong Pan
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Ning Zhang
- The Second Affiliated Hospital of Harbin Medical University, Department of Orthopedics, Harbin, 150000, China
| | - Yanxin Qi
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Yubin Huang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
23
|
Wang Y, Wang Y, Patel H, Chen J, Wang J, Chen ZS, Wang H. Epigenetic modification of m 6A regulator proteins in cancer. Mol Cancer 2023; 22:102. [PMID: 37391814 PMCID: PMC10311752 DOI: 10.1186/s12943-023-01810-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
Divergent N6-methyladenosine (m6A) modifications are dynamic and reversible posttranscriptional RNA modifications that are mediated by m6A regulators or m6A RNA methylation regulators, i.e., methyltransferases ("writers"), demethylases ("erasers"), and m6A-binding proteins ("readers"). Aberrant m6A modifications are associated with cancer occurrence, development, progression, and prognosis. Numerous studies have established that aberrant m6A regulators function as either tumor suppressors or oncogenes in multiple tumor types. However, the functions and mechanisms of m6A regulators in cancer remain largely elusive and should be explored. Emerging studies suggest that m6A regulators can be modulated by epigenetic modifications, namely, ubiquitination, SUMOylation, acetylation, methylation, phosphorylation, O-GlcNAcylation, ISGylation, and lactylation or via noncoding RNA action, in cancer. This review summarizes the current roles of m6A regulators in cancer. The roles and mechanisms for epigenetic modification of m6A regulators in cancer genesis are segregated. The review will improve the understanding of the epigenetic regulatory mechanisms of m6A regulators.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Yan Wang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Harsh Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| |
Collapse
|
24
|
Sharma VK, Assaraf YG, Gross Z. Hallmarks of anticancer and antimicrobial activities of corroles. Drug Resist Updat 2023; 67:100931. [PMID: 36739808 DOI: 10.1016/j.drup.2023.100931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Corroles provide a remarkable opportunity for the development of cancer theranostic agents among other porphyrinoids. While most transition metal corrole complexes are only therapeutic, post-transition metallocorroles also find their applications in bioimaging. Moreover, corroles exhibit excellent photo-physicochemical properties, which can be harnessed for antitumor and antimicrobial interventions. Nevertheless, these intriguing, yet distinct properties of corroles, have not attained sufficient momentum in cancer research. The current review provides a comprehensive summary of various cancer-relevant features of corroles ranging from their structural and photophysical properties, chelation, protein/corrole interactions, to DNA intercalation. Another aspect of the paper deals with the studies of corroles conducted in vitro and in vivo with an emphasis on medical imaging (optical and magnetic resonance), photo/sonodynamic therapies, and photodynamic inactivation. Special attention is also given to a most recent finding that shows the development of pH-responsive phosphorus corrole as a potent antitumor drug for organelle selective antitumor cytotoxicity in preclinical studies. Another biomedical application of corroles is also highlighted, signifying the application of water-soluble and completely lipophilic corroles in the photodynamic inactivation of microorganisms. We strongly believe that future studies will offer a greater possibility of utilizing advanced corroles for selective tumor targeting and antitumor cytotoxicity. In the line with future developments, an ideal pipeline is envisioned on grounds of cancer targeting nanoparticle systems upon decoration with tumor-specific ligands. Hence, we envision that a bright future lies ahead of corrole anticancer research and therapeutics.
Collapse
Affiliation(s)
- Vinay K Sharma
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
25
|
Song W, Liang C, Sun Y, Morii S, Yomogida S, Isaji T, Fukuda T, Hang Q, Hara A, Nakano M, Gu J. Expression of GnT-III decreases chemoresistance via negatively regulating P-glycoprotein expression: Involvement of the TNFR2-NF-κB signaling pathway. J Biol Chem 2023; 299:103051. [PMID: 36813234 PMCID: PMC10033316 DOI: 10.1016/j.jbc.2023.103051] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
The phenomenon of multidrug resistance (MDR) is called chemoresistance with respect to the treatment of cancer, and it continues to be a major challenge. The role of N-glycosylation in chemoresistance, however, remains poorly understood. Here, we established a traditional model for adriamycin resistance in K562 cells, which are also known as K562/adriamycin-resistant (ADR) cells. Lectin blot, mass spectrometry, and RT-PCR analysis showed that the expression levels of N-acetylglucosaminyltransferase III (GnT-III) mRNA and its products, bisected N-glycans, are significantly decreased in K562/ADR cells, compared with the levels in parent K562 cells. By contrast, the expression levels of both P-glycoprotein (P-gp) and its intracellular key regulator, NF-κB signaling, are significantly increased in K562/ADR cells. These upregulations were sufficiently suppressed by the overexpression of GnT-III in K562/ADR cells. We found that the expression of GnT-III consistently decreased chemoresistance for doxorubicin and dasatinib, as well as activation of the NF-κB pathway by tumor necrosis factor (TNF) α, which binds to two structurally distinct glycoproteins, TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2), on the cell surface. Interestingly, our immunoprecipitation analysis revealed that only TNFR2, but not TNFR1, contains bisected N-glycans. The lack of GnT-III strongly induced TNFR2's autotrimerization without ligand stimulation, which was rescued by the overexpression of GnT-III in K562/ADR cells. Furthermore, the deficiency of TNFR2 suppressed P-gp expression while it increased GnT-III expression. Taken together, these results clearly show that GnT-III negatively regulates chemoresistance via the suppression of P-gp expression, which is regulated by the TNFR2-NF/κB signaling pathway.
Collapse
Affiliation(s)
- Wanli Song
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Caixia Liang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Sayaka Morii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Sendai, Miyagi, Japan
| | - Shin Yomogida
- Division of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Qinglei Hang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Akiyoshi Hara
- Division of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
26
|
Li F, Zheng Z, Chen W, Li D, Zhang H, Zhu Y, Mo Q, Zhao X, Fan Q, Deng F, Han C, Tan W. Regulation of cisplatin resistance in bladder cancer by epigenetic mechanisms. Drug Resist Updat 2023; 68:100938. [PMID: 36774746 DOI: 10.1016/j.drup.2023.100938] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Bladder cancer is one of the most common malignancies in the world. Cisplatin is one of the most potent and widely used anticancer drugs and has been employed in several malignancies. Cisplatin-based combination chemotherapies have become important adjuvant therapies for bladder cancer patients. Cisplatin-based treatment often results in the development of chemoresistance, leading to therapeutic failure and limiting its application and effectiveness in bladder cancer. To develop improved and more effective cancer therapy, research has been conducted to elucidate the underlying mechanism of cisplatin resistance. Epigenetic modifications have been demonstrated involved in drug resistance to chemotherapy, and epigenetic biomarkers, such as urine tumor DNA methylation assay, have been applied in patients screening or monitoring. Here, we provide a systematic description of epigenetic mechanisms, including DNA methylation, noncoding RNA regulation, m6A modification and posttranslational modifications, related to cisplatin resistance in bladder cancer.
Collapse
Affiliation(s)
- Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaosong Zheng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Chen
- Department of Urology, Institute of Precision Medicine, Zigong Forth People's Hospital, Zigong, Sichuan, China
| | - Dongqing Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Henghui Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuanchao Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qixin Mo
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinlei Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Conghui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
27
|
A roadmap for translational cancer glycoimmunology at single cell resolution. J Exp Clin Cancer Res 2022; 41:143. [PMID: 35428302 PMCID: PMC9013178 DOI: 10.1186/s13046-022-02335-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/17/2022] [Indexed: 11/11/2022] Open
Abstract
Cancer cells can evade immune responses by exploiting inhibitory immune checkpoints. Immune checkpoint inhibitor (ICI) therapies based on anti-CTLA-4 and anti-PD-1/PD-L1 antibodies have been extensively explored over the recent years to unleash otherwise compromised anti-cancer immune responses. However, it is also well established that immune suppression is a multifactorial process involving an intricate crosstalk between cancer cells and the immune systems. The cancer glycome is emerging as a relevant source of immune checkpoints governing immunosuppressive behaviour in immune cells, paving an avenue for novel immunotherapeutic options. This review addresses the current state-of-the-art concerning the role played by glycans controlling innate and adaptive immune responses, while shedding light on available experimental models for glycoimmunology. We also emphasize the tremendous progress observed in the development of humanized models for immunology, the paramount contribution of advances in high-throughput single-cell analysis in this context, and the importance of including predictive machine learning algorithms in translational research. This may constitute an important roadmap for glycoimmunology, supporting careful adoption of models foreseeing clinical translation of fundamental glycobiology knowledge towards next generation immunotherapies.
Collapse
|
28
|
Eptaminitaki GC, Stellas D, Bonavida B, Baritaki S. Long Non-coding RNAs (lncRNAs) signaling in Cancer Chemoresistance: From Prediction to Druggability. Drug Resist Updat 2022; 65:100866. [DOI: 10.1016/j.drup.2022.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022]
|
29
|
Li Z, Huang X, Hu W, Lu H. Down-regulation of USP22 reduces cell stemness and enhances the sensitivity of pancreatic cancer cells to cisplatin by inactivating the Wnt/β-catenin pathway. Tissue Cell 2022; 77:101787. [PMID: 35623308 DOI: 10.1016/j.tice.2022.101787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Pancreatic cancer (PC) has the worst prognosis of all common cancers worldwide. This study was intended to investigate the role of ubiquitin specific peptidase 22 (USP22) in cisplatin sensitivity of PC cells and its regulatory mechanism. METHODS The expression of USP22 and the toxicity of cisplatin to PC cells were detected. The two cell lines AsPC-1 and CAPAN-1 with the most differential drug resistance were selected. By down-expressing USP22 in CAPAN-1 cells and over-expressing USP22 in AsPC-1 cells, the survival rate of PC cells treated with cisplatin was detected. The mRNA expressions of stem cell markers, cell stemness, migration ability and apoptosis of PC cells were detected. The expression of Wnt/β-catenin pathway related proteins was detected. The role of the Wnt/β-catenin pathway in PC cell stemness and cisplatin sensitivity was explored after adding the inhibitor HLY78 and activator DKK1. RESULTS USP22 was highly-expressed in PC cells, and the sensitivity of PC cells to cisplatin was negatively-correlated with USP22 expression. Downregulation of USP22 raised the sensitivity of PC cells to cisplatin, reduced the levels of stem cell markers, reduced the tumor sphere formation and migration, and promoted apoptosis. Silencing USP22 inhibited the Wnt/β-catenin pathway. Inhibition of USP22 reduced the cell stemness and augmented the sensitivity of PC cells to cisplatin by inhibiting the Wnt/β-catenin pathway. CONCLUSION Silencing USP22 can inhibit the Wnt/β-catenin pathway to reduce cell stemness and enhance the sensitivity of PC cells to cisplatin.
Collapse
Affiliation(s)
- Zhenlu Li
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xing Huang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weiming Hu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huimin Lu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
30
|
Li J, Zhang J, Xu M, Yang Z, Yue S, Zhou W, Gui C, Zhang H, Li S, Wang PG, Yang S. Advances in glycopeptide enrichment methods for the analysis of protein glycosylation over the past decade. J Sep Sci 2022; 45:3169-3186. [PMID: 35816156 DOI: 10.1002/jssc.202200292] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/16/2022] [Accepted: 07/01/2022] [Indexed: 11/12/2022]
Abstract
Advances in bioanalytical technology have accelerated the analysis of complex protein glycosylation, which is beneficial to understanding glycosylation in drug discovery and disease diagnosis. Due to its biological uniqueness in the course of disease occurrence and development, disease-specific glycosylation requires quantitative characterization of protein glycosylation. We provide a comprehensive review of recent advances in glycosylation analysis, including workflows for glycoprotein digestion, glycopeptide separation and enrichment, and mass-spectrometry sequencing. We specifically focus on different strategies for glycopeptide enrichment through physical interaction, chemical oxidation, or metabolic labeling of intact glycopeptides. The recent advances and challenges of O-glycosylation analysis are presented, and the development of improved enrichment methods combining different proteases to analyze O-glycosylation is also proposed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jiajia Li
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Jie Zhang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Mingming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Zeren Yang
- AstraZeneca, Medimmune Ct, Frederick, MD, 21703, USA
| | - Shuang Yue
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Wanlong Zhou
- U.S. Food and Drug Administration, Forensic Chemistry Center, Cincinnati, OH, 45237, USA
| | - Chunshan Gui
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Haiyang Zhang
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Shuwei Li
- Nanjing Apollomics Biotech, Inc., Nanjing, Jiangsu, 210033, China
| | - Perry G Wang
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, 20740, USA
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.,Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| |
Collapse
|
31
|
Selenium and tellurium in the development of novel small molecules and nanoparticles as cancer multidrug resistance reversal agents. Drug Resist Updat 2022; 63:100844. [DOI: 10.1016/j.drup.2022.100844] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Wang X, Liu Z, Wang Y, Gou S. Platinum(IV) Prodrugs with Cancer Stem Cell Inhibitory Effects on Lung Cancer for Overcoming Drug Resistance. J Med Chem 2022; 65:7933-7945. [PMID: 35635560 DOI: 10.1021/acs.jmedchem.2c00472] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xinyi Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhikun Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yuanjiang Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
33
|
dos Reis JS, Rodrigues da Costa Santos MA, Mendonça DP, Martins do Nascimento SI, Barcelos PM, Correia de Lima RG, da Costa KM, Freire-de-Lima CG, Morrot A, Previato JO, Mendonça Previato L, da Fonseca LM, Freire-de-Lima L. Glycobiology of Cancer: Sugar Drives the Show. MEDICINES 2022; 9:medicines9060034. [PMID: 35736247 PMCID: PMC9229842 DOI: 10.3390/medicines9060034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
Cancer development and progression is associated with aberrant changes in cellular glycosylation. Cells expressing altered glycan-structures are recognized by cells of the immune system, favoring the induction of inhibitory immune processes which subsequently promote tumor growth and spreading. Here, we discuss about the importance of glycobiology in modern medicine, taking into account the impact of altered glycan structures expressed in cancer cells as potential glycobiomarkers of disease, as well as on cancer development and progression.
Collapse
Affiliation(s)
- Jhenifer Santos dos Reis
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Marcos André Rodrigues da Costa Santos
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Daniella Pereira Mendonça
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Stefani Ingrid Martins do Nascimento
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Pedro Marçal Barcelos
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Rafaela Gomes Correia de Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Kelli Monteiro da Costa
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Celio Geraldo Freire-de-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Alexandre Morrot
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, Brazil;
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21044-020, Brazil
| | - Jose Osvaldo Previato
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Lucia Mendonça Previato
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Leonardo Marques da Fonseca
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Leonardo Freire-de-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
- Correspondence: ; Tel./Fax: +55-21-3938-6646
| |
Collapse
|
34
|
Zeng W, Zheng S, Mao Y, Wang S, Zhong Y, Cao W, Su T, Gong M, Cheng J, Zhang Y, Yang H. Elevated N-Glycosylation Contributes to the Cisplatin Resistance of Non-Small Cell Lung Cancer Cells Revealed by Membrane Proteomic and Glycoproteomic Analysis. Front Pharmacol 2022; 12:805499. [PMID: 35002739 PMCID: PMC8728018 DOI: 10.3389/fphar.2021.805499] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023] Open
Abstract
Chemoresistance is the major restriction on the clinical use of cisplatin. Aberrant changes in protein glycosylation are closely associated with drug resistance. Comprehensive study on the role of protein glycosylation in the development of cisplatin resistance would contribute to precise elucidation of the complicated mechanism of resistance. However, comprehensive characterization of glycosylated proteins remains a big challenge. In this work, we integrated proteomic and N-glycoproteomic workflow to comprehensively characterize the cisplatin resistance-related membrane proteins. Using this method, we found that proteins implicated in cell adhesion, migration, response to drug, and signal transduction were significantly altered in both protein abundance and glycosylation level during the development of cisplatin resistance in the non-small cell lung cancer cell line. Accordingly, the ability of cell migration and invasion was markedly increased in cisplatin-resistant cells, hence intensifying their malignancy. In contrast, the intracellular cisplatin accumulation was significantly reduced in the resistant cells concomitant with the down-regulation of drug uptake channel protein, LRRC8A, and over-expression of drug efflux pump proteins, MRP1 and MRP4. Moreover, the global glycosylation was elevated in the cisplatin-resistant cells. Consequently, inhibition of N-glycosylation reduced cell resistance to cisplatin, whereas promoting the high-mannose or sialylated type of glycosylation enhanced the resistance, suggesting that critical glycosylation type contributes to cisplatin resistance. These results demonstrate the high efficiency of the integrated proteomic and N-glycoproteomic workflow in discovering drug resistance-related targets, and provide new insights into the mechanism of cisplatin resistance.
Collapse
Affiliation(s)
- Wenjuan Zeng
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shanshan Zheng
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yonghong Mao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Shisheng Wang
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhong
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Cao
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Su
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Gong
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Zhang
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Yang
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Li Y, Liu B, Shi H, Wang Y, Sun Q, Zhang Q. Metal complexes against breast cancer stem cells. Dalton Trans 2021; 50:14498-14512. [PMID: 34591055 DOI: 10.1039/d1dt02909f] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the highest incidence, breast cancer is the leading cause of cancer deaths among women in the world. Tumor metastasis is the major contributor of high mortality in breast cancer, and the existence of cancer stem cells (CSCs) has been proven to be the cause of tumor metastasis. CSCs are a small proportion of tumor cells, and they are associated with self-renewal and tumorigenic potential. Given the significance of CSCs in tumor initiation, expansion, relapse, resistance, and metastasis, studies should investigate and discover effective anticancer agents that can not only inhibit the proliferation of differentiated tumor cells but also reduce the tumorigenic capability of CSCs. Thus, new therapies must be discovered to treat and prevent this severely hazardous disease of human beings. The success of platinum complexes in cancer treatment has laid the basic foundation for the utilization of metal complexes in the treatment of malignant cancers, in particular the highly aggressive triple-negative breast cancer. Importantly, metal complexes currently have diverse and versatile competences in the therapeutic targeting of CSCs. The anti-CSC properties provide a strong impetus for the development of novel metal-based compounds for the targeting of CSCs and treatment of chemotherapy-resistant and relapsed tumors. In this review, we provide the latest advances in metal complexes including platinum, ruthenium, osmium, iridium, manganese, cobalt, nickel, copper, zinc, palladium, and tin complexes against breast CSCs obtained over the past decade, with pertinent literature including those published until 2021.
Collapse
Affiliation(s)
- Yingsi Li
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Boxin Liu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Hongdong Shi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Yi Wang
- Key Laboratory for Advanced Materials of MOE, School of Chemistry & Molecular Engineering, East China University of Science and Technology Shanghai, 200237, P. R. China
| | - Qi Sun
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
36
|
Mu Q, Lv Y, Luo C, Liu X, Huang C, Xiu Y, Tang L. Research Progress on the Functions and Mechanism of circRNA in Cisplatin Resistance in Tumors. Front Pharmacol 2021; 12:709324. [PMID: 34566636 PMCID: PMC8458655 DOI: 10.3389/fphar.2021.709324] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Cisplatin is a common chemotherapeutic drug that has been used to treat of numerous tumors, including testicular, lung, bladder, ovarian, liver and head and neck cancers. Although clinical chemotherapy based on cisplatin has shown a remarkable therapeutic effect, the resistance to cisplatin becomes increasingly obvious as a patient uses it for a prolonged period. It not only affects the prognosis of these tumors, but also causes the recurrence of cancer and decreases the overall survival rate. The development of cisplatin resistance involves several mechanisms, including DNA damage repair, ATP-binding cassette (ABC) transporter, autophagy, cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), and other related signaling pathways. Interestingly, these mechanisms have been found to be influenced by circular RNAs (circRNAs) to regulate tumor proliferation, invasion, chemosensitivity, and other biological behaviors in the tumor microenvironment (TME). In recent years, circRNAs in cisplatin resistance in tumors, especially lung cancer and gastric cancer, have gradually drawn peoples' attention. This review summarizes recent studies on the functions and mechanisms of circRNAs in cisplatin resistance. We emphasize that circRNA can be used as a promising target gene to improve drug resistance and therapeutic efficacy.
Collapse
Affiliation(s)
- Qingchun Mu
- The People’s Hospital of Gaozhou, Gaozhou, China
| | - Yue Lv
- Department of Urology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chunmei Luo
- The People’s Hospital of Gaozhou, Gaozhou, China
| | - Xiaojing Liu
- The People’s Hospital of Gaozhou, Gaozhou, China
| | | | - Youcheng Xiu
- Department of Urology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | | |
Collapse
|
37
|
Song D, Guo M, Wu K, Hao J, Nie Y, Fan D. Silencing of ER-resident oxidoreductase PDIA3 inhibits malignant biological behaviors of multidrug-resistant gastric cancer. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1216-1226. [PMID: 34363072 DOI: 10.1093/abbs/gmab101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Glycosylation is a common posttranslational modification of proteins, which plays a role in the malignant transformation, growth, progression, chemoresistance, and immune response of tumors. Disulfide isomerase family A3 (PDIA3) specifically acts on newly synthesized glycoproteins to promote the correct folding of sugar chains. Studies have shown that PDIA3 participates in multidrug-resistant gastric cancer (MDR-GC). In this study, we performed western blot analysis and immunohistochemistry to identify PDIA3 expression. Cell proliferation was assessed by CCK-8 assay. Transwell assays were used to detect the migration and invasion abilities of cells. Immunoprecipitation coupled to mass spectrometry (IP-MS) analysis was employed to identify PDIA3-interacting proteins and the associated pathways in MDR-GC cells. Glycoprotein interactions and translocation were detected by immunofluorescence assay. The results showed that PDIA3 knockdown significantly inhibited the proliferation, invasion, and migration abilities of MDR-GC cells. Kyoto Encyclopedia of Genes and Genomes analysis of the IP-MS results showed that PDIA3 was closely associated with focal adhesion pathways in MDR-GC cells. Additionally, important components of focal adhesion pathways, including fibronectin-1 (FN1) and integrin α5 (ITGA5), were identified as pivotal PDIA3-binding glycoproteins. Knockdown of PDIA3 altered the cellular locations of FN1 and ITGA5, leading to abnormal accumulation. In conclusion, our results suggest that knockdown of PDIA3 inhibited the malignant behaviors of MDR-GC cells and influenced the translocation of FN1 and ITGA5.
Collapse
Affiliation(s)
- Danyang Song
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Meng Guo
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an 710032, China
| | - Kaichu Wu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an 710032, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an 710032, China
| | - Daiming Fan
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an 710032, China
| |
Collapse
|
38
|
Valente A, Podolski-Renić A, Poetsch I, Filipović N, López Ó, Turel I, Heffeter P. Metal- and metalloid-based compounds to target and reverse cancer multidrug resistance. Drug Resist Updat 2021; 58:100778. [PMID: 34403910 DOI: 10.1016/j.drup.2021.100778] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Drug resistance remains the major cause of cancer treatment failure especially at the late stage of the disease. However, based on their versatile chemistry, metal and metalloid compounds offer the possibility to design fine-tuned drugs to circumvent and even specifically target drug-resistant cancer cells. Based on the paramount importance of platinum drugs in the clinics, two main areas of drug resistance reversal strategies exist: overcoming resistance to platinum drugs as well as multidrug resistance based on ABC efflux pumps. The current review provides an overview of both aspects of drug design and discusses the open questions in the field. The areas of drug resistance covered in this article involve: 1) Altered expression of proteins involved in metal uptake, efflux or intracellular distribution, 2) Enhanced drug efflux via ABC transporters, 3) Altered metabolism in drug-resistant cancer cells, 4) Altered thiol or redox homeostasis, 5) Altered DNA damage recognition and enhanced DNA damage repair, 6) Impaired induction of apoptosis and 7) Altered interaction with the immune system. This review represents the first collection of metal (including platinum, ruthenium, iridium, gold, and copper) and metalloid drugs (e.g. arsenic and selenium) which demonstrated drug resistance reversal activity. A special focus is on compounds characterized by collateral sensitivity of ABC transporter-overexpressing cancer cells. Through this approach, we wish to draw the attention to open research questions in the field. Future investigations are warranted to obtain more insights into the mechanisms of action of the most potent compounds which target specific modalities of drug resistance.
Collapse
Affiliation(s)
- Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Isabella Poetsch
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nenad Filipović
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
39
|
Zhang S, Guo K, Liang Y, Wang K, Liu S, Yang X. ADGRG1 Is a Predictor of Chemoresistance and Poor Survival in Cervical Squamous Carcinoma. Front Oncol 2021; 11:671895. [PMID: 34367958 PMCID: PMC8340018 DOI: 10.3389/fonc.2021.671895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
Abstract
Background Cisplatin is the first-line chemotherapy for cervical cancer. Cisplatin resistance has always been one of the most significant barriers to acquiring better outcomes. However, the complex molecular mechanisms accounting for the phenomenon are not completely clear. Methods Construction of the cisplatin-resistant cell model of cervical cancer, then performing RNA sequencing and bioinformatic analysis of the differential expression genes. Then Adhesion G protein-coupled receptor G1 (ADGRG1) was screened out as our target gene. Gene Expression Profiling Interactive Analysis (GEPIA) was searched to show the expression level of ADGRG1 in cervical cancer and normal tissue. Kaplan-Meier Plotter (Kmplot) was used to explore the relationship of its expression with survival data. Tissue specimens were used to verify the relationship between the clinicopathological characteristics and ADGRG1 expression. Then we explored the roles of ADGRG1 in tumorigenesis through in vitro and in vivo assays. Results We found the ADGRG1 was significantly overexpressed in cervical cancer tissues compared to corresponding normal tissues. Higher ADGRG1 expression was correlated with poor progress-free survival. Knockdown of ADGRG1 markedly suppressed cell proliferation, migration, and invasion and increased cell sensitivity to cisplatin in vitro. Similarly, the role of ADGRG1 knockdown on tumorigenicity and sensitivity to cisplatin treatment was verified in vivo. The underlying mechanism was explored by western blotting that ADGRG1 knockdown inhibited tumorigenesis by PI3K/Akt/mTOR signaling pathway. Conclusion ADGRG1 acts as an oncogene to maintain tumorigenicity, migration, and invasion, and its depressed expression prompts sensitivity to cisplatin. Thus, ADGRG1 may represent a potential prognostic marker and possible therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Kui Guo
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Liang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Kun Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Shuyan Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Xingsheng Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
40
|
Du J, Wang X, Li Y, Ren X, Zhou Y, Hu W, Zhou C, Jing Q, Yang C, Wang L, Li H, Fang L, Zhou Y, Tong X, Wang Y. DHA exhibits synergistic therapeutic efficacy with cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via modulation of iron metabolism. Cell Death Dis 2021; 12:705. [PMID: 34262021 PMCID: PMC8280115 DOI: 10.1038/s41419-021-03996-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely lethal cancer with limited treatment options. Cisplatin (DDP) is used as a mainstay of chemotherapeutic agents in combination with other drugs or radiotherapy for PDAC therapy. However, DDP exhibits severe side-effects that can lead to discontinuation of therapy, and the acquired drug resistance of tumor cells presents serious clinical obstacles. Therefore, it is imperative to develop a more effective and less toxic therapeutic strategy. We and others have previously discovered that dihydroartemisinin (DHA) represents a safe and promising therapeutic agent to preferentially induce cancer cell ferroptosis. In the present study, we find that DHA could intensively strengthen the cytotoxicity of DDP and significantly reduce its effective concentrations both in vitro and in vivo. Combination of DHA and DDP synergistically inhibits the proliferation and induces DNA damage of PDAC cells. Mechanically, the combinative treatment impairs mitochondrial homeostasis, characterized by destroyed mitochondrial morphology, decreased respiratory capacity, reduced ATP production, and accumulated mitochondria-derived ROS. Further studies show that ferroptosis contributes to the cytotoxic effects in PDAC cells under the challenge of DHA and DDP, together with catastrophic accumulation of free iron and unrestricted lipid peroxidation. Moreover, pharmacologic depleting of the free iron reservoir or reconstituted expression of FTH contributes to the tolerance of DHA/DDP-induced ferroptosis, while iron addition accelerates the ferroptotic cell death. In summary, these results provide experimental evidence that DHA acts synergistically with DDP and renders PDAC cells vulnerable to ferroptosis, which may act as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Jing Du
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xu Wang
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou first people's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Xueying Ren
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yi Zhou
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Wanye Hu
- Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Chaoting Zhou
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Qiangan Jing
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Chen Yang
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Luyang Wang
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Huanjuan Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Lijuan Fang
- Department of Laboratory Medicine, Hangzhou Ninth People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Yonglie Zhou
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Xiangmin Tong
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
- Bengbu Medical College, Bengbu, Anhui, 233000, China.
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Ying Wang
- Bengbu Medical College, Bengbu, Anhui, 233000, China.
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
41
|
Wang L, Wang X, Yan P, Liu Y, Jiang X. LINC00261 Suppresses Cisplatin Resistance of Esophageal Squamous Cell Carcinoma Through miR-545-3p/MT1M Axis. Front Cell Dev Biol 2021; 9:687788. [PMID: 34336838 PMCID: PMC8320661 DOI: 10.3389/fcell.2021.687788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
To improve the survival rate and cure rate of patients, it is necessary to find a new treatment scheme according to the molecular composition of (ESCC) in esophageal squamous cell carcinoma. Long non-coding RNAs (lncRNAs) regulate the progression of ESCC by various pathophysiological pathways. We explored the possible function of the lncRNA LINC00261 (LINC00261) on cisplatin (DDP) resistance of ESCC and its relative molecular mechanisms. In the study, we found that LINC00261 was downregulated in ESCC tissues, cell lines, and DDP-resistant ESCC patients. Besides, overexpression of LINC00261 not only inhibited cell proliferation, and DDP resistance but also promotes cell apoptosis. Further mechanistic research showed that LINC00261 sponged miR-545-3p which was negatively correlated with the expression of LINC00261. In addition, functional experiments revealed that upregulation of miR-766-5p promoted proliferation and enhanced DDP resistance. Subsequently, MT1M was testified to be the downstream target gene of miR-545-3p. Rescue experiments revealed that overexpression of MT1M largely restores miR-545-3p mimics-mediated function on ESCC progression. Our results demonstrate that the LINC00261 suppressed the DDP resistance of ESCC through miR-545-3p/MT1M axis.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaojun Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Pengwei Yan
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yatian Liu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xuesong Jiang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Lv P, Man S, Xie L, Ma L, Gao W. Pathogenesis and therapeutic strategy in platinum resistance lung cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188577. [PMID: 34098035 DOI: 10.1016/j.bbcan.2021.188577] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 12/20/2022]
Abstract
Platinum compounds (cisplatin and carboplatin) represent the most active anticancer agents in clinical use both of lung cancer in mono-and combination therapies. However, platinum resistance limits its clinical application. It is necessary to understand the molecular mechanism of platinum resistance, identify predictive markers, and develop newer, more effective and less toxic agents to treat platinum resistance in lung cancer. Here, it summarizes the main molecular mechanisms associated with platinum resistance in lung cancer and the development of new approaches to tackle this clinically relevant problem. Moreover, it could lead to the development of more effective treatment for refractory lung cancer in future.
Collapse
Affiliation(s)
- Panpan Lv
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Lu Xie
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
43
|
Notarstefano V, Sabbatini S, Pro C, Belloni A, Orilisi G, Rubini C, Byrne HJ, Vaccari L, Giorgini E. Exploiting fourier transform infrared and Raman microspectroscopies on cancer stem cells from oral squamous cells carcinoma: new evidence of acquired cisplatin chemoresistance. Analyst 2021; 145:8038-8049. [PMID: 33063801 DOI: 10.1039/d0an01623c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oral Squamous Cells Carcinoma (OSCC) is characterised by the risk of recurrence and the onset of a refractoriness response to chemotherapy drugs. These phenomena have been recently related to a subpopulation of Cancer Stem Cells (CSCs), which have either an innate or acquired drug resistance, triggered by chemotherapy treatments. In this light, to precisely target chemotherapy regimens, it is essential to improve knowledge on CSCs, with a particular focus on their molecular features. In this work, a subpopulation of CSCs, isolated by tumour sphere formation from primary OSCC cells, were treated with cisplatin for 16, 24 and 48 hours and analysed by infrared absorption and Raman microspectroscopies. CSC spectral data were compared with those obtained in previous work, for primary OSCC cells treated under the same conditions. Routine viability/apoptosis cell-based assays evidenced in CSCs and primary OSCCs, a similar degree of sensitivity to the drug at 24 hours, while a reversion of the conventional monotonic time response exhibited by OSCCs was shown by CSCs at 48 hours. This peculiar time response was also supported by the analysis of IR and Raman data, which pinpointed alterations in the lipid composition and DNA conformation in CSCs. The results obtained suggest that CSCs, although sharing with OSCC cells a similar sensitivity to cisplatin, display the onset of a mechanism of chemoresistance and enrichment of resistant CSCs as a result of drug treatment, shedding new light on the severe issue of refractoriness of some patients to chemotherapy conventionally used for OSCC.
Collapse
Affiliation(s)
- Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cao L, Zhou Y, Li X, Lin S, Tan Z, Guan F. Integrating transcriptomics, proteomics, glycomics and glycoproteomics to characterize paclitaxel resistance in breast cancer cells. J Proteomics 2021; 243:104266. [PMID: 34000456 DOI: 10.1016/j.jprot.2021.104266] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/24/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022]
Abstract
Chemoresistance is a major factor driving breast cancer (BC) relapse and the high rates of cancer-related deaths. Aberrant levels of glycans are closely correlated with chemoresistance. The essential functions of glycans in chemoresistance is not systematically studied. In this study, an integrated strategy with a combination of transcriptomics, proteomics, glycomics and glycoproteomics was applied to explore the dysregulation of glycogenes, glycan structures and glycoproteins in chemoresistance of breast cancer cells. In paclitaxel (PTX) resistant MCF7 cells, 19 differentially expressed N-glycan-related proteins were identified, of which MGAT4A was the most significantly down-regulated, consistent with decrease in MGAT4A expression at mRNA level in PTX treated BC cells. Glycomic analysis consistently revealed suppressed levels of multi-antennary branching structures using MALDI-TOF/TOF-MS and lectin microarray. Several target glycoproteins bearing suppressed levels of multi-antennary branching structures were identified, and ERK signaling pathway was strongly suppressed in PTX resistant MCF7 cells. Our findings demonstrated the aberrant levels of multi-antennary branching structures and their target glycoproteins on PTX resistance. Systematically integrative multi-omic analysis is expected to facilitate the discovery of the aberrant glycosyltransferases, N-glycosylation and glycoproteins in tumor progression and chemoresistance. SIGNIFICANCE: An integrated strategy with a combination of transcriptomics, proteomics, glycomics and glycoproteomics is crucial to understand the association between glycans and chemoresistance in BC. In this multi-omic analysis, we identified unique glycan-related protein, glycan and glycoprotein signatures defining PTX chemoresistance in BC. This study might provide valuable information to understand molecular mechanisms underlying chemoresistance in BC.
Collapse
Affiliation(s)
- Lin Cao
- International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an 710069, PR China
| | - Yue Zhou
- International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an 710069, PR China; The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi'an 710069, PR China
| | - Shuai Lin
- Department of Oncology, The second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zengqi Tan
- International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an 710069, PR China
| | - Feng Guan
- International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
45
|
Contursi A, Arconzo M, Cariello M, Piglionica M, D’Amore S, Vacca M, Graziano G, Gadaleta RM, Valanzano R, Mariani-Costantini R, Villani G, Moschetta A, Piccinin E. let-7e downregulation characterizes early phase colonic adenoma in APCMin/+ mice and human FAP subjects. PLoS One 2021; 16:e0249238. [PMID: 33901189 PMCID: PMC8075207 DOI: 10.1371/journal.pone.0249238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
The crypt-villus axis represents the essential unit of the small intestine, which integrity and functions are fundamental to assure tissue and whole-body homeostasis. Disruption of pathways regulating the fine balance between proliferation and differentiation results in diseases development. Nowadays, it is well established that microRNAs (miRNAs) play a crucial role in the homeostasis maintenance and perturbation of their levels may promote tumor development. Here, by using microarray technology, we analysed the miRNAs differentially expressed between the crypt and the villus in mice ileum. The emerged miRNAs were further validated by Real Time qPCR in mouse model (ApcMin/+), human cell lines and human tissue samples (FAP) of colorectal cancer (CRC). Our results indicated that miRNAs more expressed in the villi compartment are negatively regulated in tumor specimens, thus suggesting a close association between these microRNAs and the differentiation process. Particularly, from our analysis let-7e appeared to be a promising target for possible future therapies and a valuable marker for tumor staging, being upregulated in differentiated cells and downregulated in early-stage colonic adenoma samples.
Collapse
Affiliation(s)
- Annalisa Contursi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
- Fondazione Mario Negri Sud, Santa Maria Imbaro (CH), Italy
| | - Maria Arconzo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
- INBB, National Institute for Biostructures and Biosystems, Rome, Italy
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
- INBB, National Institute for Biostructures and Biosystems, Rome, Italy
| | - Marilidia Piglionica
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
- Department of Biomedical Sciences and Human Oncology (DIMO), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Simona D’Amore
- Fondazione Mario Negri Sud, Santa Maria Imbaro (CH), Italy
| | - Michele Vacca
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Giusi Graziano
- INBB, National Institute for Biostructures and Biosystems, Rome, Italy
| | | | - Rosa Valanzano
- Department of Clinical Physiopathology, University of Florence, Florence, Italy
| | - Renato Mariani-Costantini
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio”, Chieti-Pescara, Chieti, Italy
| | - Gaetano Villani
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
- INBB, National Institute for Biostructures and Biosystems, Rome, Italy
| | - Elena Piccinin
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
- * E-mail:
| |
Collapse
|
46
|
Naz S, Shah FA, Nadeem H, Sarwar S, Tan Z, Imran M, Ali T, Li JB, Li S. Amino Acid Conjugates of Aminothiazole and Aminopyridine as Potential Anticancer Agents: Synthesis, Molecular Docking and in vitro Evaluation. Drug Des Devel Ther 2021; 15:1459-1476. [PMID: 33833504 PMCID: PMC8021256 DOI: 10.2147/dddt.s297013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/27/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The development of resistance to available anticancer drugs is increasingly becoming a major challenge and new chemical entities could be unveiled to compensate this therapeutic failure. The current study demonstrated the synthesis of 2-aminothiazole [S3(a-d) and S5(a-d)] and 2-aminopyridine [S4(a-d) and S6(a-d)] derivatives that can target multiple cellular networks implicated in cancer development. METHODS Biological assays were performed to investigate the antioxidant and anticancer potential of synthesized compounds. Redox imbalance and oxidative stress are hallmarks of cancer, therefore, synthesized compounds were preliminarily screened for their antioxidant activity using DPPH assay, and further five derivatives S3b, S3c, S4c, S5b, and S6c, with significant antioxidant potential, were selected for investigation of in vitro anticancer potential. The cytotoxic activities were evaluated against the parent (A2780) and cisplatin-resistant (A2780CISR) ovarian cancer cell lines. Further, Molecular docking studies of active compounds were performed to determine binding affinities. RESULTS Results revealed that S3c, S5b, and S6c displayed promising inhibition in cisplatin-resistant cell lines in comparison to parent cells in terms of both resistance factor (RF) and IC50 values. Moreover, S3c proved to be most active compound in both parent and resistant cell lines with IC50 values 15.57 µM and 11.52 µM respectively. Our docking studies demonstrated that compounds S3c, S5b, and S6c exhibited significant binding affinity with multiple protein targets of the signaling cascade. CONCLUSION Anticancer activities of compounds S3c, S5b, and S6c in cisplatin-resistant cell lines suggested that these ligands may contribute as lead compounds for the development of new anticancer drugs.
Collapse
Affiliation(s)
- Shagufta Naz
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
- Shenzhen University Clinical Research Center for Neurological Diseases, Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, People's Republic of China
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Sadia Sarwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Zhen Tan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Muhammad Imran
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Tahir Ali
- Shenzhen University Clinical Research Center for Neurological Diseases, Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, People's Republic of China
| | - Jing Bo Li
- Shenzhen University Clinical Research Center for Neurological Diseases, Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, People's Republic of China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, People’s Republic of China
| |
Collapse
|
47
|
Gao X, Zhang C, Wang Y, Zhang P, Zhang J, Hong T. Berberine and Cisplatin Exhibit Synergistic Anticancer Effects on Osteosarcoma MG-63 Cells by Inhibiting the MAPK Pathway. Molecules 2021; 26:molecules26061666. [PMID: 33802664 PMCID: PMC8002572 DOI: 10.3390/molecules26061666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/27/2022] Open
Abstract
Berberine (BBR) has been reported to have potent anticancer activity and can increase the anticancer effects of chemotherapy drugs. The present study aims to investigate whether BBR and cisplatin (DDP) exert synergistic effects on the osteosarcoma (OS) MG-63 cell line. In the present study, MG-63 cells were treated with BBR and DDP alone or in combination. The effects of these therapeutics on cell viability, colony formation, migration, invasion, nuclear morphology, apoptosis, and the cell cycle, as well as their role in regulating the expression of proteins related to apoptosis, the cell cycle, and the mitogen-activated protein kinase (MAPK) pathway, were determined. The results demonstrated that BBR or DDP significantly inhibited the proliferation of MG-63 cells in a dose- and time-dependent manner. The combination treatment of BBR and DDP exerted a prominent inhibitory effect on proliferation and colony formation. Furthermore, the results showed that the combination treatment of BBR and DDP enhanced the inhibition of cell migration and invasion and reversed the changes in nuclear morphology. The results showed that the combination treatment of BBR and DDP induced apoptosis and cell cycle arrest in the G0/G1 phase. Mechanistically, the combination treatment of BBR and DDP inhibited the expression of MMP-2/9, Bcl-2, CyclinD1, and CDK4, enhanced the expression of Bax and regulated the activity of the MAPK pathway. Collectively, our data suggest that the combination therapy of BBR and DDP markedly enhanced OS cell death.
Collapse
Affiliation(s)
| | | | | | | | | | - Tie Hong
- Correspondence: ; Tel.: +86-431-8561-9705
| |
Collapse
|
48
|
Lee XC, Werner E, Falasca M. Molecular Mechanism of Autophagy and Its Regulation by Cannabinoids in Cancer. Cancers (Basel) 2021; 13:cancers13061211. [PMID: 33802014 PMCID: PMC7999886 DOI: 10.3390/cancers13061211] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This review examines the complex function of autophagy in malignancy and explores its regulation by cannabinoids in different cancers. Autophagy is an important process in the maintenance of cellular homeostasis, through the degradation and recycling of cytoplasmic constituents. The action of autophagy is highly dependent on tumour stage and type and the receptors with which ligands interact. Cannabinoids are growingly being acknowledged for their anticancer activities and are known to stimulate several mechanisms such as apoptosis and autophagy. Better understanding the mechanism of action behind autophagy and its regulation by cannabinoids will allow the development of novel cancer therapeutics. Abstract Autophagy is a “self-degradation” process whereby malfunctioned cytoplasmic constituents and protein aggregates are engulfed by a vesicle called the autophagosome, and subsequently degraded by the lysosome. Autophagy plays a crucial role in sustaining protein homeostasis and can be an alternative source of energy under detrimental circumstances. Studies have demonstrated a paradoxical function for autophagy in cancer, displaying both tumour suppressive and tumour promotive roles. In early phases of tumour development autophagy promotes cancer cell death. In later phases, autophagy enables cancer cells to survive and withstand therapy. Cannabinoids, which are derivatives of the Cannabis sativa L. plant, have shown to be associated with autophagy induction in cells. There is an emerging interest in studying the signalling pathways involved in cannabinoid-induced autophagy and their potential application in anticancer therapies. In this review, the molecular mechanisms involved in the autophagy degradation process will be discussed. This review also highlights a role for autophagy in cancer progression, with cannabinoid-induced autophagy presenting a novel strategy for anticancer therapy.
Collapse
|
49
|
Tendulkar S, Dodamani S. Chemoresistance in Ovarian Cancer: Prospects for New Drugs. Anticancer Agents Med Chem 2021; 21:668-678. [PMID: 32900355 DOI: 10.2174/1871520620666200908104835] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 12/09/2022]
Abstract
This review focuses on the conventional treatment, signaling pathways and various reasons for drug resistance with an understanding of novel methods that can lead to effective therapies. Ovarian cancer is amongst the most common gynecological and lethal cancers in women affecting different age groups (20-60). The survival rate is limited to 5 years due to diagnosis in subsequent stages with a reoccurrence of tumor and resistance to chemotherapeutic therapy. The recent clinical trials use the combinatorial treatment of carboplatin and paclitaxel on ovarian cancer after the cytoreduction of the tumor. Predominantly, patients are responsive initially to therapy and later develop metastases due to drug resistance. Chemotherapy also leads to drug resistance causing enormous variations at the cellular level. Multifaceted mechanisms like drug resistance are associated with a number of genes and signaling pathways that process the proliferation of cells. Reasons for resistance include epithelial-mesenchyme, DNA repair activation, autophagy, drug efflux, pathway activation, and so on. Determining the routes on the molecular mechanism that target chemoresistance pathways are necessary for controlling the treatment and understanding efficient drug targets can open light on improving therapeutic outcomes. The most common drug used for ovarian cancer is Cisplatin that activates various chemoresistance pathways, ultimately causing drug resistance. There have been substantial improvements in understanding the mechanisms of cisplatin resistance or chemo sensitizing cisplatin for effective treatment. Therefore, using therapies that involve a combination of phytochemical or novel drug delivery system would be a novel treatment for cancer. Phytochemicals are plant-derived compounds that exhibit anti-cancer, anti-oxidative, anti-inflammatory properties and reduce side effects exerted by chemotherapeutics.
Collapse
Affiliation(s)
- Shivani Tendulkar
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi- 590010, Karnataka, India
| | - Suneel Dodamani
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi- 590010, Karnataka, India
| |
Collapse
|
50
|
Tam C, Rao S, Waye MMY, Ng TB, Wang CC. Autophagy signals orchestrate chemoresistance of gynecological cancers. Biochim Biophys Acta Rev Cancer 2021; 1875:188525. [PMID: 33600824 DOI: 10.1016/j.bbcan.2021.188525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Gynecological cancers are characterized by a high mortality rate when chemoresistance develops. Autophagy collaborates with apoptosis and participates in homeostasis of chemoresistance. Recent findings supported that crosstalk of necrotic, apoptotic and autophagic factors, and chemotherapy-driven hypoxia, oxidative stress and ER stress play critical roles in chemoresistance in gynecological cancers. Meanwhile, current studies have shown that autophagy could be regulated by and cooperate with metabolic regulator, survival factors, stemness factors and specific post-translation modification in chemoresistant tumor cells. Meanwhile, non-coding RNA and autophagy crosstalk also contribute to the chemoresistance. Until now, analysis of individual autophagy factors towards the clinical significance and chemoresistance in gynecological cancer is still lacking. We suggest comprehensive integrated analysis of cellular homeostasis and tumor microenvironment to clarify the role of autophagy and the associated factors in cancer progression and chemoresistance. Panel screening of pan-autophagic factors will pioneer the development of risk models for predicting efficacy of chemotherapy and guidelines for systematic treatment and precision medicine.
Collapse
Affiliation(s)
- Chit Tam
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Shitao Rao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; School of Medical Technology and Engineering, Fujian Medical University, Fujian, China
| | - Mary Miu Yee Waye
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; Reproduction and Development Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|