1
|
Koong J, Hall RM, Hamidian M. Genomic characteristics of the multiresistant Acinetobacter baumannii global clone 1 reference strain A297/RUH875. J Antimicrob Chemother 2025:dkaf160. [PMID: 40387539 DOI: 10.1093/jac/dkaf160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025] Open
Abstract
OBJECTIVES Acinetobacter baumannii ST1, also known as global clone 1 (GC1), is a globally distributed lineage associated with antimicrobial resistance (AMR). The multiresistant isolate A297/RUH8751, recovered from a urinary tract infection in the Netherlands in 1984, has served as a reference strain for ST1. We aimed to generate and analyse the complete genome sequence of A297/RUH8751 to provide insights into its genomic features, antibiotic resistance determinants and phylogenetic placement. METHODS WGS was performed using Oxford Nanopore GridION and Illumina HiSeq platforms. Assembly was conducted with Autocycler v0.2.1. Genomic features, including antibiotic resistance genes, insertion sequences and restriction-modification systems, were characterized using ResFinder, ISFinder and REBASE. Comparative analyses were conducted with the draft genome of NIPH 527, which also represents RUH875, to assess sequence variations. Phylogenetic analysis was performed to determine the evolutionary placement of A297/RUH875 within GC1. RESULTS The complete genome of RUH875 (A297) consists of a 3 965 450 bp chromosome and three plasmids: pA297-1 (pRAY*; 6078 bp), pA297-2 (8731 bp) and pA297-3 (a 200 kb conjugative plasmid). The chromosome harbours the AbaR21 genomic resistance island, carrying seven antibiotic resistance genes and six prophage regions. Notably, bap1 and bap2, biofilm-associated genes, were fully resolved, with bap1 identical to that of A. baumannii A1-the earliest GC1 isolate. Comparative analysis with A1 revealed 122 SNPs, with clustered variations suggesting potential recombination events. Phylogenetic analysis confirmed A297/RUH875 as a distinct lineage within GC1. The completed genome sequence provides a reference, in addition to strain A1, for studying AMR evolution in GC1 and enhances comparative genomic analyses.
Collapse
Affiliation(s)
- Jonathan Koong
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Mehrad Hamidian
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
2
|
Harmer CJ, Luo TL, Lebreton F, McGann PT, Hall RM. Evolution of an extensively antibiotic resistant sublineage of lineage 1 of GC1 Acinetobacter baumannii. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:36. [PMID: 40346384 PMCID: PMC12064806 DOI: 10.1038/s44259-025-00103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/02/2025] [Indexed: 05/11/2025]
Abstract
The multiply antibiotic-resistant lineage 1 of Acinetobacter baumannii global clone 1 (GC1) emerged in the 1970s, and subsequently more extensively resistant sublineages have emerged. Here, we examined the evolution of the extensively resistant MRSN56 sublineage and showed it is characterised by insertions carrying resistance genes at specific chromosomal positions. An evolved form of the sublineage carries KL17 replacing KL1 at the capsule locus and includes an additional integrative element Aci-IE1 carrying further resistance genes including blaNDM. Further members of the modified sublineage (isolated 2014-2021) identified among publicly available genomes were from several countries and appear to have replaced the original form (2007-2010). Some KL17 type isolates had acquired even more resistance genes including blaPER. The blaNDM and blaPER genes contribute to reduced susceptibility to cefiderocol and/or sulbactam/durlobactam. The phylogeny indicated that separation of the sublineage into KL1 and KL17 groups coincided with the KL switch and Aci-IE1 was acquired later.
Collapse
Affiliation(s)
- Christopher J Harmer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Ting L Luo
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Bacterial Diseases Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Francois Lebreton
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Bacterial Diseases Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Patrick T McGann
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Bacterial Diseases Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
3
|
Tobin LA, Abu Sabah E, Lebreton F, Myers GSA, McGann PT, Hamidian M. Genomic analysis of early ST32 Acinetobacter baumannii strains recovered in US military treatment facilities reveals distinct lineages and links to the origins of the Tn6168 ampC transposon. J Antimicrob Chemother 2025; 80:666-675. [PMID: 39680383 PMCID: PMC11879209 DOI: 10.1093/jac/dkae454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
OBJECTIVES To study the population structure and genomic characteristics, including antimicrobial resistance genes, plasmid types and surface polysaccharide type, of the globally distributed Acinetobacter baumannii belonging to ST32 (Institut Pasteur scheme). METHODS Antibiotic resistance phenotype for 19 antibiotics was determined using Vitek 2. Whole-genome sequencing was performed using the Illumina MiSeq platform. Genomes were assembled using Newbler. Phylogenetic analysis was done by determining the core-genome alignments using Panaroo v1.3, analysed in IQ-Tree2 v2.2.0.3 to construct Maximum Likelihood trees using the RaxML software. Resistance genes and IS were identified using the Abricate programme, and ISFinder databases. RESULTS One hundred and thirty-three (n = 133) ST32 A. baumannii isolates were analysed in this study. These genomes originated mainly from US military treatment facilities (n = 113), but also included additional publicly available genomes in GenBank (n = 20) recovered from a broad geographic distribution extending to Asia and South America. Phylogenetic analysis of all 133 genomes revealed at least four clades, with over 80 genomes forming a tightly clustered branch, suggesting they are likely to represent outbreak strains. Analysis of the ampC region showed that ST32 strains played a significant role in the formation of the widely distributed ampC transposon, Tn6168, and supplying DNA segments containing an ISAba1-ampC from ST32s via homologous recombination. CONCLUSIONS ST32 strains played a significant role in the evolution of antibiotic resistance in several widely distributed sequence types including ST1 (global clone 1) and ST3.
Collapse
Affiliation(s)
- Liam A Tobin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Eradah Abu Sabah
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Francois Lebreton
- Multidrug Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Garry S A Myers
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Patrick T McGann
- Multidrug Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Mehrad Hamidian
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
4
|
Scoffone VC, Trespidi G, Barbieri G, Arshad A, Israyilova A, Buroni S. The Evolution of Antimicrobial Resistance in Acinetobacter baumannii and New Strategies to Fight It. Antibiotics (Basel) 2025; 14:85. [PMID: 39858372 PMCID: PMC11760889 DOI: 10.3390/antibiotics14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Acinetobacter baumannii is considered one of the prioritized ESKAPE microorganisms for the research and development of novel treatments by the World Health Organization, especially because of its remarkable persistence and drug resistance. In this review, we describe how this can be acquired by the enzymatic degradation of antibiotics, target site modification, altered membrane permeability, multidrug efflux pumps, and their ability to form biofilms. Also, the evolution of drug resistance in A. baumannii, which is mainly driven by mobile genetic elements, is reported, with particular reference to plasmid-associated resistance, resistance islands, and insertion sequences. Finally, an overview of existing, new, and alternative therapies is provided.
Collapse
Affiliation(s)
- Viola Camilla Scoffone
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (A.A.)
| | - Gabriele Trespidi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (A.A.)
| | - Giulia Barbieri
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (A.A.)
| | - Arooba Arshad
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (A.A.)
| | - Aygun Israyilova
- Laboratory of Microbiology, Center of Excellence, Baku State University, AZ1148 Baku, Azerbaijan;
- Department of Biomedical Materials by ICESCO, Baku State University, AZ1148 Baku, Azerbaijan
| | - Silvia Buroni
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (A.A.)
| |
Collapse
|
5
|
Ha VN, Huy HT, Đac TN, Nguyen PA, Cuong LD. Genomic epidemiology and resistant genes of Acinetobacter baumannii clinical strains in Vietnamese hospitals. J Med Microbiol 2024; 73:001922. [PMID: 39475466 PMCID: PMC11524319 DOI: 10.1099/jmm.0.001922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction. Acinetobacter baumannii is a common cause of multidrug-resistant (MDR) nosocomial infections worldwide, including Vietnam.Hypothesis. Analysis of crucial genetic factors may link to epidemiological characteristics and antibiotic resistance of A. baumannii clinical strains in Vietnamese hospitals.Methodology. Fifty-one A. baumannii clinical strains from six different tertiary hospitals in Vietnam were analysed using whole genome sequencing (WGS), between 2017 and 2019.Results. Eleven sequence types (STs) were identified, including four STs reported for the first time in Vietnam based on the PubMLST database and three new STs not previously documented. ST1336, ST1260 and ST575 were found exclusively in Vietnam. These STs were widely distributed in all hospitals in Vietnam, with ST2 and ST571 being the most dominant. Resistant rates to eight antibiotics, belonging to four antibiotic groups, were very high (72.5-94.1 %) with high MIC values, while resistance to colistin was 29.4%. Fifty-one isolates were identified as MDR, with 100% (51/51) isolates carrying antimicrobial-resistant (AMR) genes, and 52 antibiotic-resistant genes were detected among these strains, including β-lactam (22 genes), chloramphenicol (5 genes), lincosamide (2 genes), aminoglycoside (11 genes), rifampicin (1 gene), quinolone (2 genes), sulfonamide and trimethoprim (4 genes) and tetracycline (5 genes) resistance. The most commonly found mobile structures carried partial or complete transposons: ISaba24/ISEc29/ISEc35 contains a series of antibiotic-resistant genes.Conclusion. The WGS results of the 51 strains of A. baumannii provided important information regarding the distribution of STs and associated antibiotic-resistant genes among A. baumannii strains.
Collapse
Affiliation(s)
- Vu Nhi Ha
- Thai Nguyen University of Medicine and Pharmacy, No. 284 Luong Ngoc Quyen Street, Quang Trung Ward, Thai Nguyen City, Thai Nguyen Province, Vietnam
| | - Hoang Tran Huy
- National Institute of Hygiene and Epidemiology, 1st Yersin, Hanoi city, Vietnam
| | - Trung Nguyen Đac
- Thai Nguyen University of Medicine and Pharmacy, No. 284 Luong Ngoc Quyen Street, Quang Trung Ward, Thai Nguyen City, Thai Nguyen Province, Vietnam
| | - Phuong Anh Nguyen
- Department of Experiment Medicine, 108 Military Central Hospital, 1st Tran Hung Dao Street, Bach Dang Ward, Hai Ba Trung District, Hanoi City, Vietnam
| | - Le Duy Cuong
- Department of Experiment Medicine, 108 Military Central Hospital, 1st Tran Hung Dao Street, Bach Dang Ward, Hai Ba Trung District, Hanoi City, Vietnam
| |
Collapse
|
6
|
Tuffet R, Carvalho G, Godeux AS, Mazzamurro F, Rocha EPC, Laaberki MH, Venner S, Charpentier X. Manipulation of natural transformation by AbaR-type islands promotes fixation of antibiotic resistance in Acinetobacter baumannii. Proc Natl Acad Sci U S A 2024; 121:e2409843121. [PMID: 39288183 PMCID: PMC11441513 DOI: 10.1073/pnas.2409843121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024] Open
Abstract
The opportunistic pathogen Acinetobacter baumannii, carries variants of A. baumannii resistance islands (AbaR)-type genomic islands conferring multidrug resistance. Their pervasiveness in the species has remained enigmatic. The dissemination of AbaRs is intricately linked to their horizontal transfer via natural transformation, a process through which bacteria can import and recombine exogenous DNA, effecting allelic recombination, genetic acquisition, and deletion. In experimental populations of the closely related pathogenic Acinetobacter nosocomialis, we quantified the rates at which these natural transformation events occur between individuals. When integrated into a model of population dynamics, they lead to the swift removal of AbaRs from the population, contrasting with the high prevalence of AbaRs in genomes. Yet, genomic analyses show that nearly all AbaRs specifically disrupt comM, a gene encoding a helicase critical for natural transformation. We found that such disruption impedes gene acquisition, and deletion, while moderately impacting acquisition of single nucleotide polymorphism. A mathematical evolutionary model demonstrates that AbaRs inserted into comM gain a selective advantage over AbaRs inserted in sites that do not inhibit or completely inhibit transformation, in line with the genomic observations. The persistence of AbaRs can be ascribed to their integration into a specific gene, diminishing the likelihood of their removal from the bacterial genome. This integration preserves the acquisition and elimination of alleles, enabling the host bacterium-and thus its AbaR-to adapt to unpredictable environments and persist over the long term. This work underscores how manipulation of natural transformation by mobile genetic elements can drive the prevalence of multidrug resistance.
Collapse
Affiliation(s)
- Rémi Tuffet
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon 69007, France
- UMR CNRS 5558, Laboratoire de Biométrie et Biologie Évolutive, Université Claude Bernard Lyon 1, Villeurbanne 69100, France
| | - Gabriel Carvalho
- UMR CNRS 5558, Laboratoire de Biométrie et Biologie Évolutive, Université Claude Bernard Lyon 1, Villeurbanne 69100, France
| | - Anne-Sophie Godeux
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon 69007, France
- Université de Lyon, VetAgro Sup, Marcy l'Etoile 69280, France
| | - Fanny Mazzamurro
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
- Collège Doctoral, Sorbonne Université, Paris F-75005, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Maria-Halima Laaberki
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon 69007, France
- Université de Lyon, VetAgro Sup, Marcy l'Etoile 69280, France
| | - Samuel Venner
- UMR CNRS 5558, Laboratoire de Biométrie et Biologie Évolutive, Université Claude Bernard Lyon 1, Villeurbanne 69100, France
| | - Xavier Charpentier
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon 69007, France
| |
Collapse
|
7
|
Harmer CJ, Hall RM. IS 26 and the IS 26 family: versatile resistance gene movers and genome reorganizers. Microbiol Mol Biol Rev 2024; 88:e0011922. [PMID: 38436262 PMCID: PMC11332343 DOI: 10.1128/mmbr.00119-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
SUMMARYIn Gram-negative bacteria, the insertion sequence IS26 is highly active in disseminating antibiotic resistance genes. IS26 can recruit a gene or group of genes into the mobile gene pool and support their continued dissemination to new locations by creating pseudo-compound transposons (PCTs) that can be further mobilized by the insertion sequence (IS). IS26 can also enhance expression of adjacent potential resistance genes. IS26 encodes a DDE transposase but has unique properties. It forms cointegrates between two separate DNA molecules using two mechanisms. The well-known copy-in (replicative) route generates an additional IS copy and duplicates the target site. The recently discovered and more efficient and targeted conservative mechanism requires an IS in both participating molecules and does not generate any new sequence. The unit of movement for PCTs, known as a translocatable unit or TU, includes only one IS26. TU formed by homologous recombination between the bounding IS26s can be reincorporated via either cointegration route. However, the targeted conservative reaction is key to generation of arrays of overlapping PCTs seen in resistant pathogens. Using the copy-in route, IS26 can also act on a site in the same DNA molecule, either inverting adjacent DNA or generating an adjacent deletion plus a circular molecule carrying the DNA segment lost and an IS copy. If reincorporated, these circular molecules create a new PCT. IS26 is the best characterized IS in the IS26 family, which includes IS257/IS431, ISSau10, IS1216, IS1006, and IS1008 that are also implicated in spreading resistance genes in Gram-positive and Gram-negative pathogens.
Collapse
Affiliation(s)
- Christopher J. Harmer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Ruth M. Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Tobin LA, Cain AK, Djordjevic SP, Hamidian M. Transposons Carrying the aacC2e Aminoglycoside and blaTEM Beta-Lactam Resistance Genes in Acinetobacter. Microb Drug Resist 2024; 30:273-278. [PMID: 38593463 DOI: 10.1089/mdr.2023.0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
This study examines the genetic contexts and evolutionary steps responsible for the formation of the widely spread transposon Tn6925 carrying blaTEM and aacC2e, which confers resistance to beta-lactam and aminoglycoside antibiotics in Gram-negative bacteria. The blaTEM-1 and aacC2e genes were found in several transposons. They were first observed within an IS26 bounded 3.7 kb transposon (Tn6925) on several Acinetobacter baumannii plasmids located within a 4.7 kb dif module. Truncated and expanded variations of Tn6925 were found across other A. baumannii plasmids, as well as in other Gram-negative bacteria (including Vibrio cholerae). Moreover, blaTEM-1 and aacC2e were in much larger resistance-heavy transposons including the ISAba1-bounded 24.6 kb (here called Tn6927), found in an A. baumannii chromosome. A novel ISKpn12-bounded transposon was also observed to contain blaTEM and aacC2e which was found interrupting Tn5393 along with an IS26 pseudo-compound transposon to form a 24.9 kb resistance island in an Acinetobacter pittii plasmid. Multiple mobile genetic elements are involved in the formation of transposon structures that circulate blaTEM and aacC2e. Among these, IS26 and ISAba1 appear to have played a major role in the formation and spread of these elements in the Acinetobacter species.
Collapse
Affiliation(s)
- Liam A Tobin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Mehrad Hamidian
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
9
|
Tobin LA, Jarocki VM, Kenyon J, Drigo B, Donner E, Djordjevic SP, Hamidian M. Genomic analysis of diverse environmental Acinetobacter isolates identifies plasmids, antibiotic resistance genes, and capsular polysaccharides shared with clinical strains. Appl Environ Microbiol 2024; 90:e0165423. [PMID: 38206028 PMCID: PMC10885009 DOI: 10.1128/aem.01654-23] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024] Open
Abstract
Acinetobacter baumannii, an important pathogen known for its widespread antibiotic resistance, has been the focus of extensive research within its genus, primarily involving clinical isolates. Consequently, data on environmental A. baumannii and other Acinetobacter species remain limited. Here, we utilized Illumina and Nanopore sequencing to analyze the genomes of 10 Acinetobacter isolates representing 6 different species sourced from aquatic environments in South Australia. All 10 isolates were phylogenetically distinct compared to clinical and other non-clinical Acinetobacter strains, often tens of thousands of single-nucleotide polymorphisms from their nearest neighbors. Despite the genetic divergence, we identified pdif modules (sections of mobilized DNA) carrying clinically important antimicrobial resistance genes in species other than A. baumannii, including carbapenemase oxa58, tetracycline resistance gene tet(39), and macrolide resistance genes msr(E)-mph(E). These pdif modules were located on plasmids with high sequence identity to those circulating in globally distributed A. baumannii ST1 and ST2 clones. The environmental A. baumannii isolate characterized here (SAAb472; ST350) did not possess any native plasmids; however, it could capture two clinically important plasmids (pRAY and pACICU2) with high transfer frequencies. Furthermore, A. baumannii SAAb472 possessed virulence genes and a capsular polysaccharide type analogous to clinical strains. Our findings highlight the potential for environmental Acinetobacter species to acquire and disseminate clinically important antimicrobial resistance genes, underscoring the need for further research into the ecology and evolution of this important genus.IMPORTANCEAntimicrobial resistance (AMR) is a global threat to human, animal, and environmental health. Studying AMR in environmental bacteria is crucial to understand the emergence and dissemination of resistance genes and pathogens, and to identify potential reservoirs and transmission routes. This study provides novel insights into the genomic diversity and AMR potential of environmental Acinetobacter species. By comparing the genomes of aquatic Acinetobacter isolates with clinical and non-clinical strains, we revealed that they are highly divergent yet carry pdif modules that encode resistance to antibiotics commonly used in clinical settings. We also demonstrated that an environmental A. baumannii isolate can acquire clinically relevant plasmids and carries virulence factors similar to those of hospital-associated strains. These findings suggest that environmental Acinetobacter species may serve as reservoirs and vectors of clinically important genes. Consequently, further research is warranted to comprehensively understand the ecology and evolution of this genus.
Collapse
Affiliation(s)
- Liam A. Tobin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Veronica M. Jarocki
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, Australia
| | - Johanna Kenyon
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Barbara Drigo
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
- UniSA STEM, University of South Australia, Mawson Lakes, SA, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
- Cooperative Research Centre for Solving Antimicrobial Resistance in Agribusiness, Food, and Environments (CRC SAAFE), Adelaide, SA, Australia
| | - Steven P. Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, Australia
| | - Mehrad Hamidian
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
10
|
Mushtaq A, Alburquerque B, Chung M, Fabre S, Sullivan MJ, Nowak M, Sordillo EM, Polanco J, van Bakel H, Gitman MR. Clinical, microbiological and genomic characterization of Gram-negative bacteria with dual carbapenemases as identified by rapid molecular testing. JAC Antimicrob Resist 2024; 6:dlad137. [PMID: 38161967 PMCID: PMC10757448 DOI: 10.1093/jacamr/dlad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Objective Dual carbapenemase-producing organisms (DCPOs) are an emerging threat that expands the spectrum of antimicrobial resistance. There is limited literature on the clinical and genetic epidemiology of DCPOs. Methods DCPO isolates were identified by Xpert® Carba-R PCR testing of routine diagnostic cultures performed from 2018 to 2021 at a New York City health system. WGS was performed by Illumina and/or PacBio. Medical records of patients were reviewed for clinical and epidemiological data. Results Twenty-six DCPO isolates were obtained from 13 patients. Klebsiella pneumoniae (n = 22) was most frequent, followed by Pseudomonas aeruginosa (n = 2), Escherichia coli (n = 1) and Enterobacter cloacae (n = 1). The most common DCPO combination was blaNDM/blaOXA-48-like (n = 16). Notably, 1.05% (24/2290) of carbapenem-resistant Enterobacterales isolates were identified as DCPOs. The susceptibility profiles matched the identified resistance genes, except for a K. pneumoniae (blaKPC/blaOXA-48-like) isolate that was phenotypically susceptible to meropenem. Eleven patients were hospitalized within the year prior to admission, and received antibiotic(s) 1 month prior. Seven patients were originally from outside the USA. Hypertension, kidney disease and diabetes were frequent comorbidities. Death in two cases was attributed to DCPO infection. WGS of eight isolates showed that carbapenemases were located on distinct plasmids, except for one K. pneumoniae isolate where NDM and KPC carbapenemases were located on a single IncC-type plasmid backbone. Conclusions Here we characterized a series of DCPOs from New York City. Foreign travel, prior hospitalization, antibiotic usage and comorbidities were common among DCPO cases. All carbapenemases were encoded on plasmids, which may facilitate horizontal transfer.
Collapse
Affiliation(s)
- Ammara Mushtaq
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bremy Alburquerque
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marilyn Chung
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shelcie Fabre
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mitchell J Sullivan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Nowak
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Emilia M Sordillo
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jose Polanco
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Melissa R Gitman
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
11
|
Ilyas M, Purkait D, Atmakuri K. Genomic islands and their role in fitness traits of two key sepsis-causing bacterial pathogens. Brief Funct Genomics 2024; 23:55-68. [PMID: 36528816 DOI: 10.1093/bfgp/elac051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 01/21/2024] Open
Abstract
To survive and establish a niche for themselves, bacteria constantly evolve. Toward that, they not only insert point mutations and promote illegitimate recombinations within their genomes but also insert pieces of 'foreign' deoxyribonucleic acid, which are commonly referred to as 'genomic islands' (GEIs). The GEIs come in several forms, structures and types, often providing a fitness advantage to the harboring bacterium. In pathogenic bacteria, some GEIs may enhance virulence, thus altering disease burden, morbidity and mortality. Hence, delineating (i) the GEIs framework, (ii) their encoded functions, (iii) the triggers that help them move, (iv) the mechanisms they exploit to move among bacteria and (v) identification of their natural reservoirs will aid in superior tackling of several bacterial diseases, including sepsis. Given the vast array of comparative genomics data, in this short review, we provide an overview of the GEIs, their types and the compositions therein, especially highlighting GEIs harbored by two important pathogens, viz. Acinetobacter baumannii and Klebsiella pneumoniae, which prominently trigger sepsis in low- and middle-income countries. Our efforts help shed some light on the challenges these pathogens pose when equipped with GEIs. We hope that this review will provoke intense research into understanding GEIs, the cues that drive their mobility across bacteria and the ways and means to prevent their transfer, especially across pathogenic bacteria.
Collapse
Affiliation(s)
- Mohd Ilyas
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Dyuti Purkait
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Krishnamohan Atmakuri
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| |
Collapse
|
12
|
Lam MMC, Hamidian M. Examining the role of Acinetobacter baumannii plasmid types in disseminating antimicrobial resistance. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:1. [PMID: 39843567 PMCID: PMC11702686 DOI: 10.1038/s44259-023-00019-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2025]
Abstract
Acinetobacter baumannii is a Gram-negative pathogen responsible for hospital-acquired infections with high levels of antimicrobial resistance (AMR). The spread of multidrug-resistant A. baumannii strains has become a global concern. Spread of AMR in A. baumannii is primarily mediated by the acquisition of AMR genes through mobile genetic elements, such as plasmids. Thus, a comprehensive understanding of the role of different plasmid types in disseminating AMR genes is essential. Here, we analysed the distribution of plasmid types, sampling sources, geographic locations, and AMR genes carried on A. baumannii plasmids. A collection of 813 complete plasmid entries was collated and analysed. We previously devised an Acinetobacter Plasmid Typing (APT) scheme where rep types were defined using 95% nucleotide identity and updated the scheme in this study by adding 12 new rep/Rep types (90 types in total). The APT scheme now includes 178 unique Rep variants belonging to three families: R1, R3, and RP. R1-type plasmids were mainly associated with global clone 1 strains, while R3-type plasmids were highly diverse and carried a variety of AMR determinants including carbapenem, aminoglycoside and colistin resistance genes. Similarly, RP-type and rep-less plasmids were identified as important carriers of aminoglycoside and carbapenem resistance genes. This study provides a comprehensive overview of the distribution and characteristics of A. baumannii plasmids, shedding light on their role in the dissemination of AMR genes. The updated APT scheme and findings enhance our understanding of the molecular epidemiology of A. baumannii and provide valuable insights for surveillance and control strategies.
Collapse
Affiliation(s)
- Margaret M C Lam
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mehrad Hamidian
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
13
|
Ambrose SJ, Hall RM. Variation in the plasmid backbone and dif module content of R3-T33 Acinetobacter plasmids. Plasmid 2024; 129-130:102722. [PMID: 38631562 DOI: 10.1016/j.plasmid.2024.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
The predominant type of plasmids found in Acinetobacter species encode a Rep_3 initiation protein and many of these carry their accessory genes in dif modules. Here, available sequences of the 14 members of the group of Rep_3 plasmids typed as R3-T33, using a threshold of 95% identity in the repA gene, were compiled and compared. These plasmids were from various Acinetobacter species. The pdif sites were identified allowing the backbone and dif modules to be defined. As for other Rep_3 plasmids carrying dif modules, orfX encoding a protein of unknown function was found downstream of repA followed by a pdif site in the orientation XerC binding site-spacer-XerD binding site. Most backbones (n = 12) also included mobA and mobC genes but the two plasmids with the most diverged repA and orfX genes had different backbone contents. Although the gene content of the plasmid backbone was largely conserved, extensive recombinational exchange was detected and only two small groups carried identical or nearly identical backbones. Individual plasmids were associated with 1 to 13 dif modules. Many different dif modules were identified, including ones containing antibiotic or chromate resistance genes and several toxin/antitoxin gene pairs. In some cases, modules carrying the same genes were significantly diverged. Generally, the orientation of the pdif sites alternated such that C modules (XerC binding sites internal) alternated with D modules (XerD binding sites internal). However, fusions of two dif modules via mutational inactivation or loss of a pdif site were also detected.
Collapse
Affiliation(s)
- Stephanie J Ambrose
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
14
|
Ambrose SJ, Hamidian M, Hall RM. The extensively antibiotic resistant ST111 Acinetobacter baumannii isolate RBH2 carries an extensive mobile element complement of plasmids, transposons and insertion sequences. Plasmid 2023; 128:102707. [PMID: 37678515 DOI: 10.1016/j.plasmid.2023.102707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
The complete genome of RBH2, a sporadic, carbapenem resistant ST111 Acinetobacter baumannii isolate from Brisbane, Australia was determined and analysed. RBH2 is extensively resistant and the chromosome includes two transposons carrying antibiotic resistance genes, AbaR4 (oxa23 in Tn2006) and Tn7::Tn2006 (dfrA1, sat2, aadA1, oxa23). The chromosome also includes two copies of Tn6175, a transposon carrying putative copper resistance genes, and 1-17 copies of six different insertion sequences. RBH2 has six plasmids ranging in size from 6 kb - 141 kb, four carrying antibiotic resistance genes. Plasmids pRBH2-1 (aadB) and pRBH2-2 (aphA6 in TnaphA6) were found to be essentially identical to known plasmids pRAY*-v1 and pS21-1, respectively. The largest plasmids, pRBH2-5 (oxa23 in AbaR4) and pRBH2-6 (oxa23 in AbaR4::ISAba11 and sul2, tet(B), strA and strB in Tn6172) have known transfer-proficient relatives. pRBH2-5, an RP-T1 (RepAci6) plasmid, also carries a different putative copper resistance transposon related to Tn6177 found in pS21-2. The backbone of pRBH2-5 is related to those of previously described RepAci6 plasmids pAb-G7-2 and pA85-3 but has some distinctive features. Three different RepAci6 backbone types were distinguished, Type 1 (pAb-G7-2), Type 2 (pA85-3) and Type 3 (pRBH2-5 and pS21-2). pRBH2-6 is closely related to pAB3 and their backbones differ by only 5 SNPs. Plasmids pRBH2-3 and pRBH2-4 do not carry antibiotic resistance genes. pRBH2-3 does not include an identifiable rep gene and is a novel plasmid type. pRBH2-4 is of the R3-T3 type and includes segments of the larger pABTJ2 that heads this group. Other ST111 genomes carry different plasmids.
Collapse
Affiliation(s)
- Stephanie J Ambrose
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.
| | - Mehrad Hamidian
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia; Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
15
|
Naderi G, Asadian M, Seifi A, Ghourchian S, Talebi M, Rahbar M, Abdollahi A, Douraghi M. Dissemination of the Acinetobacter baumannii isolates belonging to global clone 2 containing AbGRI resistance islands in a referral hospital. Microbiol Spectr 2023; 11:e0537322. [PMID: 37638730 PMCID: PMC10581056 DOI: 10.1128/spectrum.05373-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/16/2023] [Indexed: 08/29/2023] Open
Abstract
Acinetobacter baumannii strains belonging to global clone 2 (GC2) contain resistance islands (AbGRIs), which are composed of genes conferring resistance to older and newer antibiotics. Here, to locate these genes in AbGRIs, the GC2 strains from Tehran, Iran were examined. Among the 170 A. baumannii, 90 isolates were identified as GC2. Of the genes that confer resistance to older antibiotics, tetA(B), tetR(B) (tetracyclines), strA, and strB (aminoglycosides) were located in AbGRI1 of 65 GC2 isolates (72.2%). Of the other aminoglycosides, the aphA1b was located in AbGRI2-12b (63.6%), AbGRI2-12a (21.2%), or AbGRI2-1 (15.1%). The aacC1 and aadA1 genes were co-located within AbGRI2-1 (5.5%). The armA was located in AbGRI3-4 (77.7%) and AbGRI3ABI221 (22.2%). Of sulfonamides, the sul1 was located within AbGRI2-1 (5.5%). Of beta-lactams, the blaTEM was located in AbGRI2-12b (42%), AbGRI2-12a (14%), AbGRI2-1 (10%), or AbGRI2ABI257 (34%). The oxa23 gene conferring resistance to newer antibiotics (carbapenems) was located in AbaR4 (81.1%); of them, the AbaR4 was located within AbGRI1 in 45.2% of the isolates. This study showed that the GC2 isolates, which contained at least one AbGRI, disseminate in the hospital. Hence, it is likely that the AbGRIs play a significant role in conferring resistance to older and newer antibiotics in GC2 isolates from Iran. IMPORTANCE The majority of Acinetobacter baumannii isolates that are resistant to multiple antibiotics belong to one of the two major global clones, namely global clone 1 (GC1) and global clone 2 (GC2). The resistance islands, which contain variable assortments of transposons, integrons, and specific resistance genes, have been characterized in the genome of these GCs. In GC2 A. baumannii, the chromosomally located A. baumannii genomic resistance islands (AbGRIs) carry the genes conferring resistance to older and newer antibiotics. In this context, we tested whether GC2 isolates collected from a referral hospital carry the AbGRIs containing these genes. This study provided evidence for the circulation of the GC2 A. baumannii strains harboring AbGRI resistance islands between different wards of a referral hospital.
Collapse
Affiliation(s)
- Ghazal Naderi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahla Asadian
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Seifi
- Department of Infectious Diseases, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Ghourchian
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahbar
- Department of Microbiology, Iranian Reference Health Laboratory Research Center, Ministry of Health and Medical Education, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Naderi G, Asadian M, Khaki PA, Salehi M, Abdollahi A, Douraghi M. Occurrence of Acinetobacter baumannii genomic resistance islands (AbGRIs) in Acinetobacter baumannii strains belonging to global clone 2 obtained from COVID-19 patients. BMC Microbiol 2023; 23:234. [PMID: 37620750 PMCID: PMC10464229 DOI: 10.1186/s12866-023-02961-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
AIM The Acinetobacter baumannii genomic resistance islands (AbGRIs), which were characterized in the genome of the global clone 2 (GC2) A. baumannii contain resistance genes. Here, we aimed to determine the occurrence of AbGRIs in GC2 A. baumannii obtained from COVID-19 patients in a referral hospital in Tehran, Iran. METHODS A total of 19 carbapenem-resistant A. baumannii (CRAB) isolates belonging to GC2 and sequence type 2 (ST2), including 17 from COVID-19 patients and two from the devices used in the ICU that the COVID-19 patients were admitted, were examined in this study. Antibiotic susceptibility testing was performed by the disk diffusion method. PCR and PCR mapping, followed by sequencing, were performed to characterize the structure of AbGRI resistance islands in the isolates tested. RESULTS The AbGRI3 was the most frequent resistance island (RI) detected, present in all the 19 isolates, followed by AbGRI1 (15 isolates; 78.9%) and AbGRI2 (three isolates; 15.8%). Notably, AbGRIs were identified in one of the A. baumannii strains, which was isolated from a medical device used in the ICU where COVID-19 patients were admitted. Furthermore, new structures of AbGRI1 and AbGRI3 resistance islands were found in this study, which was the first report of these structures. CONCLUSIONS The present study provided evidence for the circulation of the GC2 A. baumannii strains harboring AbGRI resistance islands in a referral hospital in Tehran, Iran. It was found that resistance to several classes of antibiotics in the isolates collected from COVID-19 patients is associated with the resistance genes located within AbGRIs.
Collapse
Affiliation(s)
- Ghazal Naderi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahla Asadian
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Afarinesh Khaki
- Central Laboratory, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Salehi
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Department of infectious diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Harmer CJ, Nigro SJ, Hall RM. Acinetobacter baumannii GC2 Sublineage Carrying the aac( 6')- Im Amikacin, Netilmicin, and Tobramycin Resistance Gene Cassette. Microbiol Spectr 2023; 11:e0120423. [PMID: 37409961 PMCID: PMC10434200 DOI: 10.1128/spectrum.01204-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023] Open
Abstract
The aminoglycoside antibiotics amikacin, gentamicin, and tobramycin are important therapeutic options for Acinetobacter iinfections. Several genes that confer resistance to one or more of these antibiotics are prevalent in the globally distributed resistant clones of Acinetobacter baumannii, but the aac(6')-Im (aacA16) gene (amikacin, netilmicin, and tobramycin resistance), first reported in isolates from South Korea, has rarely been reported since. In this study, GC2 isolates (1999 to 2002) from Brisbane, Australia, carrying aac(6')-Im and belonging to the ST2:ST423:KL6:OCL1 type were identified and sequenced. The aac(6')-Im gene and surrounds have been incorporated into one end of the IS26-bounded AbGRI2 antibiotic resistance island and are accompanied by a characteristic 70.3-kbp deletion of adjacent chromosome. The compete genome of the 1999 isolate F46 (RBH46) includes only two copies of ISAba1 (in AbGRI1-3 and upstream of ampC) but later isolates, which differ from one another by <10 single nucleotide differences (SND), carry two to seven additional shared copies. Several complete GC2 genomes with aac(6')-Im in an AbGRI2 island (2004 to 2017; several countries) found in GenBank and two additional Australian A. baumannii isolates (2006) carry different gene sets, KL2, KL9, KL40, or KL52, at the capsule locus. These genomes include ISAba1 copies in a different set of shared locations. The distribution of SND between F46 and AYP-A2, a 2013 ST2:ST208:KL2:OCL1 isolate from Victoria, Australia, revealed that a 640-kbp segment that includes KL2 and the AbGRI1 resistance island replaces the corresponding region in F46. Over 1,000 A. baumannii draft genomes also include aac(6')-Im, indicating that it is currently globally disseminated and significantly underreported. IMPORTANCE Aminoglycosides are important therapeutic options for treatment of Acinetobacter infections. Here, we show that a little-known aminoglycoside resistance gene, aac(6')-Im (aacA16), that confers amikacin, netilmicin, and tobramycin resistance has been circulating undetected for many years in a sublineage of A. baumannii global clone 2 (GC2), generally with a second aminoglycoside resistance gene, aacC1, which confers resistance to gentamicin. These two genes are commonly found together in GC2 complete and draft genomes and globally distributed. One isolate appears to be ancestral, as its genome contains few ISAba1 copies, providing insight into the original source of this insertion sequence (IS), which is abundant in most GC2 isolates. Tracking ISAba1 spread can provide a simple means to track the development and ongoing evolution as well as the dissemination of specific lineages and detect the formation of many sublineages. The complete ancestral genome will provide an essential base point for tracking this process.
Collapse
Affiliation(s)
- Christopher J. Harmer
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, Australia
| | - Steven J. Nigro
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, Australia
| | - Ruth M. Hall
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Li S, Wang P, Tian S, Zhang J. Risk factors and cerebrospinal fluid indexes analysis of intracranial infection by Acinetobacter baumannii after neurosurgery. Heliyon 2023; 9:e18525. [PMID: 37576262 PMCID: PMC10412996 DOI: 10.1016/j.heliyon.2023.e18525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
Background Intracranial infection by Acinetobacter baumannii (A. baumannii) after neurosurgery has always been a difficult problem for neurosurgeons. This study analyzed risk factors that discriminated A. baumannii from other bacteria causing intracranial infection after neurosurgery. It also examined the differences in the cerebrospinal fluid (CSF) indexes to explore their value in the early diagnosis of intracranial infection by A. baumannii. Methods We retrospectively reviewed ten years (January 2011 to May 2021) of postoperative central nervous system (CNS) infections in the First Hospital of China Medical University. According to the pathogen, CNS infections were divided into A. baumannii group and other species of bacteria group. We collected clinical and laboratory information of patients, and statistical analysis was performed with SPSS 26.0. Risk factors were screened by univariate analysis, and independent risk factors were screened by multiple logistic regression analysis. Finally, CSF-Pro, CSF-Glu, CSF-Cl, CSF-monocytes (%), CSF-multinucleated cells (%) levels, and CSF multinucleated cells%/monocytes% in the different groups were analyzed. Results A total of 155 patients were included, 62 cases (40%) of intracranial infection by A. baumannii and 93 cases (60%) by other species of bacteria. The analysis showed that indwelling nasogastric tubes (P<0.001, OR = 4.231), indwelling peripherally inserted central catheters (PICCs) (P = 0.041, OR = 2.765), and CSF drainage obstruction (P = 0.003, OR = 3.765) were independent risk factors for intracranial infection by A. baumannii after neurosurgery. Indwelling ventriculoperitoneal shunt (VPS) was a protective factor (P = 0.033, OR = 0.22). In addition, compared with other bacterial groups, the A. baumannii group had higher CSF-pro and CSF- multinucleated cells (%) levels and lower CSF-Glu and CSF- monocytes (%) levels, and the difference was statistically significant (P < 0.01). Conclusions Our results elucidate risk factors and differences in CSF indexes for intracranial infection by A. baumannii after neurosurgery that could be detected and prevented early to reduce mortality.
Collapse
Affiliation(s)
- Shige Li
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Pan Wang
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Sufei Tian
- Laboratory Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingping Zhang
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
19
|
Cain AK, Hamidian M. Portrait of a killer: Uncovering resistance mechanisms and global spread of Acinetobacter baumannii. PLoS Pathog 2023; 19:e1011520. [PMID: 37561719 PMCID: PMC10414682 DOI: 10.1371/journal.ppat.1011520] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Antibiotic resistance is a growing global concern in the field of medicine as it renders bacterial infections difficult to treat and often more severe. Acinetobacter baumannii is a gram-negative bacterial pathogen causing a wide range of infections, including pneumonia, sepsis, urinary tract infections, and wound infections. A. baumannii has emerged as a significant healthcare-associated pathogen due to its high level of antibiotic resistance. The global spread of antibiotic-resistant strains of A. baumannii has resulted in limited treatment options, leading to increased morbidity and mortality rates, especially in vulnerable populations such as the elderly and immunocompromised individuals, as well as longer hospital stays and higher healthcare costs. Further complicating the situation, multi- and pan-drug-resistant strains of A. baumannii are becoming increasingly common, and these deadly strains are resistant to all or almost all available antibiotics. A. baumannii employs various clever strategies to develop antibiotic resistance, including horizontal transfer of resistance genes, overexpression of inherent efflux pumps that remove drugs from the cell, intrinsic mutations, combined with natural selection under antibiotic selective pressure leading to emergence of successful resistance clones. The typical multidrug resistance phenotype of A. baumannii is, therefore, an orchestrated collimation of all these mechanisms combined with the worldwide spread of "global clones," rendering infections caused by this pathogen challenging to control and treat. To address the escalating problem of antibiotic resistance in A. baumannii, there is a need for increased surveillance, strict infection control measures, and the development of new treatment strategies, requiring a concerted effort by healthcare professionals, researchers, and policymakers.
Collapse
Affiliation(s)
- Amy K. Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mehrad Hamidian
- Australian Institute of Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
20
|
Siguier P, Rousseau P, Cornet F, Chandler M. A subclass of the IS1202 family of bacterial insertion sequences targets XerCD recombination sites. Plasmid 2023; 127:102696. [PMID: 37302728 DOI: 10.1016/j.plasmid.2023.102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
We describe here a new family of IS which are related to IS1202, originally isolated from Streptococcus pneumoniae in the mid-1990s and previously tagged as an emerging IS family in the ISfinder database. Members of this family have impacted some important properties of their hosts. We describe here another potentially important property of certain family members: specific targeting of xrs recombination sites. The family could be divided into three subgroups based on their transposase sequences and the length on the target repeats (DR) they generate on insertion: subgroup IS1202 (24-29 bp); ISTde1 (15-18 bp); and ISAba32 (5-6 bp). Members of the ISAba32 subgroup were repeatedly found abutting Xer recombinase recombination sites (xrs), separated by an intervening copy of a DR. These xrs sites, present in multiple copies in a number of Acinetobacter plasmids flanking antibiotic resistance genes, were proposed to form a new type of mobile genetic element using the chromosomally-encoded XerCD recombinase for mobility. Transposase alignments identified subgroup-specific indels which may be responsible for the differences in the transposition properties of the three subgroups (i.e. DR length and target specificity). We propose that this collection of IS be classed as a new insertion sequence family: the IS1202 family composed of three subgroups, only one of which specifically targets plasmid-borne xrs. We discuss the implications of xrs targeting for gene mobility.
Collapse
Affiliation(s)
- Patricia Siguier
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, France.
| | - Philippe Rousseau
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, France
| | - François Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, France
| | - Michael Chandler
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
21
|
Bala A, Uhlin BE, Karah N. Insights into the genetic contexts of sulfonamide resistance among early clinical isolates of Acinetobacter baumannii. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 112:105444. [PMID: 37210019 DOI: 10.1016/j.meegid.2023.105444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Since the late 1930s, resistance to sulfonamides has been accumulating across bacterial species including Acinetobacter baumannii, an opportunistic pathogen increasingly implicated the spread of antimicrobial resistance worldwide. Our study aimed to explore events involved in the acquisition of sulfonamide resistance genes, particularly sul2, among the earliest available isolates of A. baumannii. The study utilized the genomic data of 19 strains of A. baumannii isolated before 1985. The whole genomes of 5 clinical isolates obtained from the Culture Collection University of Göteborg (CCUG), Sweden, were sequenced using the Illumina MiSeq system. Acquired resistance genes, insertion sequence elements and plasmids were detected using ResFinder, ISfinder and Plasmidseeker, respectively, while sequence types (STs) were assigned using the PubMLST Pasteur scheme. BLASTn was used to verify the occurrence of sul genes and to map their genetic surroundings. The sul1 and sul2 genes were detected in 4 and 9 isolates, respectively. Interestingly, sul2 appeared thirty years earlier than sul1. The sul2 gene was first located in the genomic island GIsul2 located on a plasmid, hereafter called NCTC7364p. With the emergence of international clone 1, the genetic context of sul2 evolved toward transposon Tn6172, which was also plasmid-mediated. Sulfonamide resistance in A. baumannii was efficiently acquired and transferred vertically, e.g., among the ST52 and ST1 isolates, as well as horizontally among non-related strains by means of a few efficient transposons and plasmids. Timely acquisition of the sul genes has probably contributed to the survival skill of A. baumannii under the high antimicrobial stress of hospital settings.
Collapse
Affiliation(s)
- Anju Bala
- Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden.
| | - Bernt Eric Uhlin
- Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden
| | - Nabil Karah
- Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden.
| |
Collapse
|
22
|
Álvarez VE, Quiroga MP, Centrón D. Identification of a Specific Biomarker of Acinetobacter baumannii Global Clone 1 by Machine Learning and PCR Related to Metabolic Fitness of ESKAPE Pathogens. mSystems 2023:e0073422. [PMID: 37184409 DOI: 10.1128/msystems.00734-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Since the emergence of high-risk clones worldwide, constant investigations have been undertaken to comprehend the molecular basis that led to their prevalent dissemination in nosocomial settings over time. So far, the complex and multifactorial genetic traits of this type of epidemic clones have allowed only the identification of biomarkers with low specificity. A machine learning algorithm was able to recognize unequivocally a biomarker for early and accurate detection of Acinetobacter baumannii global clone 1 (GC1), one of the most disseminated high-risk clones. A support vector machine model identified the U1 sequence with a length of 367 nucleotides that matched a fragment of the moaCB gene, which encodes the molybdenum cofactor biosynthesis C and B proteins. U1 differentiates specifically between A. baumannii GC1 and non-GC1 strains, becoming a suitable biomarker capable of being translated into clinical settings as a molecular typing method for early diagnosis based on PCR as shown here. Since the metabolic pathways of Mo enzymes have been recognized as putative therapeutic targets for ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens, our findings highlight that machine learning can also be useful in knowledge gaps of high-risk clones and provides noteworthy support to the literature to identify relevant nosocomial biomarkers for other multidrug-resistant high-risk clones. IMPORTANCE A. baumannii GC1 is an important high-risk clone that rapidly develops extreme drug resistance in the nosocomial niche. Furthermore, several strains have been identified worldwide in environmental samples, exacerbating the risk of human interactions. Early diagnosis is mandatory to limit its dissemination and to outline appropriate antibiotic stewardship schedules. A region with a length of 367 bp (U1) within the moaCB gene that is not subjected to lateral genetic transfer or to antibiotic pressures was successfully found by a support vector machine model that predicts A. baumannii GC1 strains. At the same time, research on the group of Mo enzymes proposed this metabolic pathway related to the superbug's metabolism as a potential future drug target site for ESKAPE pathogens due to its central role in bacterial fitness during infection. These findings confirm that machine learning used for the identification of biomarkers of high-risk lineages can also serve to identify putative novel therapeutic target sites.
Collapse
Affiliation(s)
- Verónica Elizabeth Álvarez
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos (LIMRA), Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Paula Quiroga
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos (LIMRA), Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Nodo de Bioinformática. Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela Centrón
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos (LIMRA), Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
23
|
Prity FT, Tobin LA, Maharajan R, Paulsen IT, Cain AK, Hamidian M. The evolutionary tale of eight novel plasmids in a colistin-resistant environmental Acinetobacter baumannii isolate. Microb Genom 2023; 9:mgen001010. [PMID: 37171842 PMCID: PMC10272872 DOI: 10.1099/mgen.0.001010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/06/2023] [Indexed: 05/13/2023] Open
Abstract
Acinetobacter baumannii is an important opportunistic pathogen known for its high levels of resistance to many antibiotics, particularly those considered last resorts such as colistin and carbapenems. Plasmids of this organism are increasingly associated with the spread of clinically important antibiotic resistance genes. Although A. baumannii is a ubiquitous organism, to date, most of the focus has been on studying strains recovered from clinical samples ignoring those isolated in the environment (soil, water, food, etc.). Here, we analysed the genetic structures of eight novel plasmids carried by an environmental colistin-resistant A. baumannii (strain E-072658) recovered in a recycled fibre pulp in a paper mill in Finland. It was shown that E-072658 carries a new variant of the mcr-4 colistin resistance gene (mcr-4.7) in a novel Tn3-family transposon (called Tn6926) carried by a novel plasmid p8E072658. E-072658 is also resistant to sulphonamide compounds; consistent with this, the sul2 sulphonamide resistance gene was found in a pdif module. E-072658 also carries six additional plasmids with no antibiotic resistance genes, but they contained several pdif modules shared with plasmids carried by clinical strains. Detailed analysis of the genetic structure of all eight plasmids carried by E-072658 showed a complex evolutionary history revealing genetic exchange events within the genus Acinetobacter beyond the clinical or environmental origin of the strains. This work provides evidence that environmental strains might act as a source for some of the clinically significant antibiotic resistance genes.
Collapse
Affiliation(s)
- Farzana T. Prity
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Liam A. Tobin
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ram Maharajan
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ian T. Paulsen
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Amy K. Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Mehrad Hamidian
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
24
|
Castanheira M, Mendes RE, Gales AC. Global Epidemiology and Mechanisms of Resistance of Acinetobacter baumannii-calcoaceticus Complex. Clin Infect Dis 2023; 76:S166-S178. [PMID: 37125466 PMCID: PMC10150277 DOI: 10.1093/cid/ciad109] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Acinetobacter baumannii-calcoaceticus complex is the most commonly identified species in the genus Acinetobacter and it accounts for a large percentage of nosocomial infections, including bacteremia, pneumonia, and infections of the skin and urinary tract. A few key clones of A. baumannii-calcoaceticus are currently responsible for the dissemination of these organisms worldwide. Unfortunately, multidrug resistance is a common trait among these clones due to their unrivalled adaptive nature. A. baumannii-calcoaceticus isolates can accumulate resistance traits by a plethora of mechanisms, including horizontal gene transfer, natural transformation, acquisition of mutations, and mobilization of genetic elements that modulate expression of intrinsic and acquired genes.
Collapse
Affiliation(s)
| | | | - Ana C Gales
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
25
|
McNeilly O, Mann R, Cummins ML, Djordjevic SP, Hamidian M, Gunawan C. Development of Nanoparticle Adaptation Phenomena in Acinetobacter baumannii: Physiological Change and Defense Response. Microbiol Spectr 2023; 11:e0285722. [PMID: 36625664 PMCID: PMC9927149 DOI: 10.1128/spectrum.02857-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/17/2022] [Indexed: 01/11/2023] Open
Abstract
The present work describes the evolution of a resistance phenotype to a multitargeting antimicrobial agent, namely, silver nanoparticles (nanosilver; NAg), in the globally prevalent bacterial pathogen Acinetobacter baumannii. The Gram-negative bacterium has recently been listed as a critical priority pathogen requiring novel treatment options by the World Health Organization. Through prolonged exposure to the important antimicrobial nanoparticle, the bacterium developed mutations in genes that encode the protein subunits of organelle structures that are involved in cell-to-surface attachment as well as in a cell envelope capsular polysaccharide synthesis-related gene. These mutations are potentially correlated with stable physiological changes in the biofilm growth behavior and with an evident protective effect against oxidative stress, most likely as a feature of toxicity defense. We further report a different adaptation response of A. baumannii to the cationic form of silver (Ag+). The bacterium developed a tolerance phenotype to Ag+, which was correlated with an indicative surge in respiratory activity and changes in cell morphology, of which these are reported characteristics of tolerant bacterial populations. The findings regarding adaptation phenomena to NAg highlight the risks of the long-term use of the nanoparticle on a priority pathogen. The findings urge the implementation of strategies to overcome bacterial NAg adaptation, to better elucidate the toxicity mechanisms of the nanoparticle, and preserve the efficacy of the potent alternative antimicrobial agent in this era of antimicrobial resistance. IMPORTANCE Several recent studies have reported on the development of bacterial resistance to broad-spectrum antimicrobial silver nanoparticles (nanosilver; NAg). NAg is currently one of the most important alternative antimicrobial agents. However, no studies have yet established whether Acinetobacter baumannii, a globally prevalent nosocomial pathogen, can develop resistance to the nanoparticle. The study herein describes how a model strain of A. baumannii with no inherent silver resistance determinants developed resistance to NAg, following prolonged exposure. The stable physiological changes are correlated with mutations detected in the bacterium genome. These mutations render the bacterium capable of proliferating at a toxic NAg concentration. It was also found that A. baumannii developed a "slower-to-kill" tolerance trait to Ag+, which highlights the unique antimicrobial activities between the nanoparticulate and the ionic forms of silver. Despite the proven efficacy of NAg, the observation of NAg resistance in A. baumannii emphasises the potential risks of the repeated overuse of this agent on a priority pathogen.
Collapse
Affiliation(s)
- Oliver McNeilly
- Australian Institute of Microbiology and Infection, University of Technology Sydney, Broadway, New South Wales, Australia
| | - Riti Mann
- Australian Institute of Microbiology and Infection, University of Technology Sydney, Broadway, New South Wales, Australia
| | - Max Laurence Cummins
- Australian Institute of Microbiology and Infection, University of Technology Sydney, Broadway, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Broadway, New South Wales, Australia
| | - Steven P. Djordjevic
- Australian Institute of Microbiology and Infection, University of Technology Sydney, Broadway, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Broadway, New South Wales, Australia
| | - Mehrad Hamidian
- Australian Institute of Microbiology and Infection, University of Technology Sydney, Broadway, New South Wales, Australia
| | - Cindy Gunawan
- Australian Institute of Microbiology and Infection, University of Technology Sydney, Broadway, New South Wales, Australia
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Zhang L, Hong W, Pan Z, Fang W, Shen Z, Cai H. Wastewater treatment effectiveness is facilitated by crucial bacterial communities in the wetland ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159375. [PMID: 36240933 DOI: 10.1016/j.scitotenv.2022.159375] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Microorganisms play essential roles in nutrient removal and biogeochemical cycling during wastewater treatment. However, little is known about the main roles of key functional bacterial communities in wastewater treatment processes. We collected 18 water samples and 15 sediment samples from the six operational subsystems of the constructed wetland, among which the contact oxidation pond, enhanced hybrid biofilm reactor, and central stabilization pond are the main wastewater treatment units in the constructed wetland, and then investigated the bacterial communities using 16S rRNA gene targeting and sequencing to address this knowledge gap. The results indicated that the composition of the bacterial community is closely related to the efficiency of pollutant removal. The abundant carbon metabolism function increased the removal of nitrate‑nitrogen (NO3--N) and total nitrogen (TN) by the contact oxidation pond by 89.84 % and 38.91 %, respectively. The overlap of ecological niches and the presence of pathogenic bacteria substantially affect effluent wastewater treatment. Second, NO3--N (p < 0.001) was the most important factor driving the bacterial community composition in water and sediments. Furthermore, the positive structure was prevalent in the cooccurrence network of water samples (87.24 %) and sediments (76.53 %) of the wetland, and this positive structure with keystone species was critical for the adaptation of the bacterial community to environmental filtration. In summary, this study reveals the distribution patterns of bacterial communities in different wastewater treatment processes and their driving factors and provides new perspectives on the link between the bacterial community composition and wastewater treatment.
Collapse
Affiliation(s)
- Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China.
| | - Wenqing Hong
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Zhongling Pan
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Wangkai Fang
- School of Earth and Environment, Anhui University of Science & Technology, Huainan 232000, China
| | - Zhen Shen
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hua Cai
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| |
Collapse
|
27
|
Jeon JH, Jang KM, Lee JH, Kang LW, Lee SH. Transmission of antibiotic resistance genes through mobile genetic elements in Acinetobacter baumannii and gene-transfer prevention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159497. [PMID: 36257427 DOI: 10.1016/j.scitotenv.2022.159497] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance is a major global public health concern. Acinetobacter baumannii is a nosocomial pathogen that has emerged as a global threat because of its high levels of resistance to many antibiotics, particularly those considered as last-resort antibiotics, such as carbapenems. Mobile genetic elements (MGEs) play an important role in the dissemination and expression of antibiotic resistance genes (ARGs), including the mobilization of ARGs within and between species. We conducted an in-depth, systematic investigation of the occurrence and dissemination of ARGs associated with MGEs in A. baumannii. We focused on a cross-sectoral approach that integrates humans, animals, and environments. Four strategies for the prevention of ARG dissemination through MGEs have been discussed: prevention of airborne transmission of ARGs using semi-permeable membrane-covered thermophilic composting; application of nanomaterials for the removal of emerging pollutants (antibiotics) and pathogens; tertiary treatment technologies for controlling ARGs and MGEs in wastewater treatment plants; and the removal of ARGs by advanced oxidation techniques. This review contemplates and evaluates the major drivers involved in the transmission of ARGs from the cross-sectoral perspective and ARG-transfer prevention processes.
Collapse
Affiliation(s)
- Jeong Ho Jeon
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Kyung-Min Jang
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea.
| |
Collapse
|
28
|
Naderi G, Talebi M, Gheybizadeh R, Seifi A, Ghourchian S, Rahbar M, Abdollahi A, Naseri A, Eslami P, Douraghi M. Mobile genetic elements carrying aminoglycoside resistance genes in Acinetobacter baumannii isolates belonging to global clone 2. Front Microbiol 2023; 14:1172861. [PMID: 37213517 PMCID: PMC10196456 DOI: 10.3389/fmicb.2023.1172861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 05/23/2023] Open
Abstract
Aminoglycosides are used to treat infections caused by carbapenem-resistant Acinetobacter baumannii (CRAB) strains. However, resistance to aminoglycosides has increased remarkably in the last few years. Here, we aimed to determine the mobile genetic elements (MGEs) associated with resistance to aminoglycosides in the global clone 2 (GC2) A. baumannii. Among the 315 A. baumannii isolates, 97 isolates were identified as GC2, and 52 of GC2 isolates (53.6%) were resistant to all the aminoglycosides tested. The AbGRI3s carrying armA were detected in 88 GC2 isolates (90.7%), and of them, 17 isolates (19.3%) carried a new variant of AbGRI3 (AbGRI3ABI221). aphA6 was located in TnaphA6 of 30 isolates out of 55 aphA6-harboring isolates, and 20 isolates were found to harbor TnaphA6 on a RepAci6 plasmid. Tn6020 carrying aphA1b was detected in 51 isolates (52.5%), which was located within AbGRI2 resistance islands. The pRAY* carrying the aadB gene was detected in 43 isolates (44.3%), and no isolate was found to contain a class 1 integron harboring this gene. The GC2 A. baumannii isolates contained at least one MGE carrying the aminoglycoside resistance gene, located mostly either in the chromosome within AbGRIs or on the plasmids. Thus, it is likely that these MGEs play a role in the dissemination of aminoglycoside resistance genes in GC2 isolates from Iran.
Collapse
Affiliation(s)
- Ghazal Naderi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Malihe Talebi
| | - Roghayeh Gheybizadeh
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Seifi
- Department of Infectious Diseases, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Ghourchian
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahbar
- Department of Microbiology, Iranian Reference Health Laboratory Research Center, Ministry of Health and Medical Education, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, Imam Hospital Complex, Tehran University of Medical SciencesTehran, Iran
| | - Abdolhossein Naseri
- Department of Laboratory Sciences, School of Paramedical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Eslami
- Department of Microbiology, Milad Hospital, Tehran, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Masoumeh Douraghi
| |
Collapse
|
29
|
Noel HR, Petrey JR, Palmer LD. Mobile genetic elements in Acinetobacter antibiotic-resistance acquisition and dissemination. Ann N Y Acad Sci 2022; 1518:166-182. [PMID: 36316792 PMCID: PMC9771954 DOI: 10.1111/nyas.14918] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pathogenic Acinetobacter species, most notably Acinetobacter baumannii, are a significant cause of healthcare-associated infections worldwide. Acinetobacter infections are of particular concern to global health due to the high rates of multidrug resistance and extensive drug resistance. Widespread genome sequencing and analysis has determined that bacterial antibiotic resistance is often acquired and disseminated through the movement of mobile genetic elements, including insertion sequences (IS), transposons, integrons, and conjugative plasmids. In Acinetobacter specifically, resistance to carbapenems and cephalosporins is highly correlated with IS, as many ISAba elements encode strong outwardly facing promoters that are required for sufficient expression of β-lactamases to confer clinical resistance. Here, we review the role of mobile genetic elements in antibiotic resistance in Acinetobacter species through the framework of the mechanism of resistance acquisition and with a focus on experimentally validated mechanisms.
Collapse
Affiliation(s)
- Hannah R. Noel
- Department of Microbiology and ImmunologyUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Jessica R. Petrey
- Department of Microbiology and ImmunologyUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Lauren D. Palmer
- Department of Microbiology and ImmunologyUniversity of Illinois ChicagoChicagoIllinoisUSA
| |
Collapse
|
30
|
Zhu Y, Zhang X, Wang Y, Tao Y, Shao X, Li Y, Li W. Insight into carbapenem resistance and virulence of Acinetobacter baumannii from a children’s medical centre in eastern China. Ann Clin Microbiol Antimicrob 2022; 21:47. [PMCID: PMC9637306 DOI: 10.1186/s12941-022-00536-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/13/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractCarbapenem-resistant Acinetobacter baumannii (CRAB) appeared more frequently in children and caused a great threat to global public health. It is urgent to investigate the carbapenem resistance and virulence of CRAB for clinicians to choose appropriate antibiotics. A retrospective study of 77 nonduplicated CRAB isolates was conducted. The carbapenem resistance and virulence genes were characterized by polymerase chain reaction (PCR) and gel electrophoresis. In the present study, A. baumannii mainly came from the intensive care unit and was mostly isolated from sputum samples. The carbapenem resistant rate of A. baumannii in 2018–2020 increased significantly compared with that in 2016–2017. All isolates had carbapenem resistant genes. They were highly resistant to a variety of antibiotics but were relatively sensitive to fluoroquinolones and tetracyclines. blaVIM and blaOXA-23 were detected in all isolates, whereas blaOXA-51, blaIMP and blaNDM were present in 98.70%, 67.53% and 31.17% of isolates, respectively. Notably, 1 isolate A. baumannii was identified as multidrug-resistant A. baumannii (MDR-AB), and 76 other extensively drug-resistance (XDR) isolates were also detected. Virulence genes were present in 100% of all isolates, including genes in the iron acquisition system (basJ), secretion systems (ompA, plcD), quorum sensing system (abaI) and biofilm formation (csuA). adeH, pgaA, and ptk were present in 98.70%, 98.70% and 94.80% of isolates, respectively. CRAB, which is prevalent in east China, carries a large number of drug resistance and virulence genes. Fluoroquinolones and tetracyclines may be effective antibiotics for the treatment of CRAB infection in children. An in-depth understanding of the resistance and virulence of CRAB is conducive to timely guiding empirical drug use and controlling infection.
Collapse
|
31
|
Brito BP, Koong J, Wozniak A, Opazo-Capurro A, To J, Garcia P, Hamidian M. Genomic Analysis of Carbapenem-Resistant Acinetobacter baumannii Strains Recovered from Chilean Hospitals Reveals Lineages Specific to South America and Multiple Routes for Acquisition of Antibiotic Resistance Genes. Microbiol Spectr 2022; 10:e0246322. [PMID: 36154439 PMCID: PMC9602995 DOI: 10.1128/spectrum.02463-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/09/2022] [Indexed: 01/04/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAb) is a public health threat accounting for a significant number of hospital-acquired infections. Despite the importance of this pathogen, there is scarce literature on A. baumannii molecular epidemiology and evolutionary pathways relevant to resistance emergence in South American strains. We analyzed the genomic context of 34 CRAb isolates recovered from clinical samples between 2010 and 2013 from two hospitals in Santiago, Chile, using whole-genome sequencing. Several Institut Pasteur scheme sequence types (STs) were identified among the 34 genomes studied here, including ST1, ST15, ST79, ST162, and ST109. No ST2 (the most widespread sequence type) strain was detected. Chilean isolates were phylogenetically closely related, forming lineages specific to South America (e.g., ST1, ST79, and ST15). The genomic contexts of the resistance genes were diverse: while genes were present in a plasmid in ST15 strains, all genes were chromosomal in ST79 strains. Different variants of a small Rep_3 plasmid played a central role in the acquisition of the oxa58 carbapenem and aacC2 aminoglycoside resistance genes in ST1, ST15, and ST79 strains. The aacC2 gene along with blaTEM were found in a novel transposon named Tn6925 here. Variants of Tn7 were also found to play an important role in the acquisition of the aadA1 and dfrA1 genes. This work draws a detailed picture of the genetic context of antibiotic resistance genes in a set of carbapenem-resistant A. baumannii strains recovered from two Chilean hospitals and reveals a complex evolutionary picture of antibiotic resistance gene acquisition events via multiple routes involving several mobile genetic elements. IMPORTANCE Treating infections caused by carbapenem-resistant A. baumannii (CRAb) has become a global challenge given that CRAb strains are also often resistant to a wide range of antibiotics. Analysis of whole-genome sequence data is now a standard approach for studying the genomic context of antibiotic resistance genes; however, genome sequence data from South American countries are scarce. Here, phylogenetic and genomic analyses of 34 CRAb strains recovered from 2010 to 2013 from two Chilean hospitals revealed a complex picture leading to the generation of resistant lineages specific to South America. From these isolates, we characterized several mobile genetic elements, some of which are described for the first time. The genome sequences and analyses presented here further our understanding of the mechanisms leading to multiple-drug resistance, extensive drug resistance, and pandrug resistance phenotypes in South America. Therefore, this is a significant contribution to elucidating the global molecular epidemiology of CRAb.
Collapse
Affiliation(s)
- Barbara P. Brito
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Jonathan Koong
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Aniela Wozniak
- Laboratory of Microbiology, Department of Clinical Laboratories, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Clinical Laboratories Network, Red de Salud UC-CHRISTUS, Santiago, Chile
| | - Andres Opazo-Capurro
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Joyce To
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Patricia Garcia
- Laboratory of Microbiology, Department of Clinical Laboratories, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Clinical Laboratories Network, Red de Salud UC-CHRISTUS, Santiago, Chile
| | - Mehrad Hamidian
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
32
|
Ghalavand Z, Eslami G, Hashemi A, Sadredinamin M, Yousefi N, Dehbanipour R. Characterization of Sequence Types and Mechanisms of Resistance to Tigecycline Among Acinetobacter baumannii Isolated from Children. Curr Microbiol 2022; 79:285. [PMID: 35947200 DOI: 10.1007/s00284-022-02976-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 07/15/2022] [Indexed: 11/26/2022]
Abstract
The present study aimed to investigate the mechanisms of resistance to tigecycline and to determine sequence types of Acinetobacter baumannii isolates recovered from children, using the Multilocus Sequence Typing (MLST). A total of 74 A. baumannii isolates were recovered from patients at one of the children's hospital in Tehran, Iran. Antimicrobial susceptibility testing of the isolates was performed for different classes of antibiotics and minimum inhibitory concentrations of colistin and tigecycline were determined using broth microdilution method and E-test strips, respectively. The presence of ISAba1, AbaR, tet(39), and tetX and the expressions of adeB, adeG, and adeJ efflux pump genes were measured using Polymerase Chain Reaction (PCR) and quantitative real-time PCR (RT-PCR), respectively. The diversity of mutations across the regulatory genes of RND efflux pumps (adeRS, adeL, and adeN) and trm gene were determined using their PCR amplification and DNA sequencing in tigecycline-resistant isolates. In addition, STs of tigecycline-resistant isolates were determined using MLST method. Three A. baumannii isolates were resistant to tigecycline. Several amino acid substitutions were identified in AdeRS, AdeN, and Trm but no alteration was found in AdeL. Nevertheless, adeB, adeG, and adeJ overexpression were observed in 1, 2, and 1 isolates, respectively. The tigecycline-resistant isolates belonged to ST1720 and ST2285. This is the first study reporting on ST2285 in A. baumannii populations. Among 74 isolates, two tigecycline susceptible isolates carried tet(39) gene but no tetX gene was detected. We concluded that mutations in regulatory genes of RND efflux pumps and the trm gene may play some important role in A. baumannii resistance to tigecycline.
Collapse
Affiliation(s)
- Zohreh Ghalavand
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gita Eslami
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrzad Sadredinamin
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Yousefi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Razieh Dehbanipour
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Genomic Analysis of Acinetobacter baumannii Isolates Carrying OXA-23 and OXA-58 Genes from Animals Reveals ST1 and ST25 as Major Clonal Lineages. Antibiotics (Basel) 2022; 11:antibiotics11081045. [PMID: 36009914 PMCID: PMC9404926 DOI: 10.3390/antibiotics11081045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Acinetobacter baumannii is increasingly being recognized as a relevant pathogen for animals with a putative zoonotic impact. This study aimed at identifying and characterizing carbapenemase-producing A. baumannii from animals. Among 503 A. baumannii, mainly isolated from dogs/cats (75.7%) between 2013 and 2018, 42 isolates from 22 veterinary clinics (VCs) harboured blaOXA-58 (n = 29) or blaOXA-23 (n = 13). The blaOXA-58 gene was located on plasmids (11.4–21.1 kb) within different genetic surroundings (patterns A–D). BlaOXA-23 was embedded in Tn2006 on the chromosome (n = 4; pattern a) or Tn2008 on plasmids (n = 9; 41.2–71.3 kb; patterns b–e). The predominant IC1-ST1P-OXA-58 (66.7%; 96.4% cgMLST complex type (CT)-1808) was disseminated among 11 VCs in Germany. Resistance islands AbaR3-like (n = 15) and AbaR10 (n = 1) have emerged among ST1-isolates since 2016. IC7-ST25P-OXA-23 isolates (21.4%) occurred in seven VCs in Germany, France and Italy and differed in their resistance gene patterns from those of OXA-58 isolates. They were separated into six CTs, basically according to their regional origin. Other STs observed were ST10, ST578 and ST602. In conclusion, OXA-23 and OXA-58 were linked with ST1 and ST25, two globally distributed lineages in humans. The suggested transmission of certain lineages within and among VCs together with the acquisition of AbaR islands hints at a successful dissemination of multidrug-resistant strains in the VC environment.
Collapse
|
34
|
Hamed SM, Hussein AFA, Al-Agamy MH, Radwan HH, Zafer MM. Genetic Configuration of Genomic Resistance Islands in Acinetobacter baumannii Clinical Isolates From Egypt. Front Microbiol 2022; 13:878912. [PMID: 35935207 PMCID: PMC9353178 DOI: 10.3389/fmicb.2022.878912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
In Acinetobacter baumannii (A. baumannii), a wide repertoire of resistance genes is often carried within genomic resistance islands (RIs), particularly in high-risk global clones (GCs). As the first in Egypt, the current study aimed at exploring the diversity and genetic configuration of RIs in the clinical isolates of A. baumannii. For this purpose, draft genomes of 18 isolates were generated by Illumina sequencing. Disk diffusion susceptibility profiling revealed multidrug resistance (MDR) and extensive drug resistance (XDR) phenotypes in 27.7 and 72.2%, respectively. The highest susceptibility was noted for tigecycline (100.0%) followed by colistin (94.4%), for which an MIC50 of 0.25 μg/ml was recorded by the broth microdilution assay. Sequence typing (ST) showed that the majority of the isolates belonged to high-risk global clones (GC1, GC2, and GC9). A novel Oxford sequence type (ST2329) that also formed a novel clonal complex was submitted to the PubMLST database. A novel blaADC variant (blaADC−258) was also identified in strain M18 (ST85Pas/1089Oxf). In addition to a wide array of resistance determinants, whole-genome sequencing (WGS) disclosed at least nine configurations of genomic RIs distributed over 16/18 isolates. GC2 isolates accumulated the largest number of RIs (three RIs/isolate) followed by those that belong to GC1 (two RIs/isolate). In addition to Tn6022 (44.4%), the comM gene was interrupted by AbaR4 (5.5%) and three variants of A. baumanniigenomic resistance island 1(AbGRI)-type RIs (44.4%), including AbaR4b (16.6%) and two novel configurations of AbGRI1-like RIs (22.2%). Three of which (AbaR4, AbaR4b, and AbGRI1-like-2) carried blaOXA−23 within Tn2006. With less abundance (38.8%), IS26-bound RIs were detected exclusively in GC2 isolates. These included a short version of AbGRI2 (AbGRI2-15) carrying the genes blaTEM−1 and aphA1 and two variants of AbGRI3 RIs carrying up to seven resistance genes [mphE-msrE-armA-sul1-aadA1-catB8-aacA4]. Confined to GC1 (22.2%), sulfonamide resistance was acquired by an ISAba1 bracketed GIsul2 RI. An additional RI (RI-PER-7) was also identified on a plasmid carried by strain M03. Among others, RI-PER-7 carried the resistance genes armA and blaPER−7. Here, we provided a closer view of the diversity and genetic organization of RIs carried by a previously unexplored population of A. baumannii.
Collapse
Affiliation(s)
- Samira M. Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Amira F. A. Hussein
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed H. Al-Agamy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hesham H. Radwan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mai M. Zafer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
- *Correspondence: Mai M. Zafer
| |
Collapse
|
35
|
Vijayakumar S, Jacob JJ, Vasudevan K, Mathur P, Ray P, Neeravi A, Baskaran A, Kirubananthan A, Anandan S, Biswas I, Walia K, Veeraraghavan B. Genomic Characterization of Mobile Genetic Elements Associated With Carbapenem Resistance of Acinetobacter baumannii From India. Front Microbiol 2022; 13:869653. [PMID: 35783393 PMCID: PMC9240704 DOI: 10.3389/fmicb.2022.869653] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
With the excessive genome plasticity, Acinetobacter baumannii can acquire and disseminate antimicrobial resistance (AMR) genes often associated with mobile genetic elements (MGEs). Analyzing the genetic environment of resistance genes often provides valuable information on the origin, emergence, evolution, and spread of resistance. Thus, we characterized the genomic features of some clinical isolates of carbapenem-resistant A. baumannii (CRAb) to understand the role of diverse MGEs and their genetic context responsible for disseminating carbapenem resistance genes. For this, 17 clinical isolates of A. baumannii obtained from multiple hospitals in India between 2018 and 2019 were analyzed. AMR determinants, the genetic context of resistance genes, and molecular epidemiology were studied using whole-genome sequencing. This study observed an increased prevalence of blaOXA–23 followed by dual carbapenemases, blaOXA–23, and blaNDM. This study identified three novel Oxford MLST sequence types. The majority of the isolates belonged to the dominant clone, IC2, followed by less prevalent clones such as IC7 and IC8. This study identified variations of AbaR4 and AbGRI belonging to the IC2 lineage. To the best of our knowledge, this is the first study that provides comprehensive profiling of resistance islands, their related MGEs, acquired AMR genes, and the distribution of clonal lineages of CRAb from India.
Collapse
Affiliation(s)
| | | | | | - Purva Mathur
- Jai Prakash Narayan Apex Trauma Center, All India Institute of Medical Sciences, New Delhi, India
| | - Pallab Ray
- Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | | | | | | | - Indranil Biswas
- Microbiology Department, Molecular Genetics and Immunology, University of Kansas, Lawrence, KS, United States
| | - Kamini Walia
- Indian Council of Medical Research (ICMR), New Delhi, National Capital Territory of Delhi, New Delhi, India
| | - Balaji Veeraraghavan
- Christian Medical College & Hospital, Vellore, India
- *Correspondence: Balaji Veeraraghavan,
| |
Collapse
|
36
|
The discovery of multidrug resistant Staphylococcus aureus harboring novel SaRI isolated from retail foods. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Vuillemenot JB, Bour M, Beyrouthy R, Bonnet R, Laaberki MH, Charpentier X, Ruimy R, Plésiat P, Potron A. Genomic analysis of CTX-M-115 and OXA-23/-72 co-producing Acinetobacter baumannii, and their potential to spread resistance genes by natural transformation. J Antimicrob Chemother 2022; 77:1542-1552. [PMID: 35412620 DOI: 10.1093/jac/dkac099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/16/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To characterize Acinetobacter baumannii strains co-producing the ESBL CTX-M-115 and carbapenem-hydrolysing class D β-lactamases (CHDLs), and to assess the potential diffusion of their resistance genes by horizontal transfer. METHODS Nineteen CTX-M-115/CHDL-positive A. baumannii were collected between 2015 and 2019 from patients hospitalized in France. Their whole-genome sequences were determined on Illumina and Oxford Nanopore platforms and were compared through core-genome MLST (cgMLST) and SNP analyses. Transferability of resistance genes was investigated by natural transformation assays. RESULTS Eighteen strains were found to harbour CHDL OXA-72, and another one CHDL OXA-23, in addition to CTX-M-115, narrow-spectrum β-lactamases and aminoglycoside resistance determinants including ArmA. cgMLST typing, as well as Oxford Scheme ST and K locus typing, confirmed that 17 out of the 18 CTX-M-115/OXA-72 isolates belonged to new subclades within clonal complex 78 (CC78). The chromosomal region carrying the blaCTX-M-115 gene appeared to vary greatly both in gene content and in length (from 20 to 79 kb) among the strains, likely because of IS26-mediated DNA rearrangements. The blaOXA-72 gene was localized on closely related plasmids showing structural variations that occurred between pdif sites. Transfer of all the β-lactamase genes, as well as aminoglycoside resistance determinants to a drug-susceptible A. baumannii recipient, was easily obtained in vitro by natural transformation. CONCLUSIONS This work highlights the propensity of CC78 isolates to collect multiple antibiotic resistance genes, to rearrange and to pass them to other A. baumannii strains via natural transformation. This process, along with mobile genetic elements, likely contributes to the considerable genomic plasticity of clinical strains, and to the diversity of molecular mechanisms sustaining their multidrug resistance.
Collapse
Affiliation(s)
- Jean-Baptiste Vuillemenot
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, France.,Laboratoire de Bactériologie, UMR 6249 Chrono-Environnement, UFR Santé, Université Bourgogne Franche-Comté, Besançon, France
| | - Maxime Bour
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, France
| | - Racha Beyrouthy
- UMR INSERM 1071 USC INRA2018, Université Clermont Auvergne, Clermont-Ferrand, France.,Laboratoire associé Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Clermont-Ferrand, France
| | - Richard Bonnet
- UMR INSERM 1071 USC INRA2018, Université Clermont Auvergne, Clermont-Ferrand, France.,Laboratoire associé Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Clermont-Ferrand, France
| | - Maria-Halima Laaberki
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Xavier Charpentier
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Raymond Ruimy
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Nice, UMR INSERM C3M, Université Côte d'Azur, Nice, France
| | - Patrick Plésiat
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, France.,Laboratoire de Bactériologie, UMR 6249 Chrono-Environnement, UFR Santé, Université Bourgogne Franche-Comté, Besançon, France
| | - Anaïs Potron
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, France.,Laboratoire de Bactériologie, UMR 6249 Chrono-Environnement, UFR Santé, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
38
|
Jones NI, Harmer CJ, Hamidian M, Hall RM. Evolution of Acinetobacter baumannii plasmids carrying the oxa58 carbapenemase resistance gene via plasmid fusion, IS26-mediated events and dif module shuffling. Plasmid 2022; 121:102628. [DOI: 10.1016/j.plasmid.2022.102628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
39
|
Interbacterial Transfer of Carbapenem Resistance and Large Antibiotic Resistance Islands by Natural Transformation in Pathogenic Acinetobacter. mBio 2022; 13:e0263121. [PMID: 35073754 PMCID: PMC8787482 DOI: 10.1128/mbio.02631-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acinetobacter baumannii infection poses a major health threat, with recurrent treatment failure due to antibiotic resistance, notably to carbapenems. While genomic analyses of clinical strains indicate that homologous recombination plays a major role in the acquisition of antibiotic resistance genes, the underlying mechanisms of horizontal gene transfer often remain speculative. Our understanding of the acquisition of antibiotic resistance is hampered by the lack of experimental systems able to reproduce genomic observations. We here report the detection of recombination events occurring spontaneously in mixed bacterial populations and which can result in the acquisition of resistance to carbapenems. We show that natural transformation is the main driver of intrastrain but also interstrain recombination events between A. baumannii clinical isolates and pathogenic species of Acinetobacter. We observed that interbacterial natural transformation in mixed populations is more efficient at promoting the acquisition of large resistance islands (AbaR4 and AbaR1) than when the same bacteria are supplied with large amounts of purified genomic DNA. Importantly, analysis of the genomes of the recombinant progeny revealed large recombination tracts (from 13 to 123 kb) similar to those observed in the genomes of clinical isolates. Moreover, we highlight that transforming DNA availability is a key determinant of the rate of recombinants and results from both spontaneous release and interbacterial predatory behavior. In the light of our results, natural transformation should be considered a leading mechanism of genome recombination and horizontal gene transfer of antibiotic resistance genes in Acinetobacter baumannii.
Collapse
|
40
|
Hu Y, Zheng J, Zhang J. Natural Transformation in Acinetobacter baumannii W068: A Genetic Analysis Reveals the Involvements of the CRP, XcpV, XcpW, TsaP, and TonB2. Front Microbiol 2022; 12:738034. [PMID: 35126321 PMCID: PMC8811193 DOI: 10.3389/fmicb.2021.738034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/14/2021] [Indexed: 01/25/2023] Open
Abstract
Acinetobacter baumannii is a serious threat to public health, and there is increasing attention to the development of antibiotic resistance in this bacterium. Natural transformation is a major horizontal gene transfer mechanism that can lead to antibiotic resistance. To better understand the mechanism of natural transformation in A. baumannii, we selected a clinical isolate that was transformable but had no visible extracellular type IV pili (T4P) filaments and then examined the effects of multiple single-gene knockouts on natural plasmid transformation. Among 33 candidate genes, 28 knockout mutants had severely or completely impaired transformability. Some of these genes had established roles in T4P biogenesis; DNA transfer across the outer membrane, periplasm, or inner membrane; and protection of intracellular single-stranded DNA (ssDNA). Other genes had no previously reported roles in natural transformation of A. baumannii, including competence activator cAMP receptor protein (CRP), a periplasmic protein that may function in T4P assembly (TonB2), a T4P secretin-associated protein (TsaP), and two type II secretion system (T2SS) minor pseudopilus assembly prime complex competent proteins (XcpV and XcpW). The deletion of the T2SS assembly platform protein X had no effect on transformation, and the minor pseudopilins were capable of initiating major pilin assembly. Thus, we speculate that XcpV and XcpW may function in DNA uptake with major pilin assembly, a non-T2SS-dependent mechanism and that a competence pseudopilus similar to T4P constituted the central part of the DNA uptake complex. These results may help guide future research on the alarming increase of antibiotic resistance in this pathogen.
Collapse
Affiliation(s)
- Yuan Hu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Junjie Zheng
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianzhong Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- *Correspondence: Jianzhong Zhang,
| |
Collapse
|
41
|
Harmer CJ, Lebreton F, Stam J, McGann PT, Hall RM. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1851-1855. [PMID: 35403193 PMCID: PMC9244215 DOI: 10.1093/jac/dkac115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives To examine the causes of antibiotic resistance in the extensively resistant global clone 1 (GC1) Acinetobacter baumannii isolate MRSN 56 recovered at a US military treatment facility. Methods MRSN 56 was sequenced using MinION (Oxford Nanopore) and the reads combined with available Illumina MiSeq data using Unicycler. Acquired resistance genes were identified using ABRicate and their environment examined. ISAba1 and ISAba125 copies were located. Results MRSN 56 is ST1IP:ST231Ox:KL1:OCL1 and the complete genome includes four small plasmids, none of which carry resistance genes. The acquired resistance genes were found at four locations in the chromosome in addition to AbaR28 (aphA1, aacC1, aadA1, sul1) in comM. Tn2006 (oxa23, carbapenem resistance) was both in AbaR4 and alone elsewhere. Two copies of Tn7 (dfrA1, sat, aadA1) were identified. One was associated with a 22 852 bp adjacent segment [tetA(B), sul2] derived from the AbGRI1 island, and this novel configuration was designated Tn7+. Tn7+ was incorporated in the position preferred by Tn7, downstream of glmS, by transposition using a sequence in AbGRI1 resembling the Tn7 terminal inverted repeats. Tn7 was found at a secondary site. Fluoroquinolone resistance appears to involve a mutation in gyrA combined with inactivation by ISAba1 of the marR gene in the mar operon and constitutive expression of marA from the promoter internal to ISAba1. Conclusions MRSN 56 represents a new sublineage of GC1 lineage 1 with novel features that had not been detected previously. The involvement of the mar operon in fluoroquinolone resistance has not been noted previously.
Collapse
Affiliation(s)
- Christopher J Harmer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Francois Lebreton
- Multidrug Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jason Stam
- Multidrug Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Patrick T McGann
- Multidrug Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | |
Collapse
|
42
|
Koong J, Johnson C, Rafei R, Hamze M, Myers GSA, Kenyon JJ, Lopatkin AJ, Hamidian M. Phylogenomics of two ST1 antibiotic-susceptible non-clinical Acinetobacter baumannii strains reveals multiple lineages and complex evolutionary history in global clone 1. Microb Genom 2021; 7. [PMID: 34874246 PMCID: PMC8767349 DOI: 10.1099/mgen.0.000705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen that is difficult to treat due to its resistance to extreme conditions, including desiccation and antibiotics. Most strains causing outbreaks around the world belong to two main global lineages, namely global clones 1 and 2 (GC1 and GC2). Here, we used a combination of Illumina short read and MinION (Oxford Nanopore) long-read sequence data with a hybrid assembly approach to complete the genome sequence of two antibiotic-sensitive GC1 strains, Ex003 and Ax270, recovered in Lebanon from water and a rectal swab of a cat, respectively. Phylogenetic analysis of Ax270 and Ex003 with 186 publicly available GC1 genomes revealed two major clades, including five main lineages (L1–L5), and four single-isolate lineages outside of the two clades. Ax270 and Ex003, along with AB307-0294 and MRSN7213 (both predicted antibiotic-susceptible isolates) represent these individual lineages. Antibiotic resistance islands and transposons interrupting the comM gene remain important features in L1–L5, with L1 associated with the AbaR-type resistance islands, L2 with AbaR4, L3 strains containing either AbaR4 or its variants as well as Tn6022::ISAba42, and L4 and L5 associated with Tn6022 or its variants. Analysis of the capsule (KL) and outer core (OCL) polysaccharide loci further revealed a complex evolutionary history probably involving many recombination events. As more genomes become available, more GC1 lineages continue to emerge. However, genome sequence data from more diverse geographical regions are needed to draw a more accurate population structure of this globally distributed clone.
Collapse
Affiliation(s)
- Jonathan Koong
- The iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Claire Johnson
- Department of Biology, Barnard College Affiliated Faculty Data Science Institute, Columbia University Affiliated Faculty, Columbia University, Columbia, USA
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science & Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science & Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Garry S A Myers
- The iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Johanna J Kenyon
- Centre for Immunology and Infection Control, School of Biomedical Sciences. Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Allison J Lopatkin
- Department of Biology, Barnard College Affiliated Faculty Data Science Institute, Columbia University Affiliated Faculty, Columbia University, Columbia, USA
| | - Mohammad Hamidian
- The iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
43
|
Liepa R, Mann R, Osman M, Hamze M, Gunawan C, Hamidian M. Cl415, a carbapenem-resistant Acinetobacter baumannii isolate containing four AbaR4 and a new variant of AbGRI2, represents a novel global clone 2 strain. J Antimicrob Chemother 2021; 77:345-350. [PMID: 34741594 PMCID: PMC8809195 DOI: 10.1093/jac/dkab399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
Objectives To determine the genetic context of genes conferring antibiotic resistance on the carbapenem-resistant Acinetobacter baumannii Cl415, recovered in 2017 at El Youssef Hospital Centre in Akkar Governorate, North Lebanon. Methods Antibiotic resistance phenotype for 22 antibiotics was determined using disc diffusion or MIC determination. The whole-genome sequence of Cl415 was determined using a combination of the Illumina MiSeq and Oxford Nanopore (MinION) platforms. Complete genome was assembled using Unicycler and antibiotic resistance determinants and ISs were identified using ResFinder and ISFinder, respectively. Results Cl415 is a global clone 2 (GC2) strain and belongs to the most common STs of this clone, ST2IP and ST218OX. Cl415 is resistant to several antibiotics, including aminoglycosides and carbapenems to a high level. Genomic analysis of Cl415 revealed that it carries four chromosomal AbaR4 copies. One copy was found in the comM gene replacing the AbGRI1 island. Cl415 also contains a novel variant of AbGRI2, herein called AbGRI2-15, carrying only the blaTEM and aphA1 resistance genes. Cl415 belongs to a subclade of GC2 strains that appear to have diverged recently with a wide geographical distribution. Conclusions The resistance gene complement of Cl415 was found in the chromosome with four oxa23 located in AbaR4 copies and the remaining genes in a novel variant of the AbGRI2 resistance island. Cl415 was isolated in Lebanon, but phylogenetic analysis suggests that Cl415 represents a new lineage with global distribution within GC2.
Collapse
Affiliation(s)
- Rebekah Liepa
- The iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Riti Mann
- The iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.,Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Cindy Gunawan
- The iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Mohammad Hamidian
- The iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
44
|
Douraghi M, Aris P, To J, Myers GSA, Hamidian M. Two carbapenem-resistant ST1:ST231:KL1:OCL1 Acinetobacter baumannii strains recovered in Tehran, Iran, carry AbaR31 in the chromosome and AbaR4 and Tn aphA6 in a RepAci6 plasmid. JAC Antimicrob Resist 2021; 3:dlab112. [PMID: 34377981 PMCID: PMC8346695 DOI: 10.1093/jacamr/dlab112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/06/2021] [Indexed: 11/14/2022] Open
Abstract
Objectives To analyse the context of genes conferring antibiotic resistance in two carbapenem-resistant Acinetobacter baumannii isolates recovered in Tehran, Iran. Methods The antibiotic resistance phenotype for 28 antibiotics was determined using disc diffusion. The whole genome sequences of ABH008 and ABS200 were determined using the Illumina HiSeq X Ten platform. Resistance genes were identified using ResFinder and multilocus sequence types were determined using the Oxford and Institut Pasteur schemes. Results Isolates ABH008 and ABS200, recovered in 2012 and 2013, respectively, in two different Tehran hospitals, belong to the common global clone 1 lineage, ST1IP and ST231OX. They are resistant to sulfamethoxazole, tetracycline, gentamicin, amikacin, third-generation cephalosporins and carbapenems. Despite being isolated in different hospitals, phylogenetic analysis indicated they are closely related. Consistent with this, both isolates carry catA1, sul1, aacC1 and aadA1 in a novel variant of the AbaR3-type resistance island, named AbaR31. Both isolates are resistant to amikacin and carbapenems owing to aphA6 and oxa23, respectively. The oxa23 gene is located in the AbaR4 resistance island, and aphA6 in TnaphA6, and both mobile elements are in an ∼90 kbp plasmid encoding the putative RepAci6 replication initiation protein. Resistance to third-generation cephalosporins is due to the acquisition by homologous recombination of a 5 kb DNA segment that contains ISAba1-ampC from a ST623 strain. Conclusions The resistance gene complements of ABH008 and ABS200 were found in AbaR31 and a plasmid that encodes RepAci6. The close genetic relationship of ABH008 and ABS200, despite each being recovered from different hospitals, indicates transmission between the two hospitals.
Collapse
Affiliation(s)
- Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Aris
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Joyce To
- The iThree institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Garry S A Myers
- The iThree institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Mohammad Hamidian
- The iThree institute, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
45
|
Gambino AS, Déraspe M, Álvarez VE, Quiroga MP, Corbeil J, Roy PH, Centrón D. Serratia marcescens SCH909 as reservoir and source of genetic elements related to wide dissemination of antimicrobial resistance mechanisms. FEMS Microbiol Lett 2021; 368:6321840. [PMID: 34264334 DOI: 10.1093/femsle/fnab086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/09/2021] [Indexed: 11/14/2022] Open
Abstract
Serratia marcescens SCH909 is a multidrug resistant strain isolated in 1988 harboring three class 1 integrons. We wondered if these integrons were retained over time and if there were other antimicrobial resistant determinants contributing to its multidrug resistant profile. Genomic analysis showed a fourth multidrug resistance integron, a Tn7 transposon with dfrA1-sat2-ybeA-ybfA-ybfB-ybgA gene cassettes in the variable region. Insertion sequences were involved in the genesis of novel composite transposons in the L4 subtype plasmid pSCH909, such as Tn6824 carrying an arsenic regulon and two head to head class 1 integrons surrounded by two complete IS1. Remarkably, a novel chromosomal genomic island, SmaR, was identified, closely related to Multiple Antimicrobial Resistance Regions (MARR), usually found in AbaR0-type and AbGRI2-0 from global clones of Acinetobacter baumannii, and in M-type plasmids circulating in Enterobacteriaceae. Maintenance studies showed that the three class 1 integrons were maintained over 1 month without antimicrobial pressure. Since S. marcescens is considered a relevant nosocomial pathogen that can have a wide range of niches - human, plant, animal, soil and inanimate surfaces, our findings support the ability of this species to capture, maintain and spread a broad variety of antimicrobial resistance elements.
Collapse
Affiliation(s)
- Anahí S Gambino
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Facultad de Medicina, Paraguay 2155, piso 12, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maxime Déraspe
- Département de Médecine Moléculaire, Université Laval, Avenue de la Médecine 1050, Pavillon Ferdinand-Vandry, Suite 4835, Québec, Canada.,Centre de Recherche en Données Massives, Université Laval, Avenue de la Médecine 1050, Pavillon Adrien-Pouliot PLT-3947, Québec, Canada.,Centre de Recherche en Infectiologie, Université Laval, Boulevard Laurier 2705, Local RC-709, Québec, Canada
| | - Verónica E Álvarez
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Facultad de Medicina, Paraguay 2155, piso 12, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Paula Quiroga
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Facultad de Medicina, Paraguay 2155, piso 12, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jacques Corbeil
- Département de Médecine Moléculaire, Université Laval, Avenue de la Médecine 1050, Pavillon Ferdinand-Vandry, Suite 4835, Québec, Canada.,Centre de Recherche en Données Massives, Université Laval, Avenue de la Médecine 1050, Pavillon Adrien-Pouliot PLT-3947, Québec, Canada.,Centre de Recherche en Infectiologie, Université Laval, Boulevard Laurier 2705, Local RC-709, Québec, Canada
| | - Paul H Roy
- Centre de Recherche en Infectiologie, Université Laval, Boulevard Laurier 2705, Local RC-709, Québec, Canada.,Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Faculté des sciences et de génie, pavillon Alexandre-Vachon 1045, av. de la Médecine, local 3261, Québec, Canada
| | - Daniela Centrón
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Facultad de Medicina, Paraguay 2155, piso 12, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
46
|
Hamidian M, Ambrose SJ, Blackwell GA, Nigro SJ, Hall RM. An outbreak of multiply antibiotic-resistant ST49:ST128:KL11:OCL8 Acinetobacter baumannii isolates at a Sydney hospital. J Antimicrob Chemother 2021; 76:893-900. [PMID: 33452522 DOI: 10.1093/jac/dkaa553] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/04/2020] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES To understand the acquisition of resistance genes by a non-GC1, non-GC2 Acinetobacter baumannii strain responsible for a 4 year outbreak at a Sydney hospital. METHODS Representative isolates were screened for resistance to antibiotics. Three were subjected to WGS using Illumina HiSeq. One genome was completed with MinION long reads. Resistance regions were compared with known sequences using bioinformatics. RESULTS Isolates were resistant to third-generation cephalosporins, gentamicin and tobramycin, sulfamethoxazole and erythromycin. Sequenced isolates were ST49 (Institut Pasteur scheme) and ST128 (Oxford scheme) and carried KL11 at the capsule locus and OCL8 at the lipooligosaccharide outer core locus. The complete genome of isolate J9 revealed that the resistance genes were all in plasmids; pRAY* contained aadB, and a large plasmid, pJ9-3, contained sul2 and floR genes and a dif module containing the mph(E)-msr(E) macrolide resistance genes. Transposon Tn6168, consisting of a second copy of the chromosomal ampC gene region flanked by ISAba1s, confers resistance to third-generation cephalosporins. Tn6168 is located inside the mph(E)-msr(E) dif module. pJ9-3 includes a set of four dif modules and the orientation of the pdif sites, XerC-XerD or XerD-XerC, alternates. A large transposon, Tn6175, containing tniCABDE transposition genes and genes annotated as being involved in heavy metal metabolism, uptake or export was found in the comM gene. Other ST49:ST128:KL11:OCL8 genomes found in the GenBank WGS database carried Tn6175 but neither of the plasmids carrying the resistance genes. CONCLUSIONS An early carbapenem-susceptible A. baumannii outbreak recorded in Australia was caused by an unusual clone that had acquired plasmids carrying antibiotic resistance genes.
Collapse
Affiliation(s)
- Mohammad Hamidian
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.,The ithree institute, University of Technology Sydney, NSW, 2007, Australia
| | - Stephanie J Ambrose
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Grace A Blackwell
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Steven J Nigro
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
47
|
Chan AP, Choi Y, Clarke TH, Brinkac LM, White RC, Jacobs MR, Bonomo RA, Adams MD, Fouts DE. AbGRI4, a novel antibiotic resistance island in multiply antibiotic-resistant Acinetobacter baumannii clinical isolates. J Antimicrob Chemother 2021; 75:2760-2768. [PMID: 32681170 PMCID: PMC7556812 DOI: 10.1093/jac/dkaa266] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/01/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES To investigate the genomic context of a novel resistance island (RI) in multiply antibiotic-resistant Acinetobacter baumannii clinical isolates and global isolates. METHODS Using a combination of long and short reads generated from the Oxford Nanopore and Illumina platforms, contiguous chromosomes and plasmid sequences were determined. BLAST-based analysis was used to identify the RI insertion target. RESULTS Genomes of four multiply antibiotic-resistant A. baumannii clinical strains, from a US hospital system, belonging to prevalent MLST ST2 (Pasteur scheme) and ST281 (Oxford scheme) clade F isolates were sequenced to completion. A class 1 integron carrying aadB (tobramycin resistance) and aadA2 (streptomycin/spectinomycin resistance) was identified. The class 1 integron was 6.8 kb, bounded by IS26 at both ends, and embedded in a new target location between an α/β-hydrolase and a reductase. Due to its novel insertion site and unique RI composition, we suggest naming this novel RI AbGRI4. Molecular analysis of global A. baumannii isolates identified multiple AbGRI4 RI variants in non-ST2 clonal lineages, including variations in the resistance gene cassettes, integron backbone and insertion breakpoints at the hydrolase gene. CONCLUSIONS A novel RI insertion target harbouring a class 1 integron was identified in a subgroup of ST2/ST281 clinical isolates. Variants of the RI suggested evolution and horizontal transfer of the RI across clonal lineages. Long- and short-read hybrid assembly technology completely resolved the genomic context of IS-bounded RIs, which was not possible using short reads alone.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael R Jacobs
- Department of Pathology, University Hospitals Cleveland Medical Center and Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | - Mark D Adams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | |
Collapse
|
48
|
McNeilly O, Mann R, Hamidian M, Gunawan C. Emerging Concern for Silver Nanoparticle Resistance in Acinetobacter baumannii and Other Bacteria. Front Microbiol 2021; 12:652863. [PMID: 33936010 PMCID: PMC8085274 DOI: 10.3389/fmicb.2021.652863] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The misuse of antibiotics combined with a lack of newly developed ones is the main contributors to the current antibiotic resistance crisis. There is a dire need for new and alternative antibacterial options and nanotechnology could be a solution. Metal-based nanoparticles, particularly silver nanoparticles (NAg), have garnered widespread popularity due to their unique physicochemical properties and broad-spectrum antibacterial activity. Consequently, NAg has seen extensive incorporation in many types of products across the healthcare and consumer market. Despite clear evidence of the strong antibacterial efficacy of NAg, studies have raised concerns over the development of silver-resistant bacteria. Resistance to cationic silver (Ag+) has been recognised for many years, but it has recently been found that bacterial resistance to NAg is also possible. It is also understood that exposure of bacteria to toxic heavy metals like silver can induce the emergence of antibiotic resistance through the process of co-selection. Acinetobacter baumannii is a Gram-negative coccobacillus and opportunistic nosocomial bacterial pathogen. It was recently listed as the "number one" critical level priority pathogen because of the significant rise of antibiotic resistance in this species. NAg has proven bactericidal activity towards A. baumannii, even against strains that display multi-drug resistance. However, despite ample evidence of heavy metal (including silver; Ag+) resistance in this bacterium, combined with reports of heavy metal-driven co-selection of antibiotic resistance, little research has been dedicated to assessing the potential for NAg resistance development in A. baumannii. This is worrisome, as the increasingly indiscriminate use of NAg could promote the development of silver resistance in this species, like what has occurred with antibiotics.
Collapse
Affiliation(s)
- Oliver McNeilly
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Riti Mann
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Mohammad Hamidian
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Cindy Gunawan
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
49
|
Hamidian M, Hall RM. Dissemination of novel Tn 7 family transposons carrying genes for synthesis and uptake of fimsbactin siderophores among Acinetobacter baumannii isolates. Microb Genom 2021; 7. [PMID: 33749577 PMCID: PMC8190619 DOI: 10.1099/mgen.0.000548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acinetobacter baumannii is a successful opportunistic pathogen that can compete for iron under iron-limiting conditions. Here, large novel transposons that carry genes for synthesis and transport of the fimsbactin siderophores present in some A. baumannii strains were examined. Tn6171, originally found in the A. baumannii global clone 1 (GC1) lineage 2 isolate D36, includes tns genes encoding proteins related to the TnsA, TnsB, TnsC transposition proteins (50–59 % identity), TnsD targeting protein (43 % identity) and TnsE (31 % identity) of Tn7, and is found in the chromosome downstream of the glmS gene, the preferred location for Tn7, flanked by a 5 bp target site duplication. Tn6171 is bounded by 29 bp inverted repeats and, like Tn7, includes additional TnsB binding sites at each end. Tn6171 or minor variants were detected in the equivalent location in complete or draft genomes of several further A. baumannii isolates belonging to GC1 [sequence type (ST) 1, ST81, ST94, ST328, ST623, ST717], GC2 (ST2) and ST10. However, in some of these isolates the surrounding glmS region was clearly derived from a different A. baumannii lineage, indicating that the transposon may have been acquired by replacement of a segment of the chromosome. A recombination-free phylogeny revealed that there were several transposon acquisition events in GC1. The GC1 isolates were mainly lineage 2, but a potential third lineage was also detected. A related transposon, designated Tn6552, was detected in ATCC 17978 (ST437) and other ST437 isolates. However, the Tn6552 tnsD targeting gene was interrupted by an ISAba12, and Tn6552 is not downstream of glmS.
Collapse
Affiliation(s)
- Mohammad Hamidian
- iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ruth M Hall
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| |
Collapse
|
50
|
Zhang X, Li F, Awan F, Jiang H, Zeng Z, Lv W. Molecular Epidemiology and Clone Transmission of Carbapenem-Resistant Acinetobacter baumannii in ICU Rooms. Front Cell Infect Microbiol 2021; 11:633817. [PMID: 33718283 PMCID: PMC7952536 DOI: 10.3389/fcimb.2021.633817] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is a major cause of nosocomial infections and hospital outbreaks worldwide, remaining a critical clinical concern. Here we characterized and investigated the phylogenetic relationships of 105 CRAB isolates from an intensive care unit from one hospital in China collected over six years. All strains carried blaOXA-23, blaOXA-66 genes for carbapenem resistance, also had high resistance gene, virulence factor, and insertion sequence burdens. Whole-genome sequencing revealed all strains belonged to ST2, the global clone CC2. The phylogenetic analysis based on the core genome showed all isolates were dominated by a single lineage of three clusters and eight different clones. Two clones were popular during the collection time. Using chi-square test to identify the epidemiologically meaningful groupings, we found the significant difference in community structure only existed in strains from separation time. The haplotype and median-joining network analysis revealed genetic differences appeared among clusters and changes occurred overtime in the dominating cluster. Our results highlighted substantial multidrug-resistant CRAB burden in the hospital ICU environment demonstrating potential clone outbreak in the hospital.
Collapse
Affiliation(s)
- Xiufeng Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Fangping Li
- Department of Biomedical Engineering, College of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Furqan Awan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou, China
| | - Hongye Jiang
- Department of Clinical Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Zhenling Zeng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou, China
| | - Weibiao Lv
- Department of Clinical Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| |
Collapse
|